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Nonparametric Approaches to the Analysis
of Crossover Studies
Mary E. Putt and Vernon M. Chinchilli

Abstract. We illustrate nonparametric, and particularly rank-based analy-
ses of crossover studies, designs in which each subject receives more than
one treatment over time. Principles involved in using the Wilcoxon rank sum
test in the simple two-period, two-treatment crossover are described through
theory and example. We then extend the ideas to two-treatment designs with
more than two periods and to three-treatment, three-period designs. When
more than one nonparametric approach is available, we consider the issue of
statistical power in choosing an appropriate test.
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1. INTRODUCTION

Crossover trials are repeated measures studies where
subjects typically receive more than one treatment
over time (Vonesh and Chinchilli, 1997; Senn, 2002).
For example, in the 2× 2 or AB : BA design, sub-
jects receive either treatmentA followed by B or B

followed by A. Crossover trials are efficient since
estimated treatment effects are based, either wholly or
in large part, on within-subject contrasts. This elim-
inates, or reduces, the contribution of the between-
subject component of the variance to the estimated
treatment effect. Crossover trials are of interest when
either financial resources or subject availability limits
study size (e.g., Lagakos, 2003). With small samples,
nonparametric approaches are appealing in principle
because of the difficulties in verifying normality and
because large-sample properties of parametric statistics
may not hold. Nonparametric approaches are also ap-
propriate in larger crossover studies if the data appear
nonnormal.
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The issue of carryover, the lingering effect of a treat-
ment from one period into the subsequent period(s),
often dominates consideration of crossover trials (e.g.,
Senn, 2002; Freeman, 1989). In practice, washout pe-
riods are sometimes used to reduce or eliminate po-
tential carryover effects. By lengthening the amount of
time that a subject is on study, a washout potentially
causes subject attrition and missing data (Correa and
Bellavance, 2001). While some investigators have de-
veloped tests for the presence of carryover, as well as
other nuisance parameters, this article focuses on non-
parametric tests for the treatment effect, and largely
ignores carryover effects. This emphasis is based on
our experience with clinical investigations where the
analytic focus is rarely on nuisance parameters such
as carryover. We consider carryover in the study de-
sign so as to eliminate or minimize its impact on the
study conclusions (Chinchilli and Esinhart, 1996; Putt
and Ravina, 2002).

Rank-based tests use linear combinations of ranked
outcomes, and are suitable for continuous data; if ties
occur, the variance is adjusted (Koch, 1972; Hollander
and Wolfe, 1999). Under the null hypothesis, the dis-
tribution of the rank-based statistics is distribution-free
or nonparametric (Hettmansperger, 1991). Under the
alternative hypothesis, power depends on the distribu-
tion. Asymptotic theory as well as simulation studies
suggest little loss in efficiency of the rank-based tests
when the data are normal and possible gains when the
distribution departs from normality (Hettmansperger,
1991; Öhrvik, 1998; Correa and Bellavance, 2001).
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Here we illustrate basic theory and practical appli-
cation of several rank-based and permutation methods
in crossover studies. This review updates Tudor and
Koch (1994) who discuss nonparametric approaches
to ordinal and censored data, topics not covered here.
Section 2 presents a nonparametric approach to the
simplest crossover, the 2× 2 design and extends the
principles to two-treatment designs with more than
two periods. Section 3 describes three-period de-
signs. The examples we will present were analyzed
using R v. 1.70 (www.r-project.org). Datasets, pro-
grams and comments on the software are available at
http://www.cceb.upenn.edu/main/people/putt.html.

2. THE 2 × 2 DESIGN

The 2× 2 crossover design contains two treatment
sequences and two periods (Table 1). Subjects random-
ized to sequence 1 (AB) receive treatmentA in the
first period followed byB in the second period; in se-
quence 2 (BA), subjects receive treatment B in the first
period followed byA in the second period. An optional
washout period may be used.

Example. We consider a clinical trial that compares
nasal steroids (treatmentA) and placebo (treatmentB)
on a measure of daytime sleepiness in patients who suf-
fer from allergic rhinitis. The data in Table 2 are from
the 2× 2 portion of a study design which combines a
2×2 crossover and a parallel repeated measures study.
Patients (five per sequence) were randomized to ei-
ther treatmentA or B and received self-administered
treatments twice daily for 8 weeks (Craig et al., 1998;
Putt and Chinchilli, 2000). At week 8 each patient
crossed over to the other treatment (without washout).
Each patient maintained a daily diary rating several as-
pects of daytime fatigue, including improved daytime
sleepiness (IDS) on a scale of 0 (worst) to 4 (best).
The average IDS over the final week in each 8-week
treatment period was used in the analysis. The data
for one patient with missing IDS for the second period
were omitted. In this study, we expect limited or null
carryover because of the lengthy period between mea-
surements periods. Note that although the daily records

TABLE 1
Treatment assignments in the 2× 2 crossover

Sequence Period

1 Washout 2
1 (AB) A Optional B

2 (BA) B Optional A

were ordinal, we anticipated that averaging over a week
would yield data on a continuous scale.

Statistical model and approach. Let Yijkl be the out-
come for thej th subject(j = 1, . . . , ni) from the ith
sequence(i = 1,2) on thekth treatment(k = A,B) in
the lth period(l = 1,2). Then

Yijkl = µk + πl + λk′
l−1

+ εijkl,(1)

whereµk is the mean effect for thekth treatment,πl

is the mean added effect of thelth period, λk′
l−1

is
the mean added carryover of thek′th treatment ad-
ministered in the(l − 1)st period into thelth period
(λk′

0
= 0) andεijkl is a random error term. Subjects

are independent withE(εijkl) = 0, Var(εijkl) = σ 2 and
Cov(εijkl, εijk′l′) = ρσ 2, whereρ is the correlation co-
efficient.

For the 2× 2 study, Table 3 shows the expectation
E(·) of the Yijkl for each sequence/period combina-
tion and the contrast for each subject,Y ∗

ij , between out-
comes for the first and second periods, that is,

Y ∗
ij = Yijk1 − Yijk′2.

EachY ∗
ij has variance 2σ 2(1 − ρ). For treatment dif-

ferenceµ(AB)
D = µA − µB the null hypothesis is,

H0 :µ(AB)
D − 1

2(λA − λB) = 0.(2)

UnderH0, E(Y ∗
ij ) is identical for each subject. If carry-

over from the two treatments is identical, thenH0 tests
whether the treatment means are identical. Moreover,
if equality of treatments implies equality of carryover
(i.e.,µ(AB)

D = 0 impliesλA = λB ), then the test is valid
under the null hypothesis. Our alternative is

H1 :µ(AB)
D − 1

2(λA − λB) �= 0.

Under H1, carryover effects in the same direction as
the treatment effect (e.g., ifµA > µB , thenλA > λB)

reduce the test’s power (Öhrvik, 1998; Putt and Ravina,
2002).

For a nonparametric analysis the null hypothesis
may be stated in terms of equality of cumulative dis-
tribution functions,FY ∗

ij
(·)’s, of theY ∗

ij , that is,

H0 :FY ∗
1j

(·) = FY ∗
2j

(·),
and this leads to a more general interpretation of the
location parameters from (1) and (2). For example, we
may consider differences in median rather than mean
treatment effects.

To construct the test, we poolY ∗
ij ’s from both se-

quences, assign a rank to each observation,Dij (Y
∗
ij ),
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TABLE 2
Mean weekly IDS score by period and difference between periods for individual patients on the

AB and BA sequences

AB sequence BA sequence

Patient Period 1 Period 2 Difference Period 1 Period 2 Difference

1 2.00 1.29 0.71 4.00 4.00 0.00
2 1.83 0 1.83 0 0.86 −0.86
3 0 0 0 0 0 0
4 0.89 NA NA 1.14 2.14 −1.00
5 3.00 3.00 0 0 2.29 −2.29

NOTE: Data from Putt and Chinchilli (2000). Reprinted with permission of theJournal of the Amer-
ican Statistical Association.

and sum the ranks for the (arbitrary) first sequence,
that is,R1 = ∑n1

j=1 D1j (Y
∗
1j ) (Koch, 1972; Tudor and

Koch, 1994). In the absence of tied observations, the
Wilcoxon rank sum (W ∗) statistic is

W ∗ =
√

12(R1 − n1(n1 + n2 + 1)/2)√
n1 · n2(n1 + n2 + 1)

.

If observations are tied, the average of the poten-
tial ranks of the tied observations is used in place
of the ranks, and the variance is adjusted (Hollander
and Wolfe, 1999). Under the null hypothesis in (2),
W ∗ is asymptotically distributed(0,1), that is, nor-
mal with mean 0 and variance 1. More formally, if
asn1 + n2 → ∞, n1/(n1 + n2) → δ (0 < δ < 1), then

W ∗ D→ N(0,1) (Hettmansperger, 1991), where the no-

tation
D→ indicates convergence in distribution. With

small sample sizes, exactp values are computed us-
ing permutation. Under (2), sequence assignments are
exchangeable among subjects. To compute the per-
mutation distribution, consider all(n1 + n2)!/n1!n2!
assignments of subjects to the two sequences. We
recomputeR1 for each assignment; for a two-sided
test, the exactp value is twice the proportion of per-
mutedR1 that are as large as or larger than the ob-
servedR1 (Hollander and Wolfe, 1999; Good, 2000).

Finally, Hodges–Lehmann (HL) provides a robust
estimate of the treatment effect. Note that the differ-

TABLE 3
Expectations for 2× 2 crossover by period

Sequence Period 1 Period 2 Contrast (Y ∗
ij )

(1) A : B µA + π1 µB + π2 + λA µ
(AB)
D + (π1 − π2) − λA

(2) B : A µB + π1 µA + π2 + λB −µ
(AB)
D + (π1 − π2) − λB

ence of each pair ofY ∗
ij ’s from the two sequences is

an unbiased estimate of 2(µA −µB)− (λA −λB). The
HL estimate is one half the median of all pairwise dif-
ferences of theY ∗

ij ’s, that is,

1
2 · [

Medianj1≤j2

(
Y ∗

1j1
− Y ∗

2j2

)]
,(3)

where j1 and j2 index the subjects in sequences
1 and 2, respectively. Similarly, an exact confidence
interval can be obtained from the quantiles of the pair-
wise differences (Hettmansperger, 1991).

Results for the example. Four patients had no dif-
ference in IDS between periods, while the remaining
five had better IDS on steroids compared to placebo
(Table 2). Accounting for ties, the observedW ∗ yields
a two-sided asymptoticp value of 0.0407 and an ex-
act p value of 0.0950. If the data contained no ties,
the smallest possiblep value for a two-sided test of
these data would be 0.0159 (2 out of 126 possible
permutations). However, the ranks of the four patients
who show no difference between periods are set at the
midrank of the four observations (5.5 here), yielding
16 unique values of the test statistic. The exactp value
was the smallest value possible for the observed data.
Here, the power of the permutation test was restricted
by the limited number of unique observations. Lastly
the HL estimate indicated that steroids improved day-
time sleepiness by 0.6425 units with a 95% exact con-
fidence interval of (0.0, 1.794).

Comparison with standard approach. For the 2× 2
crossover, the power ofW ∗ for data that are not nor-
mal may exceed that of the standard approach, the
two-samplet test (T ∗). Asymptotic theory suggests
the efficiency ofW ∗ relative toT ∗ in the vicinity of
the null hypothesis is 96% when the data are normally
distributed (Hettmansperger, 1991).T ∗is robust in the
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TABLE 4
Components of the AAB : BBA and AABB : BBAA designs needed for a nonparametric analysis

Sequence Contrast (Y ∗
ijk) Expectation

AAB : BBA

(1) AAB 1
2

∑2
l=1 Yijkl − Yijk3 µ

(AB)
D + 1

2(π1 + π2) − π3 − λA

(2) BBA Same as sequence 1 −µ
(AB)
D + 1

2(π1 + π2) − π3 − λB

AABB : BBAA

(1) AABB 1
2(

∑2
l=1 Yijkl − ∑4

l=3 Yijkl) µ
(AB)
D + 1

2(
∑2

l=1 πl − ∑4
l=3 πl) − 1

2λA

(2) BBAA Same as sequence 1 −µ
(AB)
D + 1

2(
∑2

l=1 πl − ∑4
l=3 πl) − 1

2λB

sense that its level is conservative when the data are
nonnormal (e.g., Everitt, 1979). However,W ∗ may be
more efficient thanT ∗ underH1. For example, in a
mixture of normals with identical locations but differ-
ent variances (i.e., a contaminated normal), efficiency
was 20% higher forW ∗ even when the contamination
was only 5%. Note, however, that if a permutation test
is used, the level and power ofW ∗ andT ∗ are identical
(Tudor and Koch, 1994).

Two-treatment multiperiod designs. Two-treatment
designs with more than two periods, for example,
the three-periodAAB : BBA or four-periodAABB :
BBAA, generally have higher efficiency than the 2×2
design, although the potential for missing data in-
creases with the length of time each subject is on
study (Carriere, 1994). Nonparametric analyses use the
basic approach in Section 2 with components in Ta-
ble 4. For Table 4, we assumed null carryover from a
treatment into itself (e.g., carryover from the first to
the second period receivingA). The null hypotheses
for two-period and three-period designs are identical
[equation 2]. For the four-period design, the null hy-
potheses isH0 :µA − µB − 1

4(λA − λB) = 0.

3. THREE-TREATMENT DESIGN

In this section we illustrate an “aligned” rank-based
test for a three-treatment, three-period design.The prin-
ciples extend to designs with more treatments. With
more than two treatments, designs based on Williams
squares are recommended when period and carryover
effects are possible (Bellavance and Tardiff, 1995;
Öhrvik, 1998). Table 5 illustrates this type of de-
sign for the sequencesABC : CAB : BCA : ACB :
BAC : CBA. The model from equation (1) general-
izes with Yijkl the outcome for thej th subject(j =
1, . . . , ni) from the ith sequence(i = 1,2,3,4,5,6)

on thekth treatment(k = A,B,C) in the lth period

(l = 1,2,3). Within each Williams square, sequences
are chosen such that every treatment occurs in every
period and precedes every other treatment twice. Our
analysis initially assumes “complete” Williams squares,
that is, equal numbers of subjects per sequence(ni = n

for i = 1, . . . ,6).
Aligned observationsY ∗

ijk are based on subtracting
an estimate of the period effect from eachYijkl , that is,

Y ∗
ijk = Yijkl − Ȳ···l ,

where Ȳ···l is a function of the observations in the
lth period. For example,̄Y···l may be the mean,16n

·∑6
i=1

∑n
j=1 Yijkl , the median for thelth period or

the HL estimate, that is, Mediani≤i′,,j≤j ′,l=l′
1
2(Yijkl +

Yi′j ′k′l′). For data with a symmetric distribution, the es-
timates have the same expectation, that is,

E(Ȳ···l) =
{

πl + µ̄., for l = 1,

πl + µ̄. + λ̄., for l > 1,
(4)

where µ̄. = 1
3

∑3
k=1 µk and λ̄. = 1

3(λA + λB + λC).
Note that carryover is not altered by the period in which
it occurs, or the treatment that occurs in the period re-
ceiving the carryover; for example, carryover fromA
into B is the same as carryover fromA into C. Next
generate the within-subject contrasts,Dijkk′, k �= k′,
for the three possible treatment pairskk′ ∈ K for
K ={AB,AC,BC}, that is,

Dijkk′ = Y ∗
ijk − Y ∗

ijk′ .

Expectations of these contrasts appear in Table 5 for
the case of equal number of observations per sequence.
Here we see that while alignment removes period ef-
fects, carryover effects remain.

Now consider the null hypothesis

H0 :µA − 1
3λA = µB − 1

3λB = µC − 1
3λC(5)

versus the alternative

H1 :µk − 1
3λk �= µk′ − 1

3λk′ for somek �= k′.
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TABLE 5
Expectations of within-subject contrasts for complete Williams squares. Mean treatment

differences are denoted µ
(kk′)
D where k and k′ index pairs of treatments

Sequence A vs. B A vs. C B vs. C

ABC µ
(AB)
D + (λ̄ − λA) µ

(AC)
D + (λ̄ − λB) µ

(BC)
D + (λA − λB)

BCA µ
(AB)
D − (λ̄ − λC) µ

(AC)
D + (λC − λB) µ

(BC)
D + (λ̄ − λB)

CAB µ
(AB)
D + (λC − λA) µ

(AC)
D − (λ̄ − λC) µ

(BC)
D − (λ̄ − λA)

CBA µ
(AB)
D + (λB − λC) µ

(AC)
D − (λ̄ − λB) µ

(BC)
D − (λ̄ − λC)

ACB µ
(AB)
D + (λ̄ − λC) µ

(AC)
D + (λ̄ − λA) µ

(BC)
D + (λC − λA)

BAC µ
(AB)
D − (λ̄ − λB) µ

(AC)
D + (λB − λA) µ

(BC)
D + (λ̄ − λA)

Under the null hypothesis in (5) the distribution of con-
trasts for each of the three sets of treatment pairs, and
hence the distribution of theDijkk′ considered as a
whole, is centered around zero. The null hypothesis of
equality of treatment and carryover effects,

H0 :µA = µB = µC and λA = λB = λC,

is a special case of (5), and one that may be more intu-
itive to consider.

To construct the test statistic we pool theN =
3

∑6
i=1 ni = 18n contrasts and assign a rankR(D′

ijkk′)
to each of the pooled observations in the sample. The
sample is split into two groups that correspond to
Dijkk′ positive or negative and, for each of the positive
and negative groups, the sum of the ranks is computed
within each treatment pair, that is,

R+
kk′ =

6∑
i=1

ni∑
j=1

I (Dijkk′ > 0)R(Dijkk′)

and

R−
kk′ =

6∑
i=1

ni∑
j=1

I (Dijkk′ ≤ 0)R(Dijkk′),

where I (·) is the indicator function. Under the null
hypothesis in (5), theR(Dijkk′) are symmetrically dis-
tributed around zero. The test statistic, referred to sub-
sequently as Öhrvik’sQ, is

Q = 12

3(N + 1)(2N + 1)

∑
kk′∈K

(R+
kk′ − R−

kk′)2

Nkk′
,(6)

whereNkk′ = ∑6
i=1 ni = 6n and as beforeK ={AB,

AC,BC}. UnderH0, E(Q) = 2 and, asymptotically,
if lim N→∞ Nkk′/N exists and is positive,Q has a chi-
squared distribution with 2 degrees of freedom. Alter-
natively, the exactp value is determined by randomly

assigning subjects to sequences, recomputingQ and
comparing the observedQ to its permutation distribu-
tion. If Q suggests a treatment effect, then the test of
interest becomes

H0 :µ(kk′)
D − 1

3(λk − λk′) = 0(7)

and a test for the individual treatment contrasts uses

Qkk′ = (R+
kk′ − R−

kk′)

Nkk′

/√
(N + 1)(2N + 1)

6
,(8)

which has a limiting Normal(0,1) distribution under
the null hypothesis in (7).

While Q is most intuitive when observations are
aligned to remove period effects, the test remains valid
if the observations are not aligned, as long as the
Williams squares are complete and carryover is equal
among all treatments. Here, period effects balance; for
example, within theA versusB contrast,(λ̄. − λA) is
balanced by−(λ̄. + λc) as long asλA = λC .

Example. Milk production was compared in 18
cows randomized to three diets (A, roughage;B,
limited grain; C, full grain) (Bellavance and Tardiff,
1995). During the experiment, milk production de-
creased by roughly one-third from around 1650 units
(pounds per 6 weeks) in period 1 to just under 1200
units in period 3, with all three location estimates
yielding similar results (Table 6). The left-hand col-
umn of Figure 1 shows contrasts for observations with-
out alignment (top) and for those aligned with the HL
estimate of the period effect (lower). For each contrast,
aligning the observations reduces the spread around the
median. For these data, alignment reduced the number
of positive observations and decreased the amount of
overlap among the ranks for the positive and negative
observations (middle and right columns of Figure 1).
The plot suggests that the test statistics should have
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TABLE 6
Mean milk production by period ( pounds per 6 weeks) and

Öhrvik’s Q for different methods of aligning the observations

Alignment
method

Period

1 2 3 Q (p value)

None NA NA NA 7.56 (0.023)
Mean 1655 1435 1180 26.04 (< 0.0001)
Median 1648 1332 1192 24.03 (< 0.0001)
Hodges–Lehmann 1648 1416 1182 26.44 (< 0.0001)

greater power when the observations are aligned. Ta-
ble 6 confirms thatQ is largest when the statistic is
aligned using the mean or the HL estimate, slightly
smaller for the median and dramatically smaller for the
statistic based on unaligned ranks. Note that these data
display substantial differences in outcome by period.
The performance of the aligned and unaligned statis-
tics may be more similar when period effects are small.

Since the overall test statistic was (highly) signifi-
cant, we examined individual contrasts (Table 7). Tests
based on different methods of alignment gave similar
results withp values that are much smaller than the
test using the unaligned observations. Finally, the HL
estimates of differences in milk production using the
observations aligned with HL were−165 (AB), −273
(AC) and−107 (BC) pounds per 6 week interval.

Alternative nonparametric approaches. Alternative-
ly, observations may be doubly aligned within each
Williams square (Bellavance and Tardiff, 1995). Un-
like Öhrvik’s Q, where the rankings are made for ob-
servations pooled across blocks, the Bellavance and
Tardiff (BT) approach uses rankings made within indi-
vidual blocks and subsequently pooled across blocks to
form the test statistic. For the milk production data, the
asymptoticp value of the test for the hypothesis in (5)
is 0.065, suggesting that for this example, BT has sub-
stantially lower power than Öhrvik’sQ [equation (6)].

Senn’s (2002) approach in the three-treatment, three-
period design pools tests for differences between pairs
of treatments. Sequences are paired by matching the
periods in which the treatment pairs occur; for ex-
ample, for theAB contrast we form three sequence
pairs (ABC with BAC), (ACB, BCA) and (CAB,
CBA), or strata, considering only periods that con-
tain theA and B treatments. This essentially leaves
a series of 2× 2 crossovers. Within each stratum, we
constructW ∗ as described in Section 2 and pool re-
sults. Under the assumption of null carryover, this test
is valid. However, for our example thep value for the
test of theAB contrast was 0.0943, suggesting that the
method may sometimes have substantially lower power
than Öhrvik’sQ.

Comparison with standard approaches. The stan-
dard alternative is an analysis of variance decompo-
sition for the parameters of interest (Bellavance and

FIG. 1. Boxplots showing effect of not aligning (top row) and aligning using HL (bottom row):observations on the contrasts (left-hand
side panel),and the ranks of the positive (middle panel)and the negative (right-hand side panel)contrasts.
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TABLE 7
Test statistics with p values in parentheses for testing

individual contrasts

Alignment
method

Qkk′ (p value)

AB AC BC

None 1.49 (0.1349) 2.81 (0.0099) 1.08(0.2812)
Median 2.93 (0.0033) 4.76 (<0.0001) 2.19(0.0286)
Mean 2.99 (0.0029) 5.05 (<0.0001) 2.16(0.0306)
HL 2.99 (0.0022) 5.08 (<0.0001) 2.20(0.0273)

Tardiff, 1995). This approach is based on variance ra-
tios that have anF distribution if the data are nor-
mally distributed and the covariance structure of the
repeated measures within individuals is exchangeable.
Under more general covariance structures a modified
F test (mF ) is needed to maintain valid Type I error
rates (Bellavance, Tardif and Stephens, 1996; Correa
and Bellavance, 2001).

Under a normal shift model, the relative efficiency
of Öhrvik’s Q to its corresponding parametric test
is asymptotically equivalent to that of the Wilcoxon
signed-rank test to the pairedt test (Öhrvik, 1998).
The loss in efficiency of Öhrvik’sQ relative to the
parametric test when the data are normal is thus mi-
nor. Correa and Bellavance (2001) carried out simula-
tion studies of Öhrvik’sQ, mF and BT under three
covariance structures using multivariate normal and
gamma distributions. The covariance matrices included
an exchangeable structure, as originally specified by
Öhrvik (1998), as well as sphericity and an unstruc-
tured form. Under multivariate normality and for carry-
over effects equal to 50% of treatment effects, Öhrvik’s
Q had valid Type I error rates and power that was
similar to or higher than mF . Under the multivariate
gamma, both Öhrvik’sQ and mF were somewhat anti-
conservative (empirical Type I error rates of up to 6.9%
for Öhrvik’s Q and up to 8.3% for mF for a nomi-
nal Type I error rate of 5%). However, Öhrvik’sQ had
substantially higher power than mF . We expect that
if the permutation distribution were used, the nominal
and empirical Type I error rates would be more similar
for Öhrvik’s Q.

Of all three tests, BT was the only one to maintain
strictly valid Type I error rates under both the mul-
tivariate normal and the multivariate gamma distribu-
tions. Unlike Öhrvik’sQ, the power of this test is not
altered by carryover. However, for reasonable carry-
over levels (e.g., 50% of the treatment effect), BT had
substantially lower power than Öhrvik’sQ (e.g., 76%

vs. 32%). Because of this we hesitate to recommend
BT, despite its performance under the null hypothesis.

Comments. In agricultural or laboratory studies,
Williams square designs are feasible to complete. In
clinical research, patient-related issues (e.g., recruit-
ment, attrition, early-stopping rules) make it difficult to
achieve complete Williams squares. If the design is im-
balanced in the sense that some sequences have more
patients than others or individuals have missing data,
then the procedures described above are not strictly
appropriate. For example,̄Y···l is not necessarily unbi-
ased for the period effects shown in (4). An alternative
in this case is to use aU -statistic such as

Ȳ···l = 1∏6
i=1 ni

·
n1∑

j1=1

· · ·
n6∑

j6=1

(
Y1j1kl + Y2j2kl + · · · + Y6j6kl

)

(or a more robust generalizedL statistic) to align the
observations (Putt and Chinchilli, 2000). TheseȲ···l
have expectation shown in (4), and if carryover is as-
sumed null, then the tests in (6) and (8) are valid. How-
ever, in the presence of carryover effects Öhrvik’sQ

(6) andQkk′ (8) test hypotheses that are somewhat dif-
ferent from those shown in (5) and (7). For example,
let nmin = mini ni andn∗

i = ni − nmin and supose that

µ
(AB)
D is of interest. The distribution of the sample of

DijAB ’s has expectation

EAB = 1∑s
i=1 ni

6∑
i=1

ni∑
j=1

E(DijAB)

= µ
(AB)
D − 2nmin(λA − λB)

(6nmin + ∑s
i=1 n∗

i )

+ (λk1 − λAk2 + λBk3 + λCk4)

(6nmin + ∑s
i=1 n∗

i )

for k1 = n∗
1 − n∗

2 + n∗
5 − n∗

6, k2 = n∗
1 + n∗

3, k3 = n∗
4 +

n∗
6, k4 = n∗

2−n∗
4+n∗

3. We would not necessarily expect
the distribution of signed ranks to be centered around
zero, even ifµ(AB)

D = λA − λB = 0. However, if the
sample size is large, and the degree of imbalance is
small, for example,

∑6
i=1 n∗

i 	 6nmin, the distribution
will be asymptotically centered around zero.

Senn (2002) argues that the simple carryover model
used here is unrealistic in clinical studies and, in par-
ticular, that the treatment in the period in which the
carryover occurs should be considered in the model.
For example, consider a trial testing a placebo and two
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different doses of an active compound. Carryover from
the high-dose period is likely to be larger in the placebo
period than in the low-dose period. To our knowledege,
the impact of this type of carryover has not been exam-
ined for the test described here.
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