QUARTERLY OF APPLIED MATHEMATICS 211
VOLUME XLIII, NUMBER 2
JULY 1985, PAGES 211-214

NONOSCILLATORY DIFFERENTIAL EQUATIONS
WITH RETARDED AND ADVANCED ARGUMENTS*

By
K. GOPALSAMY
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Abstract. Sufficient conditions are derived for a vector-matrix system of the form
d"X(t "
AXD ()" [P0 X1~ () + Q) Xt + ()] =0

to be nonoscillatory.

1. Introduction. We will first derive a set of sufficient conditions for scalar differential
equations of the form

L) () Mfal)x(c - (D) +b(Ox(+ ()] =0 ()

to be nonoscillatory. Although some authors (Kusano [3], Anderson [1]) have discussed
oscillatory nature of (1.1), the literature concerned with nonoscillation of equations of the
form (1.1) is scarce. We will assume the following for (1.1);

(A)) a, b, 7, 7, are bounded continuous functions defined on R = (-cc, o) such that

fort € R.
O<a(t)<a; O0<t—rm7/(1)
0<b(1)<B; 0<m(r)
0<m(t)<o;

where a, B, o are positive constants.
(A,) The positive constants a, B, o are such that

(a+ B)e"0"/n" < 1. (1.2)

The following elementary observation is useful in proving our nonoscillation result.
Consider a function g: [0, 00) — R defined by

g(p) =p" —(a+ B)e.
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Since we have
g(0) = ~(a+B) <0
g(n/o) =(n/o)" —(a+ B)e"
=(n/o)"[1 —(a+ B)e"s"/n"] =0 (by(1.2)).
it will follow that g(p) = 0 has a positive root say p* such that

(#*)" = (a+ B)e™. (1.3)

2. Nonoscillatory scalar systems. As it is customary we will say that (1.1) is oscillatory if

and only if all solutions of (1.1) have zeros on every interval of the form [a. «) for

arbitrary real constants « and (1.1) will be called nonoscillatory if there exists at least one

solution of (1.1) having no zeros on an interval of the form [ 8. %) for some real constant
B. We can now establish the following:

THEOREM 2.1. Suppose a, b, 7|, 7, in (1.1) satisfy the hypothesis (A,) and (A ,); then (1.1)
is nonoscillatory.

Proof. As one will see the proof is surprisingly simple. We consider a sequence
{x,,(t);t > —0; m=0,1,2,...} defined as follows:

xo(t) = exp[-p*]: > -o: (2.1)
exp[—p*t]; t € [-0,0];

n-1

Xoeal0) = /Oc =1 [a(s)x,,(s = 7,(s)) + b(s)x,,(s + 7 (s))] ds,

¢ (n—1)
r>0. (2.2)
It is immediate from (2.1)—(2.2) that

(< [T BT Taeplnt(s = o)l + Bexpl-w(s + nlsn]] de

< (a+ B)expluo)) [~ ((_;1’;, expl-p*s] ds

< (o + B){exp[p*al/(n*)" } exp[-p*]

*r

(by the choice of p*)

e“‘-

VAN

x,(t) fort>0,
and hence
x (1) = x4(1) <0 forr> -o. (2.3)
From (2.2) and (2.3) one can similarly obtain
x,(1) —x,(t1) <0 fort> -o, (2.4)

and repeating the above procedure we derive

0<x,,,(t)<x, (1)< <x,(1)<x,(r) fortz -o. (2.5)
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The pointwise limit of the sequence { x,,(#)} as m — oo exists for > -0 and so we can let

m

lim x,(7) = x*(t), > -o. (2.6)

n— o

It will now follow by Lebesgue’s dominated convergence theorem that

x*(1) = /;oo (Lns__—lt))!)‘ [a(s)x*(s — () + b(s)x*(s + ,(s))] ds.

t>0, (2.7)

showing that x* is a solution of (1.1) for 1 > 0. Since x* is the limit of a sequence of
nonnegative functions, x* itself is nonnegative. Now it will follow from (2.7) that
x*(t) > 0 on [-0, ) for if x*(t) > 0 on [-0,7) and x*(7) = 0 then (2.7) will lead to a
contradiction. The result follows.

3. Nonoscillatory vector-matrix systems. Let us now consider the vector-matrix system

%ﬁt) +(-1)" T [P(1) X(2 = 1y(1)) + Q1) X(1 + 1,(2))] = 0,
t>0, (3.])

with the following assumptions:

(A ;) 7, 7, are bounded continuous scalar functions as in (A ).

(Ay) P(1), O(r) are m X m matrices with nonnegative elements such that at least one
element of P(¢) is positive and in an element wise ordering we have

O0<P(t)+Q(t)sM fort>0 (3.2)

where M is a constant m X m matrix with positive elements.

We will need the following preparation; it is well known (Perron’s theorem) that M will
have a positive eigenvalue say a* corresponding to which M will have an eigenvector say Z
with positive elements. Consider now a “majorant” of (3.1) in the form

d"y(1)
dt”

The characteristic equation associated with (3.3) is given by

+(-1)"'MY(t - 0)=0; 1>0. (3.3)

det[ N7 +(-1)"""Me™>] = 0 (3.4)
or equivalently
det[p"] — Me*°] =0, withp = -A.

If a), a5,...,a,, are the eigenvalues of M we have

det[ ] = Me*?] = 0 & T [ = aer] = 0.
J=1 '

If a, = a* for some s € (1,2,...,m) we can consider

= a%ero = 0 (3.5)
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in looking for real roots of (3.4). Let us now assume that
a*(a)"e"/n" < 1. (3.6)

It will then follow that (3.5) has a positive root say u* corresponding to which (3.3) will
have a solution given by

Y(t) = Z(exp[-p*t]); t> -0 (3.7)'

(Z being a positive eigenvector associated with the positive eigenvalue u* of M ). With this
preparation we can now formulate the following for (3.1).

THEOREM 3.1. Assume that P, Q, 7, 7, satisfy the hypotheses (A ;) and (A ,). Furthermore
assume that (3.6) holds. Then (3.1) is nonoscillatory.
Proof. Proof is quite similar to that of the scalar case and we provide a brief outline
only. Define a sequence { X*(); 1 > —0; K = 0,1,2,...} as follows:
X0y = Z(exp[-p*t]): t> -0, (3.8)
Z(exp[-p*t]): 1€ [-0,0];
K= e o0

o (n=1) [P(s) X (s = my(5)) + Q(s) X K(s + 73(s))] ds:

r>0.
(3.9)

With a componentwise comparison, it will follow as in the scalar case (on using (3.6)),
0< XP () s XK V()< - < XV(1) < XO%), t> -0, (3.10)

and the rest of the proof is exactly similar to that in Theorem (2.1) and we will omit
further details.

We conclude with a remark that we have shown elsewhere [2] that conditions of the type
in (1.2) and (3.6) are in fact necessary also for equations of the form (1.1) with (3.1) with
constant coefficients to be nonoscillatory.
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