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Abstract

For over a decade, nonparametric modelling has been successfully applied to study
nonlinear structures in financial time series. It is well known that the usual nonpara-
metric models often have less than satisfactory performance when dealing with more
than one lag. When the mean has an additive structure, however, better estimation
methods are available which fully exploit such a structure. Although in the past such
nonparametric applications had been focused more on the estimation of the conditional
mean, it is equally if not more important to measure the future risk of the series along
with the mean. For the volatility function, i.e., the conditional variance given the past,
a multiplicative structure is more appropriate than an additive one, as the volatility
is a positive scale function and a multiplicative model provides a better interpretation
of each lagged value’s influence on such a function. In this paper we consider the joint
estimation of both the additive mean and the multiplicative volatility. The technique
used is marginally integrated local polynomial estimation. The procedure is applied to
the DEM/USD (Deutsche Mark/US Dollar) daily exchange returns.
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1 Introduction

The prediction of financial time series based on daily data is, in general, difficult, since after
differencing most of the structure in the mean disappears. This is why random-walk-based
models have been used in this context. The situation is different, though, for high frequency
time series such as foreign exchange rates. Autoregressive models have been applied for such
data with specific assumptions on the error distribution, see Engle (1982), Engle and Ng
(1993). Some of the most common nonlinear autoregressive models were proposed by Tong
(1978, 1983), Haggan and Ozaki (1981), Chan and Tong (1986), and Granger and Terésvirta
(1993). In particular it is important not only to predict future values but also to evaluate the
risk, or the volatility of the series. In the class of ARCH models the volatility or the scale of
innovative random shocks is a function of past values. Over the past fifteen years, the strict
parametric forms of these models have been questioned and more flexible nonparametric
approaches have been studied as an alternative, see Robinson (1983, 1984), Meese and Rose
(1991), Drost and Nijman (1993), Engle and Gonzalez-Rivera (1991). A more recent review
is Hardle and Chen (1995).

One of the models studied for foreign exchange rates, for example, is the CHARN (condi-
tional heteroskedastic autoregressive nonlinear) model with one lag (Bossaerts, Hirdle, and
Hafner, 1996)

Yi =m(Yio1) 4+ s(Yim1)§ (1.1)

where {§;},., are 1.i.d random variables F(&;) = E(&}) =0, E(§) = 1 and E(§}) = my < oo,
and Y, is independent of the{&}’s. An analysis of the estimated residuals still revealed
autocorrelation. Hence, more than one lagged variable in the modelling of the mean function
m(e) and the scale function s(e) seems to be the necessary step in a further analysis.

We consider therefore in this paper the CHARN model of the form

Yi=m(Yi1,Yice, ..., Yica) + s(Yiz1, Yieo, ..., Yica)& (1.2)

where {&},5, are as in (1.1) and Yg, Y3, ..., Y1 are random variables independent of the
{&}'s. The conditional volatility function is v(Y;_1, Yi_a, ..., Yi_q) = s*(Yi_1, Yio, ..., Yi_a).
This form of the CHARN model in financial time series has been studied by Gouriéroux
and Monfort (1992) and Masry and Tjgstheim (1995a). The estimation problem for the
functions m(e) and v(e) has been treated in Hérdle and Tsybakov (1997) in the case of
d = 1 with the local polynomial regression method. Hérdle, Tsybakov and Yang (1998)
studied vector autoregression with arbitrary number of lags and dimension. We define the
CHARN model for general dimensions, however, from a practical point of view, the method
can be expected to suffer from the statistical imprecision introduced by a large number of
lags. In particular in the small sample size case. We illustrate the method with a foreign



exchange rate application. Through lag selection, see Tschernig and Yang (1997), we ended
up using the first lag and the third lag of the time series.

Stone (1982) showed in the i.i.d. regression case that if the mean function m(e) is a sum
of univariate functions, then the one dimensional convergence rate can be achieved for the
estimation of m(e)’s component functions. Tools for analysis of additive models in this con-
text have been developed by Hastie and Tibshirani (1990), including the BRUTO algorithm
for nonparametric modelling, which Chen and Tsay (1993a,b) applied to autoregressive time
series. The "integration method” (but not the term marginal integration) was introduced
by Auestad and Tjgstheim (1991) and further explored by Tjgstheim and Auestad (1994)
for the precise analysis of additive model estimators which was previously unavailable. It
provides closed form bias and variance expressions of the one dimensional function estimator.
The term marginal integration was introduced in Linton and Nielsen (1995), who worked
in the independent identically distributed regression setting. Marginal integration has re-
cently been employed in the autoregression setting by Masry and Tjgstheim (1995a,b) and
in the independent identically distributed regression setting by Linton and Héardle (1996)
and Severance-Lossin and Sperlich (1995).

The idea of the integration method is quite straightforward: in the regression setting for
instance, if the mean function m(z;, xs, ..., x4) is a sum of univariate functions, say

d

m(zy, T, ..., Tq) = c—l—ﬁng(xg) (1.3)

then
mg(xg) = /m(ml,xz, o Zg)dF (21, ..., 23, ..., xq) — C

where F(zy,...,Z3, ..., x4) is the joint distribution function of all the variables X1, ..., X4 with
the $-th X3 removed, and C'is an additive constant. Hence each component function mg is
identified from m(zy, zs, ..., x4) through a simple integration procedure. Linton and Nielsen
(1995) introduced the idea of applying integration estimation to multiplicative structures in
dimension two, in this paper we extend the integration formula to multiplicative volatility
functions of any dimension.

To estimate the parameters in the CHARN model, we have to estimate the conditional
mean function m(e) and the conditional variance or volatility function v(e) at the same time.
The flexibility of our CHARN model is important in a number of economic applications. For
example prediction of financial time series, where the volatility function often plays an even
more important role than the mean function. It is therefore beneficial to obtain the joint
estimation of both m(e) and v(e) for model (1.2). The volatility function v(e) measures
the scale and is always positive, therefore it seems more appropriate to model its changes
multiplicatively rather than additively, as in the EGARCH model of Nelson (1991). In this
paper we jointly estimate the additive (mean) and the multiplicative (volatility) functions
with the integration method.

We therefore assume that the mean function m(e) is additive while the volatility function
v(Yi1, Y9, Yiq) =5(Yi1, Yo, ..., Y 4)? is multiplicative

d
m(}/’i—b }/’i—27 seey )/;—d) =Cn + Z mﬂ()/l—ﬂ)a (14)
B=1



d
v(Yic1, Yicg, oo, Yica) = ¢ [] vs(Yicp) (1.5)
=1

where ¢, and ¢, are constants, {mﬁ(°)}Z:1 and {Uﬂ(°)}g:1 are sets of unknown functions.

Besides the better rate of convergence for the estimation of {mﬁ(°)}Z:1 and {Uﬁ(°)}g:1 as
discussed above, these univariate functions also allows one to quantify the impact of each
lagged variable Y; 3 on the mean and volatility more directly.

To formulate the identifiability conditions for the functions {mﬁ(°)}”é:1 and {vg(o)}zzl,
the process Y; has to converge to a stationary distribution. If we denote by X,; the vector
(Yi_1,Yio,...,Yi_g)T, then {X;} is a d-dimensional Markov process. Many authors, such as
Tweedie (1975), Nummelin and Tuominen (1982), Mokkadem (1987), Tjgstheim (1990) and
Diebolt and Guégan (1993) developed geometric ergodicity criteria for Markov processes.
Here we state some general assumptions

Al: The random variable & has a density function p(e). This density p(e) and the volatility
function v(e) are strictly positive in a neighborhood of x;

A2: There exists an v > 0 such that for X4_, |y; | > r, the functions m(e) and s(e) sat-
isfy:

d
M (Yi—15Yi2y -y Yi-a)| < Cr(1 + Z lyi—sl)
p=1

18(Yi 1 Ui 2y Yia)| < Co(1 + Z lyi5])

with Cy + CoE |&1] < 1/d.

These assumptions are standard in this context in order to prevent the process from
either dying out or exploding. Ango Nze (1992) proved the following

Lemma 1.1 Under assumptions A1 and A2, the process {X;} is geometrically ergodic, i.e.,
it is ergodic, with stationary probability measure m(e) such that, for almost every x,

[P (o | x) = 7(®) [l = O(p")

for some 0 < p < 1, where P"(e | x) is the probability measure of X,, given X, = x and
||®|| is the total variation distance.

This lemma ensures that the process {X;} is asymptotically stationary. We denote by
F(e) the stationary distribution function. For all 1 < « < d, we denote by F,(e) the
stationary distribution function of the a-th variable, and F(e) the stationary distribution
function with the a-th variable deleted. We allow ourselves to use the short-hand notation Yjp
for Y;_s. Let 23 denote the deterministic version of Y;_3. We can now state the identifiability
conditions

A3: Emg(Y) = [mg(xg)dFs(zs) = 0, for any Y that has distribution Fs(e), and for all
l<p<d;



Ad: ETli<pedpra V8(Ys) = li<ped pra V3(@s)dF(T) =1 for any (Y1,Y,...Yy) that has dis-
tribution F(e), and for all 1 < a < d.

Let x =(x1, T, ..., xq)" €IR? be a point where we will estimate the mean and volatility
functions. We define for every 1 < a < d, M,(x4) = ¢ + ma(Ta), Va(Ta) = c0a(24), then

m(x) = ﬂ; Mp(2p) = (d = 1), v(x) = ¢,V ﬂl:[ Vis(2p)- (1.6)

In what follows, we adopt the notation X; = (Y; 4, Y;) to highlight a particular direction
of interest Y;_,, for all 1 < o < d, while Y is the d — 1 dimensional vector that consists of
all the rest Y;_p’s, 1 < 8 < d, 3 # o. Assumptions A3 and A4 yield the following marginal
integration formulae for the unknown functions

/m(xa,f)df(f) = Ma(2a) = cm + ma(ta), (1.7)

/ (T, T)AF(T) = V() = ova(Ta), (1.8)

which show that the univariate functions {mﬂ(.)}gzl and {Uﬁ(°)}g:1 are identifiable from
the functions m(e) and v(e) up to some constants. And similar formulae exist for these
constants as well

1

en= [ m()dF () = B(Y), ¢, = {% Zl/ 1T vﬂ(xﬂ)df(f)} )

1<p<d,f#a

These are the basic equations that will be used later in our estimation procedure.

In Section 2, we present the estimators of {mﬁ(o)};;:1 and {Uﬁ(°)}g:1 and study their
asymptotic properties. In Section 3, we discuss the application of the result to DM/USD
daily return data. In Section 4, proofs of theorems are given. Inspection of the proofs
in Section 4 shows that the result of the present paper also holds (with obvious refor-
mulation) for the multivariate nonparametric regression model with heteroskedastic errors:
Y;' = m(Xil, XiZ; ---;Xid) + S(Xila XiZ; ---;Xid)€i7 Where fz are as in (12), (Xil,XiZ,---aXida Y;)
are i.i.d., and the design points {X;; Xjo ..., Xiq} are independent of {¢;}.

2 The Estimators

The estimators given in this section are based on local polynomial regression, first studied
by Stone (1977) and Katkovnik (1979). The idea, as will be seen below, is to estimate an
unknown function locally by polynomials, whose coefficients are calculated through kernel
weighted least squares, see also Tsybakov (1986), Ruppert and Wand (1994), Wand and
Jones (1995) and Fan and Gijbels (1996).

Now we let p > 0 be any odd integer which will be the degree of polynomial used later.
For any function K (e) we denote ||K |5 = / K2(u)du, while for a kernel function K () we
define Kj(u) = K(u/h)/h, and pu,(K) = [u"K(u)du. We shall consider two kernel functions
K(e) and L(e) that satisfy



A5: Both kernels K (o) and L (o) are bounded, symmetric, compactly supported and Lips-
chitz continuous with [ K (u)du = [ L (u)du = 1; while K () is positive, the kernel
L () is of order ¢ > (d—1)(p+1)/2

When estimating functions m, () and v, (e) for a particular «, a multiplicative kernel
is used consisting of K for the a-th variable and L for all other variables.
We assume the following about the functions involved in the estimation

A6: The functions mg, (e)’s and v, (@) ’s have bounded Lipschitz continuous (p + 1)-th deriva-
tives for all 1 < a < d.

AT: The stationary distribution function F(e) has a density p(e). The function p(e), to-
gether with the densities pq(®) of Fu(e) and B(e) of F(e) are all uniformly bounded
away from zero and infinity and have bounded Lipschitz continuous (p + 1)-th deriva-
tives, for all 1 < a < d.

Lastly, we assume the following for two bandwidths, g for the kernel L, h for the kernel
K

1 nhg2(d—1) g? o =1
— 00, W — OO,W — 0 and h = h0n2P+3.

A8: Bandwidths g and h satisfy g;
Note that this A8 requires that L (e) have the order as in A5. In particular, if one uses
local linear regression, i.e., p = 1, then the order of L (e) is ¢ > d — 1.
One can define the integration estimator for M,(z,) as
M (q) = /m(xa,f)dﬁ(x) (n—d+ 1) (2., 7).
I=d

where T(x,,T) is an estimate of m(e) at (14,7), and F(T) is the empirical cumulative
distribution function (ecdf). The estimator My(z,) is hereby based on the sample version
of equation (1.7). The estimator for ¢, is simply the sample mean of Y;’s according to (1.9)

n

—E(Y)=(m—d+1)" Z

where E is the empirical mean of Y. These estimators are then used to obtain estimators
for my(x,) and m(x) N

m\a(l‘a) - Ma(l‘a) - /C\ma

d

m(x) = ¢, + ﬁZ mg(xg) = ﬁZ Mg(z5) — (d — 1)em

We now define mi(x,,Y) as follows. For all [ =d,d + 1,...,n, and A =0, ..., p let

4 = {(Y;—a - xa))\}

(n—d+1)x(p+1)’



. 1 "
W, = diag {mKh(Yi—a - xa)Lg(Yi - Yl)}, )

where we denote

ag 0 -+ 0
' 0 ay -+ 0
diag(a) = o .
0 0 Qg
for any vector
ay
a= : c IR*.
g

Also write
Y = (Ya<icn, Y = (V) a<izn,
and let ey be a (p + 1) vector of zeros whose (A + 1)-element is 1. Then

__ -1
M(za,Y)) = € (ZTW,Z) ZTWy,

which is the usual local polynomial estimator of m(e) at (z,,Y;) of order p in the a-th
direction and order 0 in all the other directions. Our estimator M,(x,) is therefore

Ma(va) = (n—d+ 1) 'Y ek (2"Wiz) " Z"'Wyy.

I=d
Note that
E(Y? | Xi) = m?(Xq) + v(Xy),
thus similar estimator for V,(z,) based on equation (1.8) is defined as

Valwa) = (0= d+ )7 S Ll (27 miz) " 27 Wy = aea, Y0
I=d
and that of ¢, is based on (1.9):
_1
1Y 1 Z”: 0 70 -
G == —— V(Y s .
d a; (n—d+1) = p2ipra

One then obtains estimators for v, (z,) and v(x) as the following:

Our first theorem gives the estimation result of the mean functions

6



Theorem 1 Under assumptions A1-A8, as n — 00, for any «

Vnh {Mo(20) = Ma(a) = B bpa(za) } 2 N {0,02,,(za) } (2.1)
where (KD)
_ Hp+14yy Mm@ (4
and

Traa) = NG [ 2 (e ) ()
While for any o # (3, as n — 0o, one has
cov [Vnh { M(a) = Ma(za) }, Vb {Ms(z5) — My(xs)}| = 0. (2.2)

Furthermore, as n — oo
Vi(m = em) 5 N{0,02,(x)}

for some implicitly-defined constant o2 . The asymptotics of Vnh{Ma(Ts) — ma(za)} are
the same as those of the v/nh {Ma (xq) — M, (xa)}, while

Vnh {fi(x) = m(x) = B b (x) } B N {0,02,(x)} (2.3)
where )
b (x) = ;bma (24)
and )

(%) = D Oa(Ta)-

a=1

The second theorem is about the estimation of the volatility functions

Theorem 2 Under assumptions A1-AS8, as n — oo, for any «

Vnh{Va(za) = Va(za) = B bya(wa) } 3 N {0,0%,(x40) (2.4)
where
braan) = S (V0 ) 4 2 ) M )}
—/me(xa,w)m(xa,w)ﬁ(w)dw
and 2
R ] B O L

Also, as n — oo

cov [M{Va(wa) - Va(xa)} , M{Ma(xa) N Ma(%‘)H

7



. um _
> 2K3 ;| w0, ) (w)dw = eva(z) (25)
while for any a # 3 one has

cov [Vh {Va(za) = Va(za) }, Vh { Vs () — Vis(z)) }] = 0,
cov [Vh {Va(za) = Va(a) }, Vnh { Ms(xs) — Ms(5)) }] — 0. (2.6)

Furthermore
Ve, — ¢, — boh?t) B N(0,02)

)Y cv

for some implicitly-defined constant o2, and

1 d
be = W c; / 1§ﬂ§,@;ﬁa {19};#&,5 Vv(?h)} bus (ys)p(y)dy.
For any «
Vih {Ba(wa) = va(a) = W bya(a) } 5 N {0,02,(24) } (2.7)
where
boa(Ta) = é{bVa(xa) — beva(Ta)}
and .
O—ga(xa) = 0—20"2/a(.1‘a),
while
Vnh {B(x) — v(x) = Wb, (x)} 3 N {0,02(x)}
where
N Lobvs(eg) -l
bu(x) = 0() {ﬂz e =) bc}
and ¢ o2 (o)
ol(x) = v¥(x ovs\te
»(x) ( )ﬁgl V()

The next theorem summarizes all the previous results together in the form of joint
asymptotic normality for all estimators

Theorem 3 Under assumptions A1-A8, denote by B(x) the vector valued function

T
(bt (1), b (22), .oy brat(Ta), b (%), bt (31, by (2), .-, bua () bu (%), 0, v/ }
and X(x) the following matriz

Y1 X2 iz Xis Ogxr Ogir |
g1 Ypp Mz Xz O 0
231 X3z 233 234 04«1 Ogx1
Yy Y4ap Yyz Xy O 0
01><d 0 01><d 0 0'2 0

cm

L cv




where

. d .
311 = diag {afna(xa)}azl , Xap = 02,(x), 33 = diag {aga(xa)}a_ , B4 = 02(x),

Tip =35 = {Uia(xa)}mq, i3 =35 = diag{ p

T
CvalZy) V(X CvalTa
2142221111:{‘/( ) ()} ;22:’,:2;{2:{‘/( )} ’
1<a<d

¢ ValZa) ¢ Jicaca
cva(Ta) v(X) v(x)
224 = 21‘2 = i:l c V. (x ); Z]34 = EI3 = Uga(xoé)v (x ) ’
v a\ta a\ra 1<a<d

then, as n — oo

mg(wq) — ma(zq)
Am x) — m(x
m Z\; Ei:; : Z;Ei;; — B(X)hp+1 2} N {0(2d+4)><(2d+4), E(x)}

GRS

We comment here that although Theorem 3 is obtained for local polynomial of degree
p, where p is an odd integer, the same result holds for p even, in particular, for p = 0,
i.e., the Nadaraya-Watson estimator. We choose to have p odd here because it does not
involve the derivatives of the design density in the bias and variance expressions, and thus
“design-adaptive”.

3 An Application

To illustrate our method with an example, we study the daily returns of the DEM/USD
exchange rates from Jan.2 1980 to May 26 1986, a total of 1603 observations. The data is
plotted in Figure 1.

We estimate the conditional mean and volatility functions of this series at lags 1 and
3. The choice of these two lags is based on the findings of Tschernig and Yang (1997), who
have developed a nonparametric final prediction error criterion for determining significant
lagged variables. For the estimation, we use subjectively selected bandwidths h = 0.0062,
g = 0.0074, and the Nadaraya-Watson estimators. We found that except for some boundary



effects, the mean functions mg(e)’s are very close to zero. The estimated volatility func-
tion 0g(e)’s depicted in Figures 2 and 3, however, provide some fresh insights. Both the
computation and graphics are done in XploRe, see Hérdle, Klinke and Turlach (1995).

Figures 2 and 3 show that the lagged variables impact the volatility function asym-
metrically as both v0;(e) and vs(e) are quite skewed, especially 03(e); one can see this by
comparing v, (e) and vs(e) with their ordinary least squares quadratic fits which are the thin
lines in the pictures. Some kind of nonparametric testing would be needed in order to check
the significance of these observed features.

Our observations about 7;(e) and 03(e) have added weight to what some other studies
had also suggested: that the basic GARCH model is perhaps inappropriate for the process
we have here. Our analysis here has gone a step further in nonparametric estimation of
times series as the significant lagged variables are first identified by a nonparametric criteria,
see Tschernig and Yang (1997) for details. This example of identifying significant lags and
measuring their impacts points to a new comprehensive nonparametric approach to time
series analysis.

Returns

DEM/USD*E-2

T T T T
(0] 5 10 15
DEM/USD* E-2

Figure 1: The daily returns
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-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Figure 2: Volatility function v,(e) Figure 3: Volatility function v;(e)
(thick) and its quadratic fit (thin) (thick) and its quadratic fit (thin)
4 Proofs

Theorems 1 through 3 are proved in this section by the marginal integration technique as
in Severance-Lossin and Sperlich (1995). We make use of the following geometric mixing
results

Lemma 4.1 (Davydov(1973)).

Under assumptions A1 and A2, if further, Xy is distributed with the stationary distribution
m(e), then the process {X;} is geometrically strongly mizing with the mizing coefficients
satisfying a(n) < copfy for some c¢g >0 and 0 < py < 1.

By arguments which are very similar to those used in Hardle, Tsybakov, and Yang
(1998), the above mixing lemma entails that the sample mean of any bounded continuous
function of the observations Y; converges in both probability and mean to the stationary
population mean. The situation here is slightly more complicated than in that paper as one
now has to average functions of two variables Y; and Y7, one at a time. Nevertheless, the
difference is more formal than substantial. We therefore neither state nor prove any such
results here, but use them to derive the various formulae of asymptotic biases and variances
as these are the new contributions of this paper.

The proof of the next lemma is standard and omitted. It employs the strong mixing
condition of Lemma 1.1 and Lemma 4.1.

Lemma 4.2 Let D) = (ZTWZZ)*1 — Ll S

Cov(Dy, Dy) = pl'* {Op(h + lnn/\/nhgd—l)}2 (4.1)

uniformly in x, and Y, where H = diag (h)‘)0<)\< .
<A<p

11



Proofs of asymptotic normality in this section are based on the central limit theorem of
Liptser and Shirjaev (1980). Conditions for applying this theorem will not be verified here
as they are all standard. Set S = ([ u*"" K (u)du)o<s<p, Which contains all the moments of
S up to order 2p. Denote S~ = (s4)o<s,1<p and define

u) = i sxu' K (u). (4.2)

This K} (e) is called the A-th equivalent kernel. It has the following moments

0 q<p, qFA
/quj{(u)du: 1 g=A :

(4.3)
Ay g=p+1

and K (e) would yield the bias rates of n=2?/(2»+1) for local polynomial estimation, see Wand

and Jones (1995).
To prove Theorem 1, we begin by observing the following simple equation

e (2'WiZ) ' Z'WiZey = { (1) gi i } (4.4)

thus
Ma(ta) — Ma(za) = (n—d+1) 'Y eb (2°'Wi2)  Z"Wy
l=d

—(n—d+ )Y (2 WZ) T 2 WiZeoMa(xa)

m”) )

Mu IM=

(n—d+1)'Y "Z'wiz) ' Z"Wize,.

[=dv=1

N
Il

—(n—d+1) 126 (ZTm )" ZTWHY — Ma(2a)}
=d

n p (v) 1
—n—d+1)7Y Y myi('x"‘)e{ (2'wiz) 2" Wize,.
[=dv=1 '
Now Assumption A3 combined with the strong mixing properties of our process imply that
forevery 6 =1,2,....d,3 # «

(n—d+1)"1Y ms(Yip) = 0,(1/v/n),

and thus by (4.4), one also has (using the mixing properties of the process, see Lemma 1.1,
Lemma 4.1 and Lemma 4.2)

n

(n—d+ 1) Y e (2"Wiz) " Z"WiZeoms(Yies) = Oy(1/V/n).
[=d

12



So one has -
My (2,) — My(z4) =

-1
(n—d+1)"'> e (ZTWZZ VAR {Y — Y mp(Yig) — Ma(xa)}
1<p<d,f#a

—(n—d+1)"* zn: zpj Meg (ZTWlZ)*1 Z'W,Ze, + 0,(1/\/n)

n

P ma (.Z'a)
{Y— 27’ Ze,,— Z mﬁ(}/}ﬁ)—Ma(l‘a)},
1<B<d,B#a
or

My(10) — Mo(240) =

n p

= (n—d+1)7tY el (ZTWZZ)_I Z"W, {Y Ry Mzey - 3 mﬁ(Yl_ﬁ)} .

I=d v=0 V! 1<B<d,fta
(4.5)
@)
Note that the A-th element of Z1W, {Y —Cm— P, m‘17(%)26,, 2 1<p<d fta mﬁ(Ylﬁ)}

is
n

(n—d+1)"" (Yica — 1) Kn(Yj—a — 24) Ly (Y; = Y7)
j=d
2om&) (2a) v
{YJ —Cm = 7,(}/3'—04 —wa)’ = ). mp(Yig)
v— Y 1<B<d,f#a
=Iy1+Iuz+1Iys
in which
I)\ll—(n—d—Fl ZIML
where

A 2om) (aq) v
I)\lj,l - (Y}—a - xa) Kh(}/j—a - xoa)Lg(Yj - Yl) ma(Y}—a) - Z 7(%—(1 - xoa) )

I)\l:2: Z (Tb—d"‘]. ZIM,BJZ
1<p<d,f#a

where

Dugjz = (Yjica = o) Kn(Yj—a — 2a) Le(Y; = Y1) {mp(Y;_p) —ms(Vi_p)}, (4.7)
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and

I)\lg— n—d—l—l ZIMJ?)? (48)

where

Ljs = (Yjma = @) Kn(Yima — 2a) Lg(Y; = Y1)s(X;)§;. (4.9)
Lemma 4.3 Asn — 0o,

E(])\lljl’lj)\leQ’l) _ pmin(\h*lzly\jrjzl)O(h%/hgd*l)

uniformly, for A=0,...,p and l1,ls,j1,J2 = d, ..., n
E (I g rispogs 1) = po IR0 O (R [hg )

uniformly, for A=0,....,p and l1,ls,J1,7o = d,....,n and 1 < § < d.

E(Iyji slagep) = pm (20O (R [hg )
uniformly, for A=0,...,p and ly,ls,j1,J2 = d, ..., n

Proof. We only show this for the first case
B(Ingiss D) = p 020100 (1 =K (0 —0a) LE(@=T 1) (w)ip(w)dw {1+ 0(1)}
where we have used Lemma 1.1. By a change of variable w, = x4 + hto, W = Y| + g

E(I)\ll]l 31)\12]2 3) {hgd 1} {1 + 0(1)}

S (hug) 2 K2 (uo) L* (@) v (24 + hug, Y| + g0)@(Ta + hua, Y, + gu)du. Q. E. D.
Now

2
O(h* /nhg®™) {Op(h +1In n/\/nhgdl)} =0, {h2’\+2/nf74]d_1 + h* ln2n/(n2h292(d_1))}

= h*/nhO, (h2/gd_1 +1In 2n/nth(d_l)) =0, (h”‘/nh)
by using assumption A8. Employing Lemma 4.2 and Lemma 4.3 now gives

n

p -1 1
n—d+1)7"Y el { zZ'wz) - 7—1{_15_1}[_1} ex(In + Iz + Dus)
);) ; ( ) QO(.’EQ,Y!)

= zpj o, (KA Vnh) = 0, (1/Vnh) = o, {W+'} = o, {n=+D/Cr+3}

If we only had to consider the diagonal terms, then this fact is easily recongnised (this is if
we could ignore the correlation of the "I”-terms with the rest). The correlation can however

14



be taken care of by writing up the I, 45 as sums (se above), squaring the expression and
conditioning on the ”I-components”. The exponential decay of the correlations in Lemma
4.2 and Lemma 4.3 ensures that the order of magnitude is the same as if only the diagonal
terms were considered.

Proof of Theorem 1. Making the aforementioned substitution, one has in particular

—

M, (x4) — Mo(24) — 0p {th} =

" 1
=n—d+1)*Y ————elH 'S 'H'Z"W,
2 ¥
P ) (a)
o £ 5 s
) 1<p<d,p#a
which, by using (4.6), (4.7), (4.7) and the definition (4.2), equals

. 1 ) _
l=d @

P omW(z
Mma(Yj o) = M(Yj—a —wa)’+ Y Amp(Yjp) —ms(Yip)} + S(Xj)ﬁj]

v=0 ) 1<p<d,f#£a
ngh(}/y:a — Ta)
j=d (P(xa; Yj - gw)

o(Y; — gw)L(w)

Yia—za)"+ D Amp(Yjp) —ms(Yj 5 — gws)} + S(Xj)fj] :

V=0 : 1<B<d,f#a

And because L has order ¢, so the above equals

-1 - th(yvjfa - xa)_ —
R
P om)(z4)
fa0) = 32 (G 4O, a0

in which

and




Now (by using the mixing properties of our process)

Koz — ma) _ ¢ mg/)(xoz) v
B={1+ op(l)}/mgo(w) {ma(Yja) - ; — o (Yia = a)" 0 (2, w)dedw.
After substituting z = z, + hu, B becomes
P 1
B = {1+0,(1 }/ @ ?(w) {ma(xa +hu) = > ;mg’) (xa)(hu)”} o(xo + hu, w)dudw
a W v=0 """
which, by using the moment properties of the equivalent kernel as in (4.3), equals
M (p+1) p+l p+l p+1
{1+0,(1)} - 1) ME T (Xa)bima(Ta) WP = ba (Ta) WP 4+ 0,(RPT) (4.11)

where b, () is as given in Theorem 1. Meanwhile, V' has mean zero and its variance is

(n—d+1)"! / {%@(w)s(a w)} (2, w)dzdw {1+ o(1)}
=n thto? (z.) {1+ 0(1)}. (4.12)

Equations (4.11) and (4.12) together establish (2.1). Equation (2.2) is derived by stan-
dard technique as in Linton and Hérdle (1996). Equation (2.3) and all the other re-
maining formulas of Theorem 1, then follow directly from (2.1) and (2.2) as the various

vnh {J\/Ia (o) — Ma(xa)}’s are all asymptotically uncorrelated, so the variance of
Vnh {m(x) — m(x)} is simply the sum of all their variances, the mean of vnh {m(x) — m(x)}
is simply the sum of all their means. Q. E. D. ~

Proof of Theorem 2. We prove similar results for V,,(x,)

~

Valea) = Valea) = (n =+ )73 e (21W02) ™ 2'Wi* = il T2} = Va

(h—d+1)'Y el (2'Wiz2) ™" Z"Wi {Y? — Tii(2a, Y1) — Valza)}

l=d

= (n—d+1)" Zeo (zTWlZ)’1 ZTWAY? = m(wa, V1) + m(za, V1) = (20, V1)? = Val(@a) } -
l=d

Now note that by Assumption A4

(n—d+1)7" Z I vs(Y;5) = 1+ 0,(1/vn)
and also that

Y7 = m(X;)” + 22m(X;)s(X;)&; + v(X,)(€2 — 1) + v(X;)
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So similar to (4.10), we have

where

?(Y;) {U(Xj) = Valwa) 1 Uﬁ(Yjﬁ)} ,

BFa
$ Ké‘h(yjfa__ Ta)
j=d (P(xa; Yj)
v th(yjfa__ Ta)
j=d 90(1‘047 Yj)

P(Y;5) {2m(X;)s(X;)5}

P(Y,) {v(X,)(& - 1)}

We derive the asymptotics of each of these terms. Recall that Theorem 1 provides the
following

Vb {fi(x) = m(x) = B (x) } 3 N {0,0%,(x)}
therefore

n

Ti=—(n—d+1)7" Y 2{m(2e, Y1) = Ti(wa, Y1) | m(20, Y1) + 0p(hPH)

l=d

= 2B {m(xa, Vo) = M(&a, Va) } m(@a, Vo) + 0p(h7H)

— / Wy (L, )12, w)B(w)dw + 0, (AP, (4.13)
Next we see, by using substitution 2, = 2, + hu, that
T, = {1+ 0,(1)} | Kj((jajwﬁa)w<w> {m(z,w)? = m(r w)?} (2, wdzddu
- “jj; N o) [ om0 (s w)p ) + o, (1)
- %fjf)mgﬁ”(xaww Fo,(w) (4.14)
= {1+ 0,1)} [ FEELe)g0) {1, ()7 0) = Vi) V) ol )

= %Ufﬁ)/vyﬂ)(xa)va(w)ﬁ(w)dw + 0p(hp+1)
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_ tp+1(K5)
(p+1)!
To calculate the terms 7 and 75, note first that they both have mean zero and are uncor-
related, so it is only necessary to calculate their variances and the sum.

V@D (1) 4 0, (W), (4.15)

var(Ty) = (n —d+1)'E {th(y’;—(;;%)f(yn) 2m(Xd)s(Xd)} (14 0(1)}
=(n—-d+1)" / {%Qm(z, w)s(z, w)@(w)} (2, w)dzdw {1+ 0(1)}
= IR [ )P e 1+ 0(1) (4.16)
and similarly
1 o [ Mmyv? .
var(T5) = — ||K6‘||2/7(:ra,w)<p (w)dw {1 + 0(1)}. (4.17)

Putting together equations (4.13) through (4.17) gives the asymptotic expressions of Vy ()
in Theorem 2. To get the formula for ¢y, (z) in (2.5), note that the variance term V' in the
proof of Theorem 1 is uncorrelated to all the T;’s except Ty, and their asymptotic correlation
is (plus some higher order term)

(n—d+ 1)—1E { KSh(Y;(C;;;C;;¢(Yd) 2m(Xd)s(Xd)} {th(YjO(C;;;z;¢(Yd) S(Xd)}

which can be verified to be exactly 2-cvq(2) {1+ 0(1)} by the same technique used above.

Equation (2.6) is easy to prove as (2.2) of Theorem 1.
To get the asymptotic properties of ¢,, we use the above results on V,(z) and the mixing
properties of our process to get

~d—1 ]._1 -1
Cy _v &Z n—d—!—l)Z H Vﬁ(Y )

a:l j=d 1<8<d,f#a
- i 1 i {Va(Y55) + Va(Yi5) = Vs(Y; p)} — it
d 3= (” —d+1) j=d 1<p<d,f#a ’ ’ ’ °

j=d 1<f<d,B#a

+$§( Y Xn: > { II Vv(Yj—v)}{Vﬁ(Yj—ﬁ)_Vﬂ(Y}—ﬂ)}

) iZ<s<apra 1<r<ntas

= % 2 ﬁ 2 d#a{ 11 Vv(Yjv)} {Vs(¥iop) = Va(Yj-p)} + O

1<y<dyy#a,B

= Sl + 52 + 53 + Op(hp_H)

18



where

1Y p+1
S1 = d Z ( d—|— 1) Z Z { H Vv(Yj—v)} bvﬂ(Yj—ﬁ)h

j=d1<p<d,f#a | 1<r<dy#a,8

Dol Y S| G

Jj=d1<p<d,f#a \1<y<dy#a,0

o |5 Eones = Yi5) oy o vy
3 Sl (w5506

1 d
ngdz( d+122 Z { H VV(YJ'V)}

Jj=d1<p<d,f#a \1<y<dy#a,0

% & th(}ﬁc—ﬁ_y}—ﬂ)—— v 2 _

These three terms can be written as (again using the mixing properties)

th / Z { H Vv(yv)} bos(Ys)p(y)dy + Op(—=)

1<p<d,f#a \1<v<d,v#a,6

S

and
Sy = - V.
o TN I SECS)

k=d

©(ys, Yr)
gty = f{om e
XKS‘(UWSZZw;Y_k ]fu}f;:; ,7)dudy {1+ 0,(1)}
sy x {n vl

xP(Yi)(Yiep, 7)dy {1 + 0,(1)}

from which it is clear that S satisfies a central limit theorem with \/n rate of convergence,
which is also the case with S3. Thus

1
p+1 d—1
— 1 h
Cy =

Z/ 2 { 11 Vv(yv)}buﬁ(yﬁ)w(y)dw%z

1<p<d,f#a \1<y<d,y#a,
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where Z 2 N(0,02) for some o2, applying Taylor expansion gives the result on &,. the rest
of Theorem 2 follows directly. Q. E. D.

Proof of Theorem 3. Simply putting together the results of the previous two theorems.
Note that the joint normality follows from the fact that the stochastic part of all the estimates
are based on the §;’s and the (sz —1)’s. Thus, any linear combinations of the estimates also
have similar forms as the ones treated in Theorem 1. Q. E. D.
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