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NONOSCILLATORY SOLUTIONS OF SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

LYNN ΈL E R B E

We consider here a generalization of the equation

x" + a(t)x2n+1 = 0

where a(t) is a continuous non-negative function on [0, +°°)
and n ^ 0 is an integer. Necessary and sufficient conditions
are given for the existence of

(1 ) a bounded nonoscillatory solution with prescribed
limit at oo;

( 2 ) a nonoscillatory solution whose derivative has a
positive limit at oo.

Specifically, we are concerned with the asymptotic behavior of the
solutions of the following second order nonlinear differential equation :

(1) a" + f(t, x)g(x') = 0 .

We shall assume the following conditions hold :

f(t, x), g(x')> and the partial derivative function

(Ao) fx(t, x) are all continuous for t ^ 0, x' ^ 0, and

I X\ < 4- oo .

(At) f(t, 0) = 0, ί ^ 0 .

(A2) fx(t, x) ^ 0 a n d is n o n d e c r e a s i n g in x for t ^ 0 a n d x ^ 0 .

<A8) g(x') > 0 for all x' ^ 0 .

As a special case we have t h e equation

( 2 ) x" + a(t)x2n+1 - 0, n ^ 0 ,

in which a(t) ^ 0 for t ^ 0 and (̂cc') = 1 for all a?'. Oscillatory and
nonoscillatory properties of (2) for the case n > 1 were investigated
by Atkinson in [1], Moore and Nehari in [5], and Utz in [9]. Gene-
ralizations of equation (2) have been considered by Waltman in [7]
and [8], Nehari in [6], Wong in [10], and Macki and Wong in [4].

We shall study equation (1) by considering the equation

(3) x" +f,(t;a)x = 0,

where a is some real constant depending on solutions of (1). To do
this we shall need to establish several lemmas concerning the equation
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( 4 ) x" + p(t)x = 0 ,

where p(t) is continuous and satisfies p(t) ^ 0 for t ^ 0 .

LEMMA 1.1. Let [α, 6] be a compact interval of the reals and
suppose there exists a β(t) e C(2) [α, 6] satisfying

β(t) > 0 , β"(t) + p(t)β(t) ^ 0 , ί e [α, 6] .

T%βw [α, δ] is an interval of disconjugacy for equation (4). That is,
no nontrival solution of (4) has more than one zero on [α, 6].

Proof. If the conclusion is false, then there is a solution y(t) of
(4) satisfying y(tλ) — y(t2) = 0 and y(t) > 0 on (tu t2), where a <J
t,<t2^ b. It follows that there is a k > 0 such that fci/(ί) ^ >S(ί)
on [ί l f £2] and ky(t0) = £(ί0) for some ί2 < ί0 < *2 Therefore, fc2/'(ί0) =
/S'(ί0) and for ί0 ^ ί ^ ίa we have

/S'(ί) ^ [ - P(s){ky(s) - β(s)}ds ^ 0 .

Hence,

ky(t2) - β(t2) = Γ2 (ky'(8) - β'(s))ds ^ 0 ,

which is a contradiction.

REMARK. If there exists an a(t) e C(2) [α, b] satisfying

a(t) < 0 , α"(t) + p(ί)α(*) ^ 0 , ί e [α, δ] ,

then the conclusion of the lemma again holds. (Set β(t) = — a(t),
t e [a, b].)

Lemma 1.1 is closely related to a theorem of Wintner (see Hartman
[2], p. 362, Th. 7.2) and could be obtained directly by setting z = β'/β.
Also, a function β(t) e C(2) [α, b] satisfying £"(ί) + p(ί)iS(ί) ^ 0 on [α, 6]
is just a special case of an upper solution, as defined by Jackson in
[3] for general nonlinear second order differential equations. Likewise
a{t) e C(2) [α, b] satisfying a"(t) + p(t)a(t) ^ 0 on [a, b] is a special case
of a lower solution.

LEMMA 1.2. Let a(t), β(t) e C(2) [a, b] and satisfy a"(t) -f
p(t)a(t) ^ 0, β"(t) + p(t)β(t) ^ 0, and 0 < a(t) ^ /9(ί) o^ [α, δ]. Then
for any c, d with a(a) ^ c ^ /S(α), α(δ) ^ d ^ β(b), there is a unique
solution z(t) of (4) satisfying z(a) = c, z(b) = cί, and a(t) rg ^(ί) ^ β{t)
on [α, δ].
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Proof. By Lemma 1.1, [a, b] is an interval of disconjugacy for
equation (4) so that the BVP

x" + p(t)x = 0 , x(a) = c , x(b) = d

has a unique solution z(t) (see for example [2], p. 351). Since #(£)
cannot have more than one zero on [α, b] and since initial value pro-
blems for (4) have unique solutions, it follows that z(t) > 0 on [α, b].
If the conclusion of the lemma is false, then assume, to be specific,
that z(td - βfa) = z(t2) - β(t2) = 0 and z(t) > β(t) on (tl9 ί2), where
a ^ tx < t2 ^ 6. As in Lemma 1.1, there is a k > 0, k < 1, such that
0 < fes(ί) ^ /5(t) on [tx, ί2], and kz(t0) = £(t0), fes'(ί0) = £'(t0) for some
ti < to < ta. Since fe«(ί2) < z(t2) = £(ί2), this leads to a contradiction as
in Lemma 1.1. Hence, z(t) ̂  β(t) on [α, 6], A similar argument shows
that z(t) ί> a(t) on [α, b] and this proves the lemma.

LEMMA 1.3. Let a(t), β(t) e C(2) [α, + «>) wiίλ α"(t) + ^(t)α(ί) ^ 0,
/3"(t) + p(t)β(t) ^ 0, α^d 0 < a(t) ^ ^β(ί) on [α, + oo). Then for any
a(a) ^ c ^ /3(α) ίfeere is α solution y(t) e C{2) [α, + oo) o/ (4) satisfying
y(a) = c αncί α(ί) ^ τ/(ί) ^ β(t) on [a, +oo).

Proof. By Lemma 1.2 for each w ̂ > 1 there is a solution ^ ( ί ) e C(2)

[α, α + n] of (4) satisfying 2/%(α) = c and #(£) ̂  yn(t) ^ /3(t) on [α, a + n] .
Therefore, for each JV ̂  1 | yn(t) \ and hence | y'ή{t) \ are uniformly

bounded on [α, α + N] for all n = N. Since ^(£) = 2/ή(α) + I y'l, the
I y'n(t) I are likewise bounded on [α, α + N], uniformly for n^ N. Now
consider the sequence {yn(t)}n=i. By the Ascoli-Arzela Theorem there
is a subsequence {^( t ) }^ converging to a solution ^(ί) of (4) on
[α, α + 1]. Inductively, for each k ^ 2 we obtain a subsequence
{2/£(t)}̂ =i of {2/i""1(ί)}J'=i which converges to a solution ^Λ(ί) of (4) on
[α, a + k]. Therefore, the diagonal sequence {yt(t)}V=i converges uni-
formly on each compact subinterval of [α, +©o). That is,

z(t) = lim yk

k(t) , ί e [ α , +oo) ,
k—»©o

is the desired solution.

2* After these preliminary lemmas, we are now in a position to
establish necessary and sufficient conditions for the existence of certain
types of solutions of (1).

THEOREM 2.1. Assume Ao — A3 hold and let aQ > 0. Then the
following statements are equivalent:

(a) For each 0 < a < a0 there is a solution ua(t) of (1) satisfying
oo ua(t) = a.
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(b) Γ«Λ(ί, a)dt < + oo for 0 < a < α0.

Proof, (a) implies (b): Assume I </„(<, α^dί = + oo for some

0 < (*!< a0 and let a1<β< a0. Let uβ(t) be the corresponding solution
of (1) with lim^oo uβ(t) = /3. Let <5 > 0 be such that ax + δ < β and
let T ^ 0 be such that t ^ Γ implies uβ(t) ^a, + δ. Then for t ^ Γ

so that wj decreases to a limit, and this limit clearly must be zero.
Therefore, uβ(t) ^ β for t *> Γ so that applying the Mean Value
Theorem we get

/(*, ^(t)) ^ /8 /(t, uβ(t))
~ uβ(t) — at uβ(t) δ uβ(t)

for t^T. Since lim u'β(t) = 0, there is a T1 ^ T such that ί ^ T,

implies flr(^(ί)) ^ flr(6)/2 > 0. Hence, for t ^ 2\ we have

(ί)) ^ - kfy(t, ajUβit) ,

where k = g(0)(δ/2β). Also, αί' = 0 ^ - Λ/,(ί, ax)ax. Therefore, by
Lemma 1.3 there is a solution z(t) of the equation

( 5) a?" + Jfe/Λί, «,)» = 0

satisfying a, ^ 2(t) ^ ^(t) on [Tl9 +oo)# Let w(ί) = «(ί) Γ ds/(φ))8

for ί ^ Γ1# Then w(t) is a solution of (5). Since z"(t) ^ 0 for t > Tly

we see that

w"(t) = z"{t) Γ ds/(z(s))2 ̂  0

for ί ^ Ti and hence w'(ί) decreases to a finite nonnegative limit. In
fact, we have

w'(t) = l/z(t) + z'(t) Γ ds/(z(s))2 ̂  l/2(ί) ^ 1//S
M

for ί ^ Γ1# Hence, for sufficiently large t, say t ^ To ^ ?\, we have
w(ί) ^ t/2β. Therefore, for t ^ To we have

-f(ί) - w'(Γo) = - fc Γ Λ(s, a^w

^ ( - &/2/S) Γ sfy(8, ax)ds ^ 0 .
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Therefore,

w'(T0) ^ w'(t) + (kββ) Γ sfy(s, a^ds

for t ^ Γo, so that

( sfy(s, adds < + oo ,

which is the desired contradiction.

Conversely, let 0 < a < a0 be given and let

M = max {g(x') : 0 ^ x' ^ α} .

Let T7 ̂  0 be such that

Γ(s - T)fy(s, a)ds < 1/M and ("/,(*, α)dβ < 1/ikf .
JT JT

We shall now define a sequence of functions on [T, +oo) in the fol-
lowing manner:

Let yo(t) = a, t^T. Now for t ^ T

0 ^ Γ(s - ί)/(s, a)g(0)ds ^ α Γ(s - t)fy(s, a)g(0)ds ^ α ,

so that defining y^t) = α — I (s — ί)/(s, α)g(0)ds, t^> T, we have

0 ^ 7/̂ ί) ^ <̂ . Differentiating y^t) we have

0 ^ y[{t) = j / ( 8 , α)^(0)ds ^ Mα j ^ ( s , α)ds < a .

Proceeding inductively, we define for all k ^ 1

yk+ι(t) = a- j"(8 - ί)/(β, yk(s))g(y'k(s))ds , ί ^ T

and obtain 0 ^ ί/fe(0» ^Λ(^) ^ ^ for all & ̂  1. It follows that the se-
quences yk(t), y'k(t), and y"{t) are uniformly bounded on [T, T + n]
for all n ^ 1. The Ascoli-Arzela Theorem and a diagonalization argu-
ment yields a subsequence which converges, uniformly on compact sub-
sets of [T, + oo), to a solution ua(t) of (1). Obviously, l i m ^ ua(t) = a.
This completes the proof of the theorem.

REMARK. If f(t, x) = — f(t, —a?) and #(#') > 0 and is continuous

for I x'\ < + oo, then we see that I */„(«, a)dt < + oo f or 0 < | a | < a0

if and only if for each 0 < | a \ < aQ there is a solution ua(t) of (1)
with lim^oo ua{t) = α.
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COROLLARY 2.2. \~tfy(t, a)dt < + <χ> for all a> 0 if and only if

there is a solution ua(t) of (1) with l i m ^ ua(t) = a for all a > 0.

COROLLARY 2.3. // f(ty x) — ΣiUαi(0#2ί+1 where the α<(ί) are con-
tinuous nonnegative functions for t Ξ> 0, then the following statements
are equivalent:

(a) There is a solution ua(t) of (1) with lim^^ ua(t) = a for all

(b) Σ*

As examples of equations to which Theorem 2.1 applies but which
do not belong to any of the classes of equations considered in refer-
ences [1], [4] through [8], we have

( 6 ) x'9 + x (exp (t(x - αo)))(l + O = 0

( 7) x" + x (exp (t(x2 - al) + cx'))(l + (x'f) = 0 ,

where c is an arbitrary real number. Then for 0 < a < aQ there is a
solution ua(t) of (6) with l i m ^ ua(t) = α, and for 0 < | α: | < a0 there
is a solution #α(£) of (7) with l i m ^ ya(t) = a.

3* In [5] it is shown that equation (2) has solutions for which

if and only if

[~t2%+1a(t)dt < + 00 .

In this final section we will show that an analogous result is true
for equation (1) provided f(t, x) satisfies the following additional
condition.

(A4) There exist real numbers c > 0 and λ > 0 such that

Inn inf f(ϋ> ^ ^ λ > 0, for all sufficiently large t.
f(t, ex)

Note that in the case of equation (2) c and λ may be any positive
real numbers with Xc2n <̂  l/(2n + 1). We first establish the following
lemma.

LEMMA 3.1. Assume conditions Ao — A3 hold and let there exist
a real number β > 0 with

[°tfy(t, βt)dt < + 00 .
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Then there exist solutions to (1), say y(t), such that lim^*, y(t)/t exists
and is positive.

Proof. Let T > 0 be such that

< 1/2M ,

where M — max {g(x'): 0 ̂  x' <; β). We define a solution of (1) by

u(T) = 0 , u'(T) = /S ,

and we assert that the solution satisfies u'(t) ^ β/2 for t^T. Assume,
on the contrary, that there is a d > 0, /S/2 > <5 > 0, and a ^ > T with
^(ίi) = δ and w(ί) > 0 on (T, ί j . Then for T ̂  t ^ t, we have

( 8 ) tt'(T) = w'(ί) + [*f(8, u(s))g(u'(s))ds .
JT

Since u"{t) ̂ 0 on (T, ί j and since u(t) is concave it follows that

u'(t) ^ β on (Γ, ίO and

u(t) ^ /5(ί - Γ) on (Γ, ί j .

Applying the Mean Value Theorem in (8) we have

β = u'(T) < u'(t) + Mβ\ sfy(s, β(s -

< u'(t)

Hence, u'(tx) > β/2, a contradiction. Therefore, u'{t) ̂  /β/2 on [Γ, + oo)
and hence l i m ^ ttf(ί) exists and is positive which implies that l i m ^ u(t)/t
exists and is positive.

THEOREM 3.2. Assume conditions (AQ) — (A4) hold. Then (1) has
solutions, say y(t), such that lim^^ y(t)/t exists and is positive if and
only if

\~tfy(t, βt)dt < + oo for some β> 0 .

Proof. Let a > 0 and let y(t) be a solution of (1) with

lim α .

*— ί

Let Γ ^ 0 be such that t :> T implies y(t) ̂  αί/2. Let

m0 = min {flf(αj') : 0 £ x'£ y'(T) .
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By condition (A*) there is a Tx ^ T such that t ^ T1 implies

f(t, y(t)) ^ Xy(t)fy(t, cat/2) ^ (fcί)/,(ί, cαί/2) ,

where fc = λα/2. Since 0 < y'(t) ^ #'(T) for t ^ Γ we have

/(ί, V(t))gW(t)) ^ (mjct)fy(t9 cat/2) , ί ^ 2\ .

Therefore,

IΛΓO - V'(ί) + Γ As, y(s))g(y'(s))ds

^ 2/'(ί) + Γ (moks)fy(s, cas/2)ds .
M

Since lim^^ ^/'(ί) ^ 0, this implies that

sfv(s, cas/2)ds < +oo ,
i

and this proves the theorem.
As a simple example of an equation to which the previous theorem

applies but which is not considered in references [1], [4] through [8],
we have

( 9 ) x" + x2 (exp (x - βt))(l + x9) = 0 ,

where β > 0. Condition (ΛJ holds for any 0 < e < 1 and any λ > 0.

The author wishes to thank Professor Lloyd Jackson and the re-
feree for several helpful comments and suggestions.
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