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NONOSCILLATION THEOREMS FOR A SECOND ORDER

SUBLINEAR ORDINARY DIFFERENTIAL EQUATION

MAN KAM KWONG AND J. S. W. WONG

Abstract. A number of known and a conjectured nonoscillation criteria for

sublinear Emden-Fowler equations are shown to be equivalent. One of these criteria

is then extended to cover cases in which a growth condition on the coefficient of the

equation is not satisfied.

1. We consider the second order Emden-Fowler equation

(1) y"(t)+a(t)\y(t)\tsgny(t) = 0,       0<y<l,

on [0, oo), where a(t) is a positive continuous function. It is known that every

solution is continuable throughout [0, oo) and under the additional assumption that

a(t) is locally of bounded variation on [0, oo), then (1) has a unique solution

satisfying given initial conditions. Consequently, under these assumptions, which we

make throughout, the set of zeros of any one particular solution of (1) on [0, oo) is

either finite or infinite extending to infinity with no accumulation points. Equation

(1) is said to be nonoscillatory if every solution has only a finite number of zeros.

For details, we refer to [1,2,5,9].

Since a(t) is assumed to be locally of bounded variation it admits a Jordan

decomposition a(t) = a+(t) — a_(t), where a+ and a_ are continuous nondecreas-

ing functions. A number of nonoscillation results for the nonlinear equation (1),

y ¥= 1, require some sort of restriction on the growth of the function a(t), typically

that a(t) be nonincreasing. One such result contains the condition

f°cda+(t)
(2) /    —7-^<°o>

•'n

°cda+(t)
i  s     < oo,

a(t)

due to Gollwitzer [5]. Under this condition, he proved the following three nonoscilla-

tion criteria for (1):

/oc sa(s)ds < oo ;

(B) lim a^-]^2(t)fXsya(s)ds = 0;

(C) \im a^-^*y+l\t)f   ai^+,(s)ds = 0.
Í—oo J,
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Criterion (A) extends a result of Heidel [6] where the stronger assumption that

a(t) be nonincreasing is required. Recently, the second author proved the following

nonoscillation criterion for equation (1) under the same assumption (2) (see [9]):

(D) limi2a(,)=0
t— 00

and showed that, under (2), condition (D) follows from condition (A). Earlier works

of Coffman and Wong [3,4] had introduced the concept of a "duality principle"

between sublinear (0 < y < 1) and superlinear (y > 1) equations, and as a result of

this principle it was conjectured in [9] that condition (2) together with

(E) \imt(Xa(s)ds = 0
l— 00      ' l

also imply nonoscillation of (1). An application of L'HôpitaPs rule shows that (D)

implies (E). However, the relationship of (B)(C) to the others remains unclear, as

does the sufficiency of (E) (with (2)) for nonoscillation. The purpose of this note is to

prove the following result.

Theorem 1. Under the growth assumption (2) (or more generally (3) below) on a(t),

the following chain of implications holds:

(••) (A)-(B) «(C) «(D) «(E).

The equivalence amongst (B), (C), (D) and (E) establishes (E) as a nonoscillation

criterion for equation (1), proving the conjecture made in [9]. What is surprising

though is that the seemingly very strong but simple condition (D) is just as good as

(B), (C) or (E), so that when it comes to practical applications (D) is the only one

needed. The chain of implications (**) also completes the comparison of nonoscilla-

tion between sublinear and superlinear equations under the general guidance of the

"duality principle". Extensions to more general second order equations may be

made much along the same lines as in our earlier work [4]. In §5 we extend criterion

(B) to equations for which (2) does not hold.

The proof of Theorem 1 is presented in the following way: in §2 we prove that

(D) « (E); in §3 we show that (B) «=> (E) and finally in §4 we show that (C) « (D)

and (E) — (C). That (A) =» (D) under (2) has been established in [9]. The example

a(t) = [/2ln i]"1 shows that the converse is false.

Let us now note a possible reduction before we prove Theorem 1.

Lemma. Ifa(t) is a positive continuous function of bounded variation on [0, oo) then

it admits the decomposition

(3) a(t) = ax(t)b(t),       f»0,

where ax(t) is a positive nonincreasing function and b(t) is a positive nondecreasing

function. If furthermore a(t) satisfies (2), then 0 < bx < b(t) < b2< oo for all t with

fixed positive constants bx and b2.
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Proof. This follows from the identity

/    rtda (s) \       i rtda+ (s)

Here, b(t) = exp( j¿ da+/a) tends to a finite limit as / -* oo, if (2) holds.

Now suppose (2) holds. Using the fact that b(t) is bounded above and below by

positive constants, we see that a(t) satisfies any of the conditions (B)-(E) if and only

if ax(t) satisfies the same condition. Hence in the proof of Theorem 1 we can assume

without loss of generality that a(t) itself is nonincreasing.

2. Proof of (D) <=» (E). The implication (D) => (E) follows trivially from an

application of L'Hôpital's rule.

Now suppose (E) holds but (D) does not hold. Then there exists a sequence {'„}

tending to oo such that

(4) t2a(tn)>S>0

for some constant 8. By (E), if /„ is large enough, then

St    i"30

(5) f /    a(s)
1 JtJ2

ds<-A.
Jl 4

On the other hand, since (4) holds and a(t) is nonincreasing

a(t)>8r„2,       tE[t„/2,t„\.

Integrating this inequality over [t„/2, t„] yields an inequality that contradicts (5).

3. Proof of (B) « (E). We first prove that (B) =» (E). Given any e > 0, there exists

a tQ such that

(6) y~sw)*y<*nt), t>t0,

where a — 2/(1 — y) is a positive constant. Letting u(t) = j,°°sya(s) ds, we obtain

from (6) ty *£ -e"u'(t)/ua(t). Integrating this inequality we have

(7) u(t)
(« - Dti+y +        1 <Y-!)/<T+D

(\+y)ea        ua~l(t0)

hence,

(8) fVa(j)¿í = ii(í) = 0(t2/,í+V-1),
J t

as t — oo. A simple integration by parts gives

(9) fTa(s)ds= fTsya(s)\ds
J, J, s

=-p; j sya(s) ds - y j -^ j rya(r) dr ds.
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The fact that f,Tsya(s) ds «£ /,°°ira(5) ds < oo together with (9) show that f^a(s) ds

converges. Using (8) and letting T -» oo in (9), we obtain

(10) jXa(s)ds = 0(t2^+y)r').

Since e > 0 is arbitrary, (10) establishes the validity of (E). Note that (B) ■* (E) is

established without recourse to the fact that a(t) is nonincreasing, or (2) and (3).

Now suppose that (E) holds. Then for any e > 0, there exists /0 such that

fl°°a(s)ds < e/t for all / 3s t0. An integration by parts yields the following identity:

(11) ¡Tsya(s)ds= ty fTa(s) ds + y fTsy~l fTa(r) drds.
Jt Jt Jt Js

The fact that f,Ta(s)ds ^ flcca(s)ds = o(f~'), as t — oo implies that the right-hand

side of (11), and hence also the left-hand side, converges as F -» oo. Thus,

f,x'sya(s) ds < oo. Furthermore, for t > t0,

/oo , _
*Ta(j)*<«'",/(l-T) = («,//)    Y

where £¡~y = e/(l — y). For any t > t0, we consider the two mutually exclusive

cases: (i) a(t) > ex/t2 and (ii) a(t) < ex/t2. In case (i), estimate (12) gives

¿y-"/2(t)f  sya(s)ds^y^ (^)       = e\l-yV2.

In case (ii), we set b — (ex/a(t)),/2 > t and observe that since a(t) is nonincreasing

it follows from (12) that

a<y-"/2(t)f*sya(s)ds = a(y-])/2(t) ¡(fh+fX^sya(s)ds

,(Y-D/2 (0 fhsya(t)ds+(^)
e, \i-y

=
p(Y+D/2

Y+l
+ e('-r)/2 = 0(Ei/2)_

Since e > 0 is arbitrary, this established (B).

4. Proof of (E) =» (C) and (C) => (D). To show (E) => (C), we consider the identity,

for 0 < y < p < 1,

(13) (Ts»a(s)ds = t)ifTa(s)ds + /¿/"V-1 ¡Ta(r)drds.
Jt Jt Jl Js

Since /,°°a = o(\/t), we substitute it into (13) and find

(14) /"Va(j) £fa = o(/"-').
'/

Now we apply Schwarz's inequality and obtain .

/oo /   »oo \I/(Y+I)/   .oc \Y/(Y+1)
al/(1,+ l>(j)aj«:(/  j"fl(í)<fr) (/  i-M/y^
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(Here p = y+\>\,q = (y+ \)/y.) Substituting (14) into the right-hand side of

(15), we obtain

(16)

/oo ["/       v       \ It/It+D
a]^y+[>(s)ds^o(t^-])^y+]))    —

y tíy-f)/y = 0(,(Y-D/(Y+1))_

The remaining portion of the proof is patterned after that of (E) =» (B), which we

repeat as follows. For any e2 > 0, we may fix t0 from (16) so that for all / > f0, we

have

(17) ra]/iy+,)(s)ds<eY{y+])t'y-])/ty+l\

Now for any given / > r(), we again consider two mutually exclusive cases: (i)

a(t)>e2/t2 and (ii) a(t) < e2/t2. In the first instance, we obtain from (17)

immediately the following estimate:

(18) [a(t)]{y-l)/2{y+u(°°al^y+])(s)ds^ey2        (0<Y<1).
u

Otherwise, we have a(t) < e2/t2. Set b = /e2/a(/) > /. Since a(t) is nonincreasing,

we first note

(19) [a(t)]{y-])/2(y+l) ra^iy+V)(s) ds ^ a'/2(t)(b - t)

^a]/2(t)b = eY2.

On the other hand, using estimate (17), we find that

(20) [a(t)r~u/2i^ura]^y+,)(s)ds^[a(t)](y-])/2(y+ueY(y+ubiy-l)/(y"u
Jh

- pl/(Y+l>F(Y-D/2(Y+D  -  pl/2

Combining (19) and (20), we have

(2i) [u(or~i)/2(7+,)fO/(y+i,(^<2y¡2\
't

Since e2 > 0 is arbitrary, (18) and (21) establish the desired assertion (C).

We now show (C) => (D).

Let a = 2/(1 - y) > 1 and l/ß = a - 1 = (y + 1)/(1 - y)> 1. Choose ea <

(a - 1)4"". By (C) there exists ?0 such that for all t > t0

(22) [a(,)r-u/2{y+])ra]"y+"(s)ds<e.
Jt

Denote/(i) = aß/2(t), then/°(r) = a1/<r+1)(r). Suppose that (D) fails. Then there

exist constants c and 8 > 0 such that c > 2i0 and a(c) > 8/c2, or
_

(23) fa(c)>8c-2/(y+u,

where

(24) « = «'A*+,>>0,
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from which it follows with d = \c that

(25) fr(s)ds^r(c)-
i -ß

Notice here although the choice of c depends on e, that of 8 or 8 does not. We now

rewrite (22) in terms of/(/) as

1  rœ ,_/  v  .       1 r rd.
fU)>\j r(s)ds>j jr(s)ds + jr(s) ds

for f0 < c/2 ^ /

(26)

\c. Using (25) in the above estimate, we find

f«)>i8c-ß+\jy°(s) d.s.

Now define g(x) = f(t) = f(d — x), then for 0 < x *£ c/4, (26) becomes

g(x)>±Jc^ +
1
fga(u) du.(27)

4e e^o

Compare g(x) in the above with its minorant function G(x) defined by

(28) G(x) = -J-Jc-* + - rc°(«) aw.
4e e yn

An application of standard results for integral inequalities (see e.g. Walter [7]) to

(27) and (28), gives g(x) s* G(x) for 0 «s x < c/4. The function G(x) can be found

by explicitly solving (28); thus

-ß

(29) G(x) = G'--(O) + (1 -«)■

where G['a(0) = (8c-ß/4eyl/ß = (4e/8),/ßc. From (29), one finds

1//3

G(jt) — +00    as x — -——-—r I ~=- I     c.
4e

(a-  1)1 5

So unless

(30)
(a - 1) \ Í

4c
i ß

>V

G(x) would blow up on the finite interval [0, c/4], and so would g(x). This would

contradict the fact that/(?) is defined on [\c, Je]. Recall that 8 is determined only

from the fact that (D) fails and is independent of the choice of e. It follows that (30)

must hold for all e > 0, an obvious impossibility. This completes the proof of (C) «

(D) and also that of Theorem 1.

5. Extension of criterion (B). In case condition (2) does not hold, we have the

following extension of (B).

Theorem 2.Letax(t) = exp(-/0' da_(s)/a(s)). If

(31) \ima\y-])/2(t)(   sya(s)ds = 0
(—00 ' t

then the sublinear Emden-Fowler equation (1) is nonoscillatory.
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Proof. Differentiating the energy function

<¡>(t) = y'2(t)/2a(t) + \y(t)\y+l/ (y + \)

we find that

It follows that

da(t)y'2(t) aa+(r)

(32) *(0>*(0)exp(-jT^M<fc) =t>(0)/b(t)

where ¿>(/) is as defined in the Lemma in §1.

Now suppose that (1) is not nonoscillatory, i.e. there exists a solution y with

arbitrarily large zeros. Let t be one of these zeros chosen so large that

(33) a\y~l)/2(j)J°Csya(s)ds<[2<!>(0)] (I-y)/2

Without loss of generality we may assume that^r) > 0 so that >> is positive in [t, t]

where f is the next zero immediately after r. By (32),

——- - (p(t)> ——.
2a(T) 0(t)

It follows from this inequality and the Lemma that

(34) y'2(r)^ 2<p(0)^4 =2#(0)a,(r).

Since v^ is concave in [t, t],^'(0 ^^'(t) for/ G [t, t]. Thus

y(t)^y'(r)(t - t)«E/(t)î,        / G [t.t ].

Using (1) we see that -y"(t) *£ [/(T)p/ya(f). Integrating yields

/(t)-/(/)<[/(t)]t/*Mj)A.

In particular when ' = f, we have

y'(T)<[y'(r)]y frsya(s)ds^[y'(T)]y [Xsya(s)ds.

/oc sya(s)ds. Substituting (34) into this inequality we obtain an
..

inequality that contradicts (33). This completes the proof.
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