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Nonparametric Analysis of Temporal Trend
When Fitting Parametric Models to
Extreme-Value Data
Peter Hall and Nader Tajvidi

Abstract. A topic of major current interest in extreme-value analysis is
the investigation of temporal trends. For example, the potential influ-
ence of “greenhouse” effects may result in severe storms becoming grad-
ually more frequent, or in maximum temperatures gradually increasing,
with time. One approach to evaluating these possibilities is to fit, to
data, a parametric model for temporal parameter variation, as well as
a model describing the marginal distribution of data at any given point
in time. However, structural trend models can be difficult to formulate
in many circumstances, owing to the complex way in which different
factors combine to influence data in the form of extremes. Moreover, it
is not advisable to fit trend models without empirical evidence of their
suitability. In this paper, motivated by datasets on windstorm severity
and maximum temperature, we suggest a nonparametric approach to
estimating temporal trends when fitting parametric models to extreme
values from a weakly dependent time series. We illustrate the method
through applications to time series where the marginal distributions are
approximately Pareto, generalized-Pareto, extreme-value or Gaussian.
We introduce time-varying probability plots to assess goodness of fit, we
discuss local-likelihood approaches to fitting the marginal model within
a window and we propose temporal cross-validation for selecting window
width. In cases where both location and scale are estimated together, the
Gaussian distribution is shown to have special features that permit it to
play a universal role as a “nominal” model for the marginal distribution.

Key words and phrases: Bandwidth, cross-validation, extreme-value
distribution, kernel, location estimate, nonparametric regression, Pareto
distribution, probability plot, scale estimate.

1. INTRODUCTION

In applications of extreme-value methods to me-
teorological or environmental data, a major topic of
current interest is assessment of temporal trends
in measurements such as temperatures or storm in-
tensities. A trend might be present in terms of scale,
for example, when fitting a generalized Pareto dis-
tribution or it might be in location, in particular
when fitting an extreme-value distribution. There
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can also be trends in “shape,” described, for example
through the exponent of a fitted Pareto distribution.
In that case, evidence that the exponent was de-
creasing over time would imply that the distribution
was becoming more heavy tailed, corresponding to
generally more severe events and greater variabil-
ity in severity. When an extreme-value distribution
is used to model data, temporal trends in location,
scale and shape are all potentially of interest.
One approach to assessing trend is to test for a

linear or log-linear change, as for example in the
work of Smith (1989) on ground-level ozone con-
centrations and of Rootzén and Tajvidi (1997) on
damage by windstorms. However, regardless of the
conclusions of such analyses, they almost invari-
ably raise further questions about the nature of the
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trend. If a test fails to reject the null hypothesis
of no trend, against the alternative of linearly in-
creasing trend, is it because there is an increasing
trend but it is not statistically significant or is the
trend quite different from increasing? If the null hy-
pothesis is rejected, is the trend really linear or is
it more complex? In some instances it is of interest
to take an alternative route, exploring the nature of
any trend prior to constructing a formal test for it.
In the present paper we suggest an adaptive,

nonparametric approach to solving these problems.
We fit models that are structural at any given point
in time, but vary with time in a nonstructural way.
Two particular datasets motivate our methodology:
the windstorm data of Rootzén and Tajvidi (1997)
and data on temporal change of annual maximum
temperatures in Australia. In each case, fitting
a linear trend to parameters of Pareto-type or
extreme-value distributions suggests a tendency for
the response variables to slowly increase with time.
In the case of the Australian temperature data, this
would accord with concerns about global warming.
We argue, however, that in both cases the trend is

actually more complex than such a simple paramet-
ric analysis would allow. We show that if nonpara-
metric methods are used to fit time-varying param-
eters then, for both datasets, it appears that “aver-
age” values of the response variable at first decrease
and then increase with time.
Although the temperature data studied here are

confined to the southeast Australian state of Vic-
toria, the same broadly “convex” trend for varia-
tion of maximum temperature with time is apparent
throughout much of the eastern half of Australia.
Moreover, it is reflected not just in maximum tem-
peratures but also in rainfall; the eastern half of
the Australian continent appears to have been both
colder and wetter in the middle of the twentieth
century than it was in the 50 preceding or 50 suc-
ceeding years.
Once such trends have been revealed they can

be incorporated into a new, nonlinear paramet-
ric model that may be fitted to data by relatively
conventional means. Thus, our adaptive, nonpara-
metric techniques might be viewed as exploratory
tools, rather than as methods for final analysis.
Either way, they offer an adaptive approach that
might have been helpful in earlier analyses. In one
such case, involving the study of ground-level ozone
concentration, Smith (1989) fitted a linear trend
to the mean of an extreme-value distribution. In
discussion of Smith’s paper, Raftery (1989) argued
that a linear trend might not adequately represent
the manner in which ozone concentrations changed
with time and suggested that a change-point model

might be more appropriate. The methods proposed
for addressing that suggestion were parametric,
however; an adaptive, nonparametric approach
would have been beneficial as an exploratory tool.
The ozone data are unfortunately no longer avail-
able for analysis, but if they were, analyses of this
type would likely help resolve questions raised in
the discussion of Smith (1989).
We focus particularly on fitting Pareto, general-

ized-Pareto, extreme-value and Gaussian distribu-
tions to data. It is shown that the Gaussian model
has special properties which make it attractive as
a universal approach to simultaneous local estima-
tion of location and scale, valid even when the model
is incorrect. That method avoids the need to first
compute an undersmoothed estimator of location,
and then calculate residuals, in order to compute a
function-valued estimator of scale. We develop local
methods, based on a continuum of probability plots,
for assessing goodness of fit when function-valued
parameters are involved. Our procedure for actually
fitting a model is based on a kernel approach to “lo-
cal likelihood,” and is directly applicable to general
weakly dependent time-series data, not just those
connected with extreme events.
In the context of more conventional sampling

problems, rather than just temporal sequences of
events, our local-likelihood approach is closely re-
lated to “local estimating equations” techniques
suggested by Carroll, Ruppert and Welsh (1998),
differing for example in the method used to select
bandwidth and in our notion of a nominal Gaussian
model for location and scale. These authors note
particular applications to nutritional epidemiology,
to analysis of lung cancer mortality rates and to
modelling overdispersion in count and assay data.
Additionally, a great many local methods for

curve fitting can be interpreted as local-likelihood
based. They include, for example, local polyno-
mial fitting (e.g., Fan and Gijbels, 1996) and locally
weighted regression more generally (e.g., Cleveland
and Devlin, 1988), if we fit a local model in which
the errors in response variables are Normally dis-
tributed. Of these, the LOESS method in SPlus
(Chambers and Hastie, 1992) is arguably the best
known. At a higher level of methodological sophisti-
cation, local-likelihood techniques include methods
where the mean and variance of the response are
related through a link function; see, for example,
Weisberg and Welsh (1994), who illustrated appli-
cations using an example from quality management
in an industrial setting.
In closely related work, Fan, Heckman and

Wand (1995) provided a treatment of kernel-weight-
ed general linear models and quasi-likelihood.
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Mixed parametric and nonparametric approaches
to inference have also been discussed by Staniswal-
lis (1989), who noted particular applications to the
Cox proportional hazards model to survival anal-
ysis; Gu, Bates, Chen and Wahba (1989) and Gu
(1990), who used spline rather than kernel smooth-
ing to weight likelihoods and addressed applications
to survival analysis and Severini and Staniswallis
(1994), who considered quasi-likelihood applications
to evaporation rates in engineering contexts. Spa-
tial applications are illustrated in examples treated
by Gu (1990) and Carroll, Ruppert and Welsh
(1998). Independently of the work in the present
paper, Davison and Ramesh (2000) have devel-
oped local likelihood-based methods for smoothing
sample extremes.
Extreme-value theory for dependent sequences

has been studied in depth by Leadbetter, Lind-
gren and Rootzén (1983, Part II) and reviewed by
Leadbetter and Rootzén (1988).
Our motivating datasets are introduced and

discussed in Section 2. Local-constant and local-
linear versions of our methods are introduced in
Section 3, and applied to the data in Section 4.
Section 5 outlines the estimators’ theoretical prop-
erties. Higher-order local polynomial techniques
may be treated similarly. However, we found in our
numerical work that even when estimating just lo-
cation and scale, where local-linear methods require
computation of four function-valued parameter es-
timators (rather than two), local-linear estimation
could become heavily saturated, particularly when
design points were sparse.

Fig. 1. Data on windstorms and temperatures in Victoria, Australia. Panel (a) graphs storm strengths (i.e., insurance losses) exceeding
0�9 MSEK, against day of occurrence (measured from 1 January 1982) in the period 1982–1993. Panel (b) shows annual maximum
temperatures, in degrees Celsius, taken over 34 weather stations in Victoria, Australia, from 1910 to 1993.

2. EXAMPLES AND PARAMETRIC METHODS
FOR ANALYSIS

Our first example is of the intensities of wind-
storms, measured in millions of Swedish kroners
(MSEK) of damage, experienced by the Swedish in-
surance group Länsförsäkringar during the 12-year
period 1982–1993. Sample size is N = 45. The data
are depicted in Figure 1(a), and are discussed in
more detail by Rootzén and Tajvidi (1997). A storm
was defined to occur if damage exceeded 0.9 MSEK
and if certain meteorological conditions were met.
We standardized the time interval �1982�1993� by
transforming it linearly to � = �0�1�.
Of particular interest, especially to the company

that collected the data, are potential trends in storm
strength, for example, any tendency of strength to
increase with time. Indeed, fitting a generalized
Pareto distribution (GPD) with log-linearly varying
scale shows a gradual tendency for storm strength
to increase.
A likelihood ratio test for a log-linear increase

may be conducted by fitting a GPD and assuming
that storm strengths, conditional on the times of
storms, are independent random variables. The test
results in statistical significance only at the 0.32
level of probability, however. The data suggest visu-
ally that an increase might be present only in the
last 80% of the period 1982–1993, although a test
applied to that region results in significance only at
the 0.09 level, and this level would only be increased
if we took into account the way in which the choice
of interval depended on the data.
The inconclusive nature of these results indicates

the need for a more exploratory, less structured ap-
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proach to analysing trend — one that is more sensi-
tive to fluctuations in the data and less constrained
by assumptions made outside the dataset, although
admittedly less explicit in terms of strict assess-
ment of goodness of fit. The adaptive, nonparametric
methods suggested in Section 3 offer such an alter-
native approach. We would stress that those tech-
niques might not necessarily be viewed as an end
in themselves; rather, their purpose could be to sug-
gest appropriate parametric models that might be
fitted.
Our second example is of Australian temperature

extrema; see Jones (1994) and Torok and Nicholls
(1996) for discussion of a very large dataset from
which our data were excerpted. Figure1(b) depicts
the maximum value, over all 34 weather stations
that were operating in the state of Victoria from
1910 to 1993, of annual temperatures (in degrees
Celsius) during this period. Fitting a generalized
extreme-value distribution with linearly varying lo-
cation shows a slight tendency for temperatures to
increase over time, although not to an extent that
would lend strong support to concerns about global
warming, for example.
It is not clear from this analysis whether there

really is a generally increasing trend or whether
the time trend is more complex than linear. Using
our more adaptive methods we shall argue in Sec-
tion 4 that the trend is likely nonlinear in the case
of the Victorian temperature data and that in fact
there is evidence of a minimum value of maximum
temperature occurring in about 1950 in the state of
Victoria. Analysis of a larger data set shows that
this “convex” trend was exhibited in eastern Aus-
tralia more generally during the twentieth century.
Rainfall data lend additional support to this claim.

3. NONPARAMETRIC ESTIMATION OF TREND

3.1 General Methodology

Suppose data are gathered in the form ��X1�T1��
� � � � �XN�TN��, where Ti denotes the time at which
an event of strengthXi is observed. We might think
of the �Xi�Ti� sequence as a marked point process,
with Xi being the mark on the point represented
by Ti. Usually N is random, representing the num-
ber of events observed in a given time interval � . It
is assumed that the distribution ofXi, given Ti = t,
has density f�·	θ�, where θ = θ�t� is a vector of di-
mension d (a d-vector) and is a smooth function of
t. Likelihood-based methods will be formulated un-
der the assumption that the pairs �Xi�Ti� are inde-
pendent. However, depending on the nature of the
dependence, first-order properties of bias and vari-
ance of estimators of θ can be unchanged if theXi’s

form a weakly dependent time series, conditional on
the Ti’s. See Section 5 for discussion.
Assume that, conditional on Ti, Xi has density

f�·	θ�Ti��. Put g�x	θ� = log f�x	θ� and, given a
bandwidth h > 0 and a kernel K, define

Ki�t� =K
( t−Ti

h

)
�

Let v0� v1 denote d-vectors, being candidates
for θ�t� and θ̇�t� = dθ�t�/dt, respectively; put
ωi = ωi�v0� v1� = v0 + �Ti − t�v1 and define

�3�1� ��v0� v1	t� = −
N∑
i=1
g�Xi	ωi�v0� v1��Ki�t� �

Two estimators of θ�t� are, respectively, the “local-
constant” estimator, θ̂�t� = v̂0, where v̂0 minimizes
��v0�0	t� with respect to v0, and the “local-linear”
estimator, θ̃�t� = ṽ0, where �ṽ0� ṽ1� minimizes
��v0� v1	t� with respect to �v0� v1�. The case where
the Ti’s are nonrandom, for example, regularly
spaced, may be treated identically.
A minor modification allows us to estimate some

of the parameters globally and others locally. For
simplicity of notation, let us write f�x	η�ψ� in-
stead of f�x	θ�, where θ = �η�ψ�; we wish to
estimate η locally and ψ globally. Put g�x	η�ψ� =
log f�x	η�ψ�, define ωi�v0� v1� as before and replace
g�Xi	ωi�v0� v1�� by g�Xi	ωi�v0� v1�� ψ� in (3.1).
Holding ψ fixed, compute the estimator η̃ψ�t� = ṽ0,
in the local linear case by minimizing the right-
hand side of the new version of (3.1) with respect
to �v0� v1�. Now select ψ̂, a global estimator of ψ, by
minimizing

�3�2� −
N∑
i=1
g�Xi	η̃ψ�Ti�� ψ�

with respect to ψ. The final estimator of η is η̃ψ̂.
There is an obvious local-constant version of this
procedure, but there we should confine summation
at (3.2) to indices i such that Ti is not close to the
edges of � , so as to avoid boundary problems.
Often � is a compact interval, and although

θ would typically be continuous on this interval,
it would generally have jump discontinuities at
its ends. In theory the local-constant estimator is
more seriously affected by such edge effects than
the local-linear estimator, although in practice
we found that both often performed similarly for
small-to-moderate sample sizes. We also noticed
that local-constant estimators suffered less from
design sparseness.
When constructing the local-linear estimator it is

often necessary to reparametrize, so as to ensure
that v0 + �Ti − t�v1 always lies in the parameter
space. For example, if the jth component θ�j� of θ
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must be positive in order for f�·	θ� to be well de-
fined, then it may be appropriate to fit the linear
model v�j�0 + �Ti − t�v�j�1 to log θ�j��Ti� rather than
to θ�j��Ti�.

3.2 Fitting a Nominal Gaussian
Location-and-Scale Model

As with conventional likelihood-based methods,
the functional estimators θ̂ and θ̃ can be inconsis-
tent for θ if the model f�·	θ� is incorrect. In par-
ticular, this is typically true when we estimate lo-
cation and scale by taking θ = �µ�σ� and f�x	θ� =
σ−1φ��x−µ�/σ�, where the distribution correspond-
ing to the probability density φ has zero mean and
unit variance and µ�σ are nondegenerate functions
(of t).
The case where φ is the standard Gaussian

density is an exception, however. There, the local-
constant estimator θ̂ = �µ̂� σ̂�, and local-linear
estimator θ̃ = �µ̃� σ̃�, are consistent for the (lo-
cation, scale) vector under appropriate regularity
conditions, that do not include correctness of the
Gaussian model. In the case where µ and σ are
both nondegenerate functions, this result is appar-
ently new; it is discussed in theoretical detail in
Section 5.2. The resulting estimators of µ and σ are
first-order equivalent to their local-constant and
local-linear counterparts in the case of conventional
least-squares regression, and so performance is not
sacrificed by estimating them together. (The same
is true if we parametrize scale in terms of σ2 rather
than σ .) Usually, however, functional estimation
of σ would proceed by first calculating an under-
smoothed estimator of µ, then computing residuals,
then centering and finally, passing a local-linear
smoother through squared and centered residuals.
Therefore, our nominal Gaussian model approach
saves computational effort. Theoretical details will
be given in Section 5.

3.3 Assessing Goodness of Fit

Formal testing of goodness of fit of models for
extreme-value data is not often a practical propo-
sition, in particular because alternative hypotheses
that might be employed in a likelihood-ratio test
(for example) can be complex to conduct inference
for. These problems are exacerbated when a band-
width, as well as more conventional parameters, are
estimated from data using kernel weights. An as-
sessment in terms of probability plots is often more
appropriate.
In keeping with our local approach to parameter

fitting, we suggest computing probability plots lo-
cally. Thus, our plots are defined in the continuum,

there being a different plot for each t ∈ � . To con-
struct a plot within a window of width 2h centered
on t, let us write �X′

1�T
′
1�� � � � � �X′

M�T
′
M� for those

values of �Xi�Ti� for which Ti ∈ �t − h� t + h�. Let
F�x	θ� denote the distribution function correspond-
ing to the density f�x	θ�. If the model is correct then
the values of Zi = F�X′

i	θ�T′
i�� are uniformly dis-

tributed on �0�1�, and so a plot of expectations of
ranked values of Zi, against the respective ranks,
would produce exactly a straight line. This suggests
taking the probability plot to be a graph of values
of Ẑi = F�X′

i	θ̄�T′
i�� against their respective ranks,

where θ̄ denotes either θ̂ or θ̃.
An alternative is to plot ranked values of

Ẑ′
i = F�X′

i	θ̄�t�� against their ranks. However,
θ̄�t� − θ�T′

i� is of order only h for T′
i ∈ �t− h� t+ h�,

whereas θ̄�T′
i� − θ�T′

i� is of order h2, assuming
that h is chosen to give an optimal rate of con-
vergence. (These results follow from theoretical
properties outlined in Section 5.) Consequently,
Ẑ′
i−Zi = Op�h�, whereas Ẑi−Zi = Op�h2�, and so

the method based on Ẑi, rather than Ẑ′
i, is prefer-

able. Even so, it can be advantageous to choose h
a little smaller than is optimal for estimating θ,
so as to reduce the effects of systematic error. This
also reflects the fact that, in view of the shape of
the kernel used to compute θ̄�·�, data corresponding
to Ti’s that are further from t should receive less
weight than those near to t.

3.4 Selecting Bandwidth

There are several potential approaches to band-
width choice. They include plug-in methods, based
on formula for asymptotic mean squared error that
we shall give in Section 5; techniques based on ap-
proximate log-likelihood ratios; a cross-validation
algorithm that we shall discuss below and a mod-
ified form of Ruppert’s (1995) empirical bias tech-
nique, used by Carroll, Ruppert and Welsh (1998)
in a setting related to ours. In a multivariate prob-
lem such as that of estimating a vector function θ,
conventional plug-in methods are not so attractive
because they involve selection of a range of pilot
bandwidths.
Our approach is related to cross-validation for

nonparametric density estimation, but differs in
that it cross-validates over the times, Ti, as well
as the strengths, Xi, and of course, it employs the
parametric model for f. In asymptotic terms it
chooses the bandwidth to minimize

�3�3�
D1 = D1�h�

≡
∫
�
E
{�θ̄− θ�T !�t� �θ̄− θ�}λ�t�dt �
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where θ̄ denotes the estimator of θ (either the local-
constant or the local-linear estimator), !�t� is the
d×d positive-definite matrix of which the �j1� j2�th
element is

E
[
fj1�X	θ�t��fj2�X	θ�t�� ∣∣T = t] �

�X�T� is a generic pair �Xi�Ti�, fj�x	θ� =
�∂/∂θ�j��f�x	θ�, λ is proportional to the inten-
sity of the point process that generated the Ti’s,
and � is the time interval over which we wish to
optimize performance of θ̄.
As we shall show, minimizing D1 is asymptoti-

cally equivalent to minimizing

�3�4�
D2 ≡

∫
�
E
([
f�X	θ̄�t��

−f�X	θ�t��]2 ∣∣∣T = t
)
λ�t�dt �

where we take �X�T� to be independent of the
dataset from which we computed θ̄. The integral in
(3.4) may be written as

�3�5�
E

[ ∫
dx

∫
�
f�x	θ̄�t��2 λ�t�dt

−2
∫
dx

∫
�
f�x	θ�t��f�x	θ̄�t��λ�t�dt

]
�

plus a term that does not depend on θ̄ and so is im-
material to minimization. Let θ̄−i denote the version
of θ̄ computed while omitting the data pair �Xi�Ti�.
Then, up to a constant of proportionality and treat-
ing the data pairs as independent, an empirical ap-
proximation to (3.5) is given by

�3�6�
CV1�h� ≡

N∑
i=1
I�Ti ∈ � �

∫
f�x	θ̄−i�Ti��2 dx

−2
N∑
i=1
I�Ti ∈ � �f�Xi	θ̄−i�Ti�� �

We suggest choosing h to minimize CV1�h�. Owing
to problems that the local-constant estimator has
with edge effects, � should, in the local-constant
case, be chosen to be contained properly within � .
A minor modification of this method enables us to

select bandwidth when estimating some parameters
locally and others globally. Adopting the notation
f�x	η�ψ� suggested in Section 3.1, with η and ψ
denoting local and global parameters respectively,
the analogue of the criterion at (3.6) is

CV2�h� ≡
N∑
i=1
I�Ti ∈ � �

∫
f�x	η̄−i�Ti�� ψ̂−i�2 dx

−2
N∑
i=1
I�Ti ∈ � �f�Xi	η̄−i�Ti�� ψ̂−i� �

where the subscript “−i” denotes that version of an
estimator has been computed with datum �Xi�Ti�

omitted from the sample. We select h to minimize
CV2�h�.
To appreciate why D2 is asymptotically equiva-

lent to D1, write ∇f�x	θ� for the d-vector of which
the jth element is �∂/∂θ�j��f�x	θ�, and note that by
Taylor expansion of f�x	θ� with respect to θ,

D2 ∼
∫
�
E
[([∇f�X	θ̄�t��]T�θ̄− θ�)2 ∣∣∣T = t

]
λ�t�dt

∼
∫
�
E
[([∇f�X	θ�t��]T�θ̄− θ�)2 ∣∣∣T = t

]
λ�t�dt

= D1 �

4. APPLICATIONS

First we apply the methods suggested in Section 3
to the Swedish windstorm data introduced in Sec-
tion 2. In our initial analysis we fitted the Pareto
model,

�4�1�
F�x	β� c� ≡ P�X ≤ x�

= 1− c x−β � x > c1/β �

where β and c are positive constants. By condition-
ing on the smallest observed data value we were
able to take c = 1, so that the only unknown param-
eter, θ = β, represented distribution shape. State-
ments about the size of bandwidth should be inter-
preted on the scale of the interval � = �0�1�, to
which we transformed the time period �1982�1993�.
Throughout our analysis of both the windstorm and
the temperature data we used the biweight kernel,
K�x� = �15/16� �1 − x2�2 for 	x	 ≤ 1. The cross-
validation argument suggested in Section 3.4 pro-
duced bandwidths h = 0�38 and h = 0�68 in local-
constant and local log-linear cases, respectively.
Figure 2 shows a plot of the local-linear estimate

of β with h = 0�68. It might perhaps be argued that
the most extreme storm, at time t = 0�96, repre-
sents an outlier from a contaminant distribution.
Its influence on our analysis is only minor, however,
and in fact if this storm is removed from the data
then the plot is virtually unchanged, the main effect
being that the curve decreases a little less steeply
on the right-hand side of the mode at t ≈ 0�3. A
local-constant plot is also similar, although there the
curve increases less steeply on the left-hand side of
the mode.
Plots with smaller bandwidths also have the same

features, except that (i) there is a tendency for a
shoulder to appear on the right-hand side of the
peak at about t = 0�7 (approximately the year 1990),
and (ii) the plots exhibit cusps and other fluctu-
ations due to problems with design sparsity and
with the smallest data value (on which we condi-
tioned) disappearing from the local dataset as t is
moved along the axis. The latter problem is always
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Fig. 2. Pareto model fitted locally to windstorm data. The figure depicts the local-linear estimate of the shape parameter, β, in the case
of a fitted Pareto model [see (4.1)] and with bandwidth h = 0�68 chosen by cross-validation.

potentially troublesome for distributions, such as
those connected with extremes, where the support
depends on unknown parameter values. Although it
did arise occasionally in our analysis (see for exam-
ple the cusp at t = 0�25 in Figure 6), it was not as
prevalent or as serious as we had anticipated.
Figure 3 gives local probability plots for the

Pareto fit, using h = 0�68. A more conventional
global probability plot, with β fitted globally,
demonstrates an extremely poor fit.
Figure 2 suggests a general tendency for the

severity of storms to at first decrease up until about
the end of 1986 and then start to increase. This
general behavior is also borne out by our second
analysis, which, moreover, lends support to the sug-
gestion that a period of very slow change in average
storm intensity occurred during the late 1980s and
early 1990s; see point (i) two paragraphs above. In
the second analysis we fitted the generalized Pareto
distribution (GPD),

�4�2� F�x	γ� σ� = 1− �1+ �γ/σ�x�−1/γ+ �

where x+ = max�x�0�, σ > 0 denotes scale, γ rep-
resents shape and the support of the distribution
is the positive half-line for γ > 0 and the interval
0 < x < −σ/γ for γ < 0. When γ = 0 we interpreted
F as the exponential distribution, 1 − exp�−x/σ�.
Cross-validation suggested the bandwidth h = 0�17
when using the local-constant method and fitting γ
and σ together [see Figure 4(a)]. In the local-linear
case, direct computation of the cross-validation
criterion and of the estimators themselves was se-
riously hindered by problems with sparse design;
bear in mind that in the local-linear case we are

in effect fitting four continuous functions simul-
taneously. For simplicity and brevity, rather than
employ remedial methods to overcome these prob-
lems, we shall confine attention to local-constant
fitting in the GPD context.
Figure 4(b) depicts a plot of the local-constant

function estimate σ̂ when γ is also estimated lo-
cally, using bandwidth h = 0�20. (We chose h a little
larger than the bandwidth recommended by cross-
validation, so as to reduce “wiggliness” of the curve
estimate on the plateau.) Estimated scale at first
decreases to a minimum in mid-1985 and then vir-
tually increases monotonically for the rest of the pe-
riod, except for a plateau between 1988 and 1991.
The same shape and almost identical locations of
the trough and of endpoints of the plateau are ob-
served if σ is fitted locally and γ fitted globally and
also if the storm at t = 0�96 is removed, the main
difference in the latter case being that the trough
is deeper. Figure 5 is a local probability-plot for the
local-constant fit with h = 0�20, when both γ and σ
vary locally.
Because increasing scale corresponds to greater

storm severity, we conclude from both the Pareto
and GPD analyses that storm severity at first
decreased from 1982 to 1985 or 1986 and then gen-
erally increased until the end of the data set in
1993, with intensity varying relatively little for
about three years from 1988. These results shed
new light on the nonstatistically significant lin-
ear trend fitted by Rootzén and Tajvidi (1997). The
results suggest that variations in storm intensity
between 1982 and 1993 most likely were not mono-
tone increasing over the full interval, although they
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Fig. 3. Local probability plots for Pareto fit. Working from left to right and top to bottom, the nine panels correspond to the nine values
of t = 0�1�0�1�0�9. In each panel, n is the number of observations in �t− h� t+ h� and the dashed line corresponds to the equation y = x.

Fig. 4. GPD model fitted locally to windstorm data. Panel (a) graphs the cross-validation criterion CV1�h� in the case of fitting a GPD
model [see (4.2)] by local-constant smoothing, when both γ and σ are fitted locally. Panel (b) shows the corresponding local-constant
estimate of σ , with bandwidth increased slightly to h = 0�20 relative to that suggested by panel (a).
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Fig. 5. Local probability-plots for GPD fit. Panels are for t = 0�1�0�1�0�9, and illustrate goodness of fit of the two-parameter GPD model
addressed in Figure 4. In each panel, n is the number of observations in �t − h� t + h� and the dashed line corresponds to the equation
y = x.

appear to have been increasing during the last
two-thirds of that period.
Next we address the temperature data for Vic-

toria, Australia, introduced in Section 2. We stan-
dardized so that �1910�1993� was transformed to
the interval � = �0�1�. Bandwidth should be inter-
preted on this scale. Panels (a)–(c) of Figure 6 show
plots of local-constant estimates of the components
of θ = �µ�σ� γ�T, representing location, scale and
shape, respectively, derived from fitting a general-
ized extreme-value (GEV) distribution with distri-
bution function

�4�3� F�x	θ� = exp
[− �1+ �γ/σ� �x− µ��−1/γ+

]
�

The support of the distribution is x<µ−�σ/γ� if
γ<0, and x>µ−�σ/γ� for γ>0.When γ=0we inter-

preted F�x	θ� as the limit, exp�− exp�−�x−µ�/σ��.
The quality of the fit is illustrated in Figure 7.
The bandwidth for panels (a)–(c) of Figure 6, h =

0�21, was chosen by cross-validation. It represents
the second, and lowest, local minimum in a graph
of CV1�h� for 0 < h ≤ 1. That function does as-
sume lesser values for larger values of h, but none of
them is a turning point; the function is monotone de-
creasing there. This type of behavior is well known
in nonparametric density estimation (see, e.g., Hall
and Marron, 1991), and our choice of the second
minimum would be standard in that setting. The
cusp problems at about t = 0�25 in Figure 6 are
caused by the data sparseness difficulty noted in
the case of windstorm data and diminish if a larger
bandwidth is used.
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Fig. 6. Parameter plots for temperature-data example. Panels (a)–(c) show local-constant estimates of µ, σ and γ, respectively, derived
by fitting the GEV distribution in (4.3).

Fitting all three components of θ by local-linear
methods requires fitting six continuous functions
simultaneously and not surprisingly suffers from
more serious data sparseness problems. How-
ever, local-linear methods work well if only two
parameters—µ and σ , say—are fitted within any
one time window. The associated global value of γ
is −0�251, and the cusp problems noted above do
not arise.
Graphs of estimates of µ and σ are similar for

both fits. In particular, graphs of estimates of µ
are multimodal, with a minimum at a point corre-
sponding to about 1950, maxima at about 1933 and
1983 and the latter maximum higher than the for-
mer. Note that in the three-parameter fit, γ̂ tends
to change in the opposite direction to σ̂ , thereby
accommodating some of the temporal changes in
scale. As a result, the amplitude of fluctuations of
estimates of σ is greater for the two-parameter fit
than for the three-parameter fit. However, the pat-
tern of peaks and troughs in estimates of σ is the
same, and the places where they occur are almost
identical.

Broadly similar estimates of µ and σ are also ob-
tained by fitting a Gaussian model, although the
data are somewhat skewed in the right tail. A sig-
nificant advantage of fitting the GEV distribution
is that it provides information about the upper end-
point of the distribution of admissible temperatures.
These results provide substantially more infor-

mation than is available from merely fitting a
linear trend to the data. Indeed, the marked non-
monotonicity of the adaptively fitted trend would
indicate that monotone trend models, suggested
by the hypotheses that a steadily warming trend
in temperatures was evident early this century,
are not appropriate for Victorian data during the
period 1910–1993. Further support for this view
may be obtained from analysis of maximum tem-
perature data for the eastern half of Australia,
which also exhibited a minimum at about mid-
century; see Torok and Nicholls (1996). This was
associated with a steady increase in rainfall, to
a maximum in about 1950 (Nicholls and Lavery,
1992). The multimodal character that we have ob-
served for maximum Victorian temperatures is not
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Fig. 7. Local probability-plots for GEV fit. Panels are for t = 0�1�0�1�0�9, and describe goodness of fit of the three-parameter GEV
distribution fit illustrated in Figure 6. In each panel, n is the number of observations in �t−h� t+h� and the dashed line corresponds to
the equation y = x.

clearly evident across eastern Australia as a whole,
however.
On the other hand, trends in maximum temper-

atures recorded at weather stations in the western
half of Australia are commonly upwards through
most of the twentieth century, with the result that
the average annual maximum Australian tem-
perature, discussed by Torok and Nicholls (1996),
evidences behavior quite different from that ob-
served in the eastern half. The average annual
maximum is derived by taking the mean of maxi-
mum annual temperature readings at 224 weather
stations across Australia. These averages are plot-
ted in Figure 8(a) for data through the period
1890–1993. (For later plots we have transformed
the period to the interval �0�1�.) By virtue of the

central limit theorem, average maxima would be
expected to fit a Gaussian distribution well. The lo-
cal probability plots that result after local-constant
and local-linear fits of both location and scale under
a Gaussian model strongly support this claim.
The mean curve is generally increasing, although

with a slight decrease at the end of the nineteenth
century and a plateau or slight dip in the mid-
dle of the twentieth century. The scale curve is bi-
modal, with its trough at about 1940 and its peaks
at about 1910 and 1960, the former being more pro-
nounced. See panels (b) and (c) of Figure 8, which
depict local-linear fits. Cross-validation suggested
the bandwidth h = 0�15; see panel (d) of the fig-
ure. (There is also a local minimum of CV1 at the
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Fig. 8. Location and scale estimates for average Australian maximum temperature. “Average annual maximum temperature” is defined
in Section 4. Panel (a) shows the raw data, and panels (b) and (c) plot the mean �µ� and standard deviation �σ�, respectively, for
local-linear fits to a Gaussian model. Bandwidth h = 0�15 was suggested by the cross-validation curve plotted in panel (d).

inordinately small value h = 0�04, which, again fol-
lowing Hall and Marron, 1991, we ignored.)

5. THEORETICAL PROPERTIES

5.1 Properties of Estimators When the Model
Is Correct

We begin by describing a time-series model for the
data �Xi�Ti�. Let ��Yi�Si�, i ≥ 1� be a stationary
time series, and put

π�j� ≡ sup
−∞<i<∞

E

{
sup
A∈� ∞

i+j

∣∣P(A∣∣� i
1

)−P�A�∣∣} �
where �

j
i denotes the σ-field generated by

��Yk�Sk�, i ≤ k ≤ j�. Given an integer ν ≥ 1,
and a compact interval � which we take without
loss of generality to have unit length, let ��Xi�Ti�,
1 ≤ i ≤ N� denote those values of �Yj�Sj� for
which 1 ≤ j ≤ ν and Sj ∈ � .
Next we introduce notation. Let �X�T� and

�Y�S� be generic values of �Xi�Ti� and �Yi�Si�,
respectively, and put g�·	θ� = log f�·	θ�, where

f�·	θ�t�� is the density of Y conditional on
S = t ∈ � (equivalently, of X conditional on T = t).
Define θ̇�j��t� = dθ�j��t�/dt, θ̈�j� = d2θ�j��t�/dt2,

gj�·	θ� = �∂/∂θ�j��g�·	θ� �
gj1� j2�·	θ� =

(
∂2
/
∂θ�j1�∂θ�j2�

)
g�·	θ� �

Let V = V�t� denote the inverse of the d×d matrix
of which the �j1� j2�th element is

E
[
gj1�X	θ�T��gj2�X	θ�T�� ∣∣T = t]
= −E[

gj1�j2�X	θ�T�� ∣∣T = t] �
Put κ2 = ∫

u2K�u�du, κ+k = ∫
u>0 u

kK�u�du, κ =∫
K2 and

κ+ = 4
∫ ∞

0

{
1− (

κ+1
/
κ+2

)
u
}2
K�u�2 du �

Assume that (a)
�
j≥1 j

2 π�j�ε < ∞ for some ε ∈
�0�1� (we interpret 0ε as 0 when ε = 0, so that the
case ε = 0 corresponds to m-dependence); (b) p ≡
P�Si ∈ � � > 0, the distribution of Si, conditional
on Si ∈ � , is absolutely continuous with density
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ξ, say; (c) ξ has a continuous derivative in a neigh-
bourhood of t and satisfies ξ�t� > 0; (d) for all val-
ues of θ in a neighbourhood of θ�t�, f�·	θ� satisfies
the regularity conditions of Lehmann (1983, pages
329f), which are sufficient for the Cramér–Rao lower
bound to be attained in the same neighborhood;
(e) θ�·� has two continuous derivatives in a neighbor-
hood of t, and V�·� is nonsingular and continuous in
that neighborhood; (f) K is a symmetric, compactly
supported probability density and (g) h = h�ν� → 0
and ν → ∞ in such a manner that νh → ∞. Then
νλ, where λ ≡ pξ, equals the intensity of the point
process �T1� � � � �TN� on � . In formulating the re-
sults below we suppress the argument, t, of λ, θ, θ̇,
θ̈ and V.

Theorem 5.1. Assume conditions (a)–(g).

(i) Local-constant estimator. If t is an interior
point of � then θ̂ = v̂0 satisfies

�5�1�
θ̂ = θ+ κ2 h2

{ 1
2 θ̈+ �λ′/λ� θ̇}

+�νλh�−1/2Z+ op
{
h2 + �νh�−1/2} �

where Z is asymptotically Normal N�0� κV�.
(ii) Local-linear estimator. If t is an interior point

of � then θ̃ = ṽ0 satisfies

�5�2�
θ̃ = θ+ 1

2 κ2 h
2 θ̈

+�νλh�−1/2Z+ op
{
h2 + �νh�−1/2} �

where again Z is asymptotically Normal N�0� κV�.
If t is an endpoint of � , say the lower endpoint
where λ�t+� > 0 and λ�t−� = 0, then

�5�3� θ̃ = θ+ 1
2

{�κ+2 �2 − κ+1 κ+3 } (κ+2 )−1 h2 θ̈
+�νλh�−1/2Z+ op

{
h2 + �νh�−1/2} �

where now Z is Normal N�0� κ+V�.

Remark 5.1 (Other approaches to modelling the
data). Our model for the way in which the data
�Xi�Ti� might be generated by a stationary pro-
cess �Yi�Si� is only one of several that might be
considered. We could treat the Xi’s as a time se-
ries conditional on the set �T1� � � � �TN�, and ask
that the Ti’s form a point process of a specific type,
for example a Poisson cluster process or a sequence
of points arrayed on a regular grid within the in-
terval � . The latter is the case for our Australian
temperature data, and there λ should be treated as
identically constant on � .
In contexts of that type the nature of dependence

may be such that asymptotic variance matrices dif-
fer from those given in Theorems 5.1 and 5.2. How-
ever, the bias terms would be the same to first order,

since under condition (d) the estimators are asymp-
totically linear in the data, and expected values of
the components of a time series do not depend on
the nature or strength of dependence. Furthermore,
under weak dependence the orders of magnitude of
the stochastic terms would also be unchanged. This
may be seen most easily in the case of m-dependent
data, where, in view of the aforementioned asymp-
totic linearity, the limiting variance is inflated by a
factor of at most m+ 1. The fact that the gridpoints
in the Australian temperature example represent
years, rather than (for example) months, suggests
that stochastic relationships among Xi’s, even for
nearby Ti’s, should be small. Analysis of correla-
tions supports this conjecture and so encourages use
of the methods suggested in Section 3.

Remark 5.2 (Terms corresponding to bias and
variance). The terms of size h2 on the right-hand
sides of (5.1), (5.2) and (5.3) represent the dominant
contributions to systematic error, or bias, in those
respective contexts. The terms of size �νh�−1/2 de-
note the dominant contributions to stochastic error,
or error about the mean. Because the stochastic and
systematic error terms are of identical orders when
h is of size ν−1/5, then this is the optimal size of
bandwidth. The variance matrix of Z is of course
the maximum-information variance associated with
the Cramér–Rao lower bound.

Remark 5.3 (Edge effects). Result (5.1) fails if t
is at either end of � , because there the second
term on the right-hand side of (5.1) is O�h� rather
than O�h2�. Comparing (5.2) and (5.3) we see that,
although t being at an end of � has had some
impact on terms in the asymptotic expansion, it
does not affect their orders of magnitude. This is
in marked contrast to the local-constant case.

Remark 5.4 (Globally estimated parameters).
Suppose one or more parameters (components of
ψ) are estimated globally, and the other parame-
ters (components of θ) are estimated locally. Let ψ0

denote the true value of ψ. Then,

θ̃ψ̂ = θ̃ψ0 +O(
h2

)+ op{h2 + �νh�−1/2} �
where the “O�h2�” term is purely deterministic. In
particular, the asymptotic variance of η̃ψ̂�t� equals
that of the “ideal” form η̃ψ0�t�, although the bias
components of these quantities differ in terms of or-
der h2. [This is also true for local-constant estima-
tors, provided that terms that would cause bound-
ary problems are dropped from the series at (3.2).]
That this is correct even for time-series data, satis-
fying condition (a), is a consequence of the fact that
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the stochastic error of ψ̂ is negligible relative to the
stochastic error of estimators of θ.

Remark 5.5 (Cross-validation). It may be
proved that the empirical bandwidth chosen by
cross-validation, suggested in Section 3.4, is of size
ν−1/5. Indeed, if ĥ denotes the bandwidth that min-
imizes CV1, then ν1/5ĥ converges in probability to
a finite, nonzero constant. When all parameters
are estimated locally, the constant (C, say) is such
that Cν−1/5 produces asymptotic minimization of
D1, defined at (3.3); see also Remark 5.2. This re-
sult has a straightforward analogue in the case
where some parameters are estimated locally and
others globally. If the variables �Yi�Si� used to
generate the �Xi�Ti�’s are sufficiently weakly de-
pendent, if � = � and if estimators are defined by
local-linear means, then sufficient regularity condi-
tions are (a)–(g) combined with Hölder continuity
of K. Methods used to derive this result may be
adapted from work of Hart and Vieu (1990).

5.2 Properties of Estimators under a Nominal
Gaussian Model

Define θ = �µ�σ�T and fit the model f�x	θ� =
σ−1φ��x−µ�/σ�, where φ�z� = �2π�−1/2 exp�− 1

2z
2�.

However, in contradistinction to Section 5.1, we do
not ask that the distribution of X, given T = t,
actually have density f�·	θ�t��.
Define κ� κ2 as in Section 5.1, let �X�T� denote a

generic value of �Xi�Ti�, putU = �X−µ�T��/σ�T�,
and let W = W�t� be the variance matrix of
�σU� 12σ2U2�T conditional onT = t, where σ = σ�t�.
To conditions (a)–(g) introduced in Section 5.1, ad-
join the following assumptions: (h) the functions
µ�u� ≡ E�X	T = u� and σ�u�2 ≡ var �X	T = u�
both have two continuous derivatives within a
neighborhood of u = t, and (i) for some ε > 0,
E�	X	4+ε	T = u� is bounded uniformly in u within
some neighbourhood of t. Let θ̂ = �µ̂� σ̂�T denote the
local-constant estimator of θ, and let θ̃ = �µ̃� σ̃�T be
the local-linear estimator.

Theorem 5.2. Assume conditions (a), (b) and
(e)–(i). (i) Local-constant estimator. If t is an inte-
rior point of � then �5�1� holds, where now Z is
Normal N�0� κW�. (ii) Local-linear estimator. If t
is an interior point of � , then �5�2� holds for the
same interpretation of Z as before. If t is an end-
point of � , say the lower endpoint where λ�t+� > 0
and λ�t−� = 0, then �5�3� is true, where now Z is
Normal N�0� κ+W�.

The theorem fails to hold for a general standard-
ised density φ.

5.3 Technical Arguments

We conclude with general remarks about proofs
of Theorems 5.1 and 5.2. The arguments are rel-
atively straightforward when the pairs �Yi�Si�—
and hence also the data �Xi�Ti�—are independent.
Modifications for the time-series case follow conven-
tional lines. In brief, the method is based on Taylor
expansion, in which we isolate stochastic and de-
terministic terms. For example, starting with (3.1)
we write ��v0� v1	t� as a Taylor expansion in powers
of =i = �=�j�

i � ≡ ωi�v0� v1� − θ�Ti�. The terms that
arise have the form

�5�4�
N∑
i=1
gj1�����jr�Xi	θi�=�j1�

i · · ·=�jr�
i Ki�t� �

where gj1�����jr�x	θ� = �∂r/∂θ�j1� · · · ∂θ�jr��g�x	θ� and
θi = θ�Ti�. The expected value of the quantity at
(5.4) is, trivially, the same in the cases of time-series
and independent data. That the quantity satisfies
a central limit theorem with identical asymptotic
variances in these two cases may be seen by (i) ap-
pealing to results of Peligrad (1986, Theorem 1.7)
to establish asymptotic Gaussianity, with asymp-
totic variance equal to variance of the series at (5.4);
(ii) expressing the latter variance in the form A+B,
where

A = νλ var {gj1�����jr�Xi	θi�=�j1�
i · · ·=�jr�

i Ki�t�
}

equals the variance that would arise in the case of
independent data, and B represents cross-product
terms arising on account of correlation; (iii) using
methods of Yoshihara (1976) to bound B by a quan-
tity that, in view of our condition (a), equals o�νh� as
ν → ∞ and (iv) using elementary calculus to prove
that A is asymptotic to νh multiplied by a quantity
that does not depend on ν or h. See also Fan, Yao
and Tong (1996) and Hall, Wolff and Yao (1999).

6. CONCLUSIONS

We have shown that, while elementary extreme-
value models often provide a good “local” fit to
data distributions, simple parametric models for
temporal trend can give a particularly misleading
impression of the way in which distributions of me-
teorological or environmental data vary with time.
For example, they can suggest a gradual monotone
trend in storm intensity or annual maximum tem-
perature, when it is more empirically plausible that
these quantities at first decrease and then increase,
relatively steeply, with time. We have suggested
an alternative, nonparametric approach to estimat-
ing temporal trend and shown it to be particularly
revealing when applied to two real data sets. Fi-
nally, we have outlined theoretical results which
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demonstrate that, under regularity conditions, our
methods achieve high levels of performance in large
samples.

ACKNOWLEDGMENTS

We are particularly grateful to Alex Kariko and
Neville Nicholls, of the Bureau of Meteorology
Research Centre in Melbourne, Australia, who pro-
vided both the temperature data and advice on its
interpretation. Discussions with Alan Welsh and
comments of the referee and Editor were also par-
ticularly helpful. We are grateful, too, to Anthony
Davison for providing a copy of the paper Davison
and Ramesh (2000). Nader Tajvidi’s research was
supported by a grant from the Swedish Founda-
tion for International Cooperation in Research and
Higher Education.

REFERENCES

Carroll, R. J., Ruppert, D. and Welsh, A. H. (1998). Local
estimating equations. J. Amer. Statist. Assoc. 93 214–227.

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in
S. Wadsworth, Pacific Grove, CA.

Cleveland, W. S. and Devlin, S. J. (1988). Locally-weighted re-
gression: an approach to regression analysis by local fitting.
J. Amer. Statist. Assoc. 83 597–610.

Davison, A. C. and Ramesh, N. I. (2000). Local likelihood smooth-
ing of sample extremes. J. Roy. Statist. Soc. Ser. B 62 191–
208.

Fan, J. (1993). Local linear regression smoothers and their min-
imax efficiencies. Ann. Statist. 21 196–216.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and
its Applications. Chapman and Hall, London.

Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local poly-
nomial kernel regression for generalized linear models and
quasi-likelihood functions. J. Amer. Statist. Assoc. 90 141–
150.

Fan, J., Yao, Q. and Tong, H. (1996). Estimation of conditional
densities and sensitivity measures in nonlinear dynamical
systems. Biometrika 83 189–206.

Gu, C. (1990). Adaptive spline smoothing in non-Gaussian re-
gression models. J. Amer. Statist. Assoc. 85 801–807.

Gu, C., Bates, D. M., Chen, Z. and Wahba, G. (1989). The com-
putation of GCV functions through Householder tridiagonal-
ization with application to the fitting of interaction spline
models. SIAM J. Matrix Anal. Appl. 10 457–480.

Hall, P. and Marron, J. S. (1991). Local minima in cross-
validation functions. J. Roy. Statist. Soc. Ser. B 53
245–252.

Hall, P., Wolff, C. L. and Yao, Q. (1999). Methods for esti-
mating a conditional distribution function. J. Amer. Statist.
Assoc. 94 154–163.

Hart, J. D. and Vieu, P. (1990). Data-driven bandwidth choice
for density estimation based on dependent data. Ann. Statist.
18 873–890.

Jones, P. D. (1994). Hemispheric surface air temperature vari-
ations: a reanalysis and an update to 1993. J. Climate 7
1794–1802.

Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Ex-
tremes and Related Properties of Random Sequences and Pro-
cesses. Springer, New York.

Leadbetter, M. R. and Rootzén, H. (1988). Extremal theory for
stochastic processes. Ann. Probab. 16 431–478.

Lehmann, E. L. (1983). Theory of Point Estimation. Wiley, New
York.

Nicholls, N. and Lavery, B. (1992). Australian rainfall trends
during the twentieth century. Internat. J. Climatology 12
153–163.

Peligrad, M. (1986). Recent advances in the central limit the-
orem and its weak invariance principle for mixing se-
quences of random variables. In Dependence in Probability
and Statistics (E. Eberlein and M. S. Taqqu, eds) 193–223.
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