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SUMMARY

Statistical analysis on landmark-based shape spaces has diverse applications in morphometrics,
medical diagnostics, machine vision and other areas. These shape spaces are non-Euclidean
quotient manifolds. To conduct nonparametric inferences, one may define notions of centre
and spread on this manifold and work with their estimates. However, it is useful to consider
full likelihood-based methods, which allow nonparametric estimation of the probability density.
This article proposes a broad class of mixture models constructed using suitable kernels on
a general compact metric space and then on the planar shape space in particular. Following a
Bayesian approach with a nonparametric prior on the mixing distribution, conditions are obtained
under which the Kullback–Leibler property holds, implying large support and weak posterior
consistency. Gibbs sampling methods are developed for posterior computation, and the methods
are applied to problems in density estimation and classification with shape-based predictors.
Simulation studies show improved estimation performance relative to existing approaches.

Some key words: Dirichlet process mixture; Discriminant analysis; Kullback–Leibler property; Metric space; Non-
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1. INTRODUCTION

In recent years, there has been considerable interest in the statistics literature in the analysis of
data having support on a non-Euclidean manifold M . Our focus is on nonparametric approaches,
which avoid modelling assumptions about the distribution of the data over M . Although we are
particularly motivated by landmark-based analyses of planar shapes, we develop nonparametric
Bayes theory and methods also for general compact metric spaces and manifolds.

There is a rich literature on frequentist methods of inference on manifolds, which avoid
a complete likelihood specification in conducting nonparametric estimation and testing based
on manifold data. See, for example, Bhattacharya & Bhattacharya (2008) and the references
cited therein. Such methods are based on estimates of centre and spread, which are appropriate
for manifolds. However, aspects of the distribution other than centre and spread may also be
important. Pelletier (2005) develops frequentist methods for density estimation on compact
Riemannian manifolds using a kernel that generalizes location-scale kernels used in Euclidean
spaces. The sample points are used as the kernel locations while assuming a fixed bandwidth,
and the estimator is shown to be L2 consistent for a sufficiently small bandwidth.

Bayesian nonparametric methods have the advantage of providing a full probabilistic char-
acterization of uncertainty, which is valid even in small samples. Nonparametric Bayes density
estimation in Euclidean spaces commonly relies on kernel mixture models, with a Dirichlet
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process prior (Ferguson, 1973, 1974) placed on the unknown mixture distribution and a Gaussian
kernel assumed (Lo, 1984; Escobar & West, 1995). Our focus is on developing Bayesian kernel
mixture models for nonparametric density estimation on compact metric spaces, with manifolds
arising as a special case. The manifold of special interest is the planar shape space �k

2 cor-
responding to similarity shapes of configurations of k landmarks in two-dimensions (Kendall,
1984).

The kernel should be carefully chosen, so that the induced prior will have large support, meaning
that the prior assigns positive probability to arbitrarily small neighbourhoods around any density
f0. Such a support condition is important in allowing the posterior to concentrate increasingly
around the true density as the sample size n grows. From Schwartz (1965), prior positivity of
Kullback–Leibler neighbourhoods around the true density f0 implies that the posterior probability
of any weak neighbourhood of f0 converges to unity as n → ∞. Showing that a proposed prior
has Kullback–Leibler support is important in providing a proof of the concept that the prior
is sufficiently flexible, but is difficult for new priors even in Euclidean spaces. We extend the
sufficient conditions of Wu & Ghosal (2008) to arbitrary compact metric spaces, and apply this
theory to general manifolds and planar shape spaces.

For landmark-based shape data, current Bayesian analyses focus on parametric models. For
example, Kume & Walker (2006) recently proposed a method for posterior computation in com-
plex Watson models (Watson, 1965, 1983), with Dryden & Mardia (1998) proposing the complex
Watson as a convenient parametric distribution for planar shape data. Lennox et al. (2009) pro-
posed a Dirichlet process mixture of bivariate von Mises–Fisher distributions for protein config-
uration angles, modifying the finite mixture model of Mardia et al. (2007). Their model arises as
a special case of the framework we propose, and is not applicable to shape data. The von Mises–
Fisher kernel is quite restrictive, and it is not clear whether mixtures of such kernels induce priors
with large support. Lennox et al. (2009) do not present any theoretical results. However, our the-
ory can be used to show that such a prior has full support, and weak posterior consistency follows,
providing conditions for strong consistency. Computation in Lennox et al. (2009) relies on the
auxiliary Gibbs sampler of Neal (2000). In this paper, for applications to landmark-based shape
data, we focus on Dirichlet process mixtures of complex Watson distributions. We show that such
priors have large support, while also developing efficient methods of posterior computation.

2. NONPARAMETRIC DENSITY ESTIMATION ON COMPACT METRIC SPACES

Let M be a compact metric space and let X be a random variable on M . We assume that the
distribution of X has a density with respect to some fixed base measure λ on M and we are
interested in modelling this density via a flexible model. Let K (m; μ, σ ) be a probability kernel
on M with location μ ∈ M and scale σ ∈ �+, with

∫
M K (m; μ, σ )λ(dm) = 1. We can define a

location mixture probability density model for X as

f (m; P, σ ) =
∫

M
K (m; μ, σ )P(dμ) (1)

or a location-scale mixture model

g(m; Q) =
∫

M×�+
K (m; μ, σ )Q(dμdσ ). (2)

For a prespecified kernel K , a prior on D(M), the space of all probability densities on M with
respect to the set base measure λ, is induced through a prior (P, σ ) ∼ �1 in (1) and a prior
Q ∼ �2 in (2). In order to evaluate whether a particular kernel K and prior �1 or �2 induces
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a prior for the unknown density on M that is sufficiently flexible, it would be appealing to have
simple sufficient conditions to check.

We make the following assumptions about the kernel K .

Assumption 1. The kernel K is continuous on M × M × (0, σ0) for some σ0 > 0.

Assumption 2. For any φ ∈ C(M), with C(M) the space of continuous functions on M ,

lim
σ→0

sup
m∈M

∣∣∣∣φ(m) −
∫

M
K (m; μ, σ )φ(μ)λ(dμ)

∣∣∣∣ = 0.

These assumptions place minor regularity conditions on the kernel. If K is symmetric in m and
μ, Assumption 2 implies that K converges weakly to the degenerate point mass at μ uniformly
in μ as σ → 0.

In addition, we make the following assumptions about f0, the true density of X , and the support
of the prior �1.

Assumption 3. For any σ > 0, there exists σ̃ � σ such that (F0, σ̃ ) ∈ supp(�1), with F0 the
probability distribution corresponding to f0 and supp(�1) denoting the weak support of �1.

Assumption 4. The true density is continuous, so that f0 ∈ C(M).

THEOREM 1. Define f as in (1). Under Assumptions 1–4, for any ε > 0,

�1

{
(P, σ ) : sup

m∈M
| f0(m) − f (m; P, σ )| < ε

}
> 0.

Theorem 1 shows that the density prior induced through the location mixture model (1) assigns
positive probability to arbitrarily small L∞ neighbourhoods of the true density under mild
assumptions. For a proposed prior chosen for a particular M , one can simply verify that the
assumed kernel K and prior �1 satisfy the assumptions to show large support. We will illustrate
how these assumptions are met using a complex Watson kernel on a planar shape space in § 3.

To show full Kullback–Leibler support for the prior, we require an additional assumption, as
follows.

Assumption 5. The true density is everywhere positive so that f0(m) > 0 for all m ∈ M .

COROLLARY 1. Under Assumptions 1–5, the prior on D(M) induced by �1 through (1) assigns
positive probability to any Kullback–Leibler neighbourhood around f0.

Assumption 6. For any σ > 0, there exists σ̃ ∈ (0, σ ] such that F0 × δσ̃ ∈ supp(�2).

THEOREM 2. Let g be a density as in (2). Under Assumptions 1–2 and 4–6, the prior on D(M)
induced by �2 assigns positive probability to any Kullback–Leibler neighbourhood around f0.

The assumptions on the priors in Theorems 1 and 2 are trivially satisfied by standard nonpara-
metric priors. For example, for model (1) we can choose �1 to be �11 × π1, with �11 a Dirichlet
process prior DP(ω0 P0) with supp(P0) = M and π1 having a density that is strictly positive in
some neighbourhood of zero. For model (2), we can instead choose the prior �2 for the mixing
measure Q to correspond to a Dirichlet process with base P0 × π1. Under these priors, models (1)
and (2) are Dirichlet process mixture models and standard algorithms can be applied for posterior
computation.

A special case of a compact metric space is a compact Riemannian manifold with the dis-
tance metric being the geodesic distance induced by the Riemannian metric tensor. The natural
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choice of base measure for modelling densities is then the Riemannian volume form. For back-
ground in differential geometry, the reader is referred to Willmore (1993). Pelletier (2005) intro-
duced a geodesic distance based kernel and performed frequentist density estimation on compact
Riemannian manifolds. Under mild restrictions on the form of this kernel, it can be shown that
it satisfies the assumptions of Theorem 1. The details and proofs are omitted since we have
found alternative kernels to also satisfy these assumptions for manifolds corresponding to the
unit hypersphere and the planar shape space, while having computational advantages over the
Pelletier (2005) class of kernels. For the unit hypersphere, von Mises–Fisher kernels can be used,
but here we focus on the landmark-based planar shape space M = �k

2 .

3. THE PLANAR SHAPE SPACE �k
2

3·1. Geometry

Consider a set of k points, k > 2, on the two-dimensional plane, not all points being the same.
We refer to such a set as a k-ad or a set of k landmarks. The similarity shape of this k-ad is
what remains after we remove the effects of the Euclidean rigid body motions of translation,
rotation and scaling. For convenience we denote a k-ad by a complex k-vector z = (z1, . . . , zk)T

in Ck . To remove the effect of translation from z, let zc = z − z, with z = (
∑k

j=1 z j )/k being the
centroid. The centred k-ad zc lies in a (k − 1)-dimensional complex subspace, and hence we can
use k − 1 complex coordinates. The effect of scaling is removed by normalizing the coordinates
of zc to obtain a point w on the complex unit sphere CSk−2 in Ck−1. Since w contains the shape
information of z along with rotation, it is called the preshape of z.

The similarity shape of z is the orbit of w under all two-dimensional rotations. Since a rotation
by an angle θ of a landmark (x, y) can be achieved by multiplying its complex version x + iy by
exp(iθ), the shape of z is the set or orbit [w] = {exp(iθ)w : θ ∈ (−π, π]}. The space of all such
orbits constitutes the planar shape space �k

2 . Any shape can be represented as the set of intersection
points of a unique complex line passing through the origin with CSk−2. With this identification
proposed by Kendall (1984), �k

2 is a compact Riemannian manifold of dimension 2k − 4. It can
be embedded into the space of all complex Hermitian matrices via the embedding J ([w]) =
ww∗, with ∗ denoting the complex conjugate transpose. The extrinsic distance between the two
shapes [u] and [v] is the one induced from this embedding, namely, dE ([u], [v]) = ‖J ([u]) −
J ([v])‖ = {2(1 − |u∗v|2)}1/2. This distance is equivalent to the geodesic distance dg([u], [v]) =
arccos(|u∗v|).

Let Q be a probability distribution on �k
2 . The extrinsic mean of Q is defined as the minimizer

of the loss function F(p) = ∫
�k

2
d2

E (m, p)Q(dm), p ∈ �k
2, provided F has a unique minimizer.

The minimum value of F is called the extrinsic variation of Q. Let μ̃ = ∫
�k

2
J (m)Q(dm), λ be

its largest eigenvalue and U be a corresponding unit norm eigenvector. Then it can be shown
that the extrinsic variation equals 2(1 − λ) and the extrinsic mean is given by [U ] provided
λ has multiplicity 1. Given a random sample from Q, one can define the sample extrinsic
mean and variation analogously. For more details, see Bhattacharya & Patrangenaru (2003) and
Bhattacharya & Bhattacharya (2008).

3·2. Uniform distribution

Let V (dm) and V1(dz) denote the volume forms on the shape space �k
2 and the preshape sphere

CSk−2, respectively. The uniform distribution on �k
2 has constant density 1/

∫
�k

2
V (dm). Kent

(1994) constructs a useful coordinate chart on �k
2 as follows. For z = (z1, . . . , zk−1)T ∈ CSk−2,

write z j = r1/2
j exp(iθ j ) ( j = 1, . . . , k − 1) with r = (r1, . . . , rk−2)T lying on the (k − 1)-unit

simplex Sk−2, and θ j ∈ (−π, π) ( j = 1, . . . , k − 1). Then (r1, . . . , rk−2, θ1, . . . , θk−1) form the
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Kent preshape coordinates of z. Since the shape of z can be obtained by rotating it around a fixed
axis, we may set θk−1 = 0 and use the Kent shape coordinates (r1, . . . , rk−2, θ1, . . . , θk−2)T for
[z] as in Dryden & Mardia (1998). These Kent (1994) coordinate systems have the advantage of
leading to simple expressions for the volume forms,

V1(dz) = 22−kdr1 · · · drk−2dθ1 · · · dθk−1, V (d[z]) = 22−kdr1 · · · drk−2dθ1 · · · dθk−2.

This implies that, in terms of these shape coordinates, the uniform distribution on �k
2 remains

uniform on Sk−2 × (−π, π)k−2. This property simplifies simulations and proofs.

3·3. Complex Bingham distribution

The complex Bingham distribution on �k
2 (Kent, 1994) has the following density with respect

to the volume form

f (m; A) = c−1(A) exp(z∗ Az), m = [z] ∈ �k
2,

where A is a (k − 1) × (k − 1) complex Hermitian matrix and c(A) is the normalizing constant.
Denoting this density by CB(A), we find that CB(A) = CB(A + α I ) for any α ∈ �. Hence, without
loss of generality, we may assume A to be positive semidefinite with the smallest eigenvalue equal
to zero. Let A = UU∗ be a singular value decomposition of A with U = [U1, . . . , Uk−1] ∈
SU(k − 1),  = diag(λ1, . . . , λk−1), and 0 = λ1 � · · · � λk−1, where SU(k − 1) is the space of all
(k − 1) × (k − 1) special unitary matrices having UU∗ = I and det(U ) = 1. Letting z1 = U∗z
and using Kent’s shape coordinates (r, θ) for [z1], the complex Bingham distribution can be
written as

f (m; A)V (dm) = c−1(A)22−k exp

⎛
⎝k−1∑

j=1

λ j r j

⎞
⎠ dr1 · · · drk−2dθ1 · · · dθk−2 (3)

with rk−1 = 1 − ∑k−2
j=1 r j . Expression (3) suggests that r has a density g(r ) ∝ exp(

∑k−1
j=1 λ j r j ) on

Sk−2 while θ1, . . . , θk−2 are independent and identically distributed as Un(−π, π) and r and θ are
independent. This characterization is helpful in sampling from the complex Bingham distribution.
Under high concentrations, that is when λk−1 � λk−2, one may use an independent Metropolis–
Hasting step with an independent exponential approximation to sample from g. That is, we draw
r j , j = 1, . . . , k − 2 independently from the density proportional to exp{(λ j − λk−1)r j } on (0, 1),
accept the draw if

∑k−2
i=1 ri � 1 and then set rk−1 = 1 − ∑k−2

j=1 r j .

3·4. Complex Watson distribution

When A has complex rank equal to one, the complex Bingham distribution CB(A) corresponds
to a complex Watson distribution (Dryden & Mardia, 1998) having density

f (m; μ, σ ) = c−1(σ ) exp(|z∗ν|2/σ ), (4)

with z and ν preshapes of m and μ ∈ �k
2 , respectively. Here, μ is the extrinsic mean, σ > 0 is a

scale parameter related to the extrinsic variation, and c(σ ) is the normalizing constant. Denoting
this density by CW(μ, σ ), CW(μ, σ ) is equivalent to CB(A) with A = νν∗/σ . As A has eigen-
values λ1 = · · · = λk−2 = 0, λk−1 = σ−1, the distribution of r defined in § 3·3 can be written as
g(r ) ∝ exp(σ−1rk−1) implying that rk−1 has the marginal density

h(rk−1) = c−1
k−1(σ ) exp(rk−1σ

−1)(1 − rk−1)k−3, rk−1 ∈ (0, 1),

where ck−1(σ ) = σ k−2 exp(σ−1)�(k − 2; σ−1) with �(m, a) = ∫ a
0 exp(−t)tm−1dt = (m −

1)! exp(−a){exp(a) − ∑m−1
r=0 ar/r !} denoting the partial gamma function. Conditionally on rk−1,
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(r1, . . . , rk−2) has a uniform distribution on the set {r j � 0, j = 1, . . . , k − 2,
∑k−2

j=1 r j = 1 −
rk−1}. Transforming by letting s = σ−1(1 − rk−1), s has a density proportional to exp(−s)sk−3

on (0, σ−1), which is Ga(k − 2, 1) restricted to (0, σ−1). This characterization can be used to
easily draw exact samples from a complex Watson distribution. The normalizing constant is
c(σ ) = (πσ )(k−2){exp(σ−1) − ∑k−3

r=0 σ−r/r !}. In Dryden & Mardia (1998), CW(μ, σ ) is viewed
as a distribution on the preshape sphere and the normalizing constant is instead 2πc(σ ).

4. DENSITY ESTIMATION ON THE PLANAR SHAPE SPACE

To model an unknown density on �k
2 , we use a mixture density as in (1) with K corresponding

to the complex Watson density in expression (4).

PROPOSITION 1. For the complex Watson kernel, Assumptions 1 and 2 are satisfied.

Hence, if we choose a complex Watson kernel in (1) and choose �1 to satisfy Assumption 3 from
Theorem 1, we induce a prior with L∞ support on the space of continuous densities over �k

2 and
with Kullback–Leibler support on the space of continuous and everywhere positive densities over
�k

2 . It follows from Schwartz (1965) that this specification leads to weak posterior consistency
at any continuous, everywhere positive f0.

To specify a �1 that satisfies the assumptions and that leads to simplifications in implementing
posterior computation, we follow the recommendation given at the end of § 2 and let P ∼
DP(ω0 P0), with P0 corresponding to CW(μ0, σ0), independently of σ−1 ∼ Ga(a, b). These priors
lead to conditional conjugacy so that posterior computation can proceed via Gibbs sampling
algorithms previously developed for Dirichlet process mixture models. For the location-scale
mixture (2), the computations are similar and are left to the reader.

Here, we follow the exact block Gibbs sampler proposed in a yet unpublished paper by Yau,
Papaspiliopoulos, Roberts and Holmes. Let xi ∼ CW(μi , σ ), independently for i = 1, . . . , n, with
μi ∼ P , and P, σ assigned the prior described above. We introduce uniformly distributed slice
sampling latent variables, u = {ui }n

i=1 and let Si denote the mixture component for subject i ,
with μi = μ̃Si . The complete data likelihood is then

∏n
i=1 CW(Xi ; μ̃Si , σ )1(ui < wSi ), and we

sequentially sample through the following steps.

Step 1. Update Si , for i = 1, . . . , n, by sampling from the multinomial conditional posterior
distribution with pr(Si = j) ∝ CW(xi ; μ̃ j , σ ) for j ∈ Ai , where Ai = { j : j = 1, . . . , l, w j > ui }
and l is the smallest index satisfying 1 − u(1) <

∑l
j=1 w j with u(1) = min{u1, . . . , un}. In imple-

menting this step, draw Vj ∼ Be(1, ω0) and μ̃ j ∼ P0 for j > S(n), with S(n) = max{S1, . . . , Sn}.
Step 2. Update the kernel locations μ̃ j ( j = 1, . . . , S(n)) by sampling from the conditional

posterior

μ̃ j ∼ CB

(
m j

σ
X̄ j + A0

)
,

where m j = ∑n
i=1 1(Si = j), X̄ j = ∑

i :Si = j zi z∗
i /m j (xi = [zi ]), A0 = σ−1

0 ν0ν
∗
0 and μ0 = [ν0].

We use a Metropolis–Hastings step developed in § 3·3 to draw μ̃ j .

Step 3. The full conditional posterior of σ is proportional to

(σ−1)n(k−2)+a+1 exp

⎧⎨
⎩− 1

σ

⎛
⎝n + b −

S(n)∑
j=1

m jν
∗
j X̄ jν j

⎞
⎠

⎫⎬
⎭

{
1 − exp(−σ−1)

k−3∑
r=0

(r !)−1σ−r

}−n

,
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where μ̃ j = [ν j ]. For σ small, this conditional density is approximately equivalent to

σ−1 ∼ Ga

⎧⎨
⎩a + n(k − 2), b +

S(n)∑
j=1

m j (1 − ν∗
j X̄ jν j )

⎫⎬
⎭ .

Hence, we get approximate conjugacy for the conditional distribution of σ−1 under a gamma
prior. Numerical studies show that this approximation is very accurate even for σ moderately
small, so we recommend a Metropolis–Hastings independence step with candidates generated
from the approximation.

Step 4. Update the stick-breaking random variables Vj ( j = 1, . . . , S(n)), from their condi-
tional posterior distributions given the cluster allocation but marginalizing out the slice sampling
variables,

Vj ∼ Be

{
1 + m j , ω0 +

n∑
i=1

1(Si > j)

}
.

Step 5. Update the slice sampling latent variables from their conditional posterior by letting
ui ∼ Un(0, wSi ) (i = 1, . . . , n).

We also incorporate label-switching moves as recommended in Papaspiliopoulos & Roberts
(2008). In cases we have considered, the algorithm is efficient, with rapid convergence and
no evidence of slow mixing. Due to label switching issues (Stephens, 2000), we recommend
assessing convergence and mixing by examining trace plots and applying standard diagnostics
for the density f (m; P, σ ) evaluated at a dense grid of m values. A draw from the posterior for
f can be obtained using

f (m; P, σ ) =
S(n)∑
j=1

w j CW(m; μ̃ j , σ ) +
⎛
⎝1 −

S(n)∑
j=1

w j

⎞
⎠ ∫

CW(m; μ̃, σ )CW(μ̃; μ0, σ0)V (dμ̃), (5)

with σ and w j , μ̃ j ( j = 1, . . . , S(n)) a Markov chain Monte Carlo draw from the joint posterior
of the bandwidth and the weights and atoms for each of the components up to the maximum
occupied. A Bayes estimate of f can then be obtained by averaging these draws across many
samples. Since it is difficult to evaluate the integral in (5) in closed form, we replace the integral
by CW(m; μ1, σ ), μ1 being a draw from CW(μ0, σ0).

5. APPLICATIONS

5·1. Applications to simulated data

We draw xi ∼ 0·5CW(μ1, σ ) + 0·5CW(μ2, σ ) independently for i = 1, . . . , 200, with k = 4,
σ = 0·001, μ1 = (1, 0, 0)T, μ2 = {r, (1 − r2)1/2, 0}T and r = 0·9975 so that the extrinsic distance
between μ1 and μ2 is 0·1. We compare our Bayesian nonparametric density estimate based on
Dirichlet process mixtures of complex Watson kernels to a maximum likelihood estimate under
a parametric complex Watson model (Dryden & Mardia, 1998) and to the frequentist kernel
density estimate using a complex Watson kernel. We generated 20 simulated datasets, with the
performance evaluated based on the L1 distance and Kullback–Leibler divergence estimated
by averaging over the data points. Our Bayesian nonparametric approach was implemented as
described in § 4 with the Markov chain Monte Carlo algorithm run for 100 000 iterations with
the first 15 000 discarded as a burn-in. The hyperparameters were chosen by setting μ0 equal
to the sample extrinsic mean and σ0 = 0·1 in the complex Watson base measure P0 for P , and
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Table 1. Summaries of estimated distances from the true density across the 20 simulations

Bayes MLE KDE

L1 KL L1 KL L1 KL

min 0·27 0·02 0·60 0·33 0·56 0·14
25th 0·35 0·07 0·68 0·36 0·74 0·24
50th 0·42 0·08 0·73 0·43 0·87 0·26
75th 0·48 0·16 0·83 0·46 1·20 0·27
max 0·91 0·39 0·94 0·52 2·72 0·32
mean 0·44 0·13 0·75 0·41 1·03 0·25

Bayes, our proposed approach; MLE, maximum likelihood estimate; KDE, kernel density estimate; KL, Kullback–Leibler.
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Fig. 1. Gorilla skull data. Landmarks from preshapes of μ̂1

(female, �) and μ̂2 (males, +).

a = b = 0·1 in the gamma prior for σ−1. By using the data to estimate the location of the base
distribution, while choosing a moderate scale, we ensure that the prior introduces clusters close
to the support of the data. The Dirichlet process precision parameter is fixed as ω0 = 1, which is
a commonly used default in the literature favouring a sparse representation with few clusters.

Table 1 presents summaries of the results across the 20 simulated datasets. The proposed
nonparametric Bayes estimator had consistently better performance across the datasets and for
each choice of criterion. For the frequentist kernel density estimate, results are presented for a
bandwidth of σ = 0·001. The performance was similar or worse for other choices of bandwidth,
including setting σ equal to the maximum likelihood estimate under the parametric complex
Watson model and the posterior mean of σ from the Bayes analysis.

5·2. Application to morphometrics: classification of gorilla skulls

The method is applied to data on the shape of 29 male and 30 female gorilla skulls,
with eight landmarks chosen on the midline plane of two-dimensional images of each skull
(Dryden & Mardia, 1998). The goal is to study how the shapes of the skulls vary between males
and females, and build a classifier to predict gender. The shape samples lie on �k

2 , k = 8. We
randomly pick 25 individuals of each gender as a training sample, with the remaining nine used
as test data. Figure 1 shows the preshapes of the sample extrinsic means for the female and male
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Table 2. Posterior probability of being female for each gorilla in the test sample

Gender p̂([z]) 95% Confidence interval dE ([zi ], μ̂1) dE ([zi ], μ̂2)
F 1·000 (1·000, 1·000) 0·041 0·111
F 1·000 (0·999, 1·000) 0·036 0·093
F 0·023 (0·021, 0·678) 0·056 0·052
F 0·998 (0·987, 1·000) 0·050 0·095
F 1·000 (1·000, 1·000) 0·076 0·135
M 0·000 (0·000, 0·000) 0·167 0·103
M 0·001 (0·000, 0·004) 0·087 0·042
M 0·992 (0·934, 1·000) 0·091 0·121
M 0·000 (0·000, 0·000) 0·152 0·094

dE ([zi ], μ̂i ) = extrinsic distance from the mean shape in group i , with i = 1 for females and i = 2 for males.

training groups. The preshape of the male mean μ̂2 has been rotated appropriately so as to bring
it closest to the preshape of the female mean μ̂1. Most of the landmarks corresponding to the
preshapes of the sample means after rotation are close for females and males, but there is a larger
difference in landmarks 3 and 8.

Applying nonparametric discriminant analysis, we assume that the probability of being female
is 0·5 and use a separate Dirichlet process mixture of complex Watson kernels for the shape
density in the male and female groups. Letting f1(m) and f2(m) denote the female and male
shape densities, the conditional probability of being female given shape data [z] is simply
p([z]) = 1/{1 + f2([z])/ f1([z])}. To estimate the posterior probability, we average p([z]) across
Markov chain Monte Carlo iterations to obtain p̂([z]). The analysis was implemented as in the
simulation examples, but with hyperparameters σ0 = 0·001, a = 1·01 and b = 0·001 elicited
based on our prior expectation for the gorilla example.

Table 2 presents the estimated posterior probabilities of being female for each of the gorillas
in the test sample along with a 95% credible interval for p([z]). For most of the gorillas, there is
a high posterior probability of assigning the correct gender. There is misclassification only in the
third female and third male. For the third female, the credible interval includes 0·5, suggesting
that there is insufficient information to be confident in the classification. However, for the third
male, the credible interval suggests a high degree of confidence that this individual is female.
Perhaps this individual is an outlier and there is something unusual about the shape of his skull,
with such characteristics not represented in the training data, or perhaps alternatively it was
labelled incorrectly.

In addition, we display the extrinsic distance between the shape for each gorilla and the female
and male sample extrinsic means. Potentially we could define a distance-based classifier, which
allocates a test subject to the group having mean shape closest to that subjects’ shape. The
table suggests that such a classifier will yield consistent results with our nonparametric Bayes
approach. However, this distance-based classifier may be suboptimal in not taking into account the
variability within each group. In addition, the approach is deterministic and there is no measure
of uncertainty in classification. Figure 2 shows the male and female training sample preshape
clouds, along with the two misclassified test samples. There seems to be a substantial deviation
in the coordinates of these misclassified subjects from their respective gender training groups,
especially for the male gorilla, even after having rotated each training preshape separately so as
to bring each closest to the plotted test sample preshapes.

It is possible that classification performance could be improved in this application also by
taking skull size into account. The proposed method can be easily extended to this case by using
a Dirichlet process mixture density with the kernel being the product of a complex Watson kernel
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Fig. 2. Gorilla skull data. Landmarks from preshapes of training (dot) and misclassified test samples (circle) for
females (a) and males (b).

for the shape component and a log-Gaussian kernel for the size. Such a model induces a prior
with support on the space of densities on the manifold �k

2 × �+.
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APPENDIX

Lemma A1

To prove Theorems 1 and 2, we will need the following lemma. Let M(M) denote the space of all
probability distributions on M .

LEMMA A1. Given ε > 0, if there exists (i) a σε > 0 and Pε ∈ M(M) such that

sup
m∈M

| f0(m) − f (m; Pε, σε)| <
ε

3
,

(ii) a set W ⊆ �+ containing σε such that

sup
m∈M,σ∈W

| f (m; Pε, σε) − f (m; Pε, σ )| <
ε

3
,

and (iii) a set W ⊆ M(M) containing Pε such that

sup
m∈M,P∈W,σ∈W

| f (m; Pε, σ ) − f (m; P, σ )| <
ε

3
,

then

sup
m∈M

| f0(m) − f (m; P, σ )| < ε

for all (P, σ ) ∈ W × W .

Proof. Follows from a direct application of the triangular inequality. �
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Proof of Theorem 1. The result follows from Lemma A1 if we can find a W ⊆ �+ and W ⊆ M(M)
satisfying the conditions and �1(W × W) > 0.

Condition (i) is satisfied with Pε = F0 from Assumptions 2 and 4 by taking φ = f0. From Assumption 3,
it follows that by taking σε sufficiently small, we can ensure that σε < σ0 and (F0, σε) ∈ supp(�1).

Next we need to find a W for which condition (ii) is satisfied. From Assumption 1, it follows that the
mapping from σ to K is uniformly equicontinuous on some compact neighbourhood of σε . Hence we can
get a compact set W containing σε in its interior such that

sup
(m,μ,σ )∈M×M×W

|K (m; μ, σ ) − K (m; μ, σε)| <
ε

3
.

Then

sup
m∈M,σ∈W

| f (m; F0, σ ) − f (m; F0, σε)| �
∫

M
sup

m∈M,σ∈W
|K (m; μ, σ ) − K (m; μ, σε)| f0(μ)λ(dμ)

� sup
m,μ∈M,σ∈W

|K (m; μ, σ ) − K (m; μ, σε)| <
ε

3
.

This verifies condition (ii).
Lastly, we need to find a W for which condition (iii) is satisfied and �1(W × W) > 0. We claim that

W =
{

P ∈ M(M) : sup
m∈M,σ∈W

| f (m; P, σ ) − f (m; F0, σ )| <
ε

3

}

contains a weakly open neighbourhood of F0. For any m ∈ M , σ ∈ W , the mapping from μ to K (m; μ, σ )
defines a continuous function on M . Hence

Wm,σ =
{

P : | f (m; P, σ ) − f (m; F0, σ )| <
ε

9

}

defines a weakly open neighbourhood of F0 for any (m, σ ) in M × W . The mapping from (m, σ ) to
f (m; P, σ ) is a uniformly equicontinuous family of functions on M × W , labelled by P ∈ M(M), because,
for m1, m2 ∈ M ; σ, τ ∈ W ,

| f (m1; P, σ ) − f (m2; P, τ )| �
∫

M
|K (m1; μ, σ ) − K (m2; μ, τ )|P(dμ)

and K is uniformly continuous on M × M × W . Therefore, there exists a δ > 0 such that ρ(m1, m2) +
|σ − τ | < δ implies that

sup
P∈M(M)

| f (m1; P, σ ) − f (m2; P, τ )| <
ε

9
.

Cover M × W by finitely many balls of radius δ: M × W = ⋃N
i=1 B{(mi , σi ), δ}. Let W1 = ⋂N

i=1 Wmi ,σi

which is an open neighbourhood of F0. Let P ∈ W1 and (m, σ ) ∈ M × W . Then there exists a (mi , σi )
such that (m, σ ) ∈ B{(mi , σi ), δ}. Then | f (m; P, σ ) − f (m; F0, σ )|

� | f (m; P, σ ) − f (mi ; P, σi )| + | f (mi ; P, σi ) − f (mi ; F0, σi )| + | f (mi ; F0, σi ) − f (m; F0, σ )|
<

ε

9
+ ε

9
+ ε

9
= ε

3
.

This proves that W contains W1 and hence the claim is proved. Clearly, this W satisfies condition (iii).
Since (F0, σε) is in supp(�1) and in the interior of W × W , therefore �1(W × W ) > 0. This completes
the proof. �

Proof of Corollary 1. Since M is compact, Assumption 5 implies that c0 = infm∈M f0(m) > 0. For
δ > 0 define

Wδ =
{

(P, σ ) : sup
m∈M

| f0(m) − f (m; P, σ )| < δ

}
.
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Then if (P, σ ) ∈ Wδ ,

inf
m∈M

f (m; P, σ ) � inf
m∈M

f0(m) − δ � c0

2

if we choose δ � c0/2. Then for any given ε > 0,∫
M

f0(m) log

{
f0(m)

f (m; P, σ )

}
λ(dm) � sup

m∈M

∣∣∣∣ f0(m)

f (m; P, σ )
− 1

∣∣∣∣ � 2δ

c0
< ε

if we choose δ < c0ε/2. Hence for δ sufficiently small, f (·; P, σ ) ∈ KL( f0, ε) whenever (P, σ ) ∈ Wδ , with
KL( f0, ε) denoting an ε-sized Kullback–Leibler neighbourhood around f0. From Theorem 1 it follows that
�1(Wδ) > 0 for any δ > 0 and therefore

�1{(P, σ ) : f (·; P, σ ) ∈ KL( f0, ε)} > 0. �

Proof of Theorem 2. From the proof of Corollary 1, it follows that given any δ1 > 0, we can find a
σ1 > 0 such that with Q1 = F0 × δσ1 ,

sup
m∈M

| f0(m) − g(m; Q1)| < δ1,

∫
M

f0(m) log

{
f0(m)

g(m; Q1)

}
λ(dm) < δ1. (A1)

Hence, if we choose δ1 � c0/2 where c0 = infm∈M f0(m) > 0 then infm∈M g(m; Q1) � c0/2. From As-
sumption 6 it follows that we can choose σ1 sufficiently small such that σ1 < σ0 and Q1 ∈ supp(�2). Let
E denote a compact subset of (0, σ0) containing σ1 in its interior. Then, being continuous in its arguments,
K is uniformly continuous on M × M × E . For Q in M(M × �+), define

g(m; QE ) =
∫

M×E
K (m; μ, σ )Q(dμdσ ).

For fixed m ∈ M , the integral mapping from Q to g(m; QE ) is continuous at Q1 because

Q1{∂(M × E)} = Q1{M × ∂(E)} = 0,

∂(A) denoting the boundary of a set A. Therefore, for δ2 > 0 and m ∈ M ,

Wm(δ2) = {Q : |g(m; QE ) − g(m; Q1)| < δ2}
defines a weakly open neighbourhood of Q1. We also claim that

W =
{

Q : sup
m∈M

|g(m; QE ) − g(m; Q1)| < δ2

}
,

contains an open neighbourhood of Q1. To see this, choose a δ3 > 0 such that ρ(m1, m2) < δ3 implies that

sup
(μ,σ )∈M×E

|K (m1; μ, σ ) − K (m2; μ, σ )| <
δ2

3
,

which in turn implies

|g(m1; QE ) − g(m2; QE )| <
δ2

3
(A2)

for all Q ∈ M(M × �+). Next cover M by finitely many balls of radius δ3: M = ⋃N
i=1 B(mi , δ3). Then

we show that W ⊇ ⋂N
i=1 Wmi (δ2/3). To prove that, pick Q in

⋂N
i=1 Wmi (δ2/3). Then for i = 1, . . . , N ,

|g(mi ; QE ) − g(mi ; Q1)| < δ2. (A3)

Choosing m ∈ B(mi , δ3), (A2) implies that

|g(m; QE ) − g(mi ; QE )| <
δ2

3
(A4)
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for all Q ∈ M(M × �+). From (A3) and (A4) it follows that |g(m; QE ) − g(m; Q1)|
� |g(m; QE ) − g(mi ; QE )| + |g(mi ; QE ) − g(mi ; Q1)| + |g(mi ; Q1) − g(m; Q1)|
< δ2/3 + δ2/3 + δ2/3 = δ2

for any m ∈ M and Q ∈ ⋂N
i=1 Wmi (δ2/3). Hence W ⊇ ⋂N

i=1 Wmi (δ2/3), which is an open neighbourhood
of Q1. Therefore, �2(W) > 0. For Q ∈ W ,

inf
m∈M

g(m; QE ) � inf
m∈M

g(m; Q1) − δ2 � c0

4

if δ2 < c0
4 . Then∫

M
f0(m) log

{
g(m; Q1)

g(m; Q)

}
λ(dm) �

∫
M

f0(m) log

{
g(m; Q1)

g(m; QE )

}
λ(dm)

� sup
m∈M

∣∣∣∣ g(m; Q1)

g(m; QE )
− 1

∣∣∣∣ � δ2

c0/4
< δ1, (A5)

provided δ2 is sufficiently small. From (A1) and (A5) we deduce that, for Q ∈ W ,∫
M

f0(m) log

{
f0(m)

g(m; Q)

}
λ(dm)

=
∫

M
f0(m) log

{
f0(m)

g(m; Q1)

}
λ(dm) +

∫
M

f0(m) log

{
g(m; Q1)

g(m; Q)

}
λ(dm) < δ1 + δ1 = ε

if δ1 = ε/2. Hence

{g(·; Q) : Q ∈ W} ⊆ KL( f0, ε)

and since �2(W) > 0, therefore

�2{Q : g(·; Q) ∈ KL( f0, ε)} > 0.

Since ε was arbitrary, the proof is completed. �

Proofof Proposition 1. Express K as

K (m; μ, σ ) = c−1(σ ) exp

{
2 − d2

E (m, μ)

2σ

}
,

where c(σ ) = (πσ )(k−2){exp(σ−1) − ∑k−3
r=0 σ−r/r !} and Assumption 1 is satisfied.

As the kernel is symmetric in m and μ, for φ ∈ C(�k
2 ),

I (m) ≡ φ(m) −
∫

�k
2

K (m; μ, σ )φ(μ)V (dμ) =
∫

�k
2

{φ(m) − φ(μ)}K (m; μ, σ )V (dμ). (A6)

Choose preshapes z and ν for m and μ, respectively, in the complex sphere CSk−2, so that m = [z] and
μ = [ν]. Let V1 denote the volume form on CSk−2. Then for any integrable function φ : �k

2 → �,∫
�k

2

φ(μ)V (dμ) = 1

2π

∫
CSk−2

φ([ν])V1(dν).

Hence the integral in (A6) can be written as

I (m) = c−1(σ )

2π

∫
CSk−2

{φ([z]) − φ([ν])} exp(σ−1ν∗zz∗ν)V1(dν). (A7)

Consider a singular value decomposition of zz∗ as zz∗ = UU ∗ where  = diag(1, 0, . . . , 0) and U =
[U1, . . . , Uk−1] with U1 = z. Then ν∗zz∗ν = x∗x = |x1|2 where x = U ∗ν = (x1, . . . , xk−1)T. Make a
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change of variables from ν to x in (A7). This is an orthogonal transformation, so does not change the
volume form. Then (A7) becomes

I (m) = exp(σ−1)

2πc(σ )

∫
CSk−2

{φ([z]) − φ([U x])} exp

( |x1|2 − 1

σ

)
V1(dx). (A8)

Write x j = r1/2
j exp(iθ j ) ( j = 1, . . . , k − 1), with r = (r1, . . . , rk−1)T ∈ Sk−2 and θ = (θ1, . . . , θk−1)T ∈

(−π, π )k−1, so that V1(dx) = 22−kdr1 · · · drk−2dθ1 · · · dθk−1. Hence (A8) can be written as

I (m) = 21−kπ−1 exp(σ−1)c−1(σ )
∫

Sk−2×[0,2π)k−1

{φ([z]) − φ([y(r, θ, z)])} exp

(
r1 − 1

σ

)
drdθ,

(A9)
with y ≡ y(r, θ, z) = ∑k−1

j=1 r1/2
j exp(iθ j )U j . Then d2

E ([y], [z]) = 2(1 − r1). For d ∈ �+, define

ψ(d) = sup{|φ(m1) − φ(m2)| : m1, m2 ∈ �k
2 , d2

E (m1, m2) � d}.
Then the absolute value of φ([z]) − φ([y(r, θ, z)]) in (A9) is at most ψ{2(1 − r1)}, so that

supm∈�k
2
|I (m)| �π k−2 exp(σ−1)c−1(σ )

∫
Sk−2

ψ{2(1 − r1)} exp

(
r1 − 1

σ

)
dr1 . . . drk−2

= π k−2(k − 3)!−1 exp(σ−1)c−1(σ )
∫ 1

0
ψ{2(1 − r1)} exp

(
r1 − 1

σ

)
(1 − r1)k−3dr1. (A10)

Make a change of variable s = σ−1(1 − r1) to rewrite (A10) as

supm∈�k
2
|I (m)| � π k−2(k − 3)!−1σ k−2 exp(σ−1)c−1(σ )

∫ σ−1

0
ψ(2σ s) exp(−s)sk−3ds

� Ckc−1
1 (σ )

∫ ∞

0
ψ(2σ s) exp(−s)sk−3ds, (A11)

where c1(σ ) = 1 − exp(−σ−1)
∑k−3

r=0σ
−r/r ! and Ck is some constant depending on k. Since φ is uniformly

continuous on the compact metric space (�k
2 , dE ), ψ is bounded and limd→0 ψ(d) = 0. Also, it is easy to

check that limσ→0 c1(σ ) = 1. Since exp(−s)sk−3 is integrable on (0,∞), using the Lebesgue Dominated
Convergence Theorem on the integral in (A11), we conclude that

lim
σ→0

supm∈�k
2
|I (m)| = 0.

Hence Assumption 2 is also satisfied. �
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