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NOTES AND COMMENTS 

NONPARAMETRIC AND SEMIPARAMETRIC ESTIMATION WITH 
DISCRETE REGRESSORS 

BY MIGUEL A. DELGADO AND JUAN MORA' 

1. INTRODUCTION AND SUMMARY 

THIS NOTE IS CONCERNED with nonparametric and semiparametric inference in regression 
models where regressors are not continuous. In econometric practice, few explanatory 
variables are continuous. Many of them are dummies, qualitative variables, or counts; 
and others, though continuous in nature, are recorded at intervals and can be treated as 
discrete. 

When regressors are discrete with finite support, a mere average of those observations 
of the dependent variable with the same regressor value will yield a root-n-consistent 
conditional expectation estimate. We show that sequences of weights constructed in this 
way are consistent in the sense of Stone (1977), even when the discrete regressors have 
infinite support, as in the Poisson distribution. This procedure does not require any 
smoothing. 

These results are applied to the estimation of semiparametric models. Frequently, 
root-n-consistency of parameter estimates is not easy to achieve due to the problem of 
bias. When regressors are discrete, the bias term exactly equals zero when the non- 
smoothing estimate is used. We exploit this fact to derive the asymptotic properties of 
semiparametric estimates under weaker conditions than those required when regressors 
are continuous. We discuss in detail the partially linear model (see, e.g., Robinson 
(1988)). The Central Limit Theorem (CLT) we derive does not require independence 
between regressors and regression errors, a feature typically present when regressors are 
continuous. This approach is proven useful in other semiparametric problems. 

The relationship between the nonsmoothing estimate and other well-known nonpara- 
metric estimation techniques is also analyzed. We show that the nonsmoothing estimator 
is asymptotically equivalent to the k-nearest neighbors (k-NN) estimator when all 
regressors are discrete. Using this result it is easily shown that parameter estimates of 
semiparametric models based on nonsmoothing and k-NN weights are asymptotically 
equivalent up to the first order. We also discuss the equivalence between other nonpara- 
metric estimates and the nonsmoothing weights. 

2. NONPARAMETRIC CONSISTENT WEIGHTS WITH DISCRETE REGRESSORS 

AND ITS APPLICATION IN SEMIPARAMETRIC ESTIMATION 

Let ( , Z) be an IRI X lRq-valued observable random variable such that Eli 11 < co. We 
will assume that Z is discrete, that is, 

(1) 3 c C Rq, 0 countable set, such that P(Z cO) = 1 

and -9i=PP(Z=4>O0. 

1 We are grateful to a co-editor and two anonymous referees for their valuable comments on an 
earlier version of the paper. This article is based on research funded by Spanish Direccion General 
de Investigacion Cientifica y Tecnica (DGICYT), reference number PB92-0247. 
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Given a random sample {(fj, Zj), j= 1,...,n) of (;, Z), the regression function 
E[I Z =]m;() is estimated by 

mfk,(,Z) jWn(k'('Z), 

j 

where {W4(k)(,) j - 1,..., n) is a sequence of weights (the superscript k is used in order 
to distinguish among different types of weights) and all summations run from 1 to n 
unless otherwise specified. When Z is discrete, a simple estimate, which does not require 
any smoothing, can be obtained considering the mean of those observations of the 
dependent variable 4j for which Zj =z. The weights we obtain in this way are 

Wn(j)('Z) MI(Zj =,)/ EIk =,) 

where I(-) is the indicator function and we arbitrarily define 0/0 to be 0. The corre- 
sponding nonparametric estimate m(?)(4) is termed nonsmoothing estimate. These weights 
are globally consistent as we state in Theorem 1. 

THEOREM 1: If (1) holds, EIIllr <oo (r2 1) and (,Z),(;,,Zj), Qn,Zn) are 
independent and identically distributed (i.i.d.) random variables, then ElIm(l)(Z) - 
mC(Z)IIr = o(l). 

Discrete regressors with possibly infinite support are not a problem in some semipara- 
metric models in which the focus of interest is to improve efficiency of the estimates (see, 
e.g., Robinson (1987) or Newey (1990)). However, in many semiparametric inference 
problems, a bias term, which increases with the dimension of the regressors set, makes it 
difficult to achieve root-n-consistency results. Robinson (1988) introduced higher order 
kernels as a bias reduction technique in semiparametric problems. This approach has 
been also applied to other semiparametric procedures, like the average derivative method 
(Powell, Stock, and Stoker (1989)) and shape-invariant modelling (Pinkse and Robinson 
(1995)), among others. 

When regressors are discrete and nonsmoothing weights are used, the bias term is 
exactly equal to 0 and, hence, no bias reduction techniques are required. In this section 
we show how this fact can be exploited to obtain asymptotic properties in the semipara- 
metric partly linear regression model. 

Suppose (Y, X, Z) is an 1R X Rlp X lRq-valued observable random vector such that 

(2) E[YIX,Z]=13'X+0(Z) a.s., 
where /3 is an IRP-valued unknown parameter vector and 0() is an unknown real Borel 
function. Given a random sample {(Yi, Xi, Z), i = 1, ... n) from (Y, X, Z), if we define 
ei -j - E 1 gS I Zi ] (for =X, Y) then eyi = e'eXi + Ui, where Ui Yi - E[Yi I Xi, Zi] 
(1 < i ? n). Assume that the following condition holds: 

(3) E[ E[U12= < co and - E[exi ejI is p.d. 

Under (2) and (3), the least squares estimate ,B -{EJeXiexI) EI6X6eYx is asymptoti- 
cally normal with covariance matrix 0,2- 1. But this estimate is infeasible because 
E[Yi I Zi] and E[Xi I Zi] are unknown. When Z is an absolutely continuous random 
variable, Robinson (1988) proposed asymptotically efficient estimates of ,B by estimating 
the conditional expectations in eyi and exi. We follow here this approach. 

We shall use "leave-one-out" estimates. Given (V, Z1) and {( j, Zj), j = 1, ..., n, j # i) 
i.i.d. random vectors, mi- E[ ; I Zi] is estimated by mi) _ where 
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Wn(Jl()_j)( ) are weights as defined above, but which do not employ the ith observation. As 
stated in Theorem 1, if Z is discrete then Ellm(l) - mlllr = o(1), whenever Ell llr < ??. 

The proposed estimate of 13 in (1) is obtained as follows. Define el) - m(l), for 
any random variable ;; using these estimated residuals for = Yi, Xi it is possible 
to estimate 1, 13, and of2 by ' ni(1 -n 1'i (ei)x('J)'Ij, ((1) _ = )- ln - E. (l?6(yg)Ij, and 
cJ 2(1) =n -1Ejl (eg) -,8 M3('-('j))2Ih, where the function Ii is defined as Ii- I(E; 9 JI(Zj = Zi) 

> 0). The estimate 13(1) is asymptotically as efficient as the infeasible estimate 13. 

THEOREM 2: Assume that (1), (2), (3) hold, E[U4] <oo, EIllX4 and (Y1, X1, 
Z1),..., (Yn, Xn, Zn) are i.i.d. random variables. Then 

n1/2(,2(1)k(1)- 1)-1/2( p(1) _ 13) d N(O,I ) 

The crucial aspect of Theorem 2 is that the feasible estimate (1) is unbiased. Note 
that, if Ij = 1, then, Ej,,iWQ)(Z-)0(Z; ) = 0(Zd) s(8) =e 14 ? + 8i) 13(1) = i3+ 
VI))- ln 1Ej-6x(4j)u(')Ij. So, E[ ,1(1)] = ,1. Assumption (3) can be easily relaxed, allowing for 
conditional heteroskedasticity, i.e. E[U2 I X, Z] = o, 2(X, Z). In this case, the asymptotic 
variance of n1/2( p(1) _ ,8) will be 0-1E[ i2(Xi, Zi)x6i'i V]0 1. 

When the sample size is small and there are many different values of Z in the sample, 
it may be convenient to smooth. One of the most popular smoothing procedures is the 
one which uses k-NN weights, defined as 

e(j, n, *-) 

nj)() E n, d(j,,)i/j, n, w),+ 

where e(j, n, 4 )#{i: 1 < i < n, pn(Zi, 4 = pn(Zj, 4), d(j, n, 4 #{i: 1 < i < n, 
Pn(Zj, ) < Pn(Zj, 4) (hereafter we suppose that EIIZI12 < oo and pn(u, v) denotes the 
Euclidean distance between vectors u and v after scaling their components by the sample 
standard deviations of the corresponding component of Z; see Stone (1977)), and Cn,i 
(1 < i < n) are constants such that 

ECn,i,= 1, Cn,1 > *.. >Cn,n 0, and cn,i=O Vi>kn, 
i 

for a given sequence kn satisfying 1 < kn < n. These weights are well motivated when all 
regressors are discrete. If the number of observations of Z which are equal to Z is 
greater than or equal to kn, then the k-NN weights are identical to the nonsmoothing 
weights. Otherwise, some observations of the dependent variable (those whose corre- 
sponding regressor value is nearest 4) enter in the weighted average. There are different 
possible k-NN estimates, according to various choices of cnj (see Stone (1977)). The 
most popular ones are uniform k-NN estimates, for which cn, i = I(i < kn)/kn. Applying 
Stone's (1977) results, we know that some k-NN estimates (e.g., uniform, quadratic, and 
triangular ones) satisfy a similar result to Theorem 1 if 

(4) l/k n + knn -0 (as n -oo). 

In fact, in the discrete case any k-NN estimate and the nonsmoothing estimate behave 
asymptotically in a very similar way under (4), as follows from the following theorem. 

THEOREM 3: If (1), (4) hold, Ell V <oo, and (;, Z), ( 1, Z), (n, Zn) are i.i.d. 
random variables, then there exists qo E (0, 1) such that P{m(l)(Z) # m(2)(Z)) = o(qn), where 

Mc;2) )is any k-NN estimate. 
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Note that, as a result from Theorem 2, V t 2 0, P{m(?)(Z) # m(2)(Z)) = o(n -9. 
Using Theorem 3, it is possible to obtain a similar result to Theorem 2 when k-NN 

estimates are used in the nonparametric estimation. Specifically, we may define p (2), 
p.2(2), and 0(2) in the same way as 3 (1) 2(1), and 00), but replacing W-}(J) j) by rw( (?)_i 

Then we have the following corollary. 

COROLLARY: Assume that (1), (2), (3) hold, E[ O(Z)2] <cc, E[U4] <oo, EIIXII4 <cc, 

and (Y1, X1, Z1),... .,(Yn, X, Zn) are i.i.d. random variables. If (4) holds and W(?) j) are 
uniform, quadratic, or triangular k-NN weights, then 

n1/2( 2(2)0S(2)-1)-1/2 p(2)_p) dN(I) 

Note that 8(2) is no longer unbiased, but those terms which reflect bias may be easily 
handled thanks to Theorem 3. 

A similar result to Theorem 2 may be deduced when kernel weights are used if the 
support 9 contains no accumulation points and the kernel function is bounded. In fact, 
if these assumptions are satisfied it is straightforward to check that the nonsmoothing 
and the kernel estimates will coincide for n large enough. If these assumptions are not 
satisfied, then it is necessary to restrict the probability mass which can be contained in 
the neighborhoods of any accumulation point; otherwise, it is possible to construct 
examples in which P{m(?)(Z) * m (3)(Z) does not converge to 0, where m (3)(Z) denotes 
the kernel estimate. 

We have performed some Monte Carlo experiments in order to compare the finite- 
sample behavior of the nonsmoothing, kernel and k-NN estimates in the partly linear 
regression model. The conclusions of this simulation are by no means a surprise: the 
nonsmoothing estimate behaves better than the others when the support of 2 contains 
only a few points or when the underlying regression functions E[Y I Z =Z] and E[X I 
Z =z] exhibit high volatility. (We refer the interested reader to Delgado and Mora (1995) 
for details.) 

In many other semiparametric estimation problems implementation of discrete regres- 
sors using our methods is straightforward (see Delgado and Mora (1995)). 
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APPENDIX: PROOFS 

PROOF OF THEOREM 1: We must prove that the sequence Wn(j)(Q) satisfies conditions 1-5 of 
Theorem 1 in Stone (1977). It is straightforward to see that Stone's conditions 2 and 3 hold. The 
other conditions also hold as it is proved in Propositions 1.1-1.3 below. 

PROPOSITION 1.1: For every nonnegative Borel function f: Rq -, 

E[f(Z)] <oo0E |E Wf(j)(Z)f(Zj)I < 2E[f(Z)] Vn 2 1. 
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PROOF: E[E.jW,(t)(Z)f(Zj)] < 2E[Ejf(Zj)I(Zj = Z)/(1 + EkI(Zk = Z))] = 2nE[f(Z1)I(Zl 
Z)/(1 + EkI(Zk =Z))] = 2E{f(Z1)I(Z =Z1)E[n/(2 + EniI(Zk =Z))I Z,Z1]}. Given * E-, if 
we define Bn* - Ek= 2I(Zk =*) and p -P(Z =), then 

n-1 
E[n/(2+B'*)] = E (n- 1 )ps( )_p)n 1 Sn/(2 +s) 

ss 

s = O 0 

=p7 {[p,, + (1- p)1f -(1 _pJ ?n}p-1 

Therefore, if P(Z) is the positive discrete random variable with support $'= {p,:z e } and 
probability function P(P(Z) = p) = p Vdps eW, 

E| w,(J)(Z)f(Zj)] S 2E{tf(ZI)I(Z= Zi)E[n/(2 kE2 )) z ] zj) 

< 2E[f(Z1)I(Z=Z1)P(ZY'I 

= 2E{f(Z1 )E[ I(Z = Z1 )P(Z) IZ1 ]}. 

Given r e f , the random variable H(P, Z) = I(Z =4P(ZY1 is discrete and its support contains 
two values: P{H(, Z)f=}=1 -p# P{H(, Z) =pp } =p. Thus, W e E[H(, Z)]=1 and 
hence 

E W(]j)(Z)f(Zj) < 2E{f(Z1)E[I(Z = Z)P(ZEn IZI} = 2E[f(Z1)I. QZE.D. 

LEMMA 1: Let Z be a discrete random variable with support 9 and probability function P(Z =4) =px 
Vz e R; let Z, Z1, ..., Zn~ be i.i.d. random variables and m e @, m ?0O (m fixced). Then 

lim nP{ E I(Zk =Z) =m}=0O. 

nr k ~ ~ ~ ~ ~ ~~~~~= 

PROOF: P{<kI(Zk = Z) = m} = E f ZPI( =P{ PkI(Zk = Z) = m I Z =4}. But kI(Zk =Z) 

conditional on Z == has binomial distribution B(n, pZ), where p P(Z =. Hence, 

(Alu) nP( EI(Zk = Z) = m} =Pn Z m )p-1= -pz) s 

E W ZfZj 2f(m)E Z = Z Z) -I Z = ) 

Define Po = supZ, l < 1 and q e (0,r1 po)a (If Po = 1, Z is degenerate and Lemma 1 is 
straightforward.) Then, Vk = 1 and V. e 9, (p/(1 - q))k <=p/(l - q) < pZp=. SO, 

Hence, (A1) ? npO+ (i )nn- n(n m )( _)s(1 _ q)sm =po '(m )n(1 - q)mq P's o(1). Q.E.D. 
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PROPOSMON 1.2: EkW,(k)(Z) 
P 

1. 

PROOF: EkWAT(MZ) = I(EkI(Zk = Z) * 0). Then, for s > 0, P{IEAkWT(Z) - 1i > s) < 
P{EkWAT(Z) = 0) = P{E kI(Zk = Z) = 0) = o(1) (by Lemma 1). Q.E.D. 

PROPOSITION 1.3: MaxjWJ,,f(Z) 0. 

PROOF: Given s > 0, 
P{ImaxjW4(j')(Z)l 

> e) = P{EkI(Zk = Z) * 0, (EkI(Zk = > sI > 

P{O < EkI(Zk = Z) < 1/s). Define 3(s) = N n (0, 1/s), which is a finite subset of N. Then, P{O < 

EkI(Zk = Z) < 1/s) = Em f =.3(,)P{EkI(Zk = Z) = m) = o(1), since the summation contains a finite 
number of terms, all of them converging to 0 by Lemma 1. Q.E.D. 

PROOF OF THEOREM 2: We have 

(A.2) (1) = + 0 )-n- 1 - Vl- P(i)1I. 

Thus, it suffices to prove that 

(A.3) n-/ e x2 
( e u)sj) I=( / n 

- (X -mU(i 
- mM})Ij (-m N(O, a 

i i 

(A.4) ? (1 ? ,C21 P 

Propositions 2.1-2.4 below prove (A.3); (A.4) follows similarly. 

PROPOSITION 2.1: Elln 1/2Ei(mXi - m(j))m(1i)i112 = o(1). Xi Uji 

PROOF: Elln/2E(MXi -M(1))m U)Ill2 

(A.S) =E[Ilmx -m(1) II2m1)2Ii + (n - 1)E[I,m(l)(mA - m()'(mx2-mx )mjI2I. 

The first term in (A.S) converges to 0: applying Cauchy-Schwarz inequality, 

E llmx -m() 112m(1)2I <[II Ejmx - rXm() 1m2(1)2] < {EIlmx 1 m 14 E[ M14 ]1/2 

Now, Ellmx1 - m(ii4 converges to 0 (Theorem 1) and m(') is an estimate of mu, E[U1 I Z1] 0, 
and hence E[m(1)4] converges to 0 applying also Theorem 1. The second term in (A.5) is exactly 
equal to 0: 

E[I m(l)(mXlmX MY(mx2m))()I 

= a2(n - 2) E E[Il(mx1 -Xj)'(MX2 Xd) 
jPo1 io2 

X n( (1 ) Wn(P )(Z 2 )Wn(3 ( Z I)Wn(3(Z)2 

All terms in this expression are 0 because 

Wnj (Z1)Wnj (Z2)Wn(3 )(Zl)Wn(3 (Z2) = I(Z Z=3= Z) I(Zk = Z,)) 

Q.E.D. 
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PROPOSITION 2.2: Elln-'12E,(Xi-mxi)m,h)Iil2 =o(1). 

PROOF: 

E[IIn- 1/2Ei(Xi_-mxi)m(1)Ii 11]2 =-E[IX1 _mXi II2M12I1] 

+ o2(n -2)EUjWn(3)(Z1)Wn(3)(Z2)I2 

XE[(Xi-mXI)'(X2-mX2)IZI,*,Zn] 

Using similar arguments as in Proposition 2.1, the first term converges to 0 and the second one is 0. 
Q.E.D. 

PROPOSITION 2.3: Elln X/2i(mx - m i)LiII 2 = o(1). 

PROOF: Use similar arguments as in Propositions 2.1 and 2.2. Q.E.D. 

PROPOSITION 2.4: n iI2E:(X -mxi)L4Ii -N(0, o-2'P). 

PROOF: By Central Limit Theorem n'-Ewx, - mxi)Li dN(0, since E[(X - m2)u 

E{(X - mx)E[U I X, Z]) = 0, E[(X - mx)U2(X- mx)'] = a 20. On the other hand, 

2 

E n-1/2 >(Xi -MXi)UL(l -Id) = o2E[IIX1 -MX1112(1 -Ii)]. 

Applying now Cauchy-Schwarz inequality and Lemma 1 we conclude that this term converges to 0. 
Q.E.D. 

PROOF OF THEOREM 3: Denote k kn . First observe that if EjI(Zj = Z) > k, then 

I(Zi = Z) = 1 =-e(i, n, Z) = >I(Zj = Z) and d(i, n, Z) = 0 => Wn(2)(Z) -Wn(l)(Z) 
I 

Therefore, 

P{M(l)(Z) mM(2)(Z)) <P{ EI(Zj=Z)<k = ?P (1 (Zj=z)=m 

k-i (,n)(i q)mqn-m, 

where in the last equality po and q E (0, 1) are as in Lemma 1. By (4) there exists no such that 
n 2 nO = k < n/2. So, if n 2 nO 

pIM(l)(Z) 0 M(2)(Z)l 'p 1 n (mn( _ m <p- n( n-k, 

where the second inequality holds because the summation contains k terms which are all less or 
equal than qnkn!/[k!(n - k)!]. Denote qo ql/4 < 1; then, by Stirling's formula, 

q-npjM(1)(Z) 0 M(;2)(Z)l O qn -2k X( )-1/2(qn( _))n-k 

X q nk k(nlk)kk 1/2, 

where an bn means that an/bn -f 1; all terms in this product converge to 0 by (4) (the third term is 
equal to exp{n x [(n - k)log(qo)/n - (k/n)log(k/n) + log(k)/(2n)])). Q.E.D. 
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PROOF OF COROLLARY: With k-NN weights (A.2) no longer holds, but 

1/2( .3(2) _ B (f1n1/2 ER2)2I +-1/2 E Vi?U(2l)Ii) 

The first term converges to 0 because if A is the event {mB(zl) = mo(zl), Ii = 1) then E[njj42] = 

E[HIO(Z) - mrn1)z2 1AC] x nP(AC) (here the first factor is bounded because E[ (Z1)2] < o and the 
second factor converges to 0 by Theorem 2). As for the second term, a similar proof to Theorem 2 
applies, but references to Theorem 1 must be replaced by references to Corollary 3 in Stone (1977), 
where it is proven that these k-NN weights are universally consistent. For example, in Proposition 
2.1, (A.5) also holds when k-NN weights are used; but now the first term converges to 0 by universal 
consistency and the second term converges to 0 because it is equal to 

1 Ul Xl Xl 

Xi 
X2 

X2 U22 (A2AC + E[I m(2(m) (M -m(2))'(M - m(U 2 )M(2I n2 AAx ]P{(A nA A)c), I ImUl(mXl-x )l (X2 mX)2 mU2 2 1(A n2) ]X{ 1 n2 )} 

wher Aidentes he ven Im(1) 
_ 2_ 

where A1 denotes the event {m -(zi) mo(zi)), for i = 1, 2. (Note that in (A.6) the first term is 0 as in 
Proposition 2.1 and the second one converges to 0 by Theorem 2). Q.E.D. 
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