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NONOSCILLATORY DIFFERENTIAL EQUATIONS

WITH RETARDED AND ADVANCED ARGUMENTS*

By

K. GOPALSAMY

Flinders University of South A ustralia

Abstract. Sufficient conditions are derived for a vector-matrix system of the form

^p-+(-i)"-l[p(t)x(t - Tl(0) + Q(t)x(t + t2(0)] = 0

to be nonoscillatory.

1. Introduction. We will first derive a set of sufficient conditions for scalar differential

equations of the form

d dt"^ +(~1)" '[*(')*(' ~ Ti(')) + b(t)x(t + t2(0)] = 0 (1-1)

to be nonoscillatory. Although some authors (Kusano [3], Anderson [1]) have discussed

oscillatory nature of (1.1), the literature concerned with nonoscillation of equations of the

form (1.1) is scarce. We will assume the following for (1.1);

(A,) a, b, Tj, t2 are bounded continuous functions defined on IR = (-oo, oo) such that

for (eR.

0 < a(?) < a; 0</ — Tj(/)

0 0 < T2(t)

0 < Tj(/) < a;

where a, /?, a are positive constants.

(A 2) The positive constants a, /?, a are such that

(a + P)ena"/n" < 1. (1.2)

The following elementary observation is useful in proving our nonoscillation result.

Consider a function g: [0, oo) -> IR defined by

g(v) = ~(a + /3)e»°.
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Since we have

g(0) = -(a + /3) < 0

g(n/o) = (n/a)" - (a + /3)e"

= (n/a)"[ 1 -(a + /3)e"o"/n"] > 0 (by (1.2)),

it will follow that £(/*) = 0 has a positive root say n* such that

(H*)a = (« + f3)e^'. (1.3)

2. Nonoscillatory scalar systems. As it is customary we will say that (1.1) is oscillatory if

and only if all solutions of (1.1) have zeros on every interval of the form [a, oo) for

arbitrary real constants a and (1.1) will be called nonoscillatory if there exists at least one

solution of (1.1) having no zeros on an interval of the form [/?, oo) for some real constant

/3. We can now establish the following:

Theorem 2.1. Suppose a, b, t,, t2 in (1.1) satisfy the hypothesis (At) and (A2); then (1.1)

is nonoscillatory.

Proof. As one will see the proof is surprisingly simple. We consider a sequence

{xm(t)\ t > -a; m = 0,1,2,...} defined as follows:

x0{t) = expf-jii*/]; t > ~a: (2.1)

/exp[-jU*f ]; /g[-ct,0];

^ W ^ _ [ j, [a(j)xm(s - Ti(s)) + b(s)x„,(s + t2(s))] ds,

t > 0. (2.2)

It is immediate from (2.1)—(2.2) that

OC ( \n 1

f 7~~ 7TT [aexp[-/i*(j - a)] + f3exp[~n*(s + r2(s))]] ds
J, ( n - 1)!

00 (s t) " ^

^ (a + P){e\p[n*a]) f —5 — exp[-/i*j] ds
J, (n — 1)!

< (a + /?){exp[M*<T]/(M*)"} exp[-/x*r]

< e~^*' (by the choice of n*)

< x0(r) for t > 0,

and hence

x^(t) — x0(r) < 0 for ? >-a. (2.3)

From (2.2) and (2.3) one can similarly obtain

x2(t) ~ xl(t) ^ 0 forr^-a, (2.4)

and repeating the above procedure we derive

0 < xm + 1(t) < xm(t) < • • • < *i(/) < x0(t) for r > -a. (2.5)
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The pointwise limit of the sequence (x„,(/)} as m -* oo exists for t > -a and so we can let

lim xn(t) = x*(r), t > -a. (2.6)
m —* co

It will now follow by Lebesgue's dominated convergence theorem that

x*(0=f ~T—T\7 [a(s)x*(s - ^(s)) + b(s)x*(s + t2(s))] ds,
Ji (n ~

t > 0, (2.7)

showing that x* is a solution of (1.1) for t > 0. Since x* is the limit of a sequence of

nonnegative functions, x* itself is nonnegative. Now it will follow from (2.7) that

x*(t) > 0 on [-a, oo) for if x*(t) > 0 on [-a, r) and x*(t) = 0 then (2.7) will lead to a

contradiction. The result follows.

3. Nonoscillatory vector-matrix systems. Let us now consider the vector-matrix system

+(-\yl[p(t)x(t - r,(o) + Q{t)x(t + t2(o)] = o,

t> 0, (3.1)

with the following assumptions:

(A3) Tj, t2 are bounded continuous scalar functions as in (At).

(A4) P(t), Q(t) are m X m matrices with nonnegative elements such that at least one

element of P(t) is positive and in an element wise ordering we have

0 < P(t) + Q(t) < M for/>0 (3.2)

where M is a constant m X m matrix with positive elements.

We will need the following preparation; it is well known (Perron's theorem) that M will

have a positive eigenvalue say a* corresponding to which M will have an eigenvector say Z

with positive elements. Consider now a "majorant" of (3.1) in the form

^+(-ir'A/y((-a) = 0; t > 0. (3.3)

The characteristic equation associated with (3.3) is given by

det[\"/ +(-\)"~lMe-Xa] = 0 (3.4)

or equivalently

det[fi/7 — Me= 0, with /u = -A.

If a2,..., am are the eigenvalues of M we have

m

det[jU"/ - Me= 0 <=> Y\ [jti" - a^"] = 0.
7-1

If as = a* for some 5 e (1,2,... 9m) we can consider

lin - a*e»a = 0 (3.5)

n- 1
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in looking for real roots of (3.4). Let us now assume that

a*(a)"en/n" < 1. (3.6)

It will then follow that (3.5) has a positive root say ju* corresponding to which (3.3) will

have a solution given by

Y(t) = Z(exp[-/x*/]); t > -a (3.7)

(Z being a positive eigenvector associated with the positive eigenvalue /t* of M). With this

preparation we can now formulate the following for (3.1).

Theorem 3.1. Assume that P, Q, t2 satisfy the hypotheses (A3) and (A4). Furthermore

assume that (3.6) holds. Then (3.1) is nonoscillatory.

Proof. Proof is quite similar to that of the scalar case and we provide a brief outline

only. Define a sequence { XK(t)\ t 3* -a; A' = 0,1,2,...} as follows:

X(0)(t) = Z(exp[-ju*/]); t > -a; (3-8)

Z(exp[-fj.*t])-, / e [-a,0];

XK+l(t) = { ,0o (s - t)

J {Sn_ n, [/>(^)A'(A')(i - T^j)) + 2(i)X(Ar'(5 + T2(5))] ds\

t > 0.

(3.9)

With a componentwise comparison, it will follow as in the scalar case (on using (3.6)),

o < x(K)(t) < < • • • < jr(1)(/) < ^'(O, t>-o, (3.10)

and the rest of the proof is exactly similar to that in Theorem (2.1) and we will omit

further details.

We conclude with a remark that we have shown elsewhere [2] that conditions of the type

in (1.2) and (3.6) are in fact necessary also for equations of the form (1.1) with (3.1) with

constant coefficients to be nonoscillatory.
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