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1. Introduction 

Econometrics is concerned with drawing statistical inferences from economic 
data. Statistical inferences must be based on a probability model for the data. 
The probability model may describe the joint distribution of the data, or it may 
only describe the conditional distribution of one set of observables given values 
of another set, or sorne aspect of this conditional distribution such as the 
conditional expectation (regression function). 

In econometrics the probability model has most usually been parametric, that 
is. a given function involving a fmite number of unknown parameters. In 
particular, a linear parametric function is often assumed. If the number of 
parameters is small relative to the number of observations, precise estimation 
of the parameters is possible, and consequently, reliable statístical inferences. 
Because many economic data sets are usually small, for example annual postwar 
macroeconomic time series, a parametric approach is sometimes essential. 
However, it is important that the parametric model be accurately chosen. 
Consistent parameter estimation generally requires an exactly correct choice of 
parametric model. Of course, this is never possible in practice. But economic 
theory may be insufficient to provide much confidence in any given parametric 
model as even a good approximation. Given a candidate set of explanatory 



variables, a purely arbitrary functional form for a regression function is often 
used in much applied research, usually a form which is linear in the parameters 
owing to its desirable computational implications. 

A nonparametric model makes no precise assumptions about functional formo 
Instead, the data are allowed to 'speak for themselves'. A nonparametric model 
provides a more robust approach to statistical inference because it is more likely 
to approximately capture the true underlying structure. With a very large amount 
of data, good estimates of a nonparametric model can be obtained. A 
nonparametric approach is especially useful at an exploratory level, to provide 
rough indication of which variables are relevant to the analysis of a particular 
problem, or of functional form of a regression model, or of distributional form 
of a disturbance random variable. Nowadays many large economic data sets are 
available, such as cross-sectional survey data consisting of thousands of 
observations, or intra-daily financial time series recorded at fine intervals of 
time, and these provide scope for reasonably precise estimation of a number of 
nonparametric models. 

Semiparametric models provide a compromise between parametric and 
nonparametric models. A semiparametric probability model has two 
components, a parametric and a nonparametric one. Interest usually focuses on 
the estimation of the parametric component, the generality afforded by the 
nonparametric component providing a more robust environment for this than a 
pure parametric model. Because parameters, such as regression coefficients, may 
have a ready economic interpretation, there is sorne advantage over the 
nonparametric approach in retaining sorne element of finite parameterization. 
Semiparametric estimation is likely to require more data than parametric 
estimation. On the other hand it is likely to require less data than nonparametric 
estimation, indeed a satisfactorily precise nonparametric analysis involving a 
large number of explanatory variables would likely require an astronomically 
large sample, larger than any likely to be available in economic problems, and 
larger than any that we might have the resources to process. 

This paper attempts to survey useful developments in nonparametric and 
semiparametric estimation. The literature is vast and rapidly growing, and so a 
comprehensive bibliography, let alone a full account of this literature, would be 
out of the question. In section 2 we discuss estimation of the probability density 
function. While of sorne direct interest in itself in economic research, our 
discussion of this topic also introduces themes relevant to nonparametric 
regression analysis, which is discussed in section 3, and both nonparametric 
density and regression estimates feature in semiparametric estimation, which is 
discussed in section 4. The paper places sorne stress on one important topic on 
which much of the progress has been recent, namely data-driven choice of 
smoothing numbers. We also refer to sorne economic applications of the various 
methods. Published empirical applications to economic data are not widespread, 
but the paper is written with the expectation that as the methodology becomes 
more widely known and better understood, it will find greater use by applied 
economists. 



2. Density estimation 

Probability density estimates are useful in exploratory data analysis of 
econometric data sets. A number of statistical procedures use density and 
derivative-of-density estimates; e.g. discriminant and cluster analysis; the 
estimation of probabilities, hazard rates, conditional densities and score 
functions; simulation; testing for unimodality and independence etc. Our 
discussion of this topic will also involve themes useful in sections 3 and 4 below. 

The density estimation problem consists of estimating the functional form of 
the density from data. That is, the density f(.) of a r-valued random vector X 

is estimated by [n(.) from data {XI, X2, ... , XnJ. Unless otherwise stated the Xi 

are assumed independent in what follows. 
One approach to density estimation is parametric. Assuming f belongs to a 

parametric family of densities, the parameters can be estimated, for example by 
maximum likelihood, from the observed data seto Economic models usually do 
not justify a precise parameterization but they may provide information on 
certain features of the density shape; e.g. skewness, kurtosis, multimodality, 
monotonicity, etc. For instance, it is known, from casual observation, that 
income distributions are skewed to the right like the lognormal and gamma 
distributions and a vast number of mixture distributions. 

Nonparametric estimation provides a way of avoiding the imposition of a rigid 
functional form on the density a priori. Hildenbrand and Hildenbrand (1982) 
compared nonparametric estimates of the income distribution with maximum 
likelihood based on the lognormal and gamma densities. They found that 
nonparametric density estimates are indeed skewed to the right but that their 
shape is very different from those of the lognormal and gamma. The literature 
on nonparametric density estimation is immense. Sorne books on the topic are 
Tapia and Thompson (1978), Hand (1982), Prakasa Rao (1983), Devroye and 
Gy6rfi (1985), Silverman (1986) and Devroye (1987); sorne survey papers are 
Rosenblatt (1971), Wegman (1972), Tarter and Kronmal (1976), Fryer (1977), 
Leonard (1978), Bean and Tsokos (1980) and Izenman (1991); and an extensive 
(but inevitably out-of-date) bibliography is in Wertz and Schneider (1979). 
We next present sorne density estimation techniques used in nonparametric 
estimation and then we discuss sorne applications in economics. 

2.1. Some techniques 

The traditionally most popular method is the histogram. In order to construct 
a histogram, the data set (XI, X 2, ... , X n J is divided into a number, n, of 
partitions Anh A n2, •.. , Anm and f(a:) is estimated by 

[(a:) = n- I t i; I(XjEA ni)I(a:EA ni), 
j= I i= I >-'(Ani) 

(1) 

where 1(.) is the indicator function and >-'(A) is the Lebesgue measure of the 
partition A, i.e. the length of the interval when r = 1, the area when r = 2, the 



volume when r = 3 or the hypervolume when r > 3. When n is large, (1) is a good 
approximation to 

m 

~ Pr!XE An¡ and ocE And/A(An¡), (2) 
¡=! 

which, in turn, is expected to approximate f(oc) well when the partitions are fine. 
The size of the partitions has to be chosen by the practitioner. In particular, in 
the cubic histogram each partition Anj is of the type TIf=! [a¡k¡h, a¡(k¡ + l)h], 
where a¡ are positive constants, k¡ are integers and h is a positive parameter. 
Then A(Anj) = h 'TIf= 1 a¡. The parameter h, called the binwidth, control s the 
hypervolume of the partition and thus the smoothness of the histogram. As h 
decreases, the number of peak s in the histogram tends to increase. A small h 
produces estimates with smaller bias but greater variance than estimates based 
on large h. This trade off between degree of smoothing, bias and variance is 
shared by all nonparametric curve estimates. 

It is clear that the choice of smoothing will affect the shape of the histogram. 
The histogram competes with more sophisticated nonparametric density 
estimates beca use it is easy to compute and is available in many econometric 
packages. However, sorne undesirable properties of the histogram are not shared 
by other nonparametric estimates. The choice of the origin may greatly affect the 
shape of the histogram (Silverman 1986 Ch. 1 provides several examples). The 
choice of the coordinate directions in multiple dimensions (i.e. the a¡'s) also 
affects the histogram estimates. Contours are difficult to draw in one dimensiono 
The discontinuity of the histogram prevents estimation of derivatives; these are 
useful by their own sake, and as intermediate tools in various statistical 
procedures. Finally, the asymptotic rate of convergence of the histogram to the 
true density, according to different measures, can be better for alternative 
density estimates (see section 2.1 below). 

The frequency polygon smooths out the block-line shape of the histogram by 
connecting the middle points of each class in the histogram. Another possibility 
consists of using the histogram method with different 'bins' centred about the 
point to be estimated. Rosenblatt (1956) proposed the naive estimate, for r = 1, 

[(oc) = (F(oc + h) - F(oc - h»/2h (3) 

where F(oc) = n- 1 Lj I(Xj ~ oc) is the empirical distribution function. The 
density estimate in (3) is proportional to the relative frequency of the data in an 
interval of length h and centred about oc. The length of the interval has the same 
role as the bindwidth number and is called a bandwidth. Since F(oc) is an 
unbiased estimate of F(oc) with good statistical properties, the population 
distribution function, (3) is expected to be a good estimate of f(oc) = dF(oc)/ doc 
as h -> O. 

When r > 1, the naive estimator is defined as 
n 

[(oc)=n- 1 ~ I(Xi E S(oc, h»/A(S(OC, h», (4) 
¡=l 



where S(oc, h) is the sphere in IR r centred in oc and with radius h and r..(.) denotes 
Lebesgue's measure. The numerator in (4) is an unbiased estimator of 
Pr(X E S(oc, h», and by Lebesgue's theorem 

limh"OPr(XE S(oc, h»jr..(S(oc, h» = f(oc). (5) 

Then, it is expected that the estimate in (4) will approximate the true density f(oc) 
well for large sample sizes and h small. Note that 

[(oc) = (nhr)-I ~ 1(11 oc- Xi 11 h- I ",:; l)jr..(S(O, 1» 
i 

(6) 

where 11.11 is the Euclidean norm and K(t) = 1(11 t 11 ",:; l)jr..(S(O, 1» is the 
rectangular density on the r-dimensional sphere. Rosenblatt (1956) also 
suggested smoothing the estimate (4) by replacing the rectangular window in (6), 
which is a uniform density, by a general function K: IR r 

~ IR such that 
11R' K(u) du = 1, called a kernel. When K(.) is a density, the resulting density 
estimate is also a density. In such a case, (6) can be seen as a mixture of densities 
where each component has the same weight n-l. Popular kernels are: 

Gaussian: K(t) = (27r) - r/2 exp( - t' tj2), 

Epanechnikov: K(t) = r..(S(O, l»-I(r + 2)[1 - t't)j2)1(t't < 1), 

where t is a r-dimensional vector and the prime indicates transposition. 
The derivatives of the density are estimated by the derivatives of the density 

estimate assuming a suitable smooth kernel is used (the Gaussian produces 
derivative estimates of any order, the uniform, none). That is, if f(s) (oc) is the 
s-th derivative of f at scalar oc, it is estimated by 

n 

[(s)(oc)=n- I ~ K(S)(h-l(oc-X¡»jh r +" 
i= 1 

where K (s) is the s-th derivative of the kernel. 
Instead of using a scalar bandwidth, one can use a matrix of bandwidths when 

r > 1, in order to take into account the correlation between the components in 
the vector X, i.e. 

n 

[(oc) = n -1 ~ K(H- 1 (oc - X¡»jdet(H), (7) 
i=1 

where H is a positive defmite matrix. Then (6) is a particular case of (7) with 
H = diag(h, ... , h). Sometimes, it may be convenient to scale the observations by 
the sample covariance matrix t as suggested by Fukunaga (1972). That is, use 
H = h t in (7). Robinson (1983) pointed out that with diagonal bandwidths in 
a time series context ' ... the estimated distribution would suggest a "whiter" Xi 

than is the case, unless Xi is truly white noise'. Kernel density estimates are 
straightforward to program, but they do entail heavy computation, especially 
when n is large, the density is to be computed at many points oc, and estimates 



for several choices of bandwidth are to be found. However, [(.) has a 
convolution form and may thus be computed by using the Fast Fourier 
Transform algorithm. Silverman (1982) developed this idea for r = 1. To 
estimate the density at a point -oc, this method requires only the order of 
n log n computations, instead of an order of n 2 operations using the naive 
approach, and not all the computations have to be redone when a new 
bandwidth is used. 

The histograms and kernel estimates discussed aboye are not locally sensitive 
to such peculiarities in the data as sparsity in the tails of the density. If the 
smoothing parameter (binwidth or bandwidth) is too small, values in the tails of 
the data will provoke bumps or modes in the resulting density estimates. If the 
smoothing parameter is made too large, in order to avoid such effects, the 
resulting estimate will be oversmoothed and all the modes may be ironed even 
in the central part of the density. Several methods implement a local adaptive 
smoothing where the smoothing parameter is allowed to vary with the data. 

An alternative to the histogram estimate (1) is the variable partition histogram 

suggested by Anderson (1965) and Van Ryzin (1973) . When r = 1, the partitions 
depend on the order statistics X(l), ... , X(n). An integer m E [2, n] is chosen to be 
the number of bins in the histogram. Then set k = [n/m] ([.] indicates nearest 
integer) and define partitions A 1n = [X(1), X(kJl. AZn = [X(k), X(2kJl, ... , 
Amn = [X«m-1)k), X(n)]. Each partition is of different width and contains about 
k data points. The density is estimated by (1) using the new partitions. The 
generalization to multidimensions has been studied by Gessaman (1970). 

The basic idea of variable histogram estimates can be also applied to kernels. 
Fix and Hodges (1951) and Loftsgaarden and Quesenberry (1965) noted that (5) 
can be approximated in another way, by making the radius of the sphere depend 
on the sparsity of the data around -oc, i.e. 

n 

[(-oc) = n- 1 b I(Xi E S(-oc, Rk))/A(S(-oc, Rk)), (8) 
i=1 

where Rk is the minimal value for which EP= 1 1(X¡ E S(-oc, Rk)) = k. That is, the 
smoothing parameter is the Euclidian distance between -oc and its k-th nearest 
neighbour in the data set. This is called a nearest neighbour estimate. Like the 
naive estimate, the estimate in (8) is expected to perform well for large sample 
sizes when Rk -+ O (i.e. k -+ 00). Friedman et al. (1975) proposed an efficient 
algorithm for locating nearest neighbours. The algorithm has been implemented 
by Delgado (1 990b). Note that (8) can be written as 

[(-oc) = k/ (nA(S(O, 1))Rk). 

The estimated density is not a density itself since IIR' [(-oc) d-oc = oo. Mack and 
Rosenblatt (1979) proposed to make (8) smoother by using a general kernel, i.e. 

n 

[(-oc) = n- 1 b K(Rk 1(-oc- Xi))/RL (9) 
i=1 



Then (8) is a particular case of (9) where K is the uniform density on the unit 
sphere, and is known as uniform nearest neighbour estimate. The estimate (9) is 
the locally adaptive smooth counterpart of (6), where a different h depending 
on oc is used at each point. The nearest neighbour estimate provides fatter but 
smoother tails than the kernel. 

The variable kernel estimate proposed by Breiman et al. (1977) adapts the 
amount of smoothing to the local density of the data avoiding the problem of 
density estimates with infinite mass under the tails, presented by the nearest 
neighbours. The variable kernel estimate is defined as 

n 

[(oc) = n- I 2: K(hd¡,d-I(oc- X¡»/(d¡,kH)', (10) 
i=l 

where d¡,k is the Euclidean distance from X¡ to its k-th nearest neighbour. Note 
that the same smoothing is used for each oc. Breiman et al. (1977) proposed a 
two step procedure for estimating the window width. In a first step, a pilot 
estimate [(oc) is computed using kernels or nearest neighbours such that 
[(X¡) > O for all i. In a second step, local bandwidthfactors A¡ = {[(X¡)/gl-Ci are 
defined, where g = exp(n -1 I:i log [(X¡» and ct E [O, 1] is a sensitivity parameter. . 
The density is estimated by 

n 

[(oc) = n- I 2: K(hAi)-I(OC- Xi»! (Aih)'. 
i=1 

This is known as an adaptive kernel estimate. Note that a bandwidth has to be 
chosen for the pilot estimate as well as the sensitivity parameter ct. Breiman et 

al. (1977) recommended using a nearest neighbour estimate as the pilot estimate 
with a very large value of k and setting ct = 1/r. Abramson (1982) found that the 
method is quite insensitive to the pilot estimate and that ct = 1/2 is a good choice. 

Other methods not discussed here are orthogonal series (e.g. Fourier series, 
Laguerre series, Legendre series and Hermite series) and maximum likelihood 

(e.g. convolution sieves and penalized maximum likelihood). These methods are 
discussed by Prakasa Rao (1983), Devroye and Gyorfi (1985) and Silverman 
(1986). 

Whittle (1958) found that many nonparametric density estimates can be 
expressed in term of a delta sequen ce (óm(oc, ~), m> 01 which satisfies the 
condition 

for every infinitely differential function <p with compact support. Then, many 
density estimators can be written in the form 

n 

[(oc) = n- I 2: óm(oc, X¡). 
i=1 

For instance, for the kernel estimate Óm (oc, ~) = m rK(m(oc - ~ ». 



2.2. Asymptotic properties and automatic choice of the smoothing number 

Rosenblatt (1956) noted that all the estimates of the density function satisfying 
relatively mild regularity conditions are biased. Then, he evaluated the 
asymptotic mean square error (MSE) of kernel estimates. 

The naive estimator in (3) is asymptotically unbiased when h = hn is a function 
of the sample size n and 

h-"'O as n->oo. (11) 

The empirical distribution function, nF(oc) , is distributed as a binomial with 
parameters n and F(a:). Therefore 

E(f(a:)) = (F(a: + h) - F(a: - h))j2h -> f(a:) under (11). 

Rosenblatt (1956) noted that, assuming the first three derivatives of f(.) exist, 

Since 

then squared mean consistency is provided by (11) and 

nh -> 00 as n -> oo. (12) 

Rosenblatt (1956) also proposed general kernel estimates and gave an expression 
for the asymptotic MSE. The asymptotic properties of the kernel estimate were 
studied in detail by Parzen (1962). Cacoullos (1966) studied the asymptotic 
properties of kernel estimates for multivariate densities in (5). We discuss results 
for the general kernel estimate (7) following Robinson (1983). 

Bochner's theorem (Bochner 1955) is used for proving many asymptotic results 
in kernel estimation. The generalization of this theorem to a general kernel with 
a matrix of bandwidths H is as follows 

Bornech 's Theorem. - Let q: IR r -> IR be a Bore/ function such that 

(i) q(.) is continuous at a:, 

(ii) r 1 q(u) 1 du < 00, J IR' 

(iii) r K(u) du = X < 00, J IR' 

(iv) r 1 K(u) 1 du < 00, J IR' 

(v) lim 11 u 111 K(u) 1 = 0, 
11 u 11 ~ 00 



(vi) lim 11 H 11 r det(Hr 1 < 00, 
n -> 00 

(vii) lim H = O, 
n -> 00 

Then 

(¡(oc) = det(Hr 1 ) K(H-1(oc - u))q(u) du ---+ q(oc) ) K(u) du as n ---+ oo. 

The conditions of this theorem are very mildo Note that condition (vi) holds 
when H is a diagonal matrix with equal components. 

Then asymptotic unbiasedness follows under the conditions in the thearem, 
taking q(u) = f(u) and X = 1, since 

q(oc)= E(f(oc»= det(H)-1 ) K(H-1(oc-u»f(u)du---+f(oc) as n---+oo. 

Consistency follows assuming also that 

(viii) ~ IR' K(u) 
2 

du = ex < 00, 

(ix) n det (H) ---+ oo. 

Note that under independence 

Var (f(oc» = (n det(H»-Ié¡(oc) + n- 1(E(f(r.x:»)2 

where 

q(oc) = (det (H»-l ) K(H-1(oc- u»2f(u) du ---+ f(oc)ex as n ---+ oo. 

When the density function is smooth, the bias rate of convergence can be 
improved by using higher arder kernels proposed by Bartlett (1963). For 
simplicity consider the case r = 1. We say that a kernel K is of class O if it belongs 
to the class of symmetric kernels about zero which integrate to 1. A class s kernel 

is a class O kernel for which 

(a) ~ 1 t IS 1 K(t) 1 dt < 00, (b») t'K(t) dt = 0,1= 1, ... , s -1. (13) 

In view of the symmetry of the kernels, (b) automatically holds for all even 
values of 1 < S. Most class O kernels are class 2 kernels. The order of a class O 
kernel is the largest integer such that K(.) obeys (13). Then if 

(x) f(.) is s times boundedly differentiable, 

(xi) K(.) is oi order s, 
(xii) supu (1 + 1 U 12) 1 K (u) 1 > 00, 

then E(f(r.x:) - f(oc» = O(h S
). Robinson (1988) provided formulae for constructing 

higher order kernels of any degree. This bias reduction technique is crucial in 
many semiparametric procedures. The density estimate can be negative for 



kernels of order s > 2. This undesirable feature is not so important in 
semiparametric estimation where nonparametric estimates are only used as an 
intermediate tool. Applying a Taylor expansion, we obtain an expression for the 
mean integrated squared error (MISE) 

MISE = (s!)-2¡3~h2S ) f(S)(OC)2 doc+ n-Ih-Ia + o«nh)-I + h 2s ), (14) 

where ¡3s = J tSK(t) dt. The MISE is a measure of the discrepancy between the 
estimated and the true density. Then the MISE depends on the bandwidth, the 
kernel, and the smoothness of the density through the term J f(S)(OC)2 doc, known 
as difficulty jactor. From (14), the bandwidth number which minimizes, the 
asymptotic expansion of the MISE is 

~_ n. h = ( a(s!)2 )1I(2S+I) -1/(2s+0 

2s¡3~ ) f(s) (OC)2 doc 
(15) 

Substituting this expression in (14) we obtain the optimal rate of convergence in 
L 2 

infhMISE = 0(n- 2s/
(2s+ 0 ). 

Devroye and Gyorfy (1985) obtained the optimal rate of convergence of the 
mean integrated absolute error (MIAE) 

MIAE = E[ [00 I [(oc) - f(oc) I dOC]. 

This is a more robust measure for comparing densities than the MISE. The 
optimal rate of convergence of the MIAE is O(n -2I(2s+ 0). 

Using calculus of variations, Epanechnikov (1969) proved that the kernel 
which minimizes a, subject to K(.) a bounded and even density and (32 = 1, is the 
Epanechnikov kernel. The choice of kernel is not crucial. Values of a for 
different kernels are pretty close. For instance, the ratio of the a's corresponding 
to the Epanechnikov and Gaussian kernel is 1.051. The choice of the bandwidth 
number is more important. 

Optimal bandwidths can be 'estimated' from the data using (15). Assuming 
f(.) belongs to a particular parametric family of densities (e.g. the Gaussian). 
That is, the parameters of the density are estimated (e.g. by maximum likelihood 
or by a robust procedure), under the assumed parametric model, and then (3s and 
a are computed by numerical integration. This parametric method has been 
proposed by Deheuvels (1977) and Deheuvels and Hominal (1980). Suppose we 
use the Epanechnikov kernel and we assume that f(oc) = f(oc, O) where 
O = (p" a, 'Y) is a vector of parameters, p, is the location parameter, a is the scale 
parameter and 'Y is a vector of shape parameters. Then 

hOPI "'" D2 (O)1I5 n -115, D2 (O) = 15 () f(2) (OC)2 doc r I 



It is not necessary to mention location and scale parameters since 

02(¡,t, (J, ")1)115 = (J02(0, 1, ")1)115. 

Let a be a robust estimate of (J (e.g. the least absolute deviation (LAO) estimate 
or any other robust estimate of the scale). Then the optimal bandwidths are 
estimated by 

where .::y is an estimate of ")1 computed by any method. Sorne densities do not have 
shape parameters (e.g. unimodal densities) and, therefore, it is only necessary to 
compute the scale parameter from the data. For instance with the normal density 
and using the Epanechnikov kernel 

bap ! "" 2.345án -115. 

In practice one may report graphs of the density estimates, computing the 
optimal bandwidth based on different parametric densities. 

Woodroofe (1970) proposed to avoid parameterizing the density in (15) and 
(22) by estimating it from a preliminary bandwidth, i.e. 

O2 ([, ho) = 15 O f(2)(a;)2 da; r 1. 

f(a;) is computed from a given bandwidth ho. This method is also not completely 
automatic since ho has to be determined by the practitioner. An alternative, 
suggested by Scott, Tapia and Thompson (1977) is to use an iterative procedure, 
estimating bap1 as the solution to 

bap1 = 02(f, bap1 )1I5. 

These methods exclude a large number of densities for which J f(2) (a;)2 da; is not 
defined or is infmite. 

An alternative is to treat h as a parameter which is estimated by optimising 
sorne criterio n function. For instance Ouin (1976) and Habbema el al. (1974) 

proposed choosing h to maximize the cross-validated likelihood 

n 

L(h) = TI f( _ i)(X¡) where f( _ i)(a;) = (n - 1)-1 ~ K(h -1 (a; - Xj)/h r. 
i=1 j = 1 

j " i 

The cross-validatíon (Le. the exclusion of the own observatíon) is due to the fact 
that rrr=1 f(Xi) ís always maximized for h = O. Chow el al. (1983) proved the 
consistency of this cross-validated estimate assuming f(.) has compact support. 
However Schuster and Gregory (1981) have found that consistency may not be 
possible when the density does not have a compact support. However, we can 
always make a suitable transformation of X such that the corresponding density 
is defined on a compact. Once, the density of the transformation has been 
estimated we can obtain the density estimate of X. Simulation studies (see e.g. 



Scott and Factor 1981) have shown that themaximum likelihood cross-validation 
is very sensitive to outliers and to the form of K. 

Hall (1983a,b), Rudemo (1982) and Bowman (1982) suggested using the cross
validated estimated mean squared error as criterion function. Then the criterion 
function is 

Stone (1984) found that the h minimizing this function is the best, in the sense 
of minimizing the MISE. 

A central limit theorem for [(oc) is use fui in practice for constructing 
confidence intervals. For simplicity, consider the case r = 1 and a kernel of order 
2. Under conditions mentioned aboye 

Cov((nh) 1/2[(OC) , (nh)1/2[(~» --> ° as n --> 00, 

and for (oc!, ... , ocsl fixed 

1/2 - - - - d (nh) (f(OCl) - E(f(OCl », ... , f(ocs ) - E(f(ocs ))) --> N(O, V ex), 

where V = diag(f(oc¡), ... , f(ocs ». 
Since 

(nh)1/2E(f(oc) - f(oc» = 0((nh 5 )1/2), 

the asymptotic distribution of (nh) 1/2 ([(oc) - f(oc» is not centred at zero. 
Assuming that 

nh 5 --> 'Y < 00 as n --> 00, 

then, for (OCio ... , ocsl fixed points 

(nh) 1/2 (f(oc¡) - f(oc¡), ... , [(ocs ) - f(ocs » -! N('Y ll2(32Bj2, Vex), 

where B = (f(2)(OCl), ... , f(2)(ocs», . The bias disappears when 'Y = 0, Note that 
when 'Y = 0, the bandwidth is not optimal. This result can be used for 
constructing confidence intervals, since V is consistently estimated by 

V = diag([(oc¡), ... , [(ocs ». 

Interestingly, the density is estimated more imprecisely on regions where the 
mass is concentrated. 

The asymptotic variance is the same for general kernel s (7), but the 
normalizing factor is (n det(H» 1/2. Asymptotic results are not affected under 
weak dependence. In particular, the asymptotic variance of [(oc) is unaffected 
when X¡ are strong mixing (Robinson 1983). 

Optimal rates of convergence of density estimates have been established by 
Stone (1980). 

Uniform consistency for kernel estimates has been established by Bertrand
Retaly (1978). Devroye and Gy6rfi (1985) have proved that (11) and (12) are 



necessary and sufficient conditions for JI [(oc) - f(oc) I doc to converge to zero 
with probability one, for any f(.), only assuming that the kernel is a non-negative 
function which integrates to one. 

The consistency of the histogram was established by Revesz (1972). Freedman 
and Diaconis (1981a) have studied the uniform convergence properties. The 
histogram has L2 optimal rate of convergence n -213 (Scott 1979) and the optimal 
L ¡ rate is n - 1/3 (Devroye and Gy6rfi 1985). The histogram can be adjusted to 
enjoya faster rate of convergence n -4/5 in L2 by smoothing out the block-line 
shape of the histogram. It has been done using the average shifted histogram 
(Scott 1985a) and the frequency polygon (Scott 1985b). 

The consistency of nearest neighbour estimates has been established by 
Loftsgaarden and Quesenberry (1965) and Moore and Yackel (1977) assuming 
that 

k/n -> O and k -> 00 as n -> oo. 

L2 properties have been studied by Rosenblatt (1979) and Mack and Rosenblatt 
(1979). Devroye and Gy6rfi (1985) noted that it is impossible to study the L¡ 
properties of nearest neighbour estimates because of their infinite integral. 
Devroye and Gy6rfi (1985) gave L¡ results for the variable histogram. Similar 
results for the L2 case can be found in Prakasa Rao (1983), Lecoutre (1986) and 
Kogure (1987). The optimal MISE is of the same order as that of the classical 
histogram. Devroye and Gy6rfi (1985) gave conditions for L¡ consistency of the 
variable kernel estimate for all f and Devroye and Penrod (1986) proved strong 
uniform consistency. 

Nonparametric kernel density estimates for weakly dependent processes have 
been studied, for example, by Roussas (1969), Rosenblatt (1971), Robinson 
(1983), Yakovitz (1985), Roussas (1988), Tran (1989), Gy6rfi et al. (1989), Hart 
and Vieu (1990), and Silveira (1990) and Robinson (1987d) and Hall and Hart 
(1989) considered strongly dependent processes. The asymptotic properties of the 
histogram under weak serial dependence have been studied by Gy6rfi (1987) and 
Tran (1991). 

2.3. Applications 

Density estimates are recommended as a first step in exploratory data analysis. 

Density estimates of residuals from parametric regression may be useful as a 
preliminary specification tool. Robinson (1987b) considered density estimates of 
innovations in time series models, based on estimated residuals. 

Fix and Hodges (1951) were the first to propose using nonparametric density 
estimates in application to discriminatory data analysis. In discrimination, 
density estimates [A(.) and [B(.) are computed from samples from two different 
populations A and B. Then a particular observation jj, is assigned to the 
population A if fA(jj) > fB(jj). This method has been applied in medicine in 
order to perform diagnosis on a disease. The variables are random vectors 



containing dummies, which indicate the performance of diagnostic tests, and 
certain individual characteristics of the patient. One envisages applications of 
these methods to investigate the success of employment training programs or 
other social experiments. 

In cluster analysis the problem is to divide the data set into clusters or classes. 
Roughly speaking, the problem now is to find from how many and which 
populations the observations are coming. Several cluster and discrimination 
methods, using nonparametric density estimation, were reviewed by Prakasa 
Rao (1983) and Silverman (1986). 

Devroye and Gy6rfi (1985) proposed several algorithms for simulation from 
the estimated density and any standard uniform random number generator. They 
discussed inversion, rejection and order statistics methods for densities estimated 
from kernels or the histogram. They showed that quite large sample sizes are 
required for generating observations undistinguishable from observations 
generated from the true density. These simulation methods are useful in 
constructing bootstrap estimates. The classical bootstrap performs random 
sampling with replacement from the empirical distribution of the data. A smooth 

bootstrap consists of generating observations from the estimated density. 
Another application is in testing unimodality. Silverman (1981, 1983) used the 

idea that as the amount of smoothing increases, the number of modes or bumps 
in the estimated density tends to decrease. Thus Silverman proposed finding a 
critical bandwidth, heril> such that the nonparametric density estimate is 
unimodal for any h :) heril' If the true density is unimodal one expects a small 
heril and for multimodal densities a large heril' The heril is found by a grid search. 
This idea forms the basis of creating statistics based on heril. Silverman (1983) 
proved that as n ---> 00, heril ---> O when the density is unimodal but heril is bounded 
away from zero otherwise. The heril is assessed against a standard family of 
unimodal densities. Silverman also suggested avoiding use of a parametric family 
by using the smoothed bootstrap. A large number of samples, with the original 
sample size, are generated from the estimated density [eril computed with heril. 
For each replicated sample, new densities are estimated using heril. Then the 
proportion of replications producing multimodal densities is the p-value. Craig 
(1991) has compared these methods with the dip tests of Hartigan and Hartigan 
(1985) in the context of a test for unimodality of fixed costs of labour 
adjustment. The dip statistic is the maximum difference between the empirical 
distribution function, and the unimodal distribution function that minimizes the 
maximum difference. The dip test is asymptotically larger for the uniform 
distribution than for any distribution in a larger class of distributions. 

Tests 01 independence can also be performed using nonparametric density 
estimates. Traditionally tests for serial dependence are based on the sample serial 
correlation or serial rank-based correlation procedures (e.g. Spearman's test). 
These tests may not be suitable in the analysis of stock market prices, where the 
dependence may be nonlinear (e.g. ARCH or bilinear processes). Such subtle 
alternatives to the independence hypothesis may be detected using nonparametric 



density estimates. The null hypothesis for testing independence between 
continuous random variables X and Y can be expressed as Ho: fCoc, ~) = f(a: )f(~) 
for all a: and ~. Robinson (1991) proposed using the Kullback and Leibler 
distance, i.e. 

1 = Ji f(a:, ~)(log f(a:,~) -log(f(a:)f(~))} da: d~. 

This is approximated using kernel estimates of the joint and marginal densities. 
For example, in arder to test serial independence in time series, i.e. independence 
of X; and X¡+ 1, a possible statistic is, 

In = n- I ~ C¡ (log(f(X¡, X+ 1) - 2 log(f(X¡))} , 

for a sequence of weights C¡. Robinson (1991) showed consistency of the test 
based on In against strong mixing alternatives, and for suitable Ci, asymptotic 
normality under the null. He applied the resulting test in testing independence 
of exchange rates for different currencies using daily, weekly and monthly data. 
Chad and Tran (1992) proposed using the LI distance rather than the 
Kullback-Leibler distance and used histogram instead of kernel estimates. Their 
test resembles tests based on contingency tables. They showed that the test is 
consistent when the series is absolutely regular. However, they did not obtain the 
asymptotic distribution of the statistic under the null and therefore the 
implementation of their test relies on the estimation of critical values using 
permutations of the original series. Neither Robinson (1991) or Chan and Tran 
(1991) considered data dependent bandwidths or binwidths in their theory. 

Cumulative distribution functions can be estimated using kernel estimates. 
In particular the cumulative distribution F(a:) is estimated by F(a:) = 

n -1 1:¡J( (a: - X;), where J( (.) is the cumulative distribution of the kernel (see 
Prakasa Rao 1983). One may prefer to use the empirical cumulative distribution 
F(a:) = n- I 1:¡ I(X¡ ::;; a:), which is unbiased, avoids the choice of a smoothing 
parameter, and is computationally very convenient. However, the empirical 
cumulative distribution may be unsuitable for estimating probabilities under the 
tails of the density where data are scarce. In such cases a smooth estimator may 
be preferred. Other functionals, like f(s) (a:) , f f(S) (a:) da: or f f(a:)2 da:, can be 
estimated by substituting for the true density the estimated one inside the 
integrals. 

The hazard rate H(a:) = f(a:)/ (1 - F(a:)) can be estimated by 
H(a:) = f(a:)/(l - F(a:)). Relevant surveys are Singpurwalla and Wong (1983) and 
Hassani et al. (1986). 

_ The c~ndition~l density f(~ IX = a:) = f(~, a:)/f(a:) is estimated by 
fYlx(~) = f(~,a:)/f(a:) (Watson 1964, Nadaraya 1964 and Rosenblatt 1969). 

Other important applications of density estimates are to the computation of 
regression functions, which will be covered in the next section, and 
semiparametric estimates, which will be covered in section 4. 



3. Nonparametric regression 

Econometric models describe the relationship between economic variables. This 
relationship is often represented by means of conditional moments. In 

particular, given a r X 1 vector of explanatory variables X, a q x 1 vector of 
response variables Y and a known function g: IRq -> IR, one is interested in 
estimating 

m(oc) = E{g(Y) IX = oc} (17) 

The function m(.) is called a regression curve. 

Regression curves can be estimated by parametric methods. That is, m(oc) is 
assumed to follow a particular parametric form (e.g. m(oc) = oc' {3, where (3 is a 
vector of unknown parameters) and then the parameters are estimated using 
sorne loss function. Economic models usually provide information on sorne 
features of the regression curve. For instance, it is known that, for normal 
goods, the regression curve of expenditure with respect to income has positive 
first derivatives and negative second derivatives. However, many competing 
functional forms can be in agreement with economic theory principies. 

Nonparametric regression estimates do not impose a rigid functional form on 
the regression function. Given a data set {(Y¡,X¡),i=I, ... ,n), the 
nonparametric estimate of m(oc) is a weighted average of g(Y¡), where the 
heavier weights are given to the observations with X¡ closest to oc; i.e. m(oc) is 
estimated by 

m(oc) = ~ g(Y¡)Wn¡(oc), 
¡ 

(18) 

where (Wn¡(oc), i = 1, ... , n} is a sequence of weights which sum up to one. The 
idea is that g(Y¡)'s with X¡'s close to oc possess more information on m(oc) than 
observations far away from oc. Therefore, Wn¡(oc) will be small when X¡ is far 
away from oc. When Wn¡(oc) = n- 1 all i, (18) is a consistent estimate of E(g(Y» 
but an inconsistent estimate of m(oc). 

Nonparametric regression may be used in explanatory data analysis. 
Hildenbrand and Hildenbrand (1980), Hardle and Jerison (1988), Hardle (1990) 
and Bierens and Pott-Buter (1991) have obtained nonparametric estimates of 
Engle curves for different goods. Nonparametric predictors from time series have 
been also used to investigate the forecastability of rates of return of gold by 
Prescott and Stengos (1988) and Hardle and Vieu (1989) and of exchange rates 
by Diebold and Nason (1989). Nonparametric estimates constructed from 
parametric residuals may be useful in model specification, e.g. to check structure 
in the residuals or the presence of heteroskedasticity. Estimates of derivatives of 
the regression function are computed in the same way as density derivatives. In 

particular, the s-th derivative of m(oc), m (5) (oc), is estimated by 

m(5) (oc) = ~ g(Y¡)Wá~)(oc) (19) 
; 



where W~)(oc) = a Wni(OC)/aOC, when the weight function is s-times 
differentiable. From (19), one can obtain estimates of elasticities and other 
functionals. Nonparametric regression has also been used in many 
semiparametrie problems. Recent surveys on nonparametric regression are 
Collomb (1981 and 1985) and books on the topie are Gy6rfi et al. (1989) and 
Hardle (1990). 

We next present sorne specific nonparametric regression techniques, then we 
discuss automatic choices of the smoothing parameter, and finally we discuss 
sorne applications. 

3.1. Some techniques 

Nonparametric density estimates can be represented as a sum of weights, i.e. 

[(oc) = ~ w(oc, Xi). 
i 

Noting that 

m(oc) = ~ g('!t)f(g('!t) IX = oc) d'!t = ~ g('!t)f(g('!t), oc) d'!t/f(oc) 

= P g(y) (oc )/f(oc), 

the problem is to find an estimate of Pg(y)(oc). When g(Y) = 1, it follows that 
PI (oc) = f(oc) and is estimated by [(oc). Then, it seems sensible to estimate 
Pg(y)(oc) by 

Pg(y) (oc) = ~ g(Yi)W(OC, Xi). 
i 

Then it is possible to construct weights 

Wni(OC) = w(oc, Xi)/ ~ w(oc, Xi). 
i 

So, the histogram produces partition estimates with weights 

Wni(OC) = l(Xi E Anj) (~ l(Xi E AnÜr l when oc E Anj. 

(20) 

(21) 

(22) 

Then the partition estimate is just the arithmetic average of the Yi'S with 
corresponding X¡'s in the same bin as oc. These type of weights were proposed 
by McMurtry and Fu (1966), Hill (1969) and Jarvis (1970) among others. Since 
EP=I l(XI E Anj) can be equal to zero for sorne partitions, it has been suggested 
that (22) might be replaced by Wni(OC) = n- I when EP=I l(Xi E Anj) = O for 
ocE Anj (see Gy6rfi (1990) and Gy6rfi et al. (1989)). Variable partition estimates 

are constructed in the same way but using the variable histogram. The kernel 

estimates use weights 

Wni (oc) = K«oc - Xi)/h)/ ~ K«oc - X¡)/h), (23) 
i 
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with Wni(OC) = ° in the case O/0. These weights were proposed by Nadaraya 
(1964) and Watson (1964). More general weights using kernels like those 
employed in (7) are 

Wni(OC) = K(H- 1(oc- X¡»/ :6 K(H- 1 (oc- X¡». 
i 

These weights were introduced by Robinson (1983). 
The nearest neighbour estimates use weights 

When K(.) is the uniform kernel we have weights, 

(24) 

(25) 

Wni(OC) = l(Xi is one of the k nearest neighbours of oc)/k. (26) 

These weights were introduced by Royall (1966), Cover (1968) and Cover and 
Hart (1967), and weights (25) were introduced by Collomb (1980). 

Stone (1977) and Devroye (1978) introduced a general class of nearest 
neighbour weights. Since the individual coordinates are usually measured in 
dissimilar units, Stone proposed transforming them to the unit metric before 
applying the Euclidean metric. The scales used have to satisfy certain conditions. 
These conditions are met by the sample standard deviation, provided that X 

admits a nondegenerate distribution and has finite second moments. Then the 
random (pseudo) metric corresponding to the scales (Snj, j = 1, ... , r 1 is defined by 

[ 

, ] 1/2 
Pn(U,V)= i~(S;;/(Ui-Vi)2 , 

where u=(u¡, ... ,u,) and V=(Vl, ... ,V,). Let Cni be such that, 

n 

Cln ~ ... ~ Cnn ~ 0, Cni = ° for 1 > n and :6 Cni = 1. 
i=1 

For 1 ::;;; i ::;;; n, 

Wni (oc) = Cnv;(oc) + ... + Cnv;(OC) + A;(OC) - 1 

Ai (oc) 

where 1 (A) is the indicator function of the event A and 

Vi(OC) = (1 + # (1: 1 ~ i, Pn(X" oc) < Pn(Xi, oc») 

and 

Ai(OC) = (1 + # (1: 1 ~ i, Pn(X" oc) = Pn(Xi, oc»). 

(27) 

This tie breaking rule is computationally expensive. Devroye (1978) suggested 
breaking the ties by comparing indices;' i.e. when Xi and Xj are equally close to 
oc, according to the defined metric, X¡ is said to be closer to oc if i < j. Then, 
the weights are just Wni (oc) = cnv;. Stone (1977) required the weights (27) to 



satísfy, for asymptotíc theory, 

(í) Cnl -> o and (íi) ~ -> o for all (X > o as n -> oo. (28) 
i ~ na 

Devroye (1978) requíred (28) (í) and that there exísts a sequence of numbers 
k = kn such that, ín asymptotíc theory, 

n 

k->oo,kjn->Oand ~ cni->Oasn->oo. 
i=k+1 

(29) 

Devroye (1982) proved that (28) and (29) are equívalent. These propertíes are 
satísfied by the followíng weíghts: 

Uníform: Cni = k- I when í::;; k and Cni = O otherwíse, wíth k -> 00 and kjn -> O as 
n -> 00, 

Triangular: Cni = 2(k - í + l)j (k + k 2
) when í ::;; k and Cni = O otherwíse, wíth 

k -> 00 and kj n -> O as n -> 00, 

Exponentíal: Cni = h(1 + h)-I(1- (1- h)-n)-I, wíth h -> O and nh -> oo. 

In order to check that these weíghts satísfy (29), Devroye (1978) recommended 
takíng k:::: (njh) 1/2 ín (29). 

Sínce m(a:) = Pg(y) (a:)jf(a:), one can exploít any avaílable ínformatíon on 
f(a:) , e.g. when f(a:) ís known (whích ís híghly unlíkely ín practíce), m(a:) can 
be estímated by m(a:) = Pg(y)(a:)jf(a:) (Johnston 1982). 

In the fixed desígn model, where the explanatory varíables are non random 
and possíbly equíspaced on the ínterval [0,1], Príestley and Chao (1972) 
proposed weíghts (wíth r = 1) 

Wni(a:) = (X¡ - Xi-l)h-1K«a:- Xi)jh). 

Gasser and Müller (1979) defined weíghts for the fixed desígn model 

Wni(a:)=h- I )::.1 K«a:- u)jh) du, (30) 

where Xi-I ::;; Si-I ::;; X¡ ís chosen between the ordered X's. Cheng and Lín 
(1981) consídered the case Si = Xi. 

Yang (1981) and Stute (1984) consídered a type of nearest neíghbour estímate 
wíth weíghts 

(31) 

where P(.) ís the empírícal cumulatíve dístríbutíon. These weíghts are of the form 
(23) where we use the fact that I:in-1h-1K«P(a:)-P(X¡))jh)---->1, under the 
usual condítíons on h. 

Nonparametríc regressíon ín a tíme seríes context has been studíed by, Watson 
(1964), Roussas (1969), Bosq (1980), Robínson (1983), Doukhan and Ghíndes 
(1980 and 1983), Collomb (1984), Yakowítz (1985 and 1987) and Bierens (1990) 
among others. 



Note that the weights in (18) can be interpreted as minimizing a square loss 
function i.e. 

m(oc) = argminl' ~ (g(Y}) -ldWnj(oc). 
j 

Then m(oc) is highly sensitive to the effect of just one isolated observation Yi, 

particularly if the corresponding Xi is close to oc. The idea of robust estimation 
of a location parameter has been adapted to this context. In particular, the 
influence of outlying observations is reduced by substituting for the quadratic 
loss function a convex function p(.) with bounded derivative cp(.). That is, the 
robust conditionallocation functional r(oc) defined by the equation 

E (cj.l(g(Y) - r(oc» I X= oc} = 0, 

is estimated by the solution to 

~ cj.l(g(Y}) - r(oc»Wni(OC) = O. 
j 

(32) 

This estimator was proposed by Tsybakov (1983), Robinson (1984) and Hardle 
(1984) using kernels. Hardle and Tsybakov (1988) extended it to simultaneous 
robust estimation of conditionallocation and scale using kernel s and Boente and 
Fraiman (1989, 1990) to location invariant robust estimates, estimating the 
conditional scale a priori, using kernel and nearest neighbour estimates. 

Conditional quartiles can be estimated from the estimated cumulative 
conditional distribution F( W I X = oc), 

F(WI X=oc)= ~ l(g(Y}) ~ W) Wnj (oc). 
j 

Then the a-th conditional quartile .la is estimated by fa such that 

F(faIX=oc)=a. 

(33) 

(34) 

These quartile estimates were defined by Stone (1977) using general consistent 
weights. He al so proposed L-estimates computed by functions of conditional 
quartile estimates. 

Stone (1977) also defined local linear weighls as follows. Let us define 
Z¡' = (1, Xi), then r3 = (~iZiZ¡' Wni(OC)} -l~iZig(Y¡)Wni(OC) minimizes the 
function 

~ (g(Yj) - ¡3'Zj)2Wnj(OC). 
J 

The weights V ni (OC) = oc' (~iZiZ{ Wni(OC)} -l~iZiWni(OC) are called local linear 
weights. These weights may be inconsistent and Stone proposed a transformation 
of V ni (oc) which produces consistent weights. Cleveland (1979), Cleveland and 
Devlin (1988) and Cleveland el al. (1988) proposed local linear polynomial 
weights which are robustified by means of an iterative procedure. 



3.2. Asymptotic properties and automatic choice of the smoothing number 

The general kernel estimate using weights (24) can be expressed as 

where 

estimates 

m(oc) = P g(y) (oc )j[(oc), 

Pg(y) (oc) = (n det(H»-1 ~ g(Yj)K(H-1(oc- Xj», 
j 

P g(y) (oc) = m(oc )f(oc). 

The asymptotic unbiasedness of Pg(y)(oc) follows from Bochner's theorem, 
taking q(u) = Pg(y) (u), f(.) and m(.) are continuous at oc, and El m(X) I < oo. 
Then 

q(u) = E(Pg(y) (oc» = det(H)-IE(g(Y)K(H- 1 (oc - X») 

= det(H) -IE(m(X)K(H- 1 (oc - X») 

= det(H)-1 ~ Pg(y)(U)K(H-1(oc- u» du 

---> Pg(y) (oc) as n ---> oo. 

The asymptotic bias of Pg(y) (oc) can be reduced, when Pg(y) (oc) admits enough 
derivatives, by using higher order kernels, as in density estimation. In particular, 
using kernel s of order two and assuming also that the first two derivatives of 
Pg(y)(oc) exist and are bounded and (xii), when r = 1, 

E(Pg(y) (oc) - Pg(y) (oc» "'" 2- 1h 2¡32 a2p g(y) (oc)jaoc 2
• 

Mean square consistency follows assuming also (vii)-(ix) and s 2 (oc) = 

E(g( Y)2 I X = oc) is continuous at oc, since assuming independence 

Var(Pg(y) (oc» = (n det(H»-IQ(oc) + n-1E(Pg(y)(oc», 

where 

Therefore, m(oc) is also consistent, applying Slutsky's theorem. Strictly, the 
moments of kernel estimates may only exist under restrictive conditions in view 
of the random denominator [(oc). 

The sequence of weights {Wni (oc), i ~ I} is said to be universally Ls consistent 

for s ~ 1 fixed, if 

E[ ~ I m(oc) - m(oc) I Sf(oc) dOC]--->O as n ---> 00, 

for all possible distributions of (Y, X) such that El g(Y) I s < oo. 



Stone (1977) gave necessary and sufficient conditions for the universal 
consistency of weights and he applied his result to prove the universal 
consistency of nearest neighbour weights. Devroye and Wagner (1980) and 
Spiegelman and Sacks (1980) proved the Ls universal consistency of kernel 
weights and Gyorfi (1990) the universal consistency of partition estimates. An 
important feature of many of these results is that, despite the motivation given 
for kernel estimates, X need not have a density, so that discrete valued regressors 
are permitted. 

Schuster (1972) established for r = 1, under conditions stated aboye, and 

nh 3 -> 00, nh 5 -> O as n -> 00, 

for {,¡rl, ... , ,¡rs} distinct fixed points, 

(nh) 1/2(m(,¡rI) - m(,¡rl), ... , m(,¡rs) - m(,¡rs»~N(O, aW), 

where W = diag{a2(,¡rI)jf(,¡rI), ... , a 2(,¡rs)jf(,¡rs» and a2(,¡r) = Var(YI X = ,¡r). 
The conditional variance is consistently estimated by 

a2
(,¡r) = ~ Y?Wni(,¡r) _ [~ YiWni(,¡r)] 2. 

Hence, 

W = diag{a2(,¡r¡)jf(,¡rI), ... , a 2(,¡rs)jf(,¡rs» 

is a consistent estimate of W that can be used for constructing consistent 
confidence intervals. Robinson (1983) proved that for r> 1 and using weights 
(24), the asymptotic variance is the same, but the normalizing factor is 
(n det(H» 1/2. He also proved that the asymptotic variance is unaffected under 
weak dependence where the regressors are lagged values of the dependent 
variable and assuming that the series is strong mixing. 

The plug-in method is more difficult to implement than in density estimation. 
The MSE of m(,¡r) may not exist because it is a ratio between random variables. 
The following linearization is often applied 

m(,¡r) - m(,¡r) "" CPg(y)(,¡r) - m(,¡r)f(,¡r»)jf(,¡r). 

Then, the MSE of m(,¡r) is approximated by 

E(Pg(y)(,¡r) - m(,¡r)t(,¡r»)2jf(,¡rf "" (nh)-la2(,¡r)af(,¡r)- 1 

+ h 4 {tJ2(m(2)(,¡r) + 2m (1) (,¡r)(a log f(,¡r)ja,¡r»j2} 2, 

where m(i)(,¡r) = aim(,¡r)ja,¡ri. The 'optimal bandwidth' which minimizes the 
aboye expression is proportional to n-l/S and depends on the unknowns a2 (,¡r), 
f(,¡r) , f(1)(,¡r), m(1)(,¡r), m(2) (,¡r). All these unknowns must be estimated when 
implementing the plug-in procedure. 

Alternatively, other measures of accuracy can be employed. The mean 
integrated weighted squared error (MIWSE) is defined as 

E[ ~ (m(,¡r)-m(,¡r)}2f(,¡r)V(,¡r) d,¡r], (36) 



where V(.) is a weighting function. Stone (1982) provided the lower and optimal 
rate of convergence in this sense, under certain smoothness conditions on m(.) 
and f(.). 

The MIWSE can be estimated from the data by the averaged weighted squared 
error (A WSE) 

AWSE=n- 1 ¿.: {g(Yj)-m(Xj»)2V(Xj). 
j 

The bandwidth minimizing this function will be too small since m(Xj) -> g(Yj) 

as h -> O, for fixed n. CIar k (1975) proposed the leave-one-out cross-validation 
function 

(37) 

m(j) (oc) = E¡ ;«jg(Y¡)Wn¡(oc) and Wn¡(oc) are kernel weights. 
An alternative to the leave-one-out cross-validation function is to use sorne 

penalizing function. In this case h is chosen to be íi = argminh Q(h), where 

Q(h) = ¿.: {g(Yj) - m(Xj»)2'1'(n- 1h-
1
)V(Xj), 

j 

where '1'(.) is the penalizing function which corrects for too small h. Examples 
of penalizing functions are: 

'I'(n-1h- 1) = (1 - n- 1h- 1K(0»-2, Craven and Wahba (1979) and Li (1985). 

'I'(n-1h- l ) = exp(2n-- 1h- 1K(0», Akaike (1970). 

'I'(n-1h- l
) = (1 + n- 1h- 1K(0»!(1 - n-1h-1K(0», Akaike (1974). 

'I'(n-1h- l
) = (1 - 2n- 1h- 1K(0»-I, Rice (1984). 

Hardle and Marron (1985a and 1985b) have proved that, under certain 
regularity conditions, all these data-driven bandwidths are asymptotically 
optimal with respect to different accuracy measures. Consistent cross-validated 
smoothing parameters in the nearest neighbour case have been obtained by Li 
(1984). Liz (1987) proved the asymptotic optimality of several cross-validation 
criteria where the smoothing parameter takes discrete values, with application to 
nearest neighbours estimation. Andrews (1991a) has generalized his result to 
models with heteroskedastic disturbances. 

3.3 Applications 

Nonparametric regression estimates can be employed to check the goodness of 
particular parameterizations of conditional expectations and the usefulness of 
candidate explanatory variables without specifying functional formo Plots of 
parametric and nonparametric fitting are useful in this respect. 

Bierens and Pott-Butter (1990) demonstrated the usefulness of nonparametric 
regression analysis for functional specification of household Engle curves. 



Household demand functions and equivalence scales are estimated from 
econometric models where the demand function is specified in advance, directly 
or indirectly, via the specification of the utility function or cost function. The 
functional form of the model is chosen on the basis of tractability rather than 
on the basis of prior knowledge of the true functional formo The probability 
of choosing the correct model is small due to the many functional forms 
theoretically admissible. Misspecification of functional form leads to 
inconsistent parameter estimates and the equivalence scales will also be 
inconsistent estimated. Bierens and Pott-Butter (1990) noted that the life cycle 
consumption hypothesis leads to demand systems that relate specific demand to 
net income, prices and household campo sitian, plus a heteroskedastic error 
termo The demand functions involved are conditional expectation functions. The 
functional form of the Engle curve is estimated by nonparametric kernel 
regression using the 1980 Budget Survey for the Netherlands. Two Engle curves 
are estimated for expenditure on food, clothing and footwear, and for other 
expenditures. The regressors are net income, number of children in the age group 
0-15, and in the age group 16 or over. They plotted the Engle curves of 
expenditure versus net inca me for the different household categories. Then, 
parametric models were chosen in accordance with the nonparametric regression 
results. The final specifications of the Engle curves are linear, depending on 
inca me and the number of children in the two age groups. 

Stone (1977) proposed estimates of conditional variances, covariances and 
correlation functions. In particular the conditional variance of Y given the vector 
of regressors X, a

2 (oc) = Var( y I X = oc), is estimated by 

a2
(oc) = ~ Y?Wn¡(oc) - [~ Y¡Wn¡(oc)] 2. (38) 

Rose (1978) proposed other conditional variance estimates in the linear 
regression model when it is known that E(YI X = oc) = oc'(3, where (3 is a vector 
of unknown parameters. A possible estimate of a2

(oc) is 

a2 (a:) = ~ (Y¡ - X(S/Wn¡(oc), 
j 

where S is sorne preliminary estimate of (3; e.g. the least squares estimate. 

(39) 

Elasticity and other economic functional estimates can be computed from the 
estimates of the derivatives of the regression curve. 

Another important application is in prediction of time series. The regression 
function in this case is an autoregressive process of unknown functional form, 
i.e. let Z( = (X-l, Xi-2, ... , X- p ) and 

m(~) = E {X I Z = ~ l. 

In efficient asset markets, it is widely agreed that high frequency asset returns 
are linearly unpredictable, conditionally heteroskedastic and conditionally 
leptokurtic. Empirical and theoretical results are consistent with the conjecture 
that nonlinearities may be present in asset returns' conditional means. However, 



the out-of-sample forecasting of linear models has not been improved on by any 
nonlinear model. Diebold and Nason (1990) provided several explanations for 
this fact: nonlinearities may be present in even-ordered conditional moments, 
nonlinearities such as outliers may be present, and it is difficult to find the correct 
parametric model. They estimated the conditional expectation of ten major 
dollar spot rates using the nonparametric local weighted regression proposed by 
Cleveland (1979) and Cleveland and Devlin (1988). They found that 
nonparametric regression does not improve the out-of-sample prediction of a 
simple random walk. These results are consistent with those of Presscott and 
Stengos (1988) who were unable to improve forecast of gold prices in the 
Canadian market using kernel regression. 

Nonparametric estimates of conditional variances in a time series context are 
useful for estimating the stock return volatility in asset markets. Pagan and 
Schwert (1990) compared the nonparametric conditional stock volatility 
estimates with parametric estimates like the autoregressive conditionally 
heteroskedastic (ARCH) model, generalized ARCH (GARCH), exponential 
GARCH, and Markov's switching-regime. 

An important application consists of testing the difference between regression 
curves. Suppose that we have data {(Xi, Y¡, Z¡), 1 ~ i ~ n} from the random 
variable (X, Y, Z). We want to test the hypothesis Ho: my = mz where 
my(oc)=E(Y\X=oc) and mz(oc)=E(Z\X=oc). King (1989) proposed the 
statistic 

7n = n- I ¿; (rlly(X¡) - rll,(X¡»2, 
¡ 

where rlly(.) and rllz (.) are kernel estimates which employ the same bandwidth. 
He obtained the small sample distribution of such a statistic on the assumption 
that the error terms in each regression are normally distributed, and the 
asymptotic distribution of 7n, after suitable normalization, when the bandwidth 
tends to zero as n --> oo. Hiirdle and Marron (1990) obtained a similar test where 
the difference between the two regressions is parameterized. Hall and Hart (1990) 
proposed a statistic 

[
n-I (j+m )2] [ n-I ]-1 

Sn = .¿; . ¿; D¡ n.¿; (D¡_I - D¡)2f2 , 
J~O I~J+ 1 J~O 

where m is the integer part of nh for fixed h, and D¡ = Y¡ - Z¡ for 1 ~ i ~ n, and 
D¡ = D¡-n for n + 1 ~ i ~ n + m. They proved, keeping h fixed, that Sn provides 
an asymptotically powerful test, and the asymptotic distribution of Sn, under the 
null, is a Wiener process. They proposed to determine the critical values by 
bootstrap, which are more accurate than the critical values obtained by the 
asymptotic approximation. Hall and Hart (1990) generalized this test to the case 
of testing several nonparametric functions, and regression curves which depend 
on different regressors. 

Many other applications of nonparametric regression are found in 
semiparametric problems which are discussed in the next section. 



4. Estimation of semiparametric models 

Many if not most econometric models are semiparametric. A parametric 
structure explaining sorne basic economic phenomena (e.g. utility or cost 
functions) is usually known and one is interested in the estimation of these 
parameters and in making inferences on the assumed structure from the data. 
However, many features of the data generating process are of unknown formo 
The full functional form of the distribution cannot usually be justified from 
economic theory and nor is it likely to be of specific economic interest. In the 
recent econometric literature, estimation of a number of semiparametric models 
requires nonparametric estimation of certain functionals in the first step. In these 
models, it is explicitly recognized that certain features of the underlying 
distribution of the data are unknown while others follow a known parametric 
model. The goal is to obtain estimates for the parametric part that are 
asymptotically equivalent to those obtained when the nonparametric part of the 
model is perfectly known. 

In nonparametric estimation, 'nature' only provides a data set (Z¡, i ~ 1), and 
different features of the underlying data generating process are estimated from 
these data. In semiparametric estimation, 'nature' also provides sorne parametric 
relationship between variables. For instance, 

E( Y I X = -oc) = -oc' 13, 

E(Y I X = -oc, Z = 5') = -oc'¡3 + ¡.t(5') with ¡.t unknown, 

Median(YI X = -oc, W = w) = -oc'¡3. 

(41) 

(42) 

(43) 

In (41) and (43), the parameters of interest 13, can be consistently estimated by 
parametric methods, e.g. least squares or robust estimation. The problem in this 
case is to choose the most appropriate objective function. Semiparametric 
estimates improve the efficiency of simple consistent parametric estimates by 
incorporating estimates of sorne unknown nonparametric function in the 
objective function. Consistent estimates are sometimes impossible to obtain by 
parametric methods (e.g. in (42)) but they can be obtained by semiparametric 
estimation. 

Thus, in a semiparametric problem one combines a known function of the 
parameter of interest (e.g. -oc' ¡J), with a nonparametric shape function a, such 
as the density of the disturbances, regression functions, conditional quantiles etc. 
A semiparametric estimate is adaptive if it is asymptotically as efficient as the 
infeasible estimate which employs a correct finite parameterization of a. (In 
what follows when referring to 'efficiency', we shall always mean 'asymptotic 
efficiency'). The property of adaptation refers to the existence of such an 
estimate. Unfortunately, adaptation is not always possible. 

Stein (1956) proved that a necessary condition for adaptation is that for every 
finite parameterization a~ of a, where r¡ is a finite dimensional vector, the 
limiting covariance matrix of the infeasible estimate of 13 and the nuisance 
parameters vector r¡ is block diagonal. It implies that knowledge of r¡ cannot 



improve estimation of (:J. Bickel (1982) gave a condition for a less general class 
of G's, having the heuristic interpretation that the efficient estimate based on a 
given G is still root-n-consistent when G is misspecified. Manski (1984) gave a 
necessary condition for adaptation of a subset of parameters in (:J and Schick 
(1986) gave a condition that is necessary in models more general than Bickel's. 

Begun el al. (1983) showed how to obtain lower bounds for the asymptotic 
covariance matrix of estimates of (:J when adaptation is not possible. These 
bounds, called semiparametric efficiency bounds, have been calculated for 
certain econometric models, see Chamberlain (1986, 1990) and Cosslett (1987) 
and Newey (1990). 

In order to conserve on space and to achieve a more unified presentation we 
focus on methods which employ the smoothed nonparametric density or 
regression estimates introduced in sections 2 and 3. Thus we omit such important 
semiparametric methods as least absolute deviations (LAD) estimates of 
censored regression (where nonparametric estimation occurs only in computing 
standard errors) and maximum score estimates of discrete choice models (which 
are asymptotically non-normal and are not root-n-consistent). Sorne of these 
methods were included in the survey of Robinson (1988b). Not a great deal 
of work has been done on the choice of data dependent bandwidth in 
semiparametric problems, though of course the rules described in sections 2 and 
3 can be applied. 

In the rest of this section we present different semiparametric estimates. 
Surveys of the semiparametric literature are Robinson (1988b), Newey (1990b) 
and Hardle (1990). Most semiparametric work has employed the kernel or 
nearest neighbour nonparametric estimates discussed aboye, including the bulk 
of the work referred to below. Another semiparametric method which is proving 
popular in a variety of semiparametric problems is series estimation, see e.g. 
Andrews (1991b) and Newey (1991). 

4.1. Ful! adaptive estimation 

Bickel (1982) considered the linear regression model (41). Under regularity 
conditions, the Cramer-Rao efficiency bound is achieved by the one step score 
estimate 

i3 = i3 - [~X¡Xff(1)(U¡)2f(U¡)-2] -1 ~ X¡f(1)(U¡)f(U¡)-I, 

where i3 is a preliminary root-n-consistent estímate, and Ui = Yi - (:J' Xi. 

However, the density of the disturbances Ui is nonparametric and the 
dísturbances themselves are as unobserved. Stone (1975), for the case X = 1 and 
(:J scalar, and Bickel (1982), for the general regression case, suggested an estímate 
of approximately the form 

{3 = /3 - [i= XiX¡'[(l)(Ü¡)2f(Ü)-2] -1 ~ Xif(l)(Ü¡)f(Üi)-I, (44) 



where Üi = Yi - (3' Xi and [(Üi) and [(l)(Üi) are kernel estimates of f(.) and 
f(1) (.). Bickel proved that (3 is as efficient as the infeasible ¡j, assuming that the 
Ui are iid, symmetric and independent of Xi. Symmetry is not necessary for 
adaptive estimation of the slope coefficient. Bickel required splitting of the 
sample into two parts. The residuals Üi are computed from one part of the 
sample and the density and its derivatives are estimated from the other. Schick 
(1986) employed a les s drastic form of sample-splitting. Manski (1984) extended 
Bickel's results to nonlinear regression, avoiding independence between 
disturbances and regressors. A Monte Carlo study of bandwidth choice is 
reported in Hsieh and Manski (1987). Kreiss (1987) extended these results to 
adaptive estimation of the coefficients of an ARMA model. He did not require 
the sample-splitting of Bickel. Steigerwald (1990) considered an extension to 
regression models with ARMA errors. 

Engle and González-Rivera (1989) have applied this method to the estimation 
of ARCH models with conditional density of unknown formo They assumed a 
linear functional form for the conditional expectation and the conditional 
variance of stock returns. Then, using ordinary least squares, they estimated the 
parameters of the conditional mean and variance in order to estimate the 
standardized residuals. The density function of the standardized residuals is 
estimated by a kernel estimate. Then, the log-likelihood function based on the 
estimated density is maximized with respect to the parameters of the conditional 
mean and variance. The information matrix is not block diagonal, and the 
resulting semiparametric estimate is not proved to be adaptive. However, they 
reported encouraging Monte-Carlo results. 

There are other semiparametric estimates, based on nonparametric estimates 
of the score function, that achieve certain efficiency bounds. Newey and Powell 
(1987a and b) used nonparametric score estimates to achieve semiparametric 
efficiency bounds within a certain class of distributions for censored regression 
models under symmetry and conditional quantile restrictions. Lee (1990) has 
used also estimates of the score function in sample selection models. His 
semiparametric estimate achieves the Chamberlain (1986) bound in the binary 
selection model. 

4.2. Asymptotically efficient estimation in the presence of heteroskedasticity 

of unknown form 

Consider model (41) with Var(Y I X = oc) = a2
(oc) of unknown formo The 

infeasible weighted least squares estimate 

is Gauss-Markov efficient under suitable regularity conditions. Rose (1978) 
suggested estimating a

2
(Xi) by (38) or (39) and then estimating the coefficients 



(45) 

This estimate has been proved to be as efficient as !3 by Carroll (1982) using (38) 
with kernel weights for the single regression model, assuming that a 2

(.) is a 
smooth function and the regressor admits a density with compact support and 
is bounded away from zero. Robinson (1987a) relaxed Carroll's assumptions to 
moment conditions in the general multiple regression model using (38) with 
nearest neighbour weights. He did not require continuity of a2

(.), and indeed 
allowed X to have a discrete or mixed distribution, not only a continuous one. 
Lee (1990c) presented Monte Cario results using a data driven bandwidth. 
Delgado (1989b) has extended Robinson's results to the multiple equations 
nonlinear regression model and Delgado (1989a) has proved adaptation in the 
nonlinear regression model using (39). 

A natural app1ication of this method is to count regression models. When y 

is a count variable taking values 0, 1,2, ... , the conditional variance is typically 
a function of the conditional mean. The usual estimation approach in 
econometrics is maximum likelihood (ML). Under regularity conditions, the ML 
estimate is asymptotically efficient if the conditional distribution of Y given X 
is correctly specified (e.g. a Poisson, a geometric or a negative binomial). 
Furthermore, when the conditional distribution is incorrectly specified, the 
pseudo ML (PML) estimate may be consistent but asymptotically inefficient (e.g. 
the Poisson ML). The usefulness of the Poisson model is limited by the fact that 
the variance is equal to the conditional mean, which is rarely obviously true using 
microeconomic data. Other likelihood functions, like the geometric or negative 
binomial, may yield inconsistent pseudo ML (PML) estimates under 
misspecification. In this sort of model, it is typically assumed that 
E(YI X = ¡,r) = g(¡,r, (30), where (3o are unknown parameters and g(¡,r, (3) is always 
positive for any value of (3; e.g. g(¡,r, (3) = exp(¡,r'{3). The semiparametric 
weighted nonlinear least squares estimate 

is, asymptotically, equally efficient to the Poisson ML estimate when the 
likelihood is correctly specified, but it is more efficient than the Poisson PML 
estimate when the conditional distribution is not Poisson. The semiparametric 
estimate is, in general, more inefficient than other ML estimates when the 
likelihood is correctly specified. But it is consistent more generally than PML 
estimates under misspecification. 

Delgado and Kniesner (1990) considered the problem of modelling worker 
absenteeism on London buses. In their application, Y is the number of absence 
spells of up to 7 days in 1985. X is a vector consisting of: the numbers of 
absences in 1984 and 1983; and variables including pay grades, nonwage 
characteristics of employment, worker's personal and economic characteristics, 



the employer's technological and economic traits, and the legal and economic 
environment. There were n = 5101 observations, a promising number for 
semiparametric estimation, because sufficiently good nonparametric conditional 
variance estimates are likely to be obtainable. It was assumed that 
g(;,r, (3) = exp(;,r' (3), which is common in regression models of counts. They 
computed semiparametric estimates as well as ordinary least squares and ML 
(based on various models). It was found that the semiparametric and negative 
binomial ML results were similar. 

Müller and Stadtmüller (1987) obtained efficient estimates in the fixed design 
model with unknown heteroskedasticity, using weights (38). Harvey and 
Robinson (1988) considered a nonstationary time series regression model with 
trending regressors and stationary autoregressive disturbances which are 
multiplied by an unknown time-varying factor. They obtained efficient estimates 
of the regression parameters using a Cochrane-Orcutt algorithm where the 
residuals are standardized by a nonparametric estimate of the heteroskedasticity 
based on partition weights. Robinson (1986) also used weights (36) to obtain 
estimates of time varying parameters and heteroskedastic variances which are a 
function of time. 

Robinson (1987b) has proposed applying semiparametric methods to the 
estimation of models with ARCH effects, where the conditional variance is of 
unknown formo The conditional variances and their derivatives are estimated by 
nonparametric regression. Then, estimates of the parameters of the conditional 
mean are obtained substituting the nonparametric estimates in the normal 
equations of the Gaussian log-likelihood. Applications of this method may be 
found in Whistler (1989) and Lee (1990b). 

The estimate defined in (45) can be arbitrarily influenced by outlying 
observations. Delgado (1990a) proposed using the estimates defined in (38) and 
(47) with nearest neighbour weights to correct for heteroskedasticity in the linear 
regression model using robust estimates. This estimate is implicitlydefined as the 
solution to 

~ 'I'«Y¡ - XONá(X¡), X¡)X¡/á(X¡) = 0, (46) 
¡ 

where '1'0 is a bounded function and á(X¡) = (á2(x¡» 112. Delgado proved, under 
regularity conditions, that this estimate is asymptotically as efficient as the 
infeasible estimator which employs the true a(X¡) in (46). 

4.3. Optimal semiparametric instrumental variable estimators 

Consider a nonlinear simultaneous equations model expressed by the conditional 
moment restriction 

E(U«(3o, Y, X) I X) = 0, (47) 

where U(.) is a q x 1 vector of known functions, (3 is an unknown p x 1 vector 
of parameters, X is a r X 1 random variable and Y is a s x 1 random variable. 



It is also assumed that 

Var(U(¡)o, Y, X) I X = oc) = Ü, 

where Ü is positive definite and independent of oc. Let Hi be a matrix of 
instruments, such that 

where 

R(Xi, (J) = E(aU({J, Y, X)ja{J I X = Xi). 

When U is nonlinear in Y, in general at least sorne elements of R(Xi, (J) are of 
unknown functional form, because (47) produces insufficient information. 
Amemiya (1977) defined the optimal nonlinear three stage least squares 
(NL3SLS) estimate as 

¡3 = argJrin ~ U¡({J)'Hi (~HiÜHirl ~ HiU¡({J). 

Arbitrary instruments uncorrelated with Ui will generally produce root-n
consistent but asymptotically inefficient estimates. Let iJ be sorne preliminary 
root-n-consistent estimate of {J. When the (ex, T)-th component of R( (J, Xi), 
rm({J, Xi), is of unknown functional form, it is estimated by 

[ca(X i ) = :6 Cc,,(Yj, Xj, iJ) Wnj (Xi), 
j 

where c(>T(Yj, Xj, (J) is the (ex, T)-th component of the matrix aU({J, Yi, Xi)ja{J. 

The variance matrix Ü is estimated by its sample analogue 

0= n- 1 :6 Uj(iJ)Uj(iJ), . 
j 

Then, the optimal instruments Hi are estimated by Hi = íto -1, where Ri has 
(ex, T)-th component [ciT(Xi); and {J would be estimated by 

¡3 = argJrin ~ Ui({J)'Hi (~HiOHirl ~ HiUi({J). 

This feasible NL3SLS estimate has been proposed by Newey (1990a). Newey 
(1990a) has proved, under conditions similar to Robinson (1987), that the 
corresponding one-step estimate is asymptotically efficient. 

If certain independence assumptions are added to (47), Robinson (1990a) has 
shown that estimates as efficient as Newey's can be obtained by estimating 
R({J, Xi) by resampling techniques. In particular, if 

C(<7(Yi, Xi, (J) = toAH{J), h({Jo, Y¡, Xi), Xi), 

where t(<7(.), H.) and h(.) are known functions , Vi = h( (Jo, Yi, Xi) is independent 
of Xi. Then, 

[(>T(Xi) = T - 1 :6 toAHiJ), h(iJ, Yj, Xj, ), Xi), 
j E 3 



where J is a subset of size T of the integers {l, 2, ... , nJ. Robinson (1 990a) proved 
that the resulting NL3SLS estimate of (3 is as efficient as the infeasible estimate, 
under regularity conditions which allow for lagged independent variables or 
serially correlated disturbances, but requires independence between Vand X, 

often tantamount to independence between U and X, strengthening the 
conditional moment restriction (47). An advantage is that the estimate avoids the 
choice of a smoothing parameter. The number of elements in :1 has to increase 
with n but at an arbitrarily slow rate, where this rate may affect a Berry-Esseen
type bound (that is the rate of convergence to the limiting distribution). 

Application of these methods is interesting in transformed regression models, 
where PML generally yields inconsistent estimates. Consider for instance the 
transformed model 

V( (3, Yi, Xi) = arcsinh(>-' Yi)/ >-. - a - () 'Xi, 

where Y is scalar and (3 = (>-., a, () ')' is the vector of parameters. Then 

R(Xi, (3) = (r(Xi), - 1, - Xi), 

where 

r(Xi) = E (aV((3o, Y, X)/a>-'I X = Xi) 

= E [tanh(>-'o(ao + (3¿X + V)2/>-.O) - (ao + (3'X)/>-'o I X = Xil. 

Root-n-consistent estimates of () are obtained using arbitrary instruments, 
uncorrelated with V. The resulting estimates iJ = (a, >-, /J')' are inefficient. 
However, efficient estimates are obtained applying Newey's method, estimating 
r(Xi) by 

r(Xi) = ~ (tanh(>-(a + /J'Xj + Üj)2/>-) - (a + /J'Xj)/>-J Wnj(Xi). 
j 

Assuming X is independent of V, we can apply Robinson's method. The estimate 
of r(Xi) is given by 

r(Xi) = T 1 ~ (tanh(>-(a + /J'Xj + Üj)2/>-) - (a + /J'Xj)/>-J. 
jO 

Note that Vi = Vi in this case. 
These methods have been extended and applied to the estimation of price 

elasticities of demand for car attributes and fuel efficiency by Lee (1990a). 

4.4. Semiparamelric parlially linear models 

Semiparametric estimates of model (42) have been considered by Spiegelman 
(1976), Oreen el al. (1985), Engle el al. (1986), Rice (1986), Heckman (1986), 
Robinson (1988a), Speckman (1988), Carroll and Hardle (1989) and others. 

Note that 

E(Y I Z = g:) = E(X I Z = g:)' (3 + )'(~). 



Then, with serially uncorrelated and homoskedastic errors, an efficient estimate 
of the slope coefficients is obtained by regressing Y¡ - E(YI Z = Z¡) on 
X¡ - E(X I Z = Z¡), assuming X and Z are not functionally related. A feasible 
version can be constructed by estimating the conditional expectations by 
nonparametric methods. In particular, Robinson (1988a) proposed estimating (3 
by 

r3= [~X;X;'J¡rl ~X;Yn, 

where X; = X¡ - moc(Z¡) and Y; = Y¡ - rny(Z¡), rnx(Z¡) and my(Z¡) are higher 
order kernel estimates of E(X I Z = Z¡) and E(Y I Z = Z¡), respectively, and 
J¡ = 1(f(Z¡) > b) where f(Z¡) is the corresponding density estimate of Z evaluated 
at Z¡, and b is a small trimming number. Under regularity conditions r3 is root-n
consistent and asymptotically normal. Chamberlain (1990) has shown that it 
achieves a semiparametric efficiency bound. Higher order kernels are used in 
order to make the bias ·of r3 (see Speckman 1988) converge at the appropriate 
rateo Lee (1990c) has provided Monte Carlo results using data driven 
bandwidths. 

Lee (1989) has applied this approach to the estimation of the 'surprise' 
consumption function. The model can be expressed as follows 

Y¡ = (3'(X¡ - E¡(X¡» - 'Y'E¡(X¡) + U¡, 

where Y¡ is consumption and X¡ is a vector observable, E¡(X¡) is an unobservable 
vector of agents expectations of Xi, and U¡ is a scalar unobservable. The vector 
X¡ - E¡ (X¡) consists of 'surprises' or 'news'. It is assumed that agents have 
rational expectations, that is 

E¡(X¡) = E(X¡ I ~\¡), 

where 3¡ is the information set at time i. Further, it is assumed that 3¡ can be 
summarized by a vector of observables Z¡, so that 

E(X¡ I 3¡) = E(X¡ I Z¡). 

It is supposed that h(g:) = E(X I Z = g:) is nonparametric; we know the 
information set governing agents' expectations but we do not know by which 
mechanism these are formed. The consumption function can be described as 
semiparametric. We can rewrite the model as 

Y¡ = (3' X¡ + ('Y - (3)'h(Z¡) + U¡ 

= (3' X¡ + cp(Z¡) + U¡, 

where cp(Z¡) = (')' - (3)' h(Z¡) is of unknown functional formo This is a partially 
linear regression model. Robinson (1989) considered an alternative but related 
class of statistics which provides tests of certain hypothesis (such as (3 = O) under 
fairly general serially dependent, stationary, observations on Xi, Z¡ and Y¡. Lee 
(1989) used USA quarterly data and considered the model 

ÁC¡ = 'Y' + 'Y2E¡(r¡) + 'Y3E¡(I¡) + (3,(r¡ - E¡(r¡» + (32(1¡ - E¡(I¡» + U¡, 



where C¡ is consumption, .::lC¡ = C¡ - C¡-¡, I¡ is income, and r¡ is interest rateo 
Lee suggested that the information set 3¡ might initially comprise a large number 
of variables, such as three lags of C, 1, nominal interest rates, averaged hours 
worked per capita, government expenditures, inflation and stock prices. Because 
n = 133 only, nonparametric estimates of E¡(r¡) and E¡(I¡) when Z¡ is a 21-
dimensional vector will be hopelessly imprecise, and though the effect on 
estimates of /31 and /32 is likely to be less serious, it is clearly desirable to seek 
a Z¡ which contains much of the information in the 21 variables, but is of much 
smaller dimensiono This is an extremely difficult and delicate task, specially as 
the possibly nonlinear character of h(.) makes a linear components procedure to 
be possibly inadequate. Lee employed a principal components procedure based 
on certain nonlinear functions, as well as linear ones, and found it possible to 
choose a two-dimensional Z¡ Among his conclusions, the semiparametric tests 
tended to find semiparametric coefficients insignificant, and the estimates of the 
surprise coefficients tended to differ between parametric and semiparametric 
methods. The semiparametric estimates were found to be sensitive to the choice 
of bandwidth number, but not excessively so. 

Stock (1989) uses this semiparametric estimate for nonparametric policy 
analysis. He considers model (42) where observations are drawn from different 
cells. The variables Z include policy variables that can be modified by the policy 
maker, and X are dummy variables indicating the cell specific effects. The 
dependent variable measure the success of the policy. Then, the objective of this 
research is to estimate the benefit of a particular policy by the average 

Bn == n- I ~ [E(YI X == Xj, Z = Zj) - E(YI X == Xj, Z = zj)] 
j 

== n- I ~ ('Y(Zj) - 'Y(zj)), 
j 

where Z¡ and zt are the values of Z before and after the policy intervention. 
Stock (1989) praposed to estimate Bn by 

~ -I'\' * ~I Bn = n L..J (Wnj(Z¡) - Wnj(Z¡ ))(Yj - /3 Xj), 
j 

and obtained the asymptotic distribution of En under regularity conditions and 
after suitable normalization. Stock (1991) applied this pracedure to the 
estimation of the mean hazardous waste clean up benefits. In his application, 
equation (42) is interpreted as an hedonic price equation, where Y is the price 
of a house, Z are waste related and waste not re1ated housing characteristics. The 
housing waste related characteristics are praxy variables indicating the risk of the 
waste site. These variables are a function of the distance fram the house to 
the waste site, the area of the waste site, and whether or not the waste site is 
hazardous. The not waste re1ated characteristics are the size of the lot, living area 
in the house, a measure of the neighbour status, the age of the house, and the 
distance fram the house to the centre of the town weighted by the town 



population. The data consist of 324 single family homes in eleven western and 
northwestern Boston suburbs. The dependent variable is the sale price of the 
house between April 1978 and March 1981 deflated to 1980 prices according to 
the annual National Association of ReaItors. Stock (1991) compared ordinary 
least squares resuIts, assuming ')'(.) is linear, and the semiparametric methods. 
He found that the range of semiparametric benefit estimates was comparable to 
the range of estimates using least squares. However, both semiparametric and 
parametric methods resulted in imprecise estimates of the benefit of clean up the 
hazardous waste site. 

The approach of Engle et al. (1986) and Heckman (1986) is based on spline 
estimates. Powell (1989) and Newey et al. (1990), considered (42) where 
Z¡ = Wi' O, Wi are observable variables and o is an unknown vector parameters 
with application to censored regression models. In this modelo can be estimated 
root-n-consistently and then, a similar approach to that discussed above is 
employed. Ahn and Powell (1990) considered Zi to be an unobservable regression 
function which can be estimated nonparametrically. 

Semiparametric estimates such us those described in sections 4.1 to 4.4 are 
included in a general class considered by Andrews (1990). He also explicitIy 
considered hypothesis testing rules in semiparametric models, estimates which 
avoid sample splitting, and alIowance for serial dependence and mild 
heterogeneity. 

4.5. Semiparametric estimation based on averaged nonparametric estimates 

and their derivatives 

Powell el al. (1989) proposed an estimate of 

0= E {f(X)m (1)(X)j, 

where m (1) (oc) are the first derivatives of the unknown regression function 
m(oc) = E(Y I X = oc), and f(.) is the density of X. It is interesting in a number 
of econometric applications to limited dependent variable models where we have 
an index model of the form 

E(Y I X = oc) = m(oc'{Jo), 

where (Jo is a r X 1 vector of unknown parameters. In this case 0= c{Jo, where c 
is an unknown constant. Powell el al. noted that, under mild regularity 
conditions, integration by parts produces 

0= -2E{Yf(I\X)j. 

Thus, [(1)(.) can be estimated by kernels and o by 

8n = -2n- 1 ~ YJh~)(x¡) 
i 

= n ~ ~ Pij, 
( )

-1 n-I n 

2 i=1 j=i+ 1 
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where Pij = -h- r
-

1K(1)«Xi - Xj)jh)(Yi - Yj), K (1) is the vector of first 
derivatives of the kernel function, and [(1)(.) is the derivative of [(i)(.) defined 
in (16). Applying asymptotic theory for V-statistics, they proved that 

where 
r(;,x;,'!f) = f(;,x;)m(I)(;,x;) - ['!f- m(;,x;)Jf(1)(;,x;). 

A kernel estimate of r(Xi, Y¡) is 
n 

[(Xi, Yi) = (n - 1)-1 ~ Pij, 
j ;< 1 
j ;< i 

Since E(r(X, Y» = o, a consistent estimate of Var(r(X, Y» is 

Powell et al. (1989) noted that E(bn ) - 0= o(n -112) by using high order kernels, 
and assuming enough derivatives of f(.). They also proposed an instrumental 
variables estimate of 0* = ojE(f(X». They noted that 

0* = [E(f(1)(X)X')J -IE(f(1)(X)Y). 

Then 0* is estimated by 

where bxn = 1:¡f(1) (Xi)X { . 
Hiirdle and Stoker (1989) have obtained semiparametric estimates of 

0= E [ag(X)jaxJ, namely bn = -n- l 1:i(y¡[(l)(Xi)j[(Xi»t, where t was defined 
in the last section. Newey and Stoker (1990) considered efficiency properties of 
average derivative estimates. Hiirdle et al. (1989) have studied the MSE error 
properties of average derivatives estimates. They found that the bandwidth 
minimizing the mean square error is proportional to n - 2/7. Stoker (1989) used 
average derivatives estimates in testing additive derivative constraints. Robinson 
(1989) used them in testing a variety of hypotheses in parametric and 
nonparametric time series models. His methods were applied and extended by 
Lee (1989) in analysis of the 'surprise' consumption function reviewed in section 
(4.4). Ahn and Manski (1990) used related methods in the analysis of binary 
choice models with nonparametric estimation of expectations. Samarov (1990) 
has proposed different tests based on averaged second derivatives. 

4.6. Asymptotically efficient estimation in the presence of autocorrelation of 
unknown form 

Consider a linear regression model 

Y¡ = X{(3 + Vi, i = 1, ... , n, 
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where the X¡ are time series and the V¡ are stationary and nonparametrically 
autocorrelated. The model can be written in vector form as, 

y = X¡3 + U, 

where E(UU ') = r is an unknown Toeplitz matrix. Then the infeasible 
generalized least squares estimate 

/3 = (XT-1X)-IXT-1y, 

is Gauss-Markov efficient. The problem is to obtain feasible estimates that are 
as efficient as /3. This problem can be solved by premultiplying the model by the 
Fourier matrix which diagonalizes r. Then the model becomes a regression 
model with approximately independent heteroskedastic disturbances. The 
disturbance variances are proportional to spectral density ordinates of V. If the 
spectral density were known or correctly parameterized, efficient estimates could 
be computed in a standard way. Hannan (1963) pro po sed estimating the spectral 
density nonparametrically, showing that the corresponding frequency-domain 
generalized least squares estimate is as efficient as the infeasible one under quite 
general conditions, and allowing for trending regressors. This idea has been used 
in other econometric models, such as distributed lags (Hannan 1965), linear 
simultaneous equations (Hannan and Terrell 1973), continuous time systems 
(Robinson 1976) and regression models with conditional heteroskedasticity of 
unknown form (Hidalgo 1989). Robinson (1990b) justified efficiency of the 
estimates with general data driven smoothing parameter for the spectral density, 
justifying the consistency of a particular choice of smoother. 

Hidalgo (1990) has considered the problem of nonlinear autoregressive 
disturbances, where V¡ = p (V ¡ - ¡) + e¡, i = 1, ... , n, p (.) is an unknown function 
and e¡ are white noise. He proposed a Cochrane-Orcutt type estimate where p(.) 

is estimated nonparametrically. 

4.7. Linear regression parameter estimation constructed by nonparametric 

eslimation 

Faraldo Roca and González Manteiga (1985), Cristóbal Cristóbal el al. (1989) 

and Stute and González Manteiga (1990) considered the estimation of the linear 
regression model Y = X' ¡30 + e where e is independent of X and E(e) = O and 
Var(e) = a

2
, by the general class of estimators 

¡3 = arg;:in ~ (rÍly(oc) - oc '(3)2 dOn(oc), 

where fln (oc) is a weighting function and rÍly (oc) is a nonparametric estimate of 
E(Y I X = oc). They propose to use the weighting function, 

On (oc) = roo [(t) dt, 

where [(oc) is the nonparametric estimate of the density of X evaluated at oc. 



Faraldo Roca and González Manteiga (1985) and Cristóbal Cristóbal et al. 

(1989) proved that {3 is to first order as efficient as ordinary least squares. They 
showed good performance of the biased {3 with respect to ordinary least squares 
when mean squared error (MSE) is used for comparison. It obviously requires 
a 'judicious choice' of the smoothing parameter. Faraldo Roca and González 
Manteiga (1985) calculated the optimal bandwidth using kernels which minimize 
the MSE of {3 in the one regressor case. For this choice of bandwidth the MSE 
of (3 is smaller than the variance of the ordinary least squares. 

A related non-iterative estimation method of a linear regression model with 
censored data has been proposed by González Manteiga and Cadarso Suárez 
(1990). 

4.8. Testing parametric versus nonparametric hypothesis 

The problem of testing a parametric specification is of considerable importance 
in econometrics, for example in testing the adequacy of a linear regression 
model. Traditionally the approach used in econometrics has been of a parametric 
character, in that the parametric null hypothesis is nested within a parametric 
alternative; Lagrange multiplier tests have been particularly popular. However, 
tests against nonparametric alternatives can also be conducted, problems 
involving comparison between parametric and nonparametric fits. 

The central limit theorem discussed in section 3.2 can be used for testing the 
hypothesis of a linear regression versus a weakly specified nonparametric 
alternative, as proposed by Robinson (1983). With X scalar, Ho: m(t,t;) = 
01 + {3t,t;, where 01 and {3 are unknown parameters. Then under the null el>m = O, 
where el> is a (s - 2) x s matrix and m = (m(t,t;¡), ... , m(t,t;s»' and (t,t;¡, ... , t,t;s) are 
distinct fixed points. Then, under the null 

7n = nhm' el> , (el>OIWel> ') -¡el>m ~ X~-2, 

where m = (m(t,t;¡), ... , m(t,t;s», is the kernel estimate of m, and W and 01 were 
defined in section 3.1 and 3.2. The statistic 7n can be used for testing the linearity 
hypothesis. 

Azzalini et al. (1989) have proposed a likelihood ratio test for testing the 
functional form of the conditional mean in count data models. They considered 
observations of a count variable Y¡ taking values O, 1,2, .... The null hypothesis 
is Ho: E (Y IX = t,t;) = t,t;' (3 versus weakly specified alternatives of the form 
H¡: E{YIX=t,t;) =m(t,t;), where m(.) is an unknown function. They also 
assumed that the conditional density of Y given X is such that 
f(Y = ~ IX = t,t;) = P(~, m(t,t;», that is, conditional density functions which are 
completely determined by their first conditional moment, e.g. the binomial or the 
Poisson. The statistic used is 

Tn = b (log P(Y¡, Xi(3) -log }.P(Y¡, m(X¡»), 
i 



where r3 is computed by maximum likelihood and m(X¡) uses kernel weights. 
They applied this test to the case that .P(.) is binomial with parameter 
p(oc) = 1/11 + exp( - oc/tJ)) under the null, and parameter of unknown 
functional form under the alternative. They also applied the method when .P(.) 

is Poisson with mean oc / (3 under the null and with mean of unknown functional 
form under the alternative. They also discussed the generalization of the method 
to the case where the conditional distribution is also a function of additional 
nuisance parameters Y/, i.e. f(Y = ~ IX = oc) = .P(~, m(oc), Y/) and applied the test 
to a AR(1) model. The implementation of the test is based on bootstrapping in 
the absence of knowledge of the asymptotic null distribution of the statistic. 

Delgado and Stengos (1990a) considered tests for the competing hypothesis 

Ho: E(YI X = oc, Z =~) = oc/(3o versus HA: E(YI X = oc, Z = ~) = m(~), 

where m(.) is unknown and X and Z does not completely overlap. That is, the 
hypotheses are non-nested. They pro po sed a Davidson and MacKinnon (1982) 
type test where the two hypotheses are artificially nested by means of the 
comprehensive regression model 

Y¡ = X{(Jo + óm(Z¡) + error, 

where m(.) is a nearest neighbour regression estimate based on the Z regressors, 
and (Jo is a parameter vector. Then, the least squares t-ratios for ó are 
asymptotically distributed as a standard normal under the null. The least squares 
estimate of a, in the aboye regression, converges in probability to 1 under the 
alternative. These t-ratios are used for testing Ho versus HA. Simulations 
reported in Delgado and Stengos (1990a) are encouraging. They also consider the 
case where the model in the null is nonlinear in parameter using J, C, and P type 
tests. 

A J-test procedure based on estimated residuals has been considered by 
Wooldridge (1990), using sieve estimates. B. Lee (1991) has also proposed a 
residual specification test based on the residuals from kernel regression. Cox 
el al. (1988) considered generalized spline models for regression. They were 
concerned with testing that the regression function is of a particular parametric 
form against the alternative that the function is partially linear (in the sense of 
section 4.4). Eubank and Spiegelman (1990) proposed an alternative spline based 
methodology for testing the goodness of fit of a linear model. Yatchew (1990) 
and Yatchew and Bos (1991) proposed tests for the difference between two 
partially linear models. Tests using the average derivative method have been 
studied in Stoker (1989), Robinson (1989), and Samarov (1991). 

5. Software 

There is often a trade off between computational effort and efficiency. 
Nonparametric estimates are relatively easy to compute. For instance, in GAUSS 
or MATLAB, a Gaussian kernel estimate for r = 1, with a bandwidth h, and a 
data vector stored in the n X 1 array x, is computed at point u by means of the 



sentence 

density'= sum(exp( - (u - x). *{u - x)j (2*h*h»)j (sqrt(2*pi)*h*n), 

('sum' must be changed by 'sumc' in GAUSS). However, this approach is very 
inefficient. If we want to obtain estimates at each data point, we can exploit the 
symmetry of the kernel for reducing the number of computations and the storage 
size. If we want just to plot the density or regression estimates, we can make use 
of the Fast Fourier Transform, as suggested by Silverman (1982) and Hardle 
(1987). 

Programs for nonparametric regression are available in abundant supply. The 
kernel method has been implemented in International Mathematical and 
Statistical Libraries, Inc. (1984) (IMSL) as subroutine NDKER and IMSL (1987) 
as subroutine DESKN. In both routines the user provides the kernel function and 
the bandwidth. The language S (Becker and Chambers 1984), also provides 
density estimates. The package CURVDAT provides FORTRAN routines for 
density, regression, density derivatives and regression derivatives. 

The package TIMESLAB (Newton 1988) provides kernel density estimates 
using different kernels. The package XploRe (Broich et al. 1990) performs 
different nonparametric estimation procedures with excellent graphical 
capabilities (see No and Sickles 1990 and Lee 1992 for reviews of this software). 
The package N-Kernel (see Delgado and Stengos 1990 and Lee 1992 for reviews 
of this software) implements a particular method based on local kernel weights 
which is very useful in investigating departures from linearity in regression. 
Delgado (l990b) provided a number of FORTRAN routines using kernel s and 
nearest neighbours and discussed their application in solving semiparametric 
problems using standard econometric software. 
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