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Abstract

For over a decade� nonparametric modelling has been successfully applied to study
nonlinear structures in �nancial time series� It is well known that the usual nonpara�
metric models often have less than satisfactory performance when dealing with more
than one lag� When the mean has an additive structure� however� better estimation
methods are available which fully exploit such a structure� Although in the past such
nonparametric applications had been focused more on the estimation of the conditional
mean� it is equally if not more important to measure the future risk of the series along
with the mean� For the volatility function� i�e�� the conditional variance given the past�
a multiplicative structure is more appropriate than an additive one� as the volatility
is a positive scale function and a multiplicative model provides a better interpretation
of each lagged value�s in�uence on such a function� In this paper we consider the joint
estimation of both the additive mean and the multiplicative volatility� The technique
used is marginally integrated local polynomial estimation� The procedure is applied to
the DEM�USD �Deutsche Mark�US Dollar� daily exchange returns�
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� Introduction

The prediction of �nancial time series based on daily data is� in general� di�cult� since after
di�erencing most of the structure in the mean disappears� This is why random�walk�based
models have been used in this context� The situation is di�erent� though� for high frequency
time series such as foreign exchange rates� Autoregressive models have been applied for such
data with speci�c assumptions on the error distribution� see Engle ���	
�� Engle and Ng
������� Some of the most common nonlinear autoregressive models were proposed by Tong
���	� ��	��� Haggan and Ozaki ���	��� Chan and Tong ���	��� and Granger and Ter�asvirta
������� In particular it is important not only to predict future values but also to evaluate the
risk� or the volatility of the series� In the class of ARCH models the volatility or the scale of
innovative random shocks is a function of past values� Over the past �fteen years� the strict
parametric forms of these models have been questioned and more �exible nonparametric
approaches have been studied as an alternative� see Robinson ���	�� ��	��� Meese and Rose
������� Drost and Nijman ������� Engle and Gonzalez�Rivera ������� A more recent review
is H�ardle and Chen �������

One of the models studied for foreign exchange rates� for example� is the CHARN �condi�
tional heteroskedastic autoregressive nonlinear� model with one lag �Bossaerts� H�ardle� and
Hafner� �����

Yi � m�Yi��� � s�Yi����i �����

where f�igi�� are i�i�d random variables E��i� � E���i � � �� E���i � � � and E���i � � m� ���
and Y� is independent of thef�ig�s� An analysis of the estimated residuals still revealed
autocorrelation� Hence� more than one lagged variable in the modelling of the mean function
m��� and the scale function s��� seems to be the necessary step in a further analysis�

We consider therefore in this paper the CHARN model of the form

Yi � m�Yi��� Yi��� ���� Yi�d� � s�Yi��� Yi��� ���� Yi�d��i ���
�

where f�igi�� are as in ����� and Y�� Y�� ���� Yd�� are random variables independent of the
f�ig�s� The conditional volatility function is v�Yi��� Yi��� ���� Yi�d� � s��Yi��� Yi��� ���� Yi�d��
This form of the CHARN model in �nancial time series has been studied by Gouri�eroux
and Monfort ����
� and Masry and Tj�stheim �����a�� The estimation problem for the
functions m��� and v��� has been treated in H�ardle and Tsybakov ����� in the case of
d � � with the local polynomial regression method� H�ardle� Tsybakov and Yang ����	�
studied vector autoregression with arbitrary number of lags and dimension� We de�ne the
CHARN model for general dimensions� however� from a practical point of view� the method
can be expected to su�er from the statistical imprecision introduced by a large number of
lags� In particular in the small sample size case� We illustrate the method with a foreign
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exchange rate application� Through lag selection� see Tschernig and Yang ������ we ended
up using the �rst lag and the third lag of the time series�

Stone ���	
� showed in the i�i�d� regression case that if the mean function m��� is a sum
of univariate functions� then the one dimensional convergence rate can be achieved for the
estimation of m����s component functions� Tools for analysis of additive models in this con�
text have been developed by Hastie and Tibshirani ������� including the BRUTO algorithm
for nonparametric modelling� which Chen and Tsay �����a�b� applied to autoregressive time
series� The �integration method� �but not the term marginal integration� was introduced
by Auestad and Tj�stheim ������ and further explored by Tj�stheim and Auestad ������
for the precise analysis of additive model estimators which was previously unavailable� It
provides closed form bias and variance expressions of the one dimensional function estimator�
The term marginal integration was introduced in Linton and Nielsen ������� who worked
in the independent identically distributed regression setting� Marginal integration has re�
cently been employed in the autoregression setting by Masry and Tj�stheim �����a�b� and
in the independent identically distributed regression setting by Linton and H�ardle ������
and Severance�Lossin and Sperlich �������

The idea of the integration method is quite straightforward� in the regression setting for
instance� if the mean function m�x�� x�� ���� xd� is a sum of univariate functions� say

m�x�� x�� ���� xd� � c�
dX

���

m��x�� �����

then
m��x�� �

Z
m�x�� x�� ���� xd�dF �x�� ���� cx�� ���� xd�� C

where F �x�� ���� cx�� ���� xd� is the joint distribution function of all the variables X�� ���� Xd with
the ��th X� removed� and C is an additive constant� Hence each component function m� is
identi�ed from m�x�� x�� ���� xd� through a simple integration procedure� Linton and Nielsen
������ introduced the idea of applying integration estimation to multiplicative structures in
dimension two� in this paper we extend the integration formula to multiplicative volatility
functions of any dimension�

To estimate the parameters in the CHARN model� we have to estimate the conditional
mean functionm��� and the conditional variance or volatility function v��� at the same time�
The �exibility of our CHARN model is important in a number of economic applications� For
example prediction of �nancial time series� where the volatility function often plays an even
more important role than the mean function� It is therefore bene�cial to obtain the joint
estimation of both m��� and v��� for model ���
�� The volatility function v��� measures
the scale and is always positive� therefore it seems more appropriate to model its changes
multiplicatively rather than additively� as in the EGARCH model of Nelson ������� In this
paper we jointly estimate the additive �mean� and the multiplicative �volatility� functions
with the integration method�

We therefore assume that the mean functionm��� is additive while the volatility function
v�Yi��� Yi��� ���� Yi�d� � s�Yi��� Yi��� ���� Yi�d�� is multiplicative

m�Yi��� Yi��� ���� Yi�d� � cm �
dX

���

m��Yi���� �����






v�Yi��� Yi��� ���� Yi�d� � cv
dY

���

v��Yi��� �����

where cm and cv are constants� fm����gd��� and fv����gd��� are sets of unknown functions�

Besides the better rate of convergence for the estimation of fm����gd��� and fv����gd��� as
discussed above� these univariate functions also allows one to quantify the impact of each
lagged variable Yi�� on the mean and volatility more directly�

To formulate the identi�ability conditions for the functions fm����gd��� and fv����gd����
the process Yi has to converge to a stationary distribution� If we denote by Xi the vector
�Yi��� Yi��� ���� Yi�d�T � then fXig is a d�dimensional Markov process� Many authors� such as
Tweedie ������ Nummelin and Tuominen ���	
�� Mokkadem ���	�� Tj�stheim ������ and
Diebolt and Gu�egan ������ developed geometric ergodicity criteria for Markov processes�
Here we state some general assumptions

A�� The random variable �i has a density function p���� This density p��� and the volatility
function v��� are strictly positive in a neighborhood of x�

A
� There exists an r � � such that for
Pd

��� jyi��j� r � the functions m��� and s��� sat�
isfy�

jm�yi�� � yi�� � ���� yi�d�j � C� �� �
dX

���

jyi��j�

js�yi�� � yi�� � ���� yi�d �j � C� �� �
dX

���

jyi��j�

with C� � C�E j��j � ��d�

These assumptions are standard in this context in order to prevent the process from
either dying out or exploding� Ango Nze ����
� proved the following

Lemma ��� Under assumptions A� and A�� the process fXig is geometrically ergodic� i�e��
it is ergodic� with stationary probability measure ���� such that� for almost every x�

kP n�� j x�� ����kTV � O��n�

for some � � � � �� where P n�� j x� is the probability measure of Xn given Xd � x and

k�kTV is the total variation distance�

This lemma ensures that the process fXig is asymptotically stationary� We denote by
F ��� the stationary distribution function� For all � � 	 � d� we denote by F���� the
stationary distribution function of the 	�th variable� and F ��� the stationary distribution
function with the 	�th variable deleted� We allow ourselves to use the short�hand notation Y�
for Yi��� Let x� denote the deterministic version of Yi��� We can now state the identi�ability
conditions

A�� Em��Y � �
R
m��x��dF��x�� � �� for any Y that has distribution F����� and for all

� � � � d�
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A�� E
Q

����d�� ��� v��Y�� �
Q

����d�� ��� v��x��dF �x� � � for any �Y�� Y�� ���Yd� that has dis�
tribution F ���� and for all � � 	 � d�

Let x ��x�� x�� ���� xd�
T �IRd be a point where we will estimate the mean and volatility

functions� We de�ne for every � � 	 � d� M��x�� � cm �m��x��� V��x�� � cvv��x��� then

m�x� �
dX

���

M��x��� �d� ��cm� v�x� � c��d���v

dY
���

V��x��� �����

In what follows� we adopt the notationXi � �Yi��� Y i� to highlight a particular direction
of interest Yi��� for all � � 	 � d� while Y i is the d� � dimensional vector that consists of
all the rest Yi���s� � � � � d� � �� 	� Assumptions A� and A� yield the following marginal
integration formulae for the unknown functionsZ

m�x�� x�dF �x� � M��x�� � cm �m��x��� ����

Z
v�x�� x�dF �x� � V��x�� � cvv��x��� ���	�

which show that the univariate functions fm����gd��� and fv����gd��� are identi�able from
the functions m��� and v��� up to some constants� And similar formulae exist for these
constants as well

cm �
Z
m�x�dF �x� � E�Y �� cv �

����

d

dX
���

Z Y
����d�� ���

V��x��dF �x�

���
�

d��

� �����

These are the basic equations that will be used later in our estimation procedure�
In Section 
� we present the estimators of fm����gd��� and fv����gd��� and study their

asymptotic properties� In Section �� we discuss the application of the result to DM�USD
daily return data� In Section �� proofs of theorems are given� Inspection of the proofs
in Section � shows that the result of the present paper also holds �with obvious refor�
mulation� for the multivariate nonparametric regression model with heteroskedastic errors�
Yi � m�Xi�� Xi�� ���� Xid� � s�Xi�� Xi�� ���� Xid��i� where �i are as in ���
�� �Xi��Xi������ Xid� Yi�
are i�i�d�� and the design points fXi��Xi������ Xidg are independent of f�ig�

� The Estimators

The estimators given in this section are based on local polynomial regression� �rst studied
by Stone ���� and Katkovnik ������ The idea� as will be seen below� is to estimate an
unknown function locally by polynomials� whose coe�cients are calculated through kernel
weighted least squares� see also Tsybakov ���	��� Ruppert and Wand ������� Wand and
Jones ������ and Fan and Gijbels �������

Now we let p � � be any odd integer which will be the degree of polynomial used later�
For any function K ��� we denote kKk�� �

R
K��u�du� while for a kernel function K ��� we

de�ne Kh�u� � K�u�h��h� and 
r�K� �
R
urK�u�du� We shall consider two kernel functions

K��� and L��� that satisfy

�



A�� Both kernels K ��� and L ��� are bounded� symmetric� compactly supported and Lips�

chitz continuous with
R
K �u� du �

R
L �u� du � �� while K ��� is positive� the kernel

L ��� is of order q � �d� ���p� ���


When estimating functions m� ��� and v� ��� for a particular 	� a multiplicative kernel
is used consisting of K for the 	�th variable and L for all other variables�

We assume the following about the functions involved in the estimation

A�� The functionsm� ����s and v� ����s have bounded Lipschitz continuous �p� ���th deriva�
tives for all � � 	 � d�

A� The stationary distribution function F ��� has a density ����� The function ����� to�
gether with the densities ����� of F���� and ���� of F ��� are all uniformly bounded

away from zero and in	nity and have bounded Lipschitz continuous �p� ���th deriva�

tives� for all � � 	 � d�

Lastly� we assume the following for two bandwidths� g for the kernel L� h for the kernel
K

A	� Bandwidths g and h satisfy gd��

h�
���� nhg��d���

ln ��n�
���� gq

hp�� � � and h � h�n
��
�p�� �

Note that this A	 requires that L ��� have the order as in A�� In particular� if one uses
local linear regression� i�e�� p � �� then the order of L ��� is q � d� ��

One can de�ne the integration estimator for M��x�� as

cM��x�� �
Z cm�x�� x�d

bF �x� � �n� d� ����
nX
l�d

cm�x�� Y l��

where cm�x�� x� is an estimate of m��� at �x�� x�� and bF �x� is the empirical cumulative

distribution function �ecdf�� The estimator cM��x�� is hereby based on the sample version
of equation ����� The estimator for cm is simply the sample mean of Yj�s according to �����

bcm � bE�Y � � �n� d� ����
nX

j�d

Yj

where bE is the empirical mean of Y � These estimators are then used to obtain estimators
for m��x�� and m�x� cm��x�� � cM��x��� bcm�

cm�x� � bcm �
dX

���

cm��x�� �
dX

���

cM��x��� �d� ��bcm�
We now de�ne cm�x�� Y l� as follows� For all l � d� d� �� ���� n� and � � �� ���� p let

Z �
n
�Yi�� � x��

�
o
�n�d�����p���

�

�



Wl � diag

�
�

�n� d� ��
Kh�Yi�� � x��Lg�Y i � Y l�

�n

i�d

�

where we denote

diag�a� �

�				

a� � � � � �
� a� � � � �
���

���
� � �

���
� � � � � ak

�����
for any vector

a �

�BB�
a�
���
ak

�CCA � IRk�

Also write

Y � �Yi�d�i�n� Y � � �Y �
i �d�i�n�

and let e� be a �p� �� vector of zeros whose ��� ���element is �� Then

cm�x�� Y l� � eT�
�
ZTWlZ

���
ZTWlY�

which is the usual local polynomial estimator of m��� at �x�� Y l� of order p in the 	�th
direction and order � in all the other directions� Our estimator cM��x�� is therefore

cM��x�� � �n� d� ����
nX
l�d

eT�
�
ZTWlZ

���
ZTWlY�

�

Note that
E�Y �

i j Xi� � m��Xi� � v�Xi��

thus similar estimator for V��x�� based on equation ���	� is de�ned as

bV��x�� � �n� d� ����
nX
l�d

�
eT�
�
ZTWlZ

���
ZTWlY

� �cm�x�� Y l�
�
�
�

and that of cv is based on ������

bcv �
����

d

dX
���

�

�n� d� ��

nX
j�d

Y
����d�� ���

bV��Yj���
���

�
d��

�

One then obtains estimators for v��x�� and v�x� as the following�

bv��x�� � bV��x��bc��v �

bv�x� � bcv dY
���

bv��x�� � bc��d���v

dY
���

bV��x���
Our �rst theorem gives the estimation result of the mean functions

�



Theorem � Under assumptions A��A
� as n��� for any 	

p
nh

ncM��x���M��x��� hp��bm��x��
o

D� N
n
�� �m��x��

o
�
���

where

bm��x�� �

p���K

�
��

�p� ���
m�p���

� �x��

and

�m��x�� � kK�
�k��

Z v

�
�x�� w��

��w�dw�

While for any 	 �� �� as n��� one has

cov
hp

nh
ncM��x���M��x��

o
�
p
nh

ncM��x���M��x��
oi
� �� �
�
�

Furthermore� as n�� p
n�bcm � cm�

D� N
n
�� �cm�x�

o
for some implicitly�de	ned constant �cm� The asymptotics of

p
nh fcm��x���m��x��g are

the same as those of the
p
nh

ncM��x���M��x��
o
� while

p
nh

ncm�x��m�x�� hp��bm�x�
o

D� N
n
�� �m�x�

o
�
���

where

bm�x� �
dX

���

bm��x��

and

�m�x� �
dX

���

�m��x���

The second theorem is about the estimation of the volatility functions

Theorem � Under assumptions A��A
� as n��� for any 	

p
nh

n bV��x��� V��x��� hp��bV ��x��
o

D� N
n
�� �V ��x��

o
�
���

where

bV ��x�� �

p���K

�
� �

�p� ���

n
V �p���
� �x�� � 
m�p���

� �x��M�x��
o

�
Z


bm�x�� w�m�x�� w���w�dw

and

�V ��x�� � kK�
�k��

Z v �m�v � �m��

�
�x�� w��

��w�dw�

Also� as n��
cov

hp
nh

n bV��x��� V��x��
o
�
p
nh

ncM��x���M��x��
oi





� 
 kK�
�k��

Z vm

�
�x�� w��

��w�dw � cV ��x�� �
���

while for any 	 �� � one has

cov
hp

nh
n bV��x��� V��x��

o
�
p
nh

n bV��x��� V��x���
oi
� ��

cov
hp

nh
n bV��x��� V��x��

o
�
p
nh

ncM��x���M��x���
oi
� �� �
���

Furthermore p
n�bcv � cv � bch

p���
D� N��� �cv�

for some implicitly�de	ned constant �cv and

bc �
�

d�d� ��cd��v

dX
���

Z X
����d�� ���

��� Y
����d�� �����

V��y��

��� bv��y����y�dy�

For any 	 p
nh

nbv��x��� v��x��� hp��bv��x��
o

D� N
n
�� �v��x��

o
�
��

where

bv��x�� �
�

cv
fbV ��x��� bcv��x��g

and

�v��x�� �
�

c�v
�V ��x���

while p
nh

nbv�x�� v�x�� hp��bv�x�
o

D� N
n
�� �v�x�

o
where

bv�x� � v�x�

���
dX

���

bV ��x��

V��x��
� �d� ��c��v bc

���
and

�v�x� � v��x�
dX

���

�V ��x��

V �
� �x��

�

The next theorem summarizes all the previous results together in the form of joint
asymptotic normality for all estimators

Theorem � Under assumptions A��A
� denote by B�x� the vector valued functionn
bm��x��� bm��x��� ���� bmd�xd�� bm�x�� bv��x��� bv��x��� ���� bvd�xd�� bv�x�� ��

p
nbc

oT
and ��x� the following matrix�								


��� ��� ��� ��� �d�� �d��
��� ��� ��� ��� � �
��� ��� ��� ��� �d�� �d��
��� ��� ��� ��� � �
���d � ���d � �cm �
���d � ���d � � �cv

���������
	



where

��� � diag
n
�m��x��

od
���

� ��� � �m�x�� ��� � diag
n
�v��x��

od
���

� ��� � �v�x��

��� � �T

��
�
n
�m��x��

o
����d � ��� � �T

��
� diag

�
cV ��x��

cv

�d

���

�

��� � �T

��
�

�
cV ��x��

cv

v�x�

V��x��

�
����d

� ��� � �T

��
�

�
cV ��x��

cv

�T

����d
�

��� � �T

�� �
X

d
���

cV ��x��

cv

v�x�

V��x��
� ��� � �T

�� �

�
�v��x��

v�x�

V��x��

�
����d

�

then� as n��

p
nh

�����������������������������������������������������

cm��x���m��x��cm��x���m��x��
���cmd�xd��md�xd�cm�x��m�x�bv��x��� v��x��bv��x��� v��x��
���bvd�xd�� vd�xd�bv�x�� v�x�

�p
h
�bcm � cm�

�p
h
�bcv � cv�

�����������������������������������������������������

�B�x�hp�� D� N
n
���d������d������x�

o

We comment here that although Theorem � is obtained for local polynomial of degree
p� where p is an odd integer� the same result holds for p even� in particular� for p � ��
i�e�� the Nadaraya�Watson estimator� We choose to have p odd here because it does not
involve the derivatives of the design density in the bias and variance expressions� and thus
�design�adaptive��

� An Application

To illustrate our method with an example� we study the daily returns of the DEM�USD
exchange rates from Jan�
 ��	� to May 
� ��	�� a total of ���� observations� The data is
plotted in Figure ��

We estimate the conditional mean and volatility functions of this series at lags � and
�� The choice of these two lags is based on the �ndings of Tschernig and Yang ������ who
have developed a nonparametric �nal prediction error criterion for determining signi�cant
lagged variables� For the estimation� we use subjectively selected bandwidths h � �����
�
g � ������ and the Nadaraya�Watson estimators� We found that except for some boundary

�



e�ects� the mean functions m�����s are very close to zero� The estimated volatility func�
tion  v�����s depicted in Figures 
 and �� however� provide some fresh insights� Both the
computation and graphics are done in XploRe� see H�ardle� Klinke and Turlach �������

Figures 
 and � show that the lagged variables impact the volatility function asym�
metrically as both  v���� and  v���� are quite skewed� especially  v����! one can see this by
comparing  v���� and  v���� with their ordinary least squares quadratic �ts which are the thin
lines in the pictures� Some kind of nonparametric testing would be needed in order to check
the signi�cance of these observed features�

Our observations about  v���� and  v���� have added weight to what some other studies
had also suggested� that the basic GARCH model is perhaps inappropriate for the process
we have here� Our analysis here has gone a step further in nonparametric estimation of
times series as the signi�cant lagged variables are �rst identi�ed by a nonparametric criteria�
see Tschernig and Yang ����� for details� This example of identifying signi�cant lags and
measuring their impacts points to a new comprehensive nonparametric approach to time
series analysis�
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Figure �� The daily returns
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Figure 
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� Proofs

Theorems � through � are proved in this section by the marginal integration technique as
in Severance�Lossin and Sperlich ������� We make use of the following geometric mixing
results

Lemma ��� �Davydov�������
Under assumptions A� and A�� if further� Xd is distributed with the stationary distribution

����� then the process fXig is geometrically strongly mixing with the mixing coe�cients

satisfying 	�n� � c��
n
� for some c� � � and � � �� � ��

By arguments which are very similar to those used in H�ardle� Tsybakov� and Yang
����	�� the above mixing lemma entails that the sample mean of any bounded continuous
function of the observations Yj converges in both probability and mean to the stationary
population mean� The situation here is slightly more complicated than in that paper as one
now has to average functions of two variables Yj and Y l� one at a time� Nevertheless� the
di�erence is more formal than substantial� We therefore neither state nor prove any such
results here� but use them to derive the various formulae of asymptotic biases and variances
as these are the new contributions of this paper�

The proof of the next lemma is standard and omitted� It employs the strong mixing
condition of Lemma ��� and Lemma ����

Lemma ��� Let Dl �
�
ZTWlZ

��� � �
��x��Y l�

H��S��H��

Cov�Dl� Dk� � �jl�kj
�
Op�h � lnn�

q
nhgd���

��

�����

uniformly in x� and Y l� where H � diag
�
h�
�
����p�

��



Proofs of asymptotic normality in this section are based on the central limit theorem of
Liptser and Shirjaev ���	��� Conditions for applying this theorem will not be veri�ed here
as they are all standard� Set S � �

R
us�tK�u�du���s�t�p� which contains all the moments of

S up to order 
p� Denote S�� � �sst���s�t�p and de�ne

K�
��u� �

pX
t��

s�tu
tK�u�� ���
�

This K�
���� is called the ��th equivalent kernel� It has the following moments

Z
uqK�

� �u� du �

�����
� q � p� q �� �
� q � �
"� q � p� �

����� � �����

and K�
���� would yield the bias rates of n��p���p��� for local polynomial estimation� see Wand

and Jones �������
To prove Theorem �� we begin by observing the following simple equation

eT�
�
ZTWlZ

���
ZTWlZe� �

�
� � �� �
� � � �

�
�����

thus cM��x���M��x�� � �n� d� ����
nX
l�d

eT�
�
ZTWlZ

���
ZTWlY

��n� d� ����
nX
l�d

eT�
�
ZTWlZ

���
ZTWlZe�M��x��

��n� d� ����
nX
l�d

pX
���

m���
� �x��

��
eT�
�
ZTWlZ

���
ZTWlZe��

� �n� d� ����
nX
l�d

eT�
�
ZTWlZ

���
ZTWl fY �M��x��g

��n� d� ����
nX
l�d

pX
���

m���
� �x��

��
eT�
�
ZTWlZ

���
ZTWlZe��

Now Assumption A� combined with the strong mixing properties of our process imply that
for every � � �� 
� ���� d� � �� 	

�n� d� ����
nX
l�d

m��Yl��� � Op���
p
n��

and thus by ������ one also has �using the mixing properties of the process� see Lemma ����
Lemma ��� and Lemma ��
�

�n� d� ����
nX
l�d

eT�
�
ZTWlZ

���
ZTWlZe�m��Yl��� � Op���

p
n��

�




So one has cM��x���M��x�� �

�n� d� ����
nX
l�d

eT�
�
ZTWlZ

���
ZTWl

���Y � X
����d�� ���

m��Yl����M��x��

���
��n� d� ����

nX
l�d

pX
���

m���
� �x��

��
eT�
�
ZTWlZ

���
ZTWlZe� �Op���

p
n�

� �n� d� ����
nX
l�d

eT�
�
ZTWlZ

���
ZTWl

���Y �
pX

���

m���
� �x��

��
Ze� �

X
����d�� ���

m��Yl����M��x��

��� �

or cM��x���M��x�� �

� �n�d�����
nX
l�d

eT�
�
ZTWlZ

���
ZTWl

���Y � cm �
pX

���

m���
� �x��

��
Ze� �

X
����d�� ���

m��Yl���

��� �

�����

Note that the ��th element of ZTWl

�
Y � cm �Pp

���
m

���
� �x��
�	

Ze� �P
����d�� ���m��Yl���

�
is

�n� d� ����
nX

j�d

�Yj�� � x��
�Kh�Yj�� � x��Lg�Y j � Y l�

���Yj � cm �
pX

���

m���
� �x��

��
�Yj�� � x��

� � X
����d�� ���

m��Yl���

���
� I�l�� � I�l�� � I�l��

in which

I�l�� � �n� d� ����
nX

j�d

I�lj��

where

I�lj�� � �Yj�� � x��
�Kh�Yj�� � x��Lg�Y j � Y l�

�
m��Yj����

pX
���

m���
� �x��

��
�Yj�� � x��

�

�
�

�����

I�l�� �
X

����d�� ���

�n� d� ����
nX

j�d

I�l�j��

where

I�l�j�� � �Yj�� � x��
�Kh�Yj�� � x��Lg�Y j � Y l� fm��Yj����m��Yl���g � ����

��



and

I�l�� � �n� d� ����
nX

j�d

I�lj��� ���	�

where

I�lj�� � �Yj�� � x��
�Kh�Yj�� � x��Lg�Y j � Y l�s�Xj��j� �����

Lemma ��� As n���

E�I�l�j���I�l�j���� � �min�jl��l�j�jj��j�j�O�h���hgd���

uniformly� for � � �� ���� p and l�� l�� j�� j� � d� ���� n�

E�I�l���j���I�l���j���� � �min�jl��l�j�jj��j�j�O�h���hgd���

uniformly� for � � �� ���� p and l�� l�� j�� j� � d� ���� n and � � � � d�

E�I�l�j���I�l�j���� � �min�jl��l�j�jj��j�j�O�h���hgd���

uniformly� for � � �� ���� p and l�� l�� j�� j� � d� ���� n�

Proof� We only show this for the �rst case

E�I�l�j���I�l�j���� � �min�jl��l�j�jj��j�j�
Z
�w��x����K�

h�w��x��L�
g�w�Y l�v�w���w�dw f� � o���g �

where we have used Lemma ���� By a change of variable w� � x� � hu�� w � Y l � gu

E�I�l�j���I�l�j���� �
n
hgd��

o�� f� � o���g
R
�hu��

��K��u��L
��u�v�x� � hu�� Y l � gu���x� � hu�� Y l � gu�du� Q� E� D�

Now

O�h���nhgd���
�
Op�h� lnn�

q
nhgd���

��

� Op

n
h�����nhgd�� � h�� ln �n��n�h�g��d����

o
� h���nhOp

�
h��gd�� � ln �n�nhg��d���

�
� op

�
h���nh

�
by using assumption A	� Employing Lemma ��
 and Lemma ��� now gives

pX
���

�n� d� ����
nX
l�d

eT�

��
ZTWlZ

��� � �

��x�� Y l�
H��S��H��

�
e��I�l�� � I�l�� � I�l���

�
pX

���

h��op
�
h��

p
nh
�
� op

�
��
p
nh
�
� op

n
hp��

o
� op

n
n��p������p���

o
�

If we only had to consider the diagonal terms� then this fact is easily recongnised �this is if
we could ignore the correlation of the �I��terms with the rest�� The correlation can however

��



be taken care of by writing up the I�l�k�s as sums �se above�� squaring the expression and
conditioning on the �I�components�� The exponential decay of the correlations in Lemma
��
 and Lemma ��� ensures that the order of magnitude is the same as if only the diagonal
terms were considered�

Proof of Theorem �� Making the aforementioned substitution� one has in particular

cM��x���M��x��� op
n
hp��

o
�

� �n� d� ����
nX
l�d

�

��x�� Y l�
eT�H

��S��H��ZTWl���Y � cm �
pX

���

m���
� �x��

��
Ze� �

X
����d�� ���

m��Yl���

���
which� by using ������ ����� ���� and the de�nition ���
�� equals

� �n� d� ����
nX
l�d

�

��x�� Y l�
�n� d� ����

nX
j�d

K�
�h�Yj�� � x��Lg�Y j � Y l�

�
m��Yj����
pX

���

m���
� �x��

��
�Yj�� � x��

� �
X

����d�� ���

fm��Yj����m��Yl���g� s�Xj��j

�
� �n� d� ����

nX
j�d

f� � op���g
Z
dw

K�
�h�Yj�� � x��

��x�� Y j � gw�
��Y j � gw�L�w�

�
m��Yj����
pX

���

m���
� �x��

��
�Yj�� � x��

� �
X

����d�� ���

fm��Yj����m��Yj�� � gw��g� s�Xj��j

� �
And because L has order q� so the above equals

�n� d� ����
nX

j�d

f� � op���g K
�
�h�Yj�� � x��

��x�� Y j�
��Y j�

�
m��Yj����

pX
���

m���
� �x��

��
�Yj�� � x��

� � s�Xj��j

�
�Op�g

q�� ������

Thus we have shown that

cM��x���M��x�� � B � V � op�h
p���

in which

B � �n� d� ����
nX

j�d

K�
�h�Yj�� � x��

��x�� Y j�
��Y j�

�
m��Yj����

pX
���

m���
� �x��

��
�Yj�� � x��

�

�

and

V � �n� d� ����
nX

j�d

K�
�h�Yj�� � x��

��x�� Y j�
��Y j� fs�Xj��jg �

��



Now �by using the mixing properties of our process�

B � f� � op���g
Z
K�

�h�z � x��

��x�� w�
��w�

�
m��Yj����

pX
���

m���
� �x��

��
�Yj�� � x��

�

�
��z� w�dzdw�

After substituting z � x� � hu� B becomes

B � f� � op���g
Z K�

� �u�

��x�� w�
��w�

�
m��x� � hu��

pX
���

�

��
m���

� �x���hu�
�

�
��x� � hu� w�dudw

which� by using the moment properties of the equivalent kernel as in ������ equals

f� � op���g 
p���K
�
��

�p� ���
m�p���

� �x��bm��x��h
p�� � bm��x��h

p�� � op�h
p��� ������

where bm��x�� is as given in Theorem �� Meanwhile� V has mean zero and its variance is

�n� d� ����
Z �

K�
�h�z � x��

��x�� w�
��w�s�z� w�

��

��z� w�dzdw f� � o���g

� n��h���m��x�� f� � o���g � ����
�

Equations ������ and ����
� together establish �
���� Equation �
�
� is derived by stan�
dard technique as in Linton and H�ardle ������� Equation �
��� and all the other re�
maining formulas of Theorem �� then follow directly from �
��� and �
�
� as the variousp
nh

ncM��x���M��x��
o
�s are all asymptotically uncorrelated� so the variance ofp

nh fcm�x��m�x�g is simply the sum of all their variances� the mean of
p
nh fcm�x��m�x�g

is simply the sum of all their means� Q� E� D�
Proof of Theorem �� We prove similar results for bV��x��
bV��x��� V��x�� � �n� d� ����

nX
l�d

�
eT�
�
ZTWlZ

���
ZTWlY

� �cm�x�� Y l�
�
�
� V��x��

� �n� d� ����
nX
l�d

eT�
�
ZTWlZ

���
ZTWl

n
Y � �cm�x�� Y l�

� � V��x��
o

� �n�d�����
nX
l�d

eT�
�
ZTWlZ

���
ZTWl

n
Y � �m�x�� Y l�

� �m�x�� Y l�
� �cm�x�� Y l�

� � V��x��
o
�

Now note that by Assumption A�

�n� d� ����
nX

j�d

Y
� ���

v��Yj��� � � �Op���
p
n�

and also that

Y �
j � m�Xj�

� � 

m�Xj�s�Xj��j � v�Xj���
�
j � �� � v�Xj�

��



So similar to ������� we have

bV��x��� V��x�� � T� � T� � T� � T� � T
 � op�h
p���

where

T� � �n� d� ����
nX
l�d

n
m�x�� Y l�

� �cm�x�� Y l�
�
o
�

T� � �n� d� ����
nX

j�d

K�
�h�Yj�� � x��

��x�� Y j�
��Y j�

n
m�Xj�

� �m�x�� Y j�
�
o
�

T� � �n� d� ����
nX

j�d

K�
�h�Yj�� � x��

��x�� Y j�
��Y j�

���v�Xj�� V��x��
Y
� ���

v��Yj���

��� �

T� � �n� d� ����
nX

j�d

K�
�h�Yj�� � x��

��x�� Y j�
��Y j� f
m�Xj�s�Xj��jg �

T
 � �n� d� ����
nX

j�d

K�
�h�Yj�� � x��

��x�� Y j�
��Y j�

n
v�Xj���

�
j � ��

o
�

We derive the asymptotics of each of these terms� Recall that Theorem � provides the
following p

nh
ncm�x��m�x�� hp��bm�x�

o
D� N

n
�� �m�x�

o
therefore

T� � ��n� d� ����
nX
l�d



n
m�x�� Y l��cm�x�� Y l�

o
m�x�� Y l� � op�h

p���

� �
E
n
m�x�� Y n��cm�x�� Y n�

o
m�x�� Y n� � op�h

p���

� �hp��
Z


bm�x�� w�m�x�� w���w�dw � op�h
p���� ������

Next we see� by using substitution z� � x� � hu� that

T� � f� � op���g
Z K�

�h�z � x��

��x�� w�
��w�

n
m�z� w�� �m�x�� w�

�
o
��z� w�dzdw

�

p���K

�
� �

�p� ���

Z

m�p���

� �x��m�x�� w���w�dw � op�h
p���

�


p���K

�
� �

�p� ���
m�p���

� �x��M�x�� � op�h
p��� ������

T� � f� � op���g
Z K�

�h�z � x��

��x�� w�
��w�

n
V��z�V ��w�� V��x��V ��w�

o
��z� w�dzdw

�

p���K

�
� �

�p� ���

Z
V �p���
� �x��V ��w���w�dw � op�h

p���

�



�

p���K

�
� �

�p � ���
V �p���
� �x�� � op�h

p���� ������

To calculate the terms T� and T
� note �rst that they both have mean zero and are uncor�
related� so it is only necessary to calculate their variances and the sum�

var�T�� � �n� d� ����E

�
K�

�h�Yn�� � x����Y n�

��x�� Y n�

m�Xd�s�Xd�

��

f� � o���g

� �n� d� ����
Z �

K�
�h�z � x��

��x�� w�

m�z� w�s�z� w���w�

��

��z� w�dzdw f� � o���g

�
�

nh
kK�

�k��
Z �m�v

�
�x�� w��

��w�dw f� � o���g ������

and similarly

var�T
� �
�

nh
kK�

�k��
Z m�v

�

�
�x�� w��

��w�dw f� � o���g � �����

Putting together equations ������ through ����� gives the asymptotic expressions of bV��x��
in Theorem 
� To get the formula for cV ��x� in �
���� note that the variance term V in the
proof of Theorem � is uncorrelated to all the Ti�s except T�� and their asymptotic correlation
is �plus some higher order term�

�n� d� ����E

�
K�

�h�Yd�� � x����Y d�

��x�� Y d�

m�Xd�s�Xd�

��
K�

�h�Yd�� � x����Y d�

��x�� Y d�
s�Xd�

�

which can be veri�ed to be exactly �
nh
cV ��x� f� � o���g by the same technique used above�

Equation �
��� is easy to prove as �
�
� of Theorem ��
To get the asymptotic properties of bcv� we use the above results on bV��x� and the mixing

properties of our process to get
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k � ��

o�

These three terms can be written as �again using the mixing properties�
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from which it is clear that S� satis�es a central limit theorem with
p
n rate of convergence�

which is also the case with S�� Thus

bcv �
�
cd��v �

hp��

d

dX
���

Z X
����d�� ���

��� Y
����d�� �����

V��y��

��� bv��y����y�dy �
�p
n
Z

� �
d��

��



where Z
D� N��� �� for some �� applying Taylor expansion gives the result on bcv� the rest

of Theorem 
 follows directly� Q� E� D�
Proof of Theorem �� Simply putting together the results of the previous two theorems�

Note that the joint normality follows from the fact that the stochastic part of all the estimates
are based on the �j�s and the ���j � ���s� Thus� any linear combinations of the estimates also
have similar forms as the ones treated in Theorem �� Q� E� D�
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