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Abstract—Electromagnetic solvers based on the partial element
equivalent circuit (PEEC) approach have proven to be well suited
for the solution of combined circuit and EM problems. The inclu-
sion of all types of Spice circuit elements is possible. Due to this,
the approach has been used in many different tools. Most of these
solvers have been based on a rectangular or Manhattan represen-
tation of the geometries. In this paper, we systematically extend
the PEEC formulation to nonorthogonal geometries since many
practical EM problems require a more general formulation. Im-
portantly, the model given in this paper is consistent with the clas-
sical PEEC model for rectangular geometries. Some examples il-
lustrating the application of the approach are given for both the
time and frequency domain.

Index Terms—Circuit modeling, partial element equivalent cir-
cuit (PEEC) method , full-wave analysis.

I. INTRODUCTION

T HE NEED for practical computational tools and tech-
niques as well as models for realistic electromagnetic

compatibility (EMC) and electrical interconnect and package
(EIP) problems has increased drastically over the last few years
with the faster speed of digital electronic chips and with the
increased frequencies in today’s RF circuits. In response to this
progress in technologies, EM modeling techniques, and EM
solvers have also made progress at an impressive pace. This
has resulted in specialized versions of the modeling techniques.
Solvers are tailored for a specific class of problems, which
allows increased efficiency. An EM modeling approach must
be classified as suitable for a particular application range e.g.,
electrical machines, scattering problems, waveguide analysis
or, again, EMC or EIP problems. Even the EMC and the EIP
classes can be further subdivided into subproblems for which a
particular solution approach yields the best results [1]. In this
paper, we consider the surface and volume integral equation
based partial element equivalent circuit (PEEC) technique ap-
plied to heterogeneous combined circuit and EMC and/or EIP
problems. Examples of other approaches for mixed EM-circuit
problems are given for the transmission-line model (TLM) in
[2] and for the finite-difference time-domain (FDTD) technique
in [3].
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The PEEC approach has evolved over the years with a focus
toward EMI and EIP problems. In the beginning, full-wave so-
lutions were not necessary for many aspects of the problems and
the quasi static solutions were used. They are still in use, for ca-
pacitance [4]–[6] and inductance () PEEC problems [7]–[12].
With the increase in the speed and frequency ranges of the very
large-scale integration (VLSI) chips, higher frequency solutions
became necessary. This made the use of more consistent models
necessary, and many variants of PEEC models were devised for
different applications [13]–[22]. A clear and easy notation has
been devised to differentiate between the many different pos-
sible PEEC models. As an example, the notation ( )
PEEC means that the model includes partial inductance, nor-
malized coefficients of potential , resistance , and delays .
For a specific application, other combinations of elements may
be more suitable. The delays in time are equivalent to the retar-
dation, in the frequency domain, as is apparent from the Laplace
transform where . The PEEC method can
be applied in both the TD and the frequency domain, very much
like a typical Spice-type circuit solver where the option.acleads
to a frequency-domain analysis while.trancorresponds to a TD
analysis. TD models are used extensively for modeling VLSI
circuits and chips while frequency-domain models are used for
RF type applications.

In this paper, we focus on a systematic extension of the PEEC
solution for nonorthogonal geometries in both the time and the
frequency domain. Early on in the history of PEEC models,
simplified nonorthogonal geometries where modeled in terms
of rectangular bars with arbitrary orientations [9], [23], [11],
[12]. Very recently, new approaches have been presented for
nonorthogonal PEEC models using triangular cells with other
approaches e.g., [24], [25], [21]. In this paper, we further de-
velop the quadrilateral or hexahedral formulation presented in
[26], [27]. The quadrilateral and hexahedral shapes are used
to represent the different conductors as well as dielectric re-
gions. Quadrilateral surface cells have been used successfully
for EM modeling using the integral equation solution approach
e.g., [28], [29].

Importantly, the new, general formulation retains all the prop-
erties of the orthogonal PEEC method. In fact, it is intriguing
that the topology of the resultant general PEEC circuit model is
exactly the same for rectangular and nonorthogonal geometries
provided that triangular cells are not used [30]. For example,
triangular surface cells need three basis functions rather than
two as is the case for rectangular as well as quadrilateral sur-
face cells. Hence, the new approach in this paper retains the
flexibility of the conventional orthogonal PEEC approach, and
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importantly, properties likefull wave and full spectrum. The
full-waveaspects refer to the fact that up to a high-frequency
limit, all modes of propagation are calculated. Thefull-spectrum
label means that the method does not have a low frequency limit
as is the case for many other EM methods. The PEEC solution
is valid down to and including adc solution which is very im-
portant for the modeling of TD problems. This is in part why
the full-wave model is practically the same as the quasistatic
model with the exception of the delays or retardation provided
that the appropriate circuit elements are included in the model.
Further, the PEEC model has been extended to accurately in-
clude models for dielectrics [13], [22] and also scattering or in-
cident fields [31]. The nonorthogonal extension in this paper
can be applied to all aspects of modeling like PEEC
inductance models or other reduced models, besides the full
wave PEEC models. Example applications for
the nonorthogonal approach are arbitrary shaped printed circuit
antennas or the modeling of connectors including their EMI ra-
diation. Other EMC and EIP applications point to the strength
of the method. For example, the method has been applied for
the modeling of high-voltage towers [15], and the analysis of
printed circuit boards, e.g., [16], [26], [22]. Also, comparisons
with measurement and the solution with other techniques have
been made [32], [33].

Section II gives the derivation of the nonorthogonal PEEC
model. A short introduction on the evaluation of the PEEC cir-
cuit elements is given in Section III. General aspects of the cir-
cuit solver were considered in Section IV. Finally, results from
numerical experiments are given in Section V.

II. NONORTHOGONALPEEC MODEL

A. Nonorthogonal Formulation

In this section, we give an outline of the geometrical
nonorthogonal extension to the PEEC method. The objects can
be quadrilateral and/or hexahedral conductors or dielectrics
which can be both orthogonal and/or nonorthogonal.

The formulation utilizes aglobalas well as alocal coordinate
system. The keyglobalcoordinate system uses conventional or-
thogonal coordinates where a global vector is of the
form . Therefore, the global unit vectors

, and are position independent. We mark a vector in the
global coordinates as for a clear distinction from the local
coordinates. Thelocal coordinates are used to separately
represent each specific possibly nonorthogonal object. We call
the unit vectors so that they are not confused with circuit
variables like voltage etc. Details for nonorthogonal coordi-
nate systems can be found in several texts, e.g., [34]. First, we
very briefly introduce the local coordinate system we use for a
hexahedral element shown in Fig. 1. The purpose of the local co-
ordinates is to identify the location of any point belonging to the
hexahedron in terms of the variables where
and where can mean . The purpose of all this is
to uniquely map a point into a point in the global co-
ordinates . We accomplish this by specifying eight vectors

where with the coordinates . It will
be clear that the corners of the hexahedron are reached when

.

Fig. 1. Basic hexahedral element or object with local coordinates.

Next, we create clean assignment of the corner indices in
Fig. 1, for the hexahedron using a binary code for the symbols

, where the 1 coordinates map into logical zeros, and
1 coordinates map into logical ones. The order of the logical

variables is . Hence, for example, the binary code
corresponds to the corner , and and its dec-
imal equivalent is 3 for corner 3 as can be verified in Fig. 1.
This makes the assignment unique and easy to remember. As
indicated above, all local coordinates have to relate back to the
global coordinates. Therefore, a unique representation is
needed for the mapping from a local point on an object
to the global point . Mapping a point in the above hexahedron
from a local coordinate point into a global coordinate
point is described by

(2.1)

which is applied for . The coefficients in (2.1) are
given by

(2.2)

where and again . The close relation
to the binary variables is evident in (2.2).

With this, we are in a position to also express the tangential
vectors with respect to the local coordinates as

(2.3)

where the derivatives are found from (2.1) and (2.2). Finally, the
magnitude of the tangential vector where the
position dependent unit vectors can be determined from

where again . With this we are pre-
pared to formulate the geometrical aspects for the nonorthog-
onal PEEC circuit elements.
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In the PEEC circuit solution, terminal or nodal variables are
associated with each of the resultant circuit elements will be
collected in an overall circuit solver vector of unknowns. The
solution vector variables are quantities like the potentials,
and other conventional circuit variables like where is
the currents, the voltage, and some charges, etc. If no other
circuit elements are included, the solution vector used is
as the only unknowns since this vector directly yields the most
useful EM circuit output variables. Here we point out that in
part, the inclusion of both , and is, responsible for thefull-
spectrumproperty of the solution methodology such that the
correctdc solution is obtained.

B. Basic Integral Equations for Nonorthogonal Geometries

The PEEC formulation uses an integral equation solution of
Maxwell’s equations based on the total electric field. An inte-
gral or inner product is used to reformulate each term of (2.10)
into the circuit equations. This inner product integration con-
verts each term into the fundamental form where

is a voltage or potential difference across the circuit element.
It is evident that this transforms the sum of the electric fields in
(2.4) into the Kirchhoff voltage law (KVL).

The starting point is the total electric field at or in the material
which is

(2.4)

where is the incident electric field, is the current density
in a conductor and and are vector and scalar potentials,
respectively. As indicated above, the dielectric areas are taken
into account as an excess current rather than a capacitance with
the scalar potential using the volume equivalence theorem [35].
This is accomplished by adding and subtracting at in
the Maxwell equation for , or

(2.5)

Here, the current in (2.5) is written as a total current

(2.6)

where is the conductor current and the remainder of the
equations is the equivalent polarization current due to the di-
electric.

The vector potential is for a single conductor at the field
point given by

(2.7)

where the retardation time is given by
which simply is the free-space travel time between the points
and . It is noted that in the formulation derived here, both the
retardation and the Green’s functions are free-space quantities
where

(2.8)

Fig. 2. Geometry with several quadrilateral elements.

The scalar potential is similarly

(2.9)

Finally, using the above, we can formulate an integral equation
for the electric field at a point which is to be located either in-
side a conductor or inside a dielectric region. Starting from (2.4)
with the externally applied electric field set to zero, and substi-
tuting for and from (2.7) and (2.9), respectively. For more
details, please see any one of the PEEC papers, e.g., [36], [14],
[20], [37]. A derivation of the PEEC model with the rectangular,
finite dielectrics is given in [13]. The final integral equation to
be solved is

(2.10)

where is the surface normal to the body surfaces. Equation
(2.10) is a TD formulation which can easily be converted to
the frequency domain by using the Laplace transform operator

and where the time retardation will transform to
where is the delay time.

C. Discretization of Conductor and Dielectrics Geometries

Section II-B shows the integral equation (2.10) which needs
to be solved. In this section we determine the discrete equiva-
lent and the circuit elements for nonorthogonal geometries. The
basic hexahedral element or object is shown in Fig. 1 and an ex-
ample for the connection between quadrilateral and orthogonal
surface elements only is shown in Fig. 2. In PEEC we distin-
guish between inductive and capacitive cells and subdivisions
where the inductive cells connect between the nodes and ca-
pacitive cells surround the nodes. The compatibility between
quadrilateral and rectangular cells is apparent from Fig. 2. The
bodies are joined together simply by joining the nodes where the
adjoining half cells in Fig. 2 combine into full cells. To repre-
sent the current flow in orthogonal cells, we use the convenient
weighting function where are the current
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and current density and are the cell width and thickness,
respectively. For the general case, we assume also that the con-
ductor thickness is also subdivided into cells to take the thick-
ness skin effect into account. This leads to the hexahedral ele-
ments in Fig. 1 for the nonorthogonal case. Since PEEC is an
integral equation based formulation the usual volume-filament
(VFI) skin effect models result automatically from the subdi-
vision of the interiors of the conductors [36]. The generaliza-
tion of the current distribution for nonorthogonal hexahedral cell
shapes is given by

(2.11)

where and can easily be found by permuting the indices.
We call the quotient in (2.11) the weight which simplifies
(2.11) to . We should note that all the above quanti-
ties are a function of the local position coordinates . Next,
we use an integral or inner product operator

(2.12)
to integrate the terms of (2.10) where is the field
term to be integrated. We need to apply the inner product to each
term in (2.10) to transform each term to a voltage drop across
a circuit element in the KVL equation. Next, we integrate the
right-hand terms of the integral equation (2.10). After applying
the inner product, the first element on the right-hand side leads
to the series resistance term in the form

(2.13)

The second right-hand side term of (2.10), after applying
(2.12) is a generalization of the partial inductance concept for
nonorthogonal problems, or

(2.14)

The charge density is in general of a similar form as (2.11). Of
course, charge does not have a directional dependence, and the
volume charge is given by

(2.15)

where is the total charge in the volume cell. For the conven-
tional conductors, the charge will be restricted to the surface
cells only. The gradient in (2.4) in thedirection evaluates to

(2.16)

To maintain symmetry for the circuit elements or coefficients
we approximate the derivative, with an integrated average over

Fig. 3. PEEC model for top part of Fig. 1.

the two corner cells corresponding to the derivative where the
spacing is the projection in thedirection for the center to center
distance . This approximation implies that (2.16) simplifies to

(2.17)

where is a surface in the appropriate surface direction(s). Fi-
nally, by inserting for the potential in (2.17) and by cancelling
the appropriate terms, we get for the normalized coefficients of
potential

(2.18)

Here, are interpreted in a general sense for the ap-
propriate cell orientations. The PEEC circuit for a quadrilateral
element is shown in Fig. 3. It consists of four KVL loops. Specif-
ically, a KVL loop involves two nodes with the capacitances to
infinity and a partial inductance in series with a resistor. Hence,
the element shown for the bottom layer only of the element
shown in Fig. 1 consists of four loops to infinity where the PEEC
topology for the orthogonal and the nonorthogonal case are the
same, with the exception of the circuit element values. Impor-
tantly, the same modified nodal analysis (MNA) circuit solver
can be used for both separately as well as the mixed cases.

Similar to the orthogonal case, the dielectrics are represented
with additional circuit elements. We define the excess capaci-
tance of a dielectric cell as

(2.19)
where is the dielectric constant of the dielectric cell. The
equivalent circuit for the dielectric cell is given by a partial
inductance in series to a capacitor with the current

where and are the potential at the
two ends of the dielectric cell. This model for finite dielectrics
is a very important part of the PEEC approach [38].
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Fig. 4. Corner of cell for continuity equation.

D. Continuity Equation and Kirchhoff ’s Current Law

It is important that the continuity equation is satisfied at the
cell level for the currents and charges. Its differential form is
given by where is the current density
and is the surface charge density. The continuity equation is
applied at the location of each node. For this reason, we show
the geometry of a corner in Fig. 4, corresponding to nodes 0 and
1 in Fig. 1. Since only one quarter of the elements surrounding
the node is shown, we assume that the surface element in Fig. 4
may be connected to other similar surfaces along the– and
the – surfaces. Hence, the volume for which the continuity
equation is applied consists of the corners which are involved
in the geometry surrounding the node(s). It is sufficient to con-
sider only the corner elements, by ignoring the internal surfaces
shown in Fig. 4, for simplicity.

Integrating the continuity equation over the corner yields

(2.20)

where the divergence theorem [39] is used in the last step and
where the vector is normal to the surface. The volume in-
tegral part pertains to the top and bottom– surfaces corners
connected to nodes 1 and 0 which are charged as indicated with

in Fig. 4. If the nodes 0 and 1 are shorted, then the charge
density consists of two-functions at the surfaces of the con-
ductors with the surface charge and the contributions
at are

(2.21)

and where the surface charge can be found from (2.15) as
. Inserting this into

(2.21) yields the charges on the corner surfaces.
Similarly, the currents associated with the corner nodes 0, 1

are flowing through the cross-sectional areas indicted byin
the direction and in the direction. The current through the
section of conductor cross section foris given by

(2.22)

Again, the same relationship holds for the equation for theco-
ordinate. Adding all terms pertaining to the continuity equation
we get, for one corner only

(2.23)

which can be recognized as Kirchhoff’s current law (KCL). It
is evident that the continuity equation is satisfied since the ad-
mittance part of the MNA formulation method [40] is based on
summing up all the current contributions at a node. Another im-
portant observation is that for systems which include retardation
all the parts which belong to a node are mostly instantaneous,
while the retardation must be included for all parts outside the
volume. Since the partial inductances extend from one node to
a neighbor node, we need to subdivide the partial inductances
into two half- were the part at the node is instantaneous and
where the second part which belongs to a neighboring cell must
include a retarded partial mutual inductance. It should be noted
that this does not introduce additional unknowns and it improves
the TD stability [41].

III. EVALUATION OF CIRCUIT ELEMENTS

One of the challenging subjects for the PEEC method is the
evaluation of the circuit elements due to the high-accuracy re-
quirements for the dense structures which must be solved for
EMI and EIP problems. This issue is worst for elements corre-
sponding to cells which coincide or are in close physical prox-
imity. Unfortunately, the early work in this field, like inductance
calculations in power systems, had different less dense applica-
tions where more approximate results were acceptable [42]. For
speed and accuracy reasons, we utilize amultifunctionapprox-
imation approach for the coefficient evaluation which is based
on analytical results as well as on numerical solutions. Further,
the PEEC method poses another challenge for the coefficient
evaluation due to the large aspect ratios in the size of the con-
ductors as will be shown below in an example in Section V. The
evaluation of the partial inductances (2.14) for rectangular ge-
ometries has been the topic of many papers over the years e.g.,
[7], [9], [12], [43]. Further, the normalized coefficients of poten-
tial (2.18) are available in closed form for all rectangular cells
in [4] and for parallel rectangular cells in [44].

The evaluation of the coefficients for the nonorthogonal case
is even more challenging. The zero thickness self term as well
as coefficients which are in a plane have been considered in a
recent paper [45]. In order to evaluate these coefficients for the
general nonorthogonal case we use a combination of analytic
integration and Gaussian quadrature. Specifically, for physically
close cells, we first divide each hexahedral cell into a set of
layers in the c direction. The thickness of these layers is not
uniform, but is determined by a compound Gaussian quadrature
rule. Specifically, in the local coordinates theth layer is

. The values of the
are the values of the nodes in the four-point Gaussian quadrature
rule with levels of compounding. There are thus a total of

layers in each inductive cell. The value of depends
on the aspect ratios of the cell and the accuracy required.

Once each cell has been subdivided, then the evaluation of the
integral (2.14) is reduced to the evaluationfourfold integrals
of the form (3.24)

(3.24)
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where is the product of the number of layers in each cell.
Each fourfold integral is the integral over two quadrilaterals. We
evaluate these integrals by subdividing each quadrilateral into
uniform rectangles in the local and directions. Assuming
that we integrate a rectangular domain

into subquadrilaterals
. The subdivisions and are

chosen to maintain a reasonable aspect ratio as well as the re-
quired accuracy. The evaluation of the partial self- and near-mu-
tual inductances (2.14) is more difficult than the normalized
potential coefficients due to inner product. For this, we subdi-
vide each rectangular domain into two triangles for which an
analytical formulation exists. On each triangle we approximate

, by a linear function which agrees with its vales at the
three vertices of the triangle. Importantly, an analytical formula
for the product of a linear function and the Green’s function ex-
ists for a triangle [46]. We perform the outer integration in (2.14)
with respect to , and by using a nine-point sixth-order ac-
curate product Gaussian quadrature rule. Once we have obtained
an approximation to the integral (2.14) using this method,
we divide each cell into twice as manylayers as before, that
is we double , and repeat the procedure, obtaining another
approximation, . Then, we use second-order Richardson ex-
trapolation to obtain our final estimate .

IV. GENERAL CIRCUIT SOLVER ASPECTS

In this section, we consider a general-purpose TD and fre-
quency-domain solver implementation for the PEEC approach.
As mentioned in Section II, the full spectrum property in PEEC
is obtained by using a combined solution vector in the
TD or frequency domain. This is based on the MNA circuit for-
mulation [40] where is the potential and are the cell and
some branch currents. The zero potential corresponds
to the ground node 0 or node at aninfinite distance in space.
We found that the inclusion of the potentials as unknowns has
proven to be very valuable as output quantities. For example, for
PC board plane to plane voltages [33] are simply given by the
potential difference between the closely located planes. Alter-
natively, if charges are desiredis required for some elements
instead of then they can be included in the MNA as part
of the solution vector, e.g., Singhal and Vlach in [47]. Many
practical problems consist of different Spice-type lumped cir-
cuit elements in addition to the PEEC model. These elements
can easily be included in the circuit matrix using the usual MNA
stamps [40], [48], and [49] for both the time and frequency do-
main. These matrix stamps have been developed for a multitude
of circuit elements. A PEEC computer program may consist of
a model element generator and several circuit solvers for the
time and the frequency domain. The elements of the equivalent
circuits generated by the PEEC discretization are stamped into
the MNA circuit matrix and then the resultant circuit is solved
using a sparse matrix code. Over the years, other loop based
approaches like the MLA [50] have been applied to the PEEC
problems. Mixed-circuit formulations including loop or mesh
formulations have also been used since they can lead to effi-
cient solution for some specialized problems [51], [52], [17].
One of the present research topics is the speed up of the solu-

tion process. Non retarded and full wave
solutions have been attempted using the model order reduction
(MOR) approaches for circuit which do not have a multitude
of input/output connections and a moderate number of relevant
eigenvalues, e.g., [53]. This research is ongoing especially in the
area of models for on chip applications where

is used to limit the radius of coupling for the partial mutual
inductances, e.g., [43].

Much progress has been made very recently in the stable time
solution of integral equation based full wave solutions. Early
work, where mostly explicit numerical integration methods are
employed is summarized in [54]. Since then, several researchers
have shown that much more stable solutions can be obtained
with implicit numerical integration methods, e.g., [55], [14],
[56], [57]. This implies that today, the stable transient analysis
of large structures can be accomplished efficiently. It should be
noted that the full-spectrum property is a very important aspect
of the method for both the time and the frequency domain where
the input spectrum often ranges from do to the maximum per-
missible frequency content.

The Spice input language is an other aspect of an EM cir-
cuit solver which makes its use practical and easier to under-
stand. The utility of this was well recognized early on and the
Spice syntax has been used in all the “Ciao” series of PEEC
solvers, e.g., [14]. We call the code based on the formulation in
this paper IBMciao. We continued to enhance the language to
include the description of the nonorthogonal conductors. This
approach also allows a rapid combined TD and frequency-do-
main analysis which lead to a better understanding of the elec-
trical and electromagnetic behavior of the systems, and helps
the designer to gain insight into the way the various param-
eters of the system impact its overall performance. While the
majority of the language used for the description of the various
types of circuit elements is based, as much as possible, on the
conventional Spice language, some specialized syntax is used in
company specific versions (e.g., Motorola’s Mspice and IBM’s
PowerSpice) and commercial versions like PSpice and Hspice.
One of the recommended enhancements in the basic Spice lan-
guage is an improved syntax for mutual inductances

The new proposed option assigns directly the value of the
mutual inductance rather than the transformer coupling factor

which is computationally expensive.
More specifically, the default option could be that the coupling
factor is assigned (in which case the assignment “” for “type”
is optional), while for the case where the more desirable mutual
inductance value is explicitly given the assignment “” for
“type” is required. The savings are evident for circuits with
many mutual inductance like PEEC circuits. Also, the delay
between the inductors allows the inclusion of retarded PEEC
models in Spice [20].

V. NUMERICAL EXPERIMENTS

We give several examples in this paper to illustrate the ver-
satility of the approach. As a first example, we model a dipole
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Fig. 5. Example 200-mm-thin dipole antenna.

Fig. 6. Input impedance and phase for thin 1� 1 mm, and 1� 1-�m lossless
dipole.

Fig. 7. Lossy TL example problem.

shown in Fig. 5, with a length of 200 mm to compare with a well
known results and to confirm the accuracy of the solution. Since
the theoretical results are available for the lossless case we use a
zero resistance model. The meshing we use
is nonuniform with smaller cells toward the center gap as well
as the ends of the dipole. At the center, we introduced a gap of
2 mm. Results are given for two dipoles with different cross sec-
tions to show that in order to obtain a close agreement with the
theoretical value, we had to resort to a very small 1m 1 m
cross section. Our results are shown in Fig. 6. The magnitude of
the impedance is 73.5 at resonance, which agrees well with
the theoretical value of 73.1. The resonance frequency for this

Fig. 8. Waveform comparisons for 3-D PEEC and 2-D TL solvers.

Fig. 9. Capacitive and inductive–resistive cells for a single nonorthogonal
hexahedron. Upper-left: Capacitive surface cells; Lower-left: Inductive volume
cellsb-directed current (right); Upper-right: Inductive volume cellsa-directed
current (front); Lower-right: Inductive volume cellsc-directed current (up).

Fig. 10. TL with nonorthogonal geometry.

Fig. 11. Side view of differential connection.

case is also very close, within a percent of the theoretical reso-
nance frequency of 750 MHz.

This second example, a TD skin effect TL example shown
in Fig. 7, is designed to give a comparison with an accurate
Spice-type solution. This example also illustrates that accurate
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Fig. 12. Analysis results for structure in Fig. 10.

answers can be obtained even for very large cell aspect ratios.
In this case, the cell thickness to length ratio is as large as
1 : 475 0. The cross section is subdivided for the volume filament
(VFI) skin effect representation with one cell along the thick-
ness and ten cells along the width. The length is subdivided into
20 nonuniform cells where the cell size is decreasing toward
the ends. In this comparison, we used the PowerSpice circuit
solver which uses a method of characteristics based TL formu-
lation [?]. Fig. 8 shows that the three-dimensional (3-D) PEEC
model and the two-dimensional (2-D) TL Spice solver give very
close voltage waveforms at the beginning and the end of the
line. The new nonorthogonal formulation increases the number
of electrical structures that can be analyzed using PEEC. Exam-
ples of nonorthogonal problems are wire bonds, diagonal or PC
board interconnects, and chip interconnects which are at an ar-
bitrary angle. Unfortunately, very few well-documented results
exist in this class of problems today. The volumetric hexahedral
meshing for nonorthogonal structures is very complex. Most
modern software toolkits available for meshing are designed for
mechanical or hydraulic analysis where the mesh structures is
based on hexahedra. Our hexahedral meshing is an extension
of the original rectangular approach [36]. It is node based as
is shown in Fig. 2 for a zero thickness structure. Four different
sub-meshes are associated with this node based mesh, a quadri-
lateral surface mesh for the capacitive cells, and three hexadral
volumetric meshes for the inductive cells in the local , and
directions. To create these meshes, we use the local coordinates
as described in Section II-A. Fig. 9 illustrates this for a hexahe-
dral block which is subdivided into two inductive cells for the
front directed , and one along the right directedand one along
the top direction . Hence, there are three corner nodes in the
direction, and two corner nodes in theand directions.

Computationally, the fast TD approach [14], [58] is
always preferable and faster where applicable than the
frequency-domain techniques. However, in the nonorthogonal
case the runtime and memory usage of the analysis is impacted
by the presence of the nonorthogonal elements due to the more
complex element computations in the new formulation. In the
orthogonal code, inductive coupling is confined to the currents
in the same direction. This is no longer the case for arbitrary
oriented conductors and more inductive cells will be coupled.
As a test of the nonorthogonal code, we modeled a short inter-

connect structure between a drive chip and a 50-resistive load
shown in Fig. 10. The interconnect example consists of two lines
above a ground plane with a nonorthogonal copper connection
part embedded in air, or . The ground plane and the wires
are 0.05-mm thick with the exception of the upper connections
which are 0.1-mm thick. The width of all wires is 0.1 mm with a
0.2-mm spacing while more geometrical dimensions are shown
Fig. 11. The only part not shown in this figure is the bend which
starts at 6.0 mm and ends at 8.0 mm, measured at the two corners
where the wire bends. This is shown in Fig. 10. The spacing be-
tween the wires in the bend section is increased to 0.5 mm. The
two lines are driven differentially, by two current source pulses
of the same magnitude and opposite directions in parallel with a
50- resistor. The sources have a common centered ground con-
nected to the plane. The input waveform is a sine square wave
shape with a rise time of 60 ps, a fall time of 40 ps and a pulse
width of 0.7 ns. Fig. 12 shows the results of a TD analysis for
the example in Fig. 10. The differential voltage–time waveforms
are shown at the source as well as at the load. To approximately
verify the solution, we used a Manhattan (rectangular) approx-
imation of the geometry and the waveforms were slightly dif-
ferent as expected.

VI. CONCLUSION

The formulation given in this paper extends the PEEC ap-
proach in a consistent way to general nonorthogonal geometries.
Importantly, the approach converges to the rectangular formula-
tion for orthogonal geometries. Further, like the original PEEC
formulation it includes the VFI model for the skin effect and
a model for dielectric blocks. The examples in the paper show
some of the versatility of the circuit oriented method. It is also
shown that the ability to analyze in the TD and frequency do-
main, including other circuit elements leads to the best possible
results for each problem at hand.
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