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Abstract

For the past several decades, nonparametric and semiparametric modeling for conventional right-
censored survival data has been investigated intensively under a noninformative censoring 
mechanism. However, these methods may not be applicable for analyzing right-censored survival 
data that arise from prevalent cohorts when the failure times are subject to length-biased sampling. 
This review article is intended to provide a summary of some newly developed methods as well as 
established methods for analyzing length-biased data.
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1 Introduction

An outcome-dependent sampling bias arises when observations are not randomly selected 
from the target population (Cox 1962, Chapter 5). Length-biased sampling represents a 
special case of left-truncated data, and has been recognized in various applications: 
biomedical research (Keiding et al 2002; Simon 1980; Zelen 2004), marketing research 
(Nowell and Stanley 1991), genome-wide linkage studies (Terwilliger et al 1997), labor 
economics (de Una-Álvarez et al 2003), and nanotechnology (Kvam 2008). Length bias is 
difficult to remove through the trial design and may confound the interpretation of disease-
specific survival times.

The observed data are often from a cross-sectional cohort of patients diagnosed with a 
particular disease at the time of examination, who are then followed for the occurrence of a 
subsequent disease-related event (e.g. disease-specific death). Under this sampling design, 
patients with shorter survival times are selectively excluded, while those with longer survival 
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times are more likely to be included in the cohort. One example of such data is a study of 
dementia and the subsequent onset of death. In 1991, the Canadian Study of Health and 
Aging (CSHA) was initiated to estimate the prevalence of dementia and to understand the 
natural history of the disease in elderly Canadians (Wolfson et al 2001).

Using a prevalent cohort design, a total of 14,026 adults who were 65 years or older were 
randomly selected and recruited throughout Canada in the first phase of the CSHA. Among 
them, 10,263 agreed to participate in this multicenter epidemiological study. Focusing on the 
prevalent patients, 1132 were identified as having dementia at enrollment and were followed 
prospectively until the end of 1996. At enrollment, each caregiver provided an approximate 
date of the diagnosis of dementia for these patients (Asgharian et al 2014). While the 
majority of the patients with dementia died at the end of follow-up, a small proportion of 
them had been lost to follow-up, so that their survival times were right censored. Two major 
scientific objectives were to estimate the survival distribution of these patients measured 
from their diagnosis, and to determine how different types of dementia impact long-term 
survival. In addition, the study collected other baseline covariates such as gender, age at 
study enrollment and level of education.

As noted by investigators of the CSHA and in the literature, individuals with dementia in the 
CSHA had to survive long enough to be sequentially recruited into the study during 1991. In 
other words, the patients who had shorter survival times when measured from date of 
diagnosis were less likely to be recruited to the cohort. Therefore, the observed data are not a 
random sample of the target population, which was all elderly individuals with dementia 
who resided in Canada. This bias is common in cross-sectional prevalent cohort studies; the 
survival times from such cohort studies are subject to left truncation. Here, the truncation 
time is the duration from the diagnosis of dementia until enrollment in the study. In some 
applications, including the CSHA for elderly people, the incidence of disease onset follows a 
Poisson process, i.e. the disease incidence is constant over time (stable disease model), and 
the left-truncation time is uniformly distributed. Under this special condition, the probability 
of a survival time being sampled is proportional to its length; therefore, the survival times 
are known as length-biased times in this case. Length-biased sampling and the need to 
correct such bias in applications have been well recognized in epidemiology, marketing 
survey, environmental and labor economics studies (Kalbfleisch and Lawless 1989; Keiding 
et al 2002; Kvam 2008; Nowell and Stanley 1991; Simon 1980; de Una-Álvarez et al 2003; 
Zelen 2004). The assumption of a uniform truncation distribution (i.e. length-biased 
sampling) can be examined by formal goodness-of-fit tests (Addona and Wolfson 2006; 
Mandel and Betensky 2007; Martin and Betensky 2005). For the CSHA, Asgharian et al 
(2006) validated the stationarity assumption for the observed data, which are thus length-
biased data.

In this article, we review the current state of methodologic development for statistical 
estimation and inference on nonparametric estimation and semiparametric modeling for 
length-biased, right-censored data.
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2 Nonparametric Methods

2.1 Basic Notations and Definitions

Consider a cross-sectional sampling of individuals with a given disease from the population 
and then following those individuals prospectively until they experience a failure event, 
which may be subject to right censoring. As depicted in the diagram of Figure 1, the 
observable data are the time A from disease onset to enrollment, the time V from enrollment 
to death, and the censoring time C from enrollment to loss to follow-up. Let δ = I(V < C) be 
the censoring indicator and assume that (A, V) is independent of C. Let Y = min(A + V, A + 
C). Denote the observed data as (Yi, Ai, δi), i = 1, 2, ..., n.

With length-biased sampling, the population survival time T,̃ measured from disease 
diagnosis to death, can be observed only among those with T̃ > Ã. The observable survival 
time is length-biased and equal to T = A + V. In contrast to conventional right-censored 
data, another complication in analyzing such data is the potential dependence between the 
failure time T and the right censoring time A + C, measured from the initiating event 
(diagnosis) to the event of failure.

The density function, and survival function for (unbiased) failure time T̃ are denoted by f (t) 
= dF (t)/dt and S(t), respectively. The density function of the observed biased T is defined as 
g(y) = dG(y)/dy, where dG(y) = ydF (y)/μ, and the survival function of T ̃is μ = ∫ tf (t)dt. 
Based on the renewal theory under the stable disease model (Vardi 1982, 1989), the joint 
distribution of (A, V) is

Equivalently, the joint density of (A, T) can be expressed as 

(1)

where

(2)

2.2 Conditional Likelihood Methods

Several articles published over the past three decades have described statistical methodology 
development on the estimation of nonparametric survival distributions for left-truncated 
data, and have covered length-biased data as a special case (Keiding 1992; Wang 1991; 
Wang et al 1993). The large sample properties of such nonparametric survival function 

Shen et al. Page 3

Lifetime Data Anal. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimators have been well established (Gross and Lai 1996; Keiding 1992; Keiding and Gill 
1990; Lagakos et al 1988; Turnbull 1976; Wang 1991; Wang et al 1986).

For length-biased data subject to right censoring, the full likelihood function for the 
observed data can be derived from (1) and is proportional to

(3)

Given truncation time A = a, the conditional likelihood of (Y, δ) is the second component of 
(3),

(4)

As described in detail by Woodroofe (1985) and Wang (1991), a nonparametric product-
limit estimator for S(t) can be constructed on the basis of LC. Letting t(j) denote the distinct 
ordered failure times from uncensored Yi, the derived nonparametric maximum likelihood 
estimator (NPMLE) is similar to the Kaplan-Meier estimator after replacing the risk set R(t) 
= {i : Yi ≥ t} with RT (t) = {i : Ai ≤ t ≤ Yi},

Considering length-biased data to be a special case of left-truncated data, the nonparametric 
survival function of S(.) can be estimated using this approach. (The nonparametric estimator 
is also referred to as the truncation product-limit estimator.) Without specifying the 
distribution of the random truncation time, the above methods are efficient, conditional on 
the observed truncation times.

2.3 Full Likelihood Methods

It is clear that the aforementioned conditional likelihood approach for length-biased data is 
not fully efficient, since it does not use the likelihood contribution due to A. Under length-
biased sampling, the distribution of Ã follows a uniform distribution.

Vardi proposed the NPMLE from full likelihood function approaches under the stationarity 
assumption (Gill et al 1988; Vardi 1982, 1989). More recently, Qin et al. (2011) developed 
an alternative nonparametric full likelihood method. We describe the methods next.

2.3.1 EM Algorithm to Estimate the Cumulative Distribution Function of the 

Biased Failure Time T—With a multiplicative censoring model, Vardi considered that 
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uncensored failure times {R1, ···, Rn1} are independently generated from the cumulative 
distribution function (CDF) G, and censored times {Z1, ··· Zn2} as “incomplete 
observations” (or “contaminated observations”) and come from a product of an independent 
uniform (0,1) random variable U and R, Z = U * R. Here, R is also generated from the CDF 
G. Under this data generation model, the density function of Z is

The nonparametric likelihood function given the observed data {R1, ···, Rn1}, {Z1, ··· Zn2} is

(5)

Using the notation introduced earlier for left-truncated data (also length-biased data), the full 
likelihood for the observed data (Yi, δi), i = 1, ···, n = n1 + n2 can be equivalently expressed 
as

(6)

Vardi (1989) proposed an expectation-maximization (EM) algorithm for the NPMLE of G 
based on the above full likelihood function. If dG(.) is replaced by dF (.) in (6), then the 
likelihood expression (3) is equivalent to (6), in which the likelihood contributions from the 
uniformly “contaminated observation” Z and “uncontaminated” observation R correspond to 
the contributions from right censored and uncensored failure time data, respectively. A 
subtle difference between the likelihood expressions (3) and (6) is that the numbers of 
censored and uncensored failure times (n1 and n2) are random in (3), but are fixed in (6). 
However, maximizing the two likelihood functions remains the same.

It is sufficient to consider the discrete version of distribution G on the point masses at t1 < t2 

<.... < tk, where t1, ..., tk are the unique failure and censoring times for {Y1, ..., Yn}, k ≤ n. 
Maximizing (6) is reduced to the problem of maximizing the discrete version of the CDF of 

T, pj = G(dtj), subject to the constraints pj ≥ 0 and , j = 1, ···, k. For this EM 
algorithm, {R1, ···, Rn1}, {R̃1, ··· R̃n2} are considered as the “complete data” and {R1, ···, 
Rn1, Z1, ··· Zn2} = {(Yi, δi), i = 1, ···, n} as the “incomplete data”. The iterative EM 
algorithm to solve pj follows.

Step 1. Select an arbitrary  that satisfies .

Step 2. Solve  by maximizing (5), so that we replace  with
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(7)

Given a convergence criterion, pj can be solved iteratively and the maximum likelihood 
estimation (MLE) of pj is denoted by p̂j. The NPMLE is consistently estimated by 

. Asgharian et al (2002, 2005) provided the asymptotic properties of 
the NPMLE for the unbiased survival function in the presence of right censoring.

Using the fundamental relationship between G and S in (2), the NPMLE for S can be 
derived as follows,

Note that the NPMLE of S is estimated via the CDF of G for observed bias sample T. It is 
thus difficult to impose constraints on F (i.e., S) because they may not be easily translated to 
the constraints on G.

2.3.2 EM Algorithm to Estimate the CDF of Unbiased Failure Time T̃—In contrast 
to Vardi’s method for estimating the NPMLE of G, Qin and colleagues proposed a different 
EM algorithm by directly estimating the NPMLE of F for the unbiased failure time T ̃in the 
target population (Qin et al 2011). They considered the ‘incomplete’ data from a different 
perspective for length-biased data. Specifically, they defined the observed biased sample on 
n subjects, denoted by O = {(Y1, δ1, A1), ···, (Yn, δn, An), Ai ≤ Yi, i = 1, ···, n}, as 
incomplete data due to left truncation; whereas the data on m subjects are left truncated. 
Here, the left-truncated data are denoted by 

, where m follows a negative 
binomial distribution with parameter π. In essence, the length-biased observations (A, T) 
can be considered to be generated from a model with 

(8)

where τ̂ = tk, Ã and T ̃are independent, and (A, T) is observed if and only if T ̃≥ Ã. Similar 
to Vardi’s setting, it is sufficient to consider the discrete version of F on the point masses, t1, 

···, tk, and define dF(ti) = qi and . The probability of having a length-biased 
observation under this setting is π = P (T ̃≥ Ã) = E(T̃)/τ̂.

Thus, the “complete” data are defined as {O, O*}. The log-likelihood based on the complete 
data is 
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(9)

where Ti ≥ Ai, i = 1, 2, ···, n and , l = 1, ···, m. Conditional on the observed data O, 
one can derive the expectation of right-censored T as well as left-truncated T *. Based on the 
conditional expectations, the following iterative EM algorithm is proposed to solve the MLE 
of dF (tj) = qj for j = 1, ···, k.

Step 1. Select an arbitrary  that satisfies .

Step 2. Iteratively replace  with

(10)

where .

Let q̂j denote the MLE of qj, j = 1, ···, k, the NPMLE , and p̂ = 
∫tdF(̂t)/τ̂. As a very different missing data mechanism is assumed here, a different EM-
algorithm is proposed for estimating the NPMLE of F. It is not surprising that the derived 
NPMLE estimator dĜ(t) = tdF̂(t)/μ̂, where μ̂ = π̂τ̂ is proved to be equivalent to the NPMLE 
Ĝ of Vardi. However, the EM algorithm by Qin et al. has the following advantages over 
Vardi’s NPMLE: 1. It directly estimates the target distribution function F, so that constraints 
on F can be easily imposed; and 2. The EM algorithm based on the full likelihood (9) can be 
generalized to other semiparametric models.

3 Semiparametric Cox Model: Estimation Methods

The Cox proportional hazards model is the semiparametric regression model that is most 
commonly used in survival analyses (Cox 1972). It has been a main focus for analyzing 
length-biased data by developing valid approaches to modeling unbiased failure times with 
risk factors estimated under the Cox model. Assume that failure times in the target 
population, T,̃ follow the proportional hazards model 

(11)

where λ0(t) is an unspecified baseline hazard function and β0 is a vector-valued unknown 
regression coefficient for X. Note that the Cox model structure assumed for the target 
population is often different from the one for the observed length-biased data. Under length-
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biased sampling, one can only observe T among those T̃ > Ã, and X is the baseline covariate 
vector. It is reasonable to assume that C and (A, V) are independent given covariate X, and 
that the censoring distribution is independent of covariate X.

3.1 Conditional Approach for General Left-Truncated Data

Given the covariate X = x, the joint density of (A, T) can be decomposed as a product of the 
marginal distribution of A and the conditional distribution of T given A, similar to (4) for the 
case without covariates. Such a formulation has been utilized in analyzing left-truncated data 
(e.g. (Andersen et al 1993; Wang et al 1993)):

where S(t|x) is the survival distribution for the unbiased failure time and 
given x. Given truncation time A = a, the conditional likelihood of Y is proportional to

(12)

As described in detail by Wang et al. (1993), LC can be further expressed as the product of a 
partial likelihood and the residual likelihood:

where 

(13)

and the residual likelihood, LM, is the marginal likelihood for truncation time A defined by

Note that the partial score equation from LP (β) is
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(14)

Wang et al (1993) proved that the partial likelihood estimator solved from UP is 
approximately as efficient as the maximizer of LC, when the distribution Ã is unknown. 
Here, LP has an expression similar to that of the partial likelihood function for traditional 
survival data (without left truncation) except for the definition of the risk sets R(y) = {j : Aj 

≤ y ≤ Yj}.

3.2 Estimating Equations with Inverse Weighting (or Weighted Risk Set)

3.2.1 Weighted Estimating Equation Methods for Uncensored Data—Under 
proportional hazards models, Wang (1996) was among the first to construct a pseudo-
likelihood, which may be viewed as an inverse weighting estimating equation, to estimate 
the covariate effects on the unbiased failure outcomes without right censoring. Under length-
biased sampling, Wang (1996) derived a score equation based on the pseudo-likelihood 
function, which can be expressed as the following estimating equation,

(15)

Wang (1996) and Tsai (2009) observed that (14) reduced to (15) asymptotically, when Aj is 
integrated out in (14) using the fact that Aj follows a uniform distribution of U (0, Tj) given 
Tj. However, different methods are required when Tj is subject to right-censoring.

Ghosh (2008) proposed an estimating equation approach for modeling the regression 
coefficient of A and X to estimate the natural history of tumor growth under the Cox model 
in the context of length-biased sampling. While the method may serve the purpose of 
modeling the data of the tumor size without forward recurrence times (i.e. follow-up times), 
thus without right censoring, it could lead to a severely biased estimator for general right-
censored, length-biased data.

3.2.2 Pseudo-Partial Estimating Equation—Tsai (2009) proposed the pseudo-partial 
likelihood approach by embedding the biased sampling data into left-truncated data using a 
missing data mechanism. Considering a different right-censoring schema, it was assumed 
that the truncation time and censoring time (Ã, C)̃ have joint distribution function GÃ, C ̃(a, 
c), and T̃ and (Ã, C)̃ are mutually independent. Here, C ̃is different from the previously 
defined residual censoring time C. Specifically, the failure, censoring and truncation times 
are not sampled from the joint distribution but from the conditional distribution, given {T ̃≥ 
Ã, C̃ ≥ Ã}. By embedding biased-sampling data into the left-truncation model (13), the 
author used the log-partial likelihood derived by Cox (1972) for conventional right-censored 
data as the working likelihood, as follows,
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(16)

The second term of (16) is estimated by using the Monte Carlo method. For length-biased 
sampling with right censoring independently applied to the residual survival time V, the 
author derived the pseudo estimating equation as 

where 

and ŜC (t) is the Kaplan-Meier estimator of the residual censoring time C, and 

. The above estimating equation derived from the proposed profile 
pseudo-partial likelihood of β is reduced to (15) under length-biased sampling without right 
censoring. When T is subject to right censoring, it is less intuitive by assuming that the 
biased data (Ti, Ai) are obtained by applying an independent censoring mechanism to the 
data before the data are sampled with bias.

3.2.3 Weighted Estimating Equation Methods—To estimate covariate coefficients for 
length-biased data with right censoring, Qin and Shen (2010) constructed two types of 
inversely-weighted estimating equations under the proportional hazards model. The density 
function of an unbiased T ̃given X is denoted by f (t | x) and the corresponding survival 
function by S(t | x). Assuming (A, V) is independent of residual censoring time C, the 
probability of observing a pair of uncensored data is 

where SC is the survival distribution for residual censoring variable C. Consequently, the 
probability of observing the length-biased failure time at y can be obtained by integrating 
out a:

(17)
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The following two inversely weighted estimating equations play a similar role in adjusting 
for the dependent censoring distribution in length-biased data, and both are asymptotically 
consistent. However, the empirical performance of the estimators is different. For the 
estimating equation U1,

(18)

When SC is unknown, we can replace it with its consistent Kaplan-Meier estimator for the 
residual censoring time, which leads to an asymptotic unbiased estimating equation. It is 
clear that the above weight function {Yj SC (Yj − Aj)}−1 can be unstable at the tail when SC 

(u) → 0. The authors proposed a more robust estimating equation U2 as follows, where 
wc(.) is an integral of the survival function of SC (Yj − Aj) with the numerical stability at the 
tail,

(19)

Note that the weight function wc(t) is very robust even at tail, when t → ∞, wc(t) 
approximates to the mean of residual censoring time.

3.3 Likelihood-based Approaches

The above estimating equations (referred to as adjusted at-risk set) (Qin and Shen 2010; Tsai 
2009) are inefficient as the covariates of the censored subjects are not included in the 
estimating equations. They also require the censoring time to be independent of the 
covariates unless a dependence structure is assumed when estimating the weight functions. 
The following three likelihood-based approaches have the advantage of avoiding the 
estimation of the censoring distribution and achieving more efficiency compared to the 
previously mentioned methods.

3.3.1 Full Likelihood Method Based on EM Algorithm—Qin et al (2011) proposed 
an EM algorithm to maximize the full likelihood to estimate both β and baseline hazard 
function Λ0(t) under the Cox model. In contrast to Vardi’s EM algorithm to estimate the 
nonparametric MLE of G, this alternate algorithm to directly estimate the MLE of F can be 
modified and extended to handle the semiparametric MLE using the full likelihood.

For random but length-biased samples of n subjects, the observed data consist of {𝓞 i ≡ (Ai, 
Yi, δi, Xi), i = 1, ···, n}, which are n independent and identically distributed (i.i.d.) copies of 
𝓞 ≡ (A, Y, δ, X). The full likelihood function of the observed data is proportional to 
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(20)

where . The estimation of the MLE of β and the 
infinite dimensional parameter S can be computationally intractable if directly maximizing 
(20) or solving its score equations.

Generalizing the approach in Section 2.3.2, but under the semiparametric Cox model, Qin 
and colleagues proposed the EM algorithm to impute the “missing data,” which are the 

truncated latent data that correspond to each covariate. For i = 1, ···, n, let , j = 1, 2, ..., mi 

be the truncated latent data that correspond to covariate Xi. The EM algorithm is used to 
estimate the discretized version of the baseline hazard function Λ (u) = Σu≥tj

 λj, where λj is 
the positive jump at the ordered unique time tj for j = 1, ···, k, and λ = (λ1, ···, λk). For 
notational convenience, denote fi(t) = dF (t | Xi). The log-likelihood based on the complete 
data is then

Conditional on the observed data relative to the ith subject, 𝓞 i = {Yi, Ai, δi, Xi}, the 
expectation of the latent variable can be expressed as 

(21)

where

Thus, the expected complete-data log-likelihood function conditional on the observed data is

(22)
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In the M-step, maximizing ℓE (β, λ) with respect to the baseline hazard function at tj leads to 
a closed form of λj as a function of β,

After inserting β into the score equation of β derived from (22), β can be solved using 
existing software for the analysis of conventional right-censored data under the Cox model, 
which is a computational advantage. With the estimated β and λj (β), one can update the 
expected likelihood via updating wij. The estimators of β and λj (β) are obtained by 
repeating the iterative steps.

3.3.2 Composite Partial Likelihood Method—Huang and Qin (2012) introduced the 
composite partial likelihood approach for estimating covariate coefficients under the Cox 
model for length-biased data. In general, directly maximizing the full likelihood function 
(20) with respect to (Λ, β) is computationally intensive, even though it leads to the most 
efficient estimators. The full likelihood can be factored to LF = LC × LM, where LC is as 
defined in (12), and can be further factored to the partial likelihood LP and a remaining 
ancillary term as described in Section 3.1. As demonstrated in the literature (Qin and Shen 
2010; Shen et al 2009), the estimator of β obtained from the partial likelihood LP is 
inefficient. Using the exchangeable (or symmetric) property of (A, V), their joint density is f 
(a + v|x)/μ(x) and their marginal distributions are

Therefore, the density of T = A + V given A is the same as T given V. Based on the partial 
likelihood function LP and the symmetric distribution property of (A, V) when there is no 
right censoring, Huang and Qin (2012) proposed following the composite likelihood by 
doubling the information of A using V. Specifically, the likelihood for the pooled data {(Ti, 
Ai, Xi), i = 1, ··· n} and {(Ti, Vi, Xi), i = 1, ··· n} is

(23)

When V is subject to right censoring, the symmetric property of (A, V) does not hold since 
A is not subject to right censoring. However, it is interesting that the conditional density of 
A = a given V = v and δ = 1 has the same density function as the conditional density of V 
given A without right censoring,
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Using the above property, a different composite conditional likelihood for right-censored, 
length-biased data is formulated by augmenting the information among the uncensored 
subjects only,

(24)

Specifically, the pooled data are {(Yi, Ai, δi, Xi), i = 1, ··· n} combined with the uncensored 
subset {(Yi, Vi, Xi), among δi = 1, i = 1, ···, n}. By inserting the Breslow-type estimator for 
the baseline hazard function Λ(.) into the above likelihood function, the corresponding score 
equation for estimating β yields

(25)

Note the similarity and difference between the conditional estimating equation for general 
left-truncated data (14) and the above augmented estimating equation for the augmented 
data. For the variance estimator of β̂, the augmented and original data have overlapping 
information; therefore, the pooled data should be treated as clustered survival data to adjust 
for the correlation. The composite likelihood approach can improve statistical efficiency 
compared to some of the estimating equation approaches without modeling the censoring 
distribution.

3.3.3 Maximum Pseudo-Profile Likelihood Method—Under the proportional hazards 
model, Huang et al (2012) introduced a maximum pseudo-profile likelihood approach, 
which can improve efficiency and naturally handle time-dependent covariates. By 
generalizing the profile likelihood method via replacing the nuisance parameters in the full 
or partial likelihood with a consistent estimator, the authors replaced the baseline hazard 
function with infinite dimensional parameters in the full likelihood with a Breslow-type 
estimator for the baseline hazard function to attain a pseudo-profile likelihood function. For 
a known β, a natural consistent estimate of Λ0(t) can be obtained from the conditional 
(truncation) likelihood LC (β, Λ0) defined in Section 3.1, 

(26)
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in the class of nondecreasing right-continuous functions that jump only at uncensored failure 
times. Profiling out Λ0(.) from the conditional likelihood LC (β, Λ0) leads to the partial 
likelihood, LP (β) defined in (13). This is why the estimators of β obtained from maximizing 
LP retain the same efficiency as those from LC, as proved by Wang et al (1993) when there is 
no information on the distribution of the truncation time. Under length-biased sampling, the 
maximum partial likelihood estimator obtained from (13) is not efficient, since the 
likelihood contribution from LM (β, Λβ̂) is ignored. The resultant pseudo-profile likelihood 
follows,

Similar to the other two methods in Section 3.3 (Huang and Qin 2012; Qin et al 2011), this 
method is more robust compared with the methods that use estimating equations, when the 
censoring distribution depends on covariates and/or the censoring proportion is high.

4 Semiparametric Accelerated Failure Time Model: Estimation Methods

The accelerated failure time (AFT) model, which linearly relates covariates to the logarithm 
of the survival time, has been one of the regression models most commonly used for 
analyzing right-censored survival data besides the proportional hazards model (Kalbfleisch 
and Prentice 2002). Assuming that the failure time in the target population follows the AFT 
model, 

(27)

where β0 is a p × 1 parameter vector and ε is independent of X with an unspecified 
probability density distribution function q(.).

4.1 Estimating Equation Methods without Right Censoring

Chen (2010) considered a special case for length-biased data without right censoring. Under 
the semiparametric AFT model, the author derived the hazard-based estimating equation for 
length-biased data, 

where Ni(y) = I (Ti ≤ y), Δi(y) = I (Ti > y), and . The model 
structure for the observed T (length-biased) is generally different from that for T ̃(unbiased) 
in the target population when the failure time is subject to right censoring. However, Chen 

Shen et al. Page 15

Lifetime Data Anal. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2010) observed there is a unique feature for length-biased data under the AFT model: the 
observed length-biased failure time follows an AFT model with the same regression 
coefficients except for the intercept if T ̃follows an AFT model. By using this invariance 
property, Mandel and Ritov (2010) also proposed to use the standard least square method for 
analyzing length-biased data under the AFT model. The numerical studies showed that the 
least squares estimator outperformed the estimator of Chen (2010), with smaller standard 
errors. However, both methods are not applicable to length-biased data with potential right 
censoring.

4.2 Conditional Estimating Equation Approach

For general left-truncated and right-censored data, Lai and Ying (1991) proposed a rank-
based estimating equation for β, based on the constructed at-risk set at t as 

,

(28)

For length-biased data, this estimating equation ignores the information on the truncation 
times and may result in efficiency loss. By effectively utilizing information contained in the 
truncation time, Ning et al (2014b) modified equation (28) by replacing the indicator 

function  with its conditional expectation given the observed 
information under the stationarity assumption, 

where , and

The modified estimating equation relies on both the magnitude and rank of the failure times 
and achieves more efficiency compared to the estimators obtained from rank-based equation 
(28).

4.3 Estimating Equations with Inverse Weight

In the presence of right censoring, Shen et al (2009) constructed the following 
straightforward inverse-weighting estimating equation to account for the informative 
censoring due to the sampling constraint,
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(29)

Although it is not the most statistically efficient estimator, the inverse-weighted estimator is 
the most computationally efficient, with a simple closed form of the solution from the above 
estimating equation,

Similar to the inverse-weighted estimating equation approach for the proportional hazards 
model, this estimating equation approach requires the assumption that covariates are 
independent of the residual censoring time. In addition, since (29) does not use the covariate 
data from right-censored subjects, the estimator can be inefficient.

4.4 Buckley-James-Type Estimator

Under the AFT model (27), Ning et al (2011) constructed a Buckley-James-type estimating 
equation and developed an iterative algorithm to obtain the root of the estimating equation to 
overcome the aforementioned limitations from the above estimating equations. The 
covariate-specific density function of the unbiased failure time T̃ and the corresponding 
length-biased density function can be expressed by 

where μ(x) = ∫tf (t|x)dt = ∫ q(log y − xT β0)dy. Define T0̃ = T ̃exp(−XT β0), T0 = T exp(− 
XTβ0), and μ = ∫q(log t)dt. Then the density function of T̃0 is dF0(t; β) = q(log t)/t.

Using the same principle as for traditional right-censored survival data, the Buckley-James-
type estimating equation for length-biased data can be constructed as follows:

where the second term represents that the conditional expectation of the right-censored 

likelihood is based on the transformed data, . For the 
unknown distribution F0, we can use Vardi’s method (Vardi 1989) to derive its NPMLE 
using the transformed i.i.d. data {Yi0, δi}.

The Buckley-James-type estimator β̂BJ is then defined as the root of UBJ (β) = 0, where
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(30)

Compared with the inverse-weighted estimating equation approach, the Buckley-James-type 
method effectively utilizes all information from censored observations, with their 
conditional expectations in the estimating equations. Another advantage of the Buckley-
James-type method is that the estimation procedure does not require the assumption that the 
residual censoring time is independent of the covariate.

4.5 Estimating Equations from Embedded Likelihood Functions

As demonstrated in Section 4.4, using the Buckley-James estimation approach, one 
appealing feature of the AFT model is that the observed failure time data can be transformed 
to i.i.d. random variables without covariate effects. Using this unique feature, Ning et al 
(2014a) proposed a class of estimating equations based on the score functions for the 
transformed i.i.d. data, which are derived from the full likelihood function under commonly 
used semiparametric models such as the proportional hazards or proportional odds model.

Under the AFT model, the transformed time T0 = T ̃e−XTβ0
, which has null effect for the 

covariates, can be assumed to follow the Cox proportional hazards model or other popular 
semi-parametric models. For illustration, one can assume the null embedded model as the 
Cox model, 

(31)

where λ0(t) is an unspecified baseline hazard function and λ(t|X) is the hazard function 
given covariate X.

Under the proportional hazards embedded model assumption with a null covariate effect, the 

full log-likelihood for the transformed, observed data, { , δi, 
Xi, i = 1, ···, n} can be expressed as
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The corresponding score function of α evaluated at the null covariate effects (α = 0) has a 
mean of zero (Ning et al 2010) and can be used as an unbiased estimating equation for 
solving β,

(32)

The unknown baseline hazard function Λ0(t) in equation (32) can be estimated through 

where Ĝ(.) is the NPMLE introduced in Section 2.3.1.

Note that although the Cox model is chosen to illustrate the principle behind the method, 
other semiparametric models such as the proportional odds model can be used in this 
framework as an embedded model. Compared to the inverse-weighted and Buckley-James-
type estimating equations, the score-based estimating equations lead to more efficiency gain, 
which may be achieved because the proposed estimating equations are directly derived from 
the embedded full likelihood function.

5 Other Semiparametric Models and Developments

Semiparametric linear transformation models, which include the proportional hazards model 
and proportional odds model as special cases, have been used in conventional survival data 
analyses for decades. The semiparametric transformation model may be specified as H(T)̃ = 
−XT β + ε, where H(.) is an unknown increasing function, and ε has a known density 
function. For right-censored, length-biased data under the transformation models, Shen et al 
(2009) proposed a rank-based estimating equation approach, Wang and Wang (2015) 
constructed estimating equations based on counting processes, Liu et al (2012) introduced a 
general estimation and inference procedure by using an imputation method, and Liu et al 
(2015) described a maximum likelihood method for general truncated data under the 
semiparametric transformation model. Kim et al (2013) proposed an inference procedure 
using weighted estimating equations under several biased sampling schemes, including 
length-biased sampling, in which they assumed a different right-censoring mechanism. 
Cheng and Huang (2014) then proposed a method that combines two estimation procedures: 
the martingale estimating equation based on the partial likelihood function and the pseudo-
partial score equation. To handle varying coefficients, Lin and Zhou (2014); Zhang et al 
(2014) proposed the local inverse probability weighted estimating equation for right-
censored, length-biased data under the semiparametric linear transformation models and the 
Cox model, respectively.
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Extending the work of Wang (1996), Shen (2009) proposed respective estimating equations 
for the additive hazards and proportional hazards models. Using a pairwise pseudolikelihood 
to eliminate nuisance parameters from the marginal likelihood, Huang and Qin (2013) 
proposed an estimating function in obtaining the coefficient parameters under the additive 
hazards model for left-truncated, right-censored data.

Other semiparametric models, such as the semiparametric density ratio model and the 
proportional mean residual model, have been proposed for analyzing right-censored, length-
biased data (Chan et al 2012; Davidov et al 2010; Shen et al 2012). Additional developments 
have addressed the estimation of distributions for baseline covariates in the target population 
given the observed biased data under length-biased sampling (Chan and Wang 2012), and 
have investigated issues associated with efficiency for covariate estimates under parametric 
models (Bergeron et al 2008; Cook and Bergeron 2011). Keiding et al (2011) investigated 
the parametric AFT regression models to analyze backward recurrence times in a pregnancy 
study.

6 Discussion

In summary, methodologic development in semiparametric and nonparametric modeling of 
length-biased data has made considerable progress in recent years in many different 
directions. In particular, nonparametric and semiparametric maximum likelihood inference 
based on the full likelihood method has attained both robustness and efficiency compared to 
methods based on estimating equations or other types of likelihood functions. Future 
research will include additional promising methodologic developments as well as related 
software for the implementation of such methods.

More importantly, we should educate non-statistician collaborators to be aware of sampling 
bias when reporting analytic results from prevalent cohort studies and cancer screening 
trials, and to properly adjust for such biases. Although the statistics and epidemiology 
literature on biased sampling can be traced back many decades and has been widely noted 
by statisticians (Asgharian et al 2014; Cox 1962; Simon 1980), there is a need for 
practitioners to properly implement such methods.
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Figure 1. 
Data sampling with right censoring
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