
The Annals of Statistics
1996, Vol. 24, No. 1, 25]40

NONPARAMETRIC AND SEMIPARAMETRIC
ESTIMATION OF THE RECEIVER OPERATING

CHARACTERISTIC CURVE

BY FUSHING HSIEH 1 AND BRUCE W. TURNBULL2

National Taiwan University and Cornell University

Ž .The receiver operating characteristic ROC curve describes the per-
formance of a diagnostic test used to discriminate between healthy and
diseased individuals based on a variable measured on a continuous scale.
The data consist of a training set of m responses X , . . . , X from healthy1 m
individuals and n responses Y , . . . , Y from diseased individuals. The1 n
responses are assumed i.i.d. from unknown distributions F and G, re-
spectively. We consider estimation of the ROC curve defined by

Ž y1 Ž ..1 y G F 1 y t for 0 F t F 1 or, equivalently, the ordinal dominance
Ž . Ž y1 Ž ..curve ODC given by F G t . First we consider nonparametric estima-

tors based on empirical distribution functions and derive asymptotic
properties. Next we consider the so-called semiparametric ‘‘binormal’’
model, in which it is assumed that the distributions F and G are normal
after some unknown monotonic transformation of the measurement scale.
For this model, we propose a generalized least squares procedure and
compare it with the estimation algorithm of Dorfman and Alf, which is
based on grouped data. Asymptotic results are obtained; small sample
properties are examined via a simulation study. Finally, we describe a
minimum distance estimator for the ROC curve, which does not require
grouping the data.

1. Introduction. A diagnostic test giving a measurement on a continu-
ous scale is used to classify patients into either ‘‘healthy’’ or ‘‘diseased’’
categories. Typically, a cutoff point, c, is selected, and patients with test
results greater than this are classified as ‘‘diseased,’’ otherwise as ‘‘healthy’’
or ‘‘normal.’’ The test score of a healthy patient is represented as a real
random variable X with distribution function F and density f. Similarly a
diseased patient’s score will be denoted by Y with distribution function G
and density g; X and Y are independent.

Ž . Ž .The sensitivity of the test is defined as SE c s 1 y G c , which is the
probability of correctly classifying a diseased individual when cutoff point c is

Ž . Ž .used. Similarly we define the test’s specificity SP c s F c as the probability
of correctly classifying a healthy patient. Clearly these are the complements
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of the familiar Type I and Type II errors. The receiver operating characteris-
Ž . Ž .tic curve ROC is defined as a plot of the ‘‘true positive fraction,’’ SE c , on

Ž .the vertical axis versus the ‘‘false positive fraction,’’ 1 y SP c , on the hori-
zontal axis as c varies from q` to y`. Equivalently, it can be viewed as a

Ž . Ž y1Ž .. Ž .plot of ROC t s 1 y G F 1 y t versus t, 0 F t F 1. Bamber 1975 re-
Ž . Ž y1Ž ..verses the axes and defines the ordinal dominance curve ODC F G t ,

Ž . Ž . Ž .0 F t F 1, which is a plot of SP c versus 1 y SE c , or equivalently F c
Ž .versus G c for y` F c F `. Typical ODC curves are illustrated in Figure 1.

For a desirable diagnostic test the ODC and the ROC curves rise rapidly and
then level out as the lower graphs of Figure 1.

It is straightforward to show that the ODC and the ROC curves have the
following convenient properties:

1. Invariance under monotone increasing transformations of the measure-
ment scale.

Ž . Ž .2. X is stochastically smaller than Y, that is, F c G G c for all c, implies
that the curves lie above the diagonal in the unit square.

FIG. 1. Two examples of densities f, g and their corresponding ODC curves. The diagnostic
instrument represented by the lower curves is to be preferred.
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3. If the densities f and g have a monotone likelihood ratio, then the curves
are concave.

w x4. The area under either curve is the probability P X - Y .

There are applications or potential applications of ROC curve analysis in
wŽ . xalmost every scientific field. Swets and Pickett 1982 , Appendix E list

almost 200 references in a variety of subject areas where ROC curve methods
have been used. These and later references span such diverse areas as signal
detection, psychology, polygraph lie detection, epidemiology, nutrition, radiol-
ogy and general medical decision making, among others. The ROC curve is
important because various measures of performance, or accuracy indices, for
a given diagnostic test are based on the curve, thus allowing comparison of

1 Ž . Ž .competing tests. Often the area or a weighted area H ROC t dW t under0
Ž .the curve is used. For a discussion, see Hilden 1991 .

We suppose that a training data set X , X , . . . , X of readings from the1 2 m
healthy population is available as is a set Y , Y , . . . , Y , from the diseased1 2 n
population. All observations are assumed mutually independent. Empirical
ROC and ODC curves can be constructed by replacing F and G in the
definitions by their corresponding sample cdfs F and G . Little workm n
appears to have been done explicitly on the statistical properties of the em-
pirical ROC curve itself. Of course the area under this curve is the Mann]
Whitney statistic, the properties of which are well known; see, for example,

Ž .Hanley and McNeil 1982 .
Often some parametric form for F and G is assumed. Typically a normal

distribution is assumed for both F and G, possibly after some given transfor-
mation of the X and Y scales, such as a logarithmic one. Interest then
centers on estimating the small number of parameters that define F, G and,

Ž .hence, ROC t . For examples of this approach, see Brownie, Habicht and
Ž . Ž .Cogill 1986 and Goddard and Hinberg 1990 .

Another popular approach is to assume a so-called ‘‘binormal’’ model. This
is a semiparametric approach that postulates the existence of some unspeci-
fied monotonic transformation H, say, of the measurement scale that simul-
taneously converts the F and G distributions to normal ones. Without loss of

Ž . Ž 2 .generality these can be taken, respectively, to be N 0, 1 and N m, s , say.
In this case the ODC curve has the known parametric form

1 F Gy1 t s F m q s Fy1 t , t g 0, 1 .Ž . Ž . Ž . Ž .Ž . Ž .
Ž .Here F denotes the standard normal cdf. Thus fitting a straight line to an
empirical ODC curve plotted using normal probability scales on each axis
yields a graphical test for the goodness-of-fit of the ‘‘binormal’’ assumption

wand graphical estimates of m and s , assuming the fit is adequate Swets and
Ž . Ž . xPickett 1982 , page 30; Brownie, Habicht and Cogill 1986 , Figure 2 .

The ‘‘binormal’’ assumption was originally introduced in the field of psy-
chology for use with ordered categorical variables. The measurements X, Y
could take on only one of a finite set of values or categories. For example, with
a five point rating scale, the categories might be labelled ‘‘probably healthy,
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possibly healthy, equivocal, possibly diseased, probably diseased.’’ The prob-
lem is now a parametric one where the number of parameters equals the

Žnumber of categories plus 1. These comprise m, s and the k y 1 unknown
. Ž .cutpoints, where k is the number of categories. Dorfman and Alf 1969 and

Ž .Grey and Morgan 1972 described an iterative method for obtaining the
maximum likelihood estimates of these parameters under the ‘‘binormal’’

Ž .assumption. Hanley 1988 discusses the justifications and applicability of the
‘‘binormal’’ assumption for rating data. Other distributional assumptions can

Ž .be used instead of the normal: Ogilvie and Creelman 1968 used a logistic
distribution. When the measurements are on a continuous scale as considered
in this paper, the data must be grouped in order to apply the Dorfman and

Ž .Alf 1969 procedure. Clearly this will lead to some loss in efficiency.
In the next section we describe asymptotic properties of the empirical ROC

and ODC curves. Application of these results to the nonparametric estimation
Ž .of P X - Y is discussed. In Section 3, we consider estimation under the

semiparametric ‘‘binormal’’ model. Using the theory of empirical processes,
we examine the asymptotic properties of a generalized least squares estima-
tor which we propose, and show it is asymptotically equivalent to the MLE

Ž .based on the Dorfman and Alf 1969 procedure for grouped data. Finally, in
Section 4 we briefly consider a minimum distance approach which does not
require grouping of the data. We indicate the robustness of this minimum

Ž .distance estimate in a sense of locally asymptotic minimaxity LAM .

( )2. The empirical ODC curve and estimation of P X - Y . As in
Section 1, we denote the sample cdfs of the X and Y training data sets by

Ž . Ž .F x and G y , respectively. Also we define the empirical quantile functionm n
y1Ž . � Ž . 4as G t s inf y: G y G t . Then the empirical ODC curve is defined asn n

Ž y1Ž .. y1Ž .F G t , 0 - t - 1, which for convenience we will also write as F G t .m n m n
For our asymptotic results we will always be assuming that the sample sizes

Ž .are such that m s m n and nrm ª l ) 0 as n ª `. We also assume that
cdfs F, G have continuous densities f, g, respectively, and that the slope of

y1Ž . Ž y1Ž .. Ž y1Ž ..the curve FG t , that is, f G t rg G t , is bounded on any subinter-
Ž . Ž .val a, b of 0, 1 , 0 - a - b - 1. Under the ‘‘binormal’’ model, for example,

this condition is satisfied. In fact, if s ) 1, we can take the interval to be
w x Ž .0, 1 . Of course if s - 1, we can reverse the roles of F and G. The first two
theorems state the strong consistency and strong approximation properties
for the ODC curve.

THEOREM 2.1. Under the above conditions,
y1 y1sup F G t y FG t ª 0 a.s. as n ª `.Ž . Ž .m n

0FtF1

PROOF. Consider the inequality
y1 y1 y1 y1sup F G t y FG t F sup F G t y F G tŽ . Ž . Ž . Ž .Ž .m n m n n

t t

y1 y1q sup FG t y FG t .Ž . Ž .n
t
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If we apply the Glivenko]Cantelli theorem for the first term on the RHS and
Ž .the theorem of Dvoretzky, Kiefer and Wolfowitz 1956 and then the

Borel]Cantelli lemma for the second term, the theorem is proved. I

THEOREM 2.2. Under the above conditions, there exists a probability space
on which one can define sequences of two independent versions of Brownian

� Žn. Žn. 4bridges B , B , 0 F t F 1 such that1 2

y1f G tŽ .Ž .y1 y1 Žn. y1 Žn.' 'n F G t y FG t s l B FG t q B tŽ . Ž . Ž . Ž .Ž .Ž .m n 1 2y1g G tŽ .Ž .
2y1r2q o n log n a.s.Ž .Ž .

w xuniformly on a, b .

For notational simplicity, we will omit the superscript n on B and B .1 2
Ž .This theorem follows from Theorem 4.4.1 in Csorgo and Revesz 1981 and¨ ˝ ´ ´

Ž .Theorem 3.2.4 in Csorgo 1983 . The details are omitted here but can be found¨ ˝
Ž .in Hsieh and Turnbull 1992 . As an application of Theorem 2.2, consider the

area under the empirical ODC curve,
11 y1M s F G t dt s 1 X - Y ,Ž . Ž .ÝHm , n m n i jmn0 1FiFm

1FjFn

which equals the Mann]Whitney statistic when there are no ties. Now Mm n
Ž .is a strongly consistent estimator of P X - Y . In addition, applying Theo-

rem 2.2 with the same conditions we obtain the following theorem.

THEOREM 2.3. We have
2'n M y P X - Y s N 0, s q o 1 ,Ž . Ž . Ž .Ž .m , n p

in distribution as n ª `, where s 2 is defined as
y1f G tŽ .Ž .1 12 y1's s var l B FG t dt q B t dtŽ . Ž .Ž .H H1 2y1g G tŽ .Ž .0 0

1 1y1 y1s l var B FG t dt q var B GF t dtŽ . Ž .Ž . Ž .H H1 2
0 0

2Ž .

5 y1 5U 5 y1 5Us l F ? G q G ? F
5 5U 1 2 Ž 1 .2and h s H h dt y H h dt .0 0

2 Ž .It is worthwhile noting that the variance s in 2 is the same as the one
obtained by considering the projection of M viewed as a U-statisticm , n
w Ž . xSerfling 1980 , page 193 , and of course reduces to the usual formula
Ž .Ž .1r12 1rm q 1rn in the null case F s G.

3. The binormal model for grouped data. For the remainder of this
article we consider the semiparametric ‘‘binormal’’ model as described in
Section 1. We discuss first the situation where the data are grouped, which
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Ž .was the setting in the application psychology where the model was first
used. We present a generalized least squares method, compare it with the

Ž .well-known procedure of Dorfman and Alf 1969 and obtain asymptotic
properties of the resulting estimators of the ODC curve. We also report the
results of a simulation experiment to evaluate small sample properties.

3.1. The generalized least squares method. Let us fix integer k and let
0 - a - a - ??? - a - 1 be a given partition of the unit interval. Recall1 2 k

Ž . y1Ž . Ž y1Ž ..from 1 that the ODC curve is given by FG t s F m q s F t for
0 F t F 1, where unknowns m and s are to be estimated. Therefore we define

3 b s F m q s Fy1 a .Ž . Ž .Ž .i i

A natural estimator of b isi

ˆ y14 b s F G a , i s 1, . . . , k ,Ž . Ž .Ž .i m n i

where F and G are the sample cdfs as in Sections 1 and 2. The asymptoticm n
ˆ ˆ ˆŽ .distribution of b s b , . . . , b can be derived from the covariance structure1 k

of Brownian bridges constructed in Theorem 2.2. This is stated in the
following lemma.

LEMMA 3.1. For fixed 0 - a - a - ??? - a - 1, under the ‘‘binormal’’1 2 k
assumption, as n ª `,

ˆ'n b y b ª N 0, lS q S andŽ .Ž . D 1 2
5Ž .

y1 y1ˆ'n F b y F b ª N 0, S .Ž . Ž .Ž .Ž . D

w x y1 Ž Ž y1Ž .. .Here S s C lS q S C with C s diag . . . , f m q s F a , . . . , S1 2 i 1
Ž . wŽ . xhas i, j th entry equal b n b y b b , S s AS A with A si j i j 2 0

Ž Ž Ž yŽ ... Ž Ž y1Ž ... . Ž .diag . . . , sf m q s F a r f F a , . . . and S has i, j th entryi i 0
wŽ . xa n a y a a . Also f denotes the standard normal density.i j i j

� 4We note that, since the a are chosen to be strictly increasing, so are thei
� 4b . Therefore, the two covariance matrices S and S of the two finitei 1 0
dimensional distributions of Brownian bridges BŽn. and BŽn. at index points1 2
� 4 � 4b and a , respectively, are positive definite. Hence the matrix S isi i
nonsingular.

Ž . Ž .From 3 and 5 , we have a linear regression setup:

y1 ˆ y1F b s m q s F a q « , i s 1, . . . , k ,Ž .Ž .i i i

X Ž .where the error vector, « s « , . . . , « , has the asymptotic covariance struc-1 k
Ž .ture specified in 5 of Lemma 3.1. Since S depends on the unknown parame-

ters m and s , an iterative procedure is needed to find estimates of m and s .
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'Ž .We proceed as follows. Since « is O 1r n , so is the ordinary least squaresp
estimator

m̂0 y1X X y1 ˆ6 s M M M F b ,Ž . Ž . Ž .ž /ŝ0

where M is the design matrix given by

1 ??? 1X7 M sŽ . y1 y1ž /F a ??? F aŽ . Ž .1 k

y1 ˆ X y1 ˆ y1 ˆŽ . Ž Ž . Ž ..and the vector F b s F b , . . . , F b . We now substitute m andˆ1 k 0
ˆŽ .s for m and s in the formula for S in 5 , calling this estimator S, say.ˆ0

Ž .Finally, the generalized least squares GLS estimator is derived as

y1m̂ X Xy1 y1 y1ˆ ˆ ˆ8 s M S M M S F b .Ž . Ž . Ž .ž /ŝ

We propose to use only this one-step estimator. The procedure could be
iterated, but one step is usually adequate and often preferable in GLS
estimation situations; for example, see the comments of Carroll and Ruppert
wŽ . x1988 , page 15 . Theorem 3.2 below shows that the asymptotic distribution

Ž .of m, s is the same as that if S were known.ˆ ˆ

THEOREM 3.2. Under assumption of Lemma 3.1, as n ª `,

y1m y mˆ X y1'n ª N 0, M S M .Ž .ž /Dž /s y sˆ

PROOF. Let
y1X Xy1 y1 y1ˆ ˆu s M S M M S F bŽ . Ž .o p

be the generalized weighted least squares estimator as if S were known.
ˆ' Ž .From Lemma 3.1, n u y u is asymptotically distributed aso p

X y1 y1 ˆŽ Ž . . Ž .N 0, M S M . The ordinary least squares estimator, u s m , s say,ˆ ˆ0 0 0
y1ˆ' 'Ž . Ž .defined in 6 is n -consistent since « is O 1r n . So is the S as thep

y1 X̂ Ž .estimator of S . Therefore, the GLS estimator, u s m, s say, defined inˆ ˆ
ˆŽ . Ž .8 is equal to u q O 1rn . This completes the proof of this theorem. Io p p

REMARK. The ‘‘binormal’’ model is an example of a two-sample transfor-
mation model, in which it is posited that there is an unknown transformation

Ž .H g HH, a transformation group, such that, if X ; F and Y ; G, then H X ;
Ž . Ž . Ž 2 .N 0, 1 and H Y ; N m, s . If we replace the normal distribution here by

another parametric distribution, we can generate other semiparametric fami-
lies. For example, use of the logistic leads to the proportional odds model; use
of the Weibull leads to the proportional hazards model. The empirical ODC

Ž y1Ž ..curve F G t is a maximal invariant with respect to the group HH. It ism n
reasonable to make inferences based on this maximal invariant. The GLS
estimating procedure developed here is more convenient than other existing
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estimators proposed in the semiparametric literature. Estimation and testing
in such semiparametric models have been studied by several authors; these

Ž . Ž . Ž .include Bickel 1986 , Clayton and Cuzick 1986 , Doksum 1987 and re-
Ž .cently Bickel and Ritov 1995 .

3.2. A simulation study and an adaptive procedure. To investigate the
small sample performance of the estimators m and s from the GLS algo-ˆ ˆ
rithm of Section 3.1, a small simulation experiment was conducted. In the
algorithm only one step is used. Six binormal situations were simulated, in

Ž . Ž . Ž . Ž . Ž . Ž . Ž .which m, s s 0, 1 , 0, 2 , 1, 1 , 1, 2 , 2, 1 and 2, 2 , respectively. The six
corresponding true ODC curves are displayed in Figure 2. One hundred
training data sets, each with m s 100 and n s 100, were generated. The first
two columns of Table 1 show the estimated means and mean square errors
Ž . Ž .MSE’s of the estimators: the first using k s 5 and a , . . . , a s1 5
Ž . Ž . Ž .0.1, 0.2, 0.3, 0.4, 0.5 ; the second using k s 8 and a , . . . , a s 0.1, . . . , 0.8 .1 8

Ž .In some of the cases e.g., m s 0, s s 2 , the estimators’ performance is
unsatisfactory as demonstrated by the large MSE’s. On reflection, this fact
can be explained by observing that a high proportion of the a -values fall oni
the flat part of the curve where the corresponding b-value is close to 0 or 1.
The Fy1 transformation will then clearly lead to unstable estimates with
moderate sample sizes.

To remedy this situation, we propose the following adaptive method for
� 4selecting the a values so that they are concentrated on the steeper part ofi

the ODC curve:

1. Fix a positive integer q.
� < y1Ž . 42. Take a s min jrn F G jrn G qrm, j s 1, . . . , n .˜1 m n
� < y1Ž . y1Ž . 43. Set a s min jrn F G jrn y F G a G qrm, j s 1, . . . , n for˜ ˜iq1 m n m n i

Ž . Ž .i s 1, . . . , k q , where k q is the largest integer such that a - 1.˜k Žq .

Ž .The algorithm used for constructing the GLS estimator of m, s is now
� 4applied using the a . Simulation results with q s 5, 10, 12 are shown in the˜i

last three columns, respectively, of Table 1. Recall this implies that the ODC
Ž .curve is being fitted to k q f 100rq points, most of which are concentrated

at the curved portion of the ODC curve. As expected the adaptive method
provides better estimates in terms of bias and of MSE. For very steep ODC

Ž .curves such as when m s 2 and s s 1 or 2 see Figure 2 , it is clearly
Ž .desirable to choose smaller values of q i.e., larger k . On the other hand, we

cannot use too small a value for q, since the normal approximation needed in
the error structure will not be so accurate. This is a difficult problem.

3.3. The procedure of Dorfman and Alf. For estimating ROC curves from
discrete or grouped response data, the most commonly used procedure is that

Ž .proposed by Dorfman and Alf 1969 . Here an individual’s reading can take
on one of a k q 1 number of categories, R , . . . , R , say. Such ‘‘ratings’’1 kq1
data are described in Section 1. The approach postulates the existence of a
latent random variable, W say, and unknown cut points, y` s z - z - ???0 1
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TABLE 1
Ž .Simulation study results: estimates of m and s with MSEs for binormal model using GLS and

adaptive GLS methods

GLS Method Adaptive GLS Method

m, s k s 5 k s 8 q s 5 q s 10 q s 12

Ž .0, 1 y0.0434 0.9647 y0.0086 0.9903 0.0318 0.9883 0.0277 0.9863 0.0290 1.0030
Ž . Ž . Ž . Ž . Ž .0.0352 0.0549 0.0190 0.0285 0.0153 0.0175 0.0158 0.0231 0.0164 0.0245

Ž .0, 2 1.2817 8.1000 y0.8562 6.1545 0.0372 1.9940 0.0425 2.0204 0.0429 2.0167
Ž . Ž . Ž . Ž . Ž .3.7549 71.4583 2.3054 32.7196 0.0516 0.0949 0.0558 0.1299 0.0542 0.1563

Ž .1, 1 1.0157 0.9828 1.4038 1.4733 1.0336 0.9544 1.0269 0.9631 1.0183 0.9533
Ž . Ž . Ž . Ž . Ž .0.0304 0.0340 1.9523 3.8235 0.0226 0.0188 0.0322 0.0273 0.0296 0.0263

Ž .1, 2 1.0830 2.2603 4.6257 7.6118 1.0419 1.9786 1.0635 2.0293 1.0776 2.0583
Ž . Ž . Ž . Ž . Ž .0.3045 3.2925 19.1173 45.2313 0.0693 0.1134 0.1097 0.2075 0.1223 0.2562

Ž .2, 1 4.0997 2.8264 7.2842 6.6518 1.9965 0.9131 2.0312 0.9384 2.0715 0.9578
Ž . Ž . Ž . Ž . Ž .25.7160 21.8936 36.8637 39.8626 0.0531 0.0343 0.2360 0.0872 0.4001 0.1241

Ž .2, 2 3.9831 4.2939 8.4342 8.7022 2.0338 1.9356 1.9970 1.9216 2.0242 1.9364
Ž . Ž . Ž . Ž . Ž .25.3856 35.4289 45.1738 46.6128 0.1319 0.1424 0.1828 0.1912 0.2353 0.2274

Ž .Note: Entries show mean estimates of m, s with MSEs shown in parentheses for six binormal
Ž .models with m, s as given in the left-hand column and are based on 100 replications. The

situations simulated all use training sets of size m s n s 100. For the GLS method, k s 5
Ž . Ž . Ž . Ž .corresponds to a , . . . , a s 0.1, . . . , 0.5 ; k s 8 corresponds to a , . . . , a s 0.1, . . . , 0.8 .1 5 1 8

- z - z s `, such that if z - W F z , then the response category fork kq1 iy1 i
the corresponding individual is R , 1 F i F k q 1. Let P denote the proba-i i1
bility of obtaining response category R from a healthy individual andi
similarly P for a diseased subject. The Dorfman and Alf model stipulatesi2
that

P s F z y F z andŽ . Ž .i1 i iy1

z y m z y mi iy1
P s F y F , i s 1, . . . , k q 1.i2 ž / ž /s s

It can be seen that this definition corresponds to our previous description of
Ž .the ‘‘binormal’’ model if we equate the latent variable W s H X for a

Ž .healthy subject and W s H Y for a diseased subject, where H is the
� 4unknown transformation as defined in Sections 1 and 3. The z can bei

� Ž .4 � 4thought of as H c for cut points, c say, on the original latent continuousi i
Žresponse variable scale. In contrast, the grouped data in Section 3.1 are

� y1Ž .4 .obtained by discretizing with respect to the empirical quantiles G a .n i
The log likelihood function is given by

2 kq1

9 g log P ,Ž . Ý Ý i l i l
ls1 is1

where g , g are the observed numbers of responses in category R from thei1 i2 i
Ž .healthy and diseased group, respectively 1 F i F k q 1 .
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Ž . Ž .The computation of the maximum likelihood estimate MLE of m, s
Ž .based on 9 requires the solution of a system of k q 2 nonlinear equations in

k q 2 unknowns. A x 2 statistic can be used to test the goodness-of-fit to the
model. A computer program to carry out this analysis is available in Swets

wŽ . xand Pickett 1982 , Appendix D . However, the computation can be difficult
when k, the number of nuisance parameters z , z , . . . , z , is large, and the1 2 k
iterative procedure used in the program can fail to converge. We now explore
alternatives to full maximum likelihood to alleviate this computational prob-
lem so that, as with the approach in Section 3.1, only the two unknowns
Ž .m, s 9 s u , say, are explicitly involved.

We proceed by noting that the Dorfman and Alf model can be viewed
approximately as a measurement error regression model. First we denote

z y mi
10 a s F s P q P q ??? qP for i s 1, . . . , k ,Ž . i 12 22 i2ž /s

which implies that

11 F z s F m q s Fy1 a s P q P q ??? qP for i s 1, . . . , k .Ž . Ž . Ž .Ž .i i 11 21 i1

Ž . Ž .The quantities in 10 and 11 are naturally estimated by the sample
Ž . i Ž . iproportions 1rn Ý g and 1rm Ý g , respectively.ls1 l2 ls1 l1

Hence a regression model with measurement error can be written as

i1
y1 y112 F g s s F a q m q « ,Ž . Ž .Ý l1 i 1 iž /m ls1

i1
y1 y113 F g s F a q « for i s 1, . . . , k ,Ž . Ž .Ý l2 i 2 iž /n ls1

y1Ž . X Ž . X Ž .where F a s z and vectors « s « , . . . , « and « s « , . . . , «i i 1 11 1k 2 21 2 k
Ž U . Ž U .are independent and normally distributed as N 0, S and N 0, S , respec-1 2

tively, where mSU s CS C and ns 2 SU s CS C as defined in Lemma 3.1.1 1 2 2
ˆ ˆ Ž .We define S and M as in Lemma 3.1 and 7 , respectively, but with sample

i ˆ iŽŽ . . ŽŽ . .proportions a s 1rn Ý g and b s 1rm Ý g replacing a and b .ˆ ls1 l2 i ls1 l1 i i
Ž . Ž .Then based on 12 and 13 , similar to that in Section 3.1, a GLS estimator

Ž U U .m , s can be constructed asˆ ˆ
U y1m̂ X Xy1 y1 y1ˆ ˆ ˆ ˆ ˆ ˆ14 s M S M M S F b .Ž . Ž . Ž .Už /ŝ

Ž U U .The next theorem shows that m , s has the same asymptotic distribu-ˆ ˆ
Ž . Ž .tion as m, s defined in 8 .ˆ ˆ

U U Ž .THEOREM 3.3. The estimators m and s as given in 14 have asymptoticˆ ˆ
distribution given by

U
y1m y mˆ X y1'n ª N 0, M S M as n ª `.Ž .ž /DUž /s y sˆ
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PROOF. The measurement error model can be written as

y1 ˆF b s Mu q « andŽ . 1

Fy1 a s Fy1 a q « .Ž . Ž .ˆ 2

Combining the above, we have the regression equation

y1 ˆ ˆ15 F b s Mu q « y s« .Ž . Ž .Ž . 1 2

' Ž .Here n « y s« is asymptotically distributed as multivariate normal1 2
ˆŽ .N 0, S . Let S be the estimator of S obtained by plugging in a for a andˆ

ˆreplacing s by s , the second component of u , the ordinary least squaresˆ0 0
ˆŽ .estimator obtained from 15 which ignores the error structure. Thus S is

X y1ˆ ˆ' Ž .n -consistent. Multiplying both sides of 15 by M S , after some calcula-
tions, we have

ˆ X ˆy1 y1 ˆ ˆ X ˆy1 ˆ ˆ X ˆy1M S F b s M S Mu q M S « y s«Ž .Ž . 1 2

1
X Xy1 y1ˆ ˆ ˆs M S Mu q M S « y s« q O .Ž .1 2 p ž /n

This completes the proof. I

An implication of the equality of the two asymptotic distributions in
Theorems 3.2 and 3.3 is that asymptotically all the information about u X s
Ž . Ž .m, s is contained in the empirical ODC or ROC curve. Now one could also

Ž . Ž .form an approximate normal likelihood based on equations 12 and 13 , and
obtain MLE’s. It turns out that these have the same asymptotic distribution

Ž .as the Dorfman]Alf MLE’s based on 9 and this again is the same as that in
Ž .Theorem 3.3. This is stated in the next theorem. Thus all four estimators} 8 ,

Ž .14 and these two MLE’s}are equivalent in terms of asymptotic efficiency.

THEOREM 3.4. Under the ‘‘binormal’’ model, the MLE estimators of u X s
Ž . Ž .m, s based on 9 and the approximate MLE estimators based on the

Ž . Ž .regression setup 12 and 13 have the same asymptotic distribution as the
GLS estimators given in Theorem 3.3.

A rigorous proof of this theorem can be obtained by taking corresponding
Ž . Ž .derivatives of the normal likelihood of the regression setup 12 and 13 , and

dropping the several insignificant terms. The we arrive at the same system of
Ž .score equations as derived from 9 . The theorem is proved by taking a profile

likelihood approach. A detailed proof can be found in Hsieh and Turnbull
Ž .1992 .

In case of two samples of continuous data, based on Theorem 3.4, a
heuristic argument of the asymptotic efficiency of the GLS estimator is given
as follows. By choosing suitable k depending on the sample sizes m and n,

Ž . Ž . Ž .the likelihood of 9 or of the regression setup 12 and 13 can be shown to be
asymptotically sufficient for u and the nuisance parameter F in a sense of not
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losing information. Specifically, the Fisher information of u , I say, tends ton
the Fisher information I of u in the original problem. Let the MLE of u0

Ž . Ž . Ž .based on 9 , or on 12 and 13 , be derived from the profile likelihood
approach. The projection interpretation of the approach assures that I is the0
semiparametric Fisher information bound in the same sense as that given in

Ž .Begun, Hall, Huang and Wellner 1983 . Therefore, by Theorem 3.4, the GLS
estimator is asymptotically efficient.

To assess goodness-of-fit of the ‘‘binormal’’ model, the test statistic
X

y1 y1 y1ˆ ˆˆ ˆ ˆ ˆˆS s F b y Mu S F b y MuŽ . Ž .ž / ž /n

ˆ XŽ .can be constructed. Here u s m, s is any of the asymptotically equivalentˆ ˆ
estimators described in this section. Under the ‘‘binormal’’ model assumption,
this statistic is distributed as x 2 asymptotically.ky2

Ž .REMARK Estimation of H . We obtain an estimate of the underlying
� 4 Ž .transformation H from the MLE of the z obtained either from 9 or fromi

Ž . Ž . � 412 and 13 . Suppose cutpoints c have been used to group the responses oni
Ž .the original continuous scale. Since z is an estimate of H c , an estimate ofî i

H can be obtained by fitting a smooth monotone function to the points
�Ž . 4c , z , 1 F i F k using an appropriate smoothing technique.ˆi i

4. The binormal model for continuous data. In Section 3, procedures
for estimating the ODC and ROC curves under the ‘‘binormal’’ model were
proposed. They involved grouping or discretizing the response data in some

Ž .way. In this section, we propose a minimum distance estimator MDE of the
ODC curve under the ‘‘binomial’’ model which does not require that the
continuous data be grouped.

Minimum distance estimation has been studied extensively beginning with
Ž . Ž .the work of Wolfowitz 1957 . Millar 1984 presented a general abstract

approach. For our problem, the MDE is constructed by finding the ODC curve
Ž y1Ž ..based on the ‘‘binormal’’ model, that is, of the form F m q s F t , that fits

most closely the empirical ODC curve using an L norm criterion. The MDE2
estimates are defined to be the minimizing values of m and s . More precisely,

Ž .Xfor u s m, s , we define
y1 y1j u s F G t y F m q s F tŽ . Ž . Ž .Ž .m n m n

and the L -distance measure as2

1 216 j u s j u dt .Ž . Ž . Ž .Hm n m n
0

ˆ XŽ .The MDE, u s m, s , is defined byˆ ˆm n

ˆ17 j u s inf j u .Ž . Ž .Ž .m n m n m n
u

Ž .As before, for our asymptotic theory we suppose nrm ª l ) 0 as n ª `.
From here on, the dependence on l is suppressed and denote j s j andn m n
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ˆ ˆ X�Ž . < 4u s u . We let Q be the set m, s m g R and s ) 1 and supposen m n
Ž .Xu s m , s g Q is the true unknown value of u . The restriction that s ) 10 0 0

is not unreasonable if one thinks of the healthy response as ‘‘noise’’ and the
wdiseased response as ‘‘noise plus signal.’’ However, we can avoid this restric-

Ž .tion if we modify the distance criterion 16 above so that the integral is over
xa closed interval excluding 0 and 1. Finally, let BB be the separable Hilbert2

Ž . w xspace L n , where n is the uniform measure on 0, 1 .2
ˆTo assert the asymptotic normality of the MDE u , we will apply Theoremn

wŽ . x3.6 of Millar 1984 , Section III . We need to check the three conditions of the
Ž . Ž .theorem. The ‘‘identifiability’’ condition is satisfied because j u y j u sn n 0

Ž y1Ž .. Ž y1 Ž ..F m q s F t y F m q s F t is nonrandom and does not depend on0 0
n. The ‘‘convergence’’ condition holds because, from Theorem 2.2, the BB -2' Ž . Ž .valued random process n j u converges in L to a process W u . Heren 0 2 0

Ž .W u is the combination of Brownian bridge processes as given in Theorem
2.2 under the ‘‘binormal’’ assumption, that is,

y1sf m q s F tŽ .Ž .y1'W t ; u s l B F m q s F t q B t .Ž . Ž . Ž .Ž .Ž .1 2y1f F tŽ .Ž .
The third condition of differentiability follows because there is a continuous

Ž .linear operator T s T from Q to BB , such thatu 20

j u s j u q T u y u q o u y uŽ . Ž . Ž . Ž .n n 0 0 p 0

s j u q h u m y m q h u s y s q o u y u ,Ž . Ž . Ž . Ž . Ž . Ž .n 0 1 0 0 2 0 0 p 0

Ž . Ž y1Ž .. Ž . y1Ž . Ž y1Ž ..where h u s f m q s F t and h u s F t f m q s F t .1 0 0 0 2 0 0 0
Ž y1Ž ..Both are partial derivatives of F m q s F t with respect to m and s ,

Ž . Ž .respectively, and are evaluated at u . Since h u and h u are linearly0 1 0 2 0
independent, the operator T is nonsingular.

Ž . Ž .Let BB denote the linear space spanned by h u and h u and let ph 1 0 2 0
denote the projection mapping from BB onto BB . We now can apply Millar’s2 h

ˆTheorem 3.6 to obtain the following asymptotic properties of u .n

ˆTHEOREM 4.1. With probability approaching 1 as n ª `, u exists and isn
unique. Moreover

ˆ y1r2j u s 1 y p (j u q o n ,Ž . Ž . Ž .Ž .n n n 0 p

ˆ y1 y1r2u y u s yT (p )j u q o n .Ž . Ž .n 0 n 0 p

In addition, we have the following weak convergence results:

ˆ'n j u y j u « p (W in BB ,Ž .Ž .ž /n n n 0 2

y1 2ˆ'n u y u « yT (p (W in R .Ž .n 0

With the results of this theorem, we can obtain an explicit expression for
y1 ˆthe asymptotic covariance matrix, n L say, for u as follows. First define then

² : 1 Ž . Ž . Ž . Ž Ž . Ž ..inner product in BB by h, k s H h t ? k t dt. Let R s, t s E W s ? W t2 0
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be the covariance function of W. After some calculations, an explicit expres-
Ž .sion of R s, t is found to be

Uy1l F t y mŽ . Uy1R s, t s f q f m q s F t ,Ž . Ž .Ž .2 ž /ss

5 5U 1 2Ž . Ž 1 .2where h s H h t dt y H h dt , as in Theorem 2.3. Finally define 2 = 20 0
² :matrices A and C by C s h , h andi j i j

² : ² :A s E h , W ? h , WŽ .i j i j

1 1
s h s ? R s, t ? h t ds dt .Ž . Ž . Ž .H H i j

0 0

ˆ y1Ž .Thus the asymptotic covariance matrix of u s m , s is given by n L withˆ ˆn n n
L s Cy1ACy1.

As a by-product, the minimum distance approach provides a natural
statistic for testing the ‘‘binormal’’ assumption, namely,

ˆj u s inf j u .Ž .Ž .n n n
ugQ

The following corollary, which follows from Theorem 4.1, gives the asymptotic
distribution of this test statistic under the ‘‘binormal’’ assumption.

ˆ 1 25 Ž .5 wŽ . Ž .x Ž .COROLLARY 4.2. n j u « H 1 y p (W t dt q o 1 .n n 0 p

Ž .REMARK 1. In the definition of the distance criterion 16 , we could
introduce a weight function, such as the inverse of the variance function

Ž .of processes j u . Corresponding asymptotic results can be derived.m n
U Ž .Also distance criteria based on a different process, such as j u sm n

w y1Ž y1Ž .. Ž y1Ž ..xF F G t y m q s F t , could be used. These ideas are the subjectm n
for future study, as are the computational problems for finding the MDE.

Ž .REMARK 2 The LAM property of the MDE . Roughly, the locally asymp-
Ž .totic minimax LAM property of an estimator asserts that its performance

does not deteriorate when the actual distributions of the data depart slightly
from those specified by the model}here the ‘‘binormal’’ model. It can be

Ž .proved that the MDE given by 17 has this property. This is done by showing
that the problem can be fit into the general abstract framework of Millar
wŽ . x Ž .1984 , Sections 3 and 5 . Details are given in Hsieh and Turnbull 1992 .
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