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Abstract Image segmentation algorithms partition the set

of pixels of an image into a specific number of different,

spatially homogeneous groups. We propose a nonparametric

Bayesian model for histogram clustering which automat-

ically determines the number of segments when spatial

smoothness constraints on the class assignments are en-

forced by a Markov Random Field. A Dirichlet process prior

controls the level of resolution which corresponds to the

number of clusters in data with a unique cluster structure.

The resulting posterior is efficiently sampled by a variant of

a conjugate-case sampling algorithm for Dirichlet process

mixture models. Experimental results are provided for real-

world gray value images, synthetic aperture radar images

and magnetic resonance imaging data.

Keywords Markov random fields · Nonparametric

Bayesian methods · Dirichlet process mixtures · Image

segmentation · Clustering · Spatial statistics · Markov chain

Monte Carlo

1 Introduction

Statistical approaches to image segmentation usually differ

in two difficult design decisions, i.e. the statistical model for

an individual segment and the number of segments which

are found in the image. k-means clustering of gray or color

values (Samson et al. 2000), histogram clustering (Puzicha
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et al. 1999) or mixtures of Gaussians (Hermes et al. 2002)

are a few examples of different model choices. Graph the-

oretic methods like normalized cut or pairwise clustering

in principle also belong to this class of methods, since

these techniques implement versions of weighted or un-

weighted k-means in kernel space (Bach and Jordan 2004;

Roth et al. 2003). The number of clusters poses a model

order selection problem with various solutions available in

the literature. Most clustering algorithms require the data

analyst to specify the number of classes, based either on

a priori knowledge or educated guessing. More advanced

methods include strategies for automatic model order selec-

tion, i.e. the number of classes is estimated from the input

data. Available model selection methods for data clustering

include approaches based on coding theory and minimum

description length (Rissanen 1983), and cross-validation ap-

proaches, such as stability (Lange et al. 2004).

We consider a nonparametric Bayesian approach based

on Dirichlet process mixture (MDP) models (Ferguson

1973; Antoniak 1974). MDP models provide a Bayesian

framework for clustering problems with an unknown num-

ber of groups. They support a range of prior choices for the

number of classes; the different resulting models are then

scored by the likelihood according to the observed data. The

number of clusters as an input constant is substituted by a

random variable with a control parameter. Instead of speci-

fying a constant number of clusters, the user specifies a level

of cluster resolution by adjusting the parameter. These mod-

els have been applied to a variety of problems in statistics

and language processing; to the best of our knowledge, their

application to image segmentation has not yet been stud-

ied. Using MDP models for segmentation seems appealing,

since a MDP may be interpreted as a mixture model with a

varying number of classes, and therefore as a generalization

of one of the standard modeling tools used in data clustering.
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Feature extraction and grouping approaches used with finite

mixture models can be transferred to the MDP framework

in a straightforward way.

A possible weakness of clustering approaches for image

segmentation is related to their lack of spatial structure, i.e.

these models neglect the spatial smoothness of natural im-

ages: Image segmentation is performed by grouping local

features (such as local intensity histograms), and only infor-

mation implicit in these features is exploited in the search

for satisfactory segmentations. Noisy images with unreli-

able features may result in incoherent segments and jagged

boundaries. This drawback can be addressed by introduc-

ing spatial coupling between adjacent image features. The

classic Bayesian approach to spatial statistical modeling is

based on Markov random field (MRF) priors (Geman and

Geman 1984). It is widely applied in image processing to

problems like image restauration and texture segmentation.

As will be shown below, MRF priors which model spatial

smoothness constraints on cluster labels can be combined

with MDP clustering models in a natural manner. Both mod-

els are Bayesian by nature, and inference of the combined

model may be conducted by Gibbs sampling.

1.1 Previous Work

Dirichlet process mixture models have been studied in non-

parametric Bayesian statistics for more than three decades.

Originally introduced by Ferguson (1973) and Antoniak

(1974), interest in these models has increased since effi-

cient sampling algorithms became available (Escobar 1994;

MacEachern 1994; Neal 2000). MDP models have been

applied in statistics to problems such as regression, den-

sity estimation, contingency tables or survival analysis (cf.

MacEachern and Müller 2000 for an overview). More re-

cently, they have been introduced in machine learning and

language processing by Jordan et al. (Blei 2004; McAuliffe

et al. 2004); see also (Zaragoza et al. 2003).

Markov random fields define one of the standard model

classes of spatial statistics and computer vision (Besag et

al. 1995; Winkler 2003). In computer vision they have

originally been advocated for restauration of noisy images

(Geman and Geman 1984; Besag 1986). Their application

to image segmentation has been studied in (Geman et al.

1990).

1.2 Contribution of this Article

We discuss the application of Dirichlet process mixture

models to image segmentation. Our central contribution is

a Dirichlet process mixture model with spatial constraints,

which combines the MDP approach to clustering and model

selection with the Markov random field approach to spatial

modeling. Applied to image processing, the model performs

image segmentation with automatic model selection under

smoothness constraints. A Gibbs sampling algorithm for the

combined model is derived. For the application to image

segmentation, a suitable MDP model for histogram cluster-

ing is defined, and the general Gibbs sampling approach is

adapted to this model.

1.3 Outline

Section 2 provides an introduction to Dirichlet process

methods and their application to clustering problems. Since

these models have only recently been introduced into ma-

chine learning, we will explain them in some detail. Sec-

tion 3 briefly reviews Markov random field models with

pairwise interactions. In Sect. 4, we show how Markov ran-

dom fields may be combined with Dirichlet process mixture

models and derive a Gibbs sampling inference algorithm for

the resulting model in Sect. 5. Section 6 describes a com-

bined Markov/Dirichlet model for histogram clustering, and

Sect. 7 extensions of the basic model. Experimental results

obtained by application of the model to image segmentation

are summarized in Sect. 8.

2 Dirichlet Process Methods

Dirichlet process models belong to the family of non-

parametric Bayesian models (Walker et al. 1999). In the

Bayesian context, the term nonparametric1 indicates that

these models specify a likelihood function by other means

than the random generation of a parameter value. Consider

first the standard, parametric Bayesian setting, where the

posterior is a parametric model of the form

p(θ |x) ∝ F(x|θ)G(θ). (1)

Data generation according to this model can be regarded

as a two-step process: (i) Choose a distribution function F

at random by drawing a parameter value θ from the prior,

(ii) then draw a data value x from this distribution. For a

given parameter value θ , the likelihood F is one specific

element of a parametric family of distributions. By multipli-

cation with the prior probability G, each possible choice of

F is endowed with a probability of occurrence. A Bayesian

generative model always requires the random generation of

an element F of a function space, and thus of an infinite-

dimensional vector space. Parametric Bayesian approaches

1In the non-Bayesian context, “nonparametric” refers to methods such

as Parzen window density estimates, which, for example, require one

location parameter per observation. These methods are not of para-

metric type because the number of model parameters depends on the

number of data points; parametric models require the number of para-

meters (and therefore the complexity of the model) to be fixed.
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restrict this space to a finite-dimensional parametric fam-

ily such that only a finite, constant number of degrees of

freedom remains for the resulting problem. Bayesian non-

parametric methods generalize this approach by drawing a

random function F , but without the restriction to a paramet-

ric family. Such a generalization requires a method capable

of generating a non-parametric distribution function, an ob-

ject with an infinite number of degrees of freedom. Dirichlet

processes provide one possible solution to this problem.

2.1 Dirichlet Process Priors

The Dirichlet process (Ferguson 1973) approach obtains a

random probability distribution by drawing its cumulative

distribution function (CDF) as the sample path of a suitable

stochastic process. The sample path of a stochastic process

may be interpreted as the graph of a function. For a process

on an interval [a, b] ⊂ R, the function defines a CDF if it

assumes the value 0 at a, the value 1 at b, and if it is non-

decreasing on the interval (a, b). The Dirichlet process (DP)

is a stochastic process which can be shown to generate tra-

jectories with the above properties almost surely (i.e. with

probability 1). It can also be generalized beyond the case

of a real interval, to generate proper CDFs on an arbitrary

sample space. The DP is parameterized by a scalar α ∈ R+

and a probability measure G0, called the base measure of

the process, and it is denoted as DP(αG0).

Since a random draw F ∼ DP(αG0) defines a probabil-

ity distribution almost surely, the DP may be regarded as

a distribution on distributions (or a measure on measures),

and is hence suitable to serve as a prior in a Bayesian set-

ting. Instead of drawing a parameter defining a likelihood F

at random, the likelihood function itself is drawn at random

from the DP:

x1, . . . ,xn ∼ F,
(2)

F ∼ DP(αG0).

Explicit sampling from this model would require the repre-

sentation of an infinite-dimensional object (the function F ).

The DP avoids the problem by marginalization: Given a set

of observations, the random function is marginalized out

by integrating against the random measure defined by the

process.2 The DP owes its actual applicability to the follow-

ing properties (Ferguson 1973):

2Other nonparametric methods represent the random function F ex-

plicitly, by means of finite-dimensional approximations using e.g.

wavelets or Bernstein polynomials (Müller and Quintana 2004). In

contrast to such approximation-based techniques, the marginalization

approach of the DP may be regarded as a purely statistical solution to

the problem of dealing with F .

1. Existence: The process DP(αG0) exists for an arbitrary

measurable space (Ω,A) and an additive probability

measure G0 on Ω .

2. Posterior estimation: Assume that observations x1, . . . ,xn

are generated by a distribution drawn at random from a

Dirichlet process, according to (2). Denote by F̂n the em-

pirical distribution of the observed data,

F̂n(x) :=
1

n

n
∑

i=1

δxi (x) , (3)

where δxi
is the Dirac measure centered at xi . Then the

posterior probability of the random distribution F condi-

tional on the data is also a Dirichlet process:

F |x1, . . . ,xn ∼ (αG0 + nF̂n). (4)

3. Sampling: If a sequence x1, . . . ,xn is drawn from a ran-

dom measure F ∼ DP(αG0), the first data value is drawn

according to

x1 ∼ G0. (5)

All subsequent data values are drawn according to

xn+1|x1, . . . ,xn ∼
n

α + n
F̂n(xn+1) +

α

α + n
G0(xn+1).

(6)

In a Bayesian framework, where F is considered to be

the likelihood of the data, property 2 corresponds to con-

jugacy in the parametric case: Prior and posterior belong

to the same model class, with the posterior parameters up-

dated according to the observations. Equation (6) states that

the posterior puts mass n
α+n

on the set of values already

observed. This weighting is sometimes referred to as the

clustering property of the Dirichlet process. Property 3 ren-

ders the DP computationally accessible; if the base measure

G0 can be sampled, then DP(αG0) can be sampled as well.

The combination of properties 2 and 3 facilitates sampling

from the posterior, and thereby Bayesian estimation using

DP models.

2.2 Dirichlet Process Mixture Models

Dirichlet processes are most commonly used in the form

of so-called Dirichlet process mixture models, introduced in

(Antoniak 1974). These models employ a Dirichlet process

to choose a prior at random (rather than a likelihood, as

the standard DP model does). The initial motivation for

considering MDP models is an inherent restriction of the

DP: Regarded as a measure on the set of Borel probabil-

ity measures, the DP can be shown to be degenerate on the

set of discrete measures (Ferguson 1973). In other words,
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a distribution drawn from a DP is discrete with probabil-

ity 1, even when the base measure G0 is continuous. MDP

models avoid this restriction by drawing a random prior G

from a DP and by combining it with a parametric likelihood

F(x|θ). Sampling from the model is conducted by sampling

xi ∼ F( . |θi),

θi ∼ G, (7)

G ∼ DP(αG0).

If the parametric distribution F is continuous, the model can

be regarded as a convolution of the degenerate density G

with a continuous function, resulting in a continuous distrib-

ution of the data xi . Sampling the posterior of a MDP model

is more complicated than sampling the standard DP poste-

rior: The sampling formula (6) is obtained by conditioning

on the values drawn from the random measure. In the MDP

case these are the parameters θi . Since the parameters are

not observed (but rather the data xi ), they have to be inte-

grated out to obtain a sampling formula conditional on the

actual data. This is possible in principle, but may be difficult

in practice unless a benign combination of likelihood F and

base measure G0 is chosen.

2.3 MDP Models and Data Clustering

The principal motivation for the application of MDP models

in machine learning is their connection with both cluster-

ing problems and model selection: MDP models may be

interpreted as mixture models. The number of mixture com-

ponents of these mixtures is a random variable, and may be

estimated from the data.

The term clustering algorithm is used here to describe

an unsupervised learning algorithm which groups a set

x1, . . . ,xn of input data into distinct classes. The number of

classes will be denoted by NC, and the class assignment of

each data value xi is stored by means of an indicator variable

Si ∈ {1, . . . ,NC}.

A standard modeling class in data clustering are finite

mixture models with distributions of the form

p(x) =

NC
∑

k=1

ckpk(x), (8)

subject to ck ∈ R≥0 and
∑

k ck = 1. The vector (c1, . . . , cNC
)

defines a finite probability distribution, with ck = Pr{S = k}

for a data value drawn at random from the model. Each

individual cluster is represented by a single probability dis-

tribution pk . The model assumes a two-stage generative

process for x:

x ∼ pS,
(9)

S ∼ (c1, . . . , cNC
).

If the component distributions are parametric models

pk(x) = pk(x|θk), the distribution (8) is a parametric model

as well, with parameters c1, . . . , cNC
and θ1, . . . , θNC

.

Now we consider the MDP model (7). For a given set of

values θ1, . . . , θn, which are already drawn from the random

measure G, the measure can be integrated out to obtain a

conditional prior:

p(θn+1|θ1, . . . , θn)

=
1

n + α

n
∑

i=1

δθi (θn+1) +
α

n + α
G0(θn+1). (10)

This equation specifies the MDP analogue of formula (6).

Due to the clustering property of the DP, θ1, . . . , θn will ac-

cumulate in NC ≤ n groups of identical values (cf. Sect. 2.1).

Each of these classes is represented by its associated para-

meter value, denoted θ∗
k for class k ∈ {1, . . . ,NC}. (That is,

θi = θ∗
k for all parameters θi in class k.) The sum over sites

in the first term of (10) may be expressed as a sum over

classes:

n
∑

i=1

δθi (θn+1) =

NC
∑

k=1

nkδθ∗
k
(θn+1) , (11)

where nk denotes the number of values accumulated in

group k. The conditional distribution (10) may be rewritten

as

p(θn+1|θ1, . . . , θn)

=

NC
∑

k=1

nk

n + α
δθ∗

k
(θn+1) +

α

n + α
G0(θn+1). (12)

Combination with a parametric likelihood F as in (7) re-

sults in a single, fixed likelihood function F( . |θ∗
k ) for each

class k. Therefore, the model may be regarded as a mixture

model consisting of NC parametric components F( . |θ∗
k )

and a “zero” component (the base measure term), respon-

sible for the creation of new classes.

For a parametric mixture model applied to a clustering

problem, the number of clusters is determined by the (fixed)

number of parameters. Changing the number of clusters

therefore requires substitution of one parametric mixture

model by another one. MDP models provide a description

of clustering problems that is capable of adjusting the num-

ber of classes without switching models. This property is, in

particular, a necessary prerequisite for Bayesian inference

of the number of classes, which requires NC to be a random

variable within the model framework, rather than a constant

of the (possibly changing) model. For a MDP model, a con-

ditional draw from DP(αG0) will be a draw from the base

measure with probability α
α+n

. Even for large n, a suffi-

cient number of additional draws will eventually result in
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a draw from G0, which may generate a new class.3 Hence,

NC is a random variable, and an estimate can be obtained by

Bayesian inference, along with estimates of the class para-

meters.

The data to be grouped by a MDP clustering proce-

dure are the observations xi in (7). The classes defined by

the parameter values θ∗
1 , . . . , θ∗

k are identified with clusters.

Similar to the finite mixture model, each cluster is described

by a generative distribution F( . |θ∗
k ). In contrast to the fi-

nite case, new classes can be generated when the model is

sampled. Conditioned on the observations xi , the probability

of creating a new class depends on the supporting evidence

observed.

3 Markov Random Fields

This work combines nonparametric Dirichlet process mix-

ture models with Markov random field (MRF) models to

enforce spatial constraints. MRF models have been widely

used in computer vision (Besag et al. 1995; Winkler 2003);

the following brief exposition is intended to define notation

and specify the type of models considered.

Markov random fields provide an approach to the difficult

problem of modeling systems of dependent random vari-

ables. To reduce the complexity of the problem, interactions

are restricted to occur only within small groups of variables.

Dependence structure can conveniently be represented by a

graph, with vertices representing random variables and an

edge between two vertices indicating statistical dependence.

More formally, a MRF is a collection of random vari-

ables defined on an undirected, weighted graph N =

(VN ,EN ,WN ), the neighborhood graph. The vertices in

the vertex set VN = {v1, . . . , vn} are referred to as sites. EN

is the set of graph edges, and WN denotes a set of con-

stant edge weights. Since the graph is undirected, the edge

weights wij ∈ WN are symmetric (wij = wji ). Each site vi

is associated with an observation xi and a random variable

θi . When dealing with subsets of parameters, we will use

the notation θA := {θi | i ∈ A} for all parameters with in-

dices in the set A. In particular, ∂(i) := {j | (i, j) ∈ EN }

denotes the index set of neighbors of vi in N , and θ−i :=

{θ1, . . . , θi−1, θi+1, . . . , θn} is a shorthand notation for the

parameter set with θi removed.

Markov random fields model constraints and dependen-

cies in Bayesian spatial statistics. A joint distribution Π on

the parameters θ1, . . . , θn is called a Markov random field

w.r.t. N if

Π(θi |θ−i) = Π(θi |θ∂(i)) (13)

3In fact, a new class is generated a. s. unless G0 is finite.

for all vi ∈ VN . This Markov property states that the ran-

dom variables θi are dependent, but dependencies are local,

i.e. restricted to variables adjacent in the graph N . The

MRF distribution Π(θ1, . . . , θn) plays the role of a prior in

a Bayesian model. The random variable θi describes a pa-

rameter for the generation of the observation xi . Parameter

and observation at each site are linked by a parametric like-

lihood F , i.e. each xi is assumed to be drawn xi ∼ F( . |θi).

For the image processing application discussed in Sect. 6,

each site corresponds to a location in the image; two sites are

connected by an edge in N if their locations in the image

are adjacent. The observations xi are local image features

extracted at each site.

Defining a MRF distribution to model a given problem

requires verification of the Markov property (13) for all con-

ditionals of the distribution, a tedious task even for a small

number of random variables and often infeasible for large

systems. The Hammersley–Clifford theorem (Winkler 2003)

provides an equivalent property which is easier to verify.

The property is formulated as a condition on the MRF cost

function, and is particularly well-suited for modeling. A cost

function is a function H : Ωn
θ → R≥0 of the form

H(θ1, . . . , θn) :=
∑

A⊂VN

HA(θA). (14)

The sum ranges over all possible subsets A of nodes in the

graph N . On each of these sets, costs are defined by a lo-

cal cost function HA, and θA denotes the parameter subset

{θi |vi ∈ A}. The cost function H defines a distribution by

means of

Π(θ1, . . . , θn) :=
1

ZH

exp(−H(θ1, . . . , θn)), (15)

with a normalization term ZH (the partition function). With-

out further requirements, this distribution does not in general

satisfy (13). By the Hammersley–Clifford theorem, the cost

function (14) will define a MRF if and only if

H(θ1, . . . , θn) =
∑

C⊂C

HC(θC), (16)

where C denotes the set of all cliques, or completely con-

nected subsets, of VN . In other words, the distribution

defined by H will be a MRF if the local cost contribu-

tions HA vanish for every subset A of nodes which are not

completely connected. Defining MRF distributions therefore

comes down to defining a proper cost function of the form

(16).

Inference algorithms for MRF distributions rely on the

full conditional distributions

Π(θi |θ−i) =
Π(θ1, . . . , θn)

∫

Π(θ1, . . . , θn)dθi

. (17)
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For sampling or optimization algorithms, it is typically suf-

ficient to evaluate distributions up to a constant coefficient.

Since the integral in the denominator is constant with re-

spect to θi , it may be neglected, and the full conditional can

be evaluated for algorithmic purposes by substituting given

values for all parameters in θ−i into the functional form

of the joint distribution Π(θ1, . . . , θn). Due to the Markov

property (13), the full conditional for θi is completely de-

fined by those components HC of the cost function for

which i ∈ C. This restricted cost function will be denoted

H(θi |θ−i). A simple example of a MRF cost function with

continuously-valued parameters θi is

H(θi |θ−i) :=
∑

l∈∂(i)

‖θi − θl‖
2. (18)

The resulting conditional prior contribution M(θi |θ−i) ∝
∏

l∈∂(i) exp(−‖θi − θl‖
2) will favor similar parameter val-

ues at sites which are neighbors.

In the case of clustering problems, the constraints are

modeled on the discrete set {S1, . . . , Sn} of class label in-

dicators. Cost functions such as (18) are inadequate for this

type of problem, because they depend on the magnitude of a

distance between parameter values. If the numerical differ-

ence between two parameters is small, the resulting costs are

small as well. Cluster labels are not usually associated with

such a notion of proximity: Most clustering problems do not

define an order on class labels, and two class labels are ei-

ther identical or different. This binary concept of similarity

is expressed by cost functions such as

H(θi |θ−i) = −λ
∑

l∈∂(i)

wilδSi ,Sl
, (19)

where δ is the Kronecker symbol, λ a positive constant and

wil are edge weights. The class indicators Si , Sl specify the

classes defined by the parameters θi and θl . Hence, if θi

defines a class different from the classes of all neighbors,

exp(−H) = 1, whereas exp(−H) will increase if at least

one neighbor is assigned to the same class. More generally,

we consider cost functions satisfying

H(θi |θ−i) = 0 if Si �∈ S∂(i),
(20)

H(θi |θ−i) < 0 if Si ∈ S∂(i).

The function will usually be defined to assume a larger neg-

ative value the more neighbors are assigned to the class

defined by θi . Such a cost function may be used, for exam-

ple, to express smoothness constraints on the cluster labels,

as they encourage smooth assignments of adjacent sites. In

Bayesian image processing, label constraints may be used to

smooth the results of segmentation algorithms, as first pro-

posed by Geman et al. (1990).

4 Dirichlet Process Mixtures Constrained by Markov

Random Fields

Spatially constrained Dirichlet process mixture models are

composed of a MRF term for spatial smoothness and a site

specific data term. This local data term is drawn from a DP,

whereas the interaction term may be modeled by a cost

function. We will demonstrate that the resulting model de-

fines a valid MRF. Provided that the full conditionals of the

MRF interaction term can be efficiently evaluated, the full

conditionals of the constrained MDP/MRF model can be ef-

ficiently evaluated as well.

The MRF distribution Π may be decomposed into a site-

wise term P and the remaining interaction term M . In the

cost function (16), sitewise terms correspond to singleton

cliques C = {i}, and interaction terms to cliques of size two

or larger. We denote the latter by C2 := {C ∈ C | |C| ≥ 2}.

The MRF distribution is rewritten as

Π(θ1, . . . , θn) ∝ P(θ1, . . . , θn)M(θ1, . . . , θn) with

P(θ1, . . . , θn) :=
1

ZP

exp

(

−
∑

i

Hi(θi)

)

,

M(θ1, . . . , θn) :=
1

ZM

exp

(

−
∑

C∈C2

HC(θC)

)

.

(21)

To construct a MRF-constrained Dirichlet process prior,

the marginal distribution G(θi) of θi at each site is defined

by a single random draw from a DP. The generative repre-

sentation of the resulting model is

(θ1, . . . , θn) ∼ M(θ1, . . . , θn)
∏n

i=1 G(θi),

G ∼ DP(αG0).
(22)

The component P in (21), defined in terms of the cost

function Hi(θi), has thus been replaced by a random G ∼

DP(αG0). To formally justify this step, we may assume a

draw G to be given and define a cost function for individual

sites in terms of G:

Hi(θi) := − logG(θi), (23)

ZG :=

∫ n
∏

i=1

exp(− logG(θi))dθ1 · · ·dθn, (24)

Since the term acts only on individual random variables,

substitution into the MRF will not violate the conditions

of the Hammersley–Clifford theorem. When the parameters

(θ1, . . . , θn) are drawn from G ∼ DP (αG0) as in (7), the θi

are conditionally independent given G and their joint distri-

bution assumes the product form

P(θ1, . . . , θn|G) =

n
∏

i=1

G(θi). (25)
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This conditional independence of θi justifies the product

representation (22). The model is combined with a para-

metric likelihood F( . |θ) by assuming the observed data

x1, . . . ,xn to be generated according to

(x1, . . . ,xn) ∼

n
∏

i=1

F(xi |θi),

(θ1, . . . , θn) ∼ M(θ1, . . . , θn)

n
∏

i=1

G(θi),

G ∼ DP(αG0).

(26)

Full conditionals Π(θi |θ−i) of the model can be obtained

up to a constant as a product of the full conditionals of the

components:

Π(θi |θ−i) ∝ P(θi |θ−i)M(θi |θ−i). (27)

For DP models, P(θi |θ−i) is computed from (25) as de-

scribed in Sect. 2, by conditioning on θ−i and integrating

out the randomly drawn distribution G. The resulting condi-

tional prior is

P(θi |θ−i) =

NC
∑

k=1

n−i
k

n − 1 + α
δθ∗

k
(θi) +

α

n − 1 + α
G0(θi).

(28)

n−i
k again denotes the number of samples in group k, with

the additional superscript indicating the exclusion of θi .

The representation is the analogue of the sequential repre-

sentation (12) for a sample of fixed size. The θi are now

statistically dependent after G is integrated out of the model.

The constrained model exhibits the key property that the

MRF interaction term does not affect the base measure term

G0 of the DP prior. More formally, M(θi |θ−i)G0 is equiva-

lent to G0 almost everywhere, i.e. everywhere on the infinite

domain except for a finite set of points. The properties of

G0 are not changed by its values on a finite set of points

for operations such as sampling or integration against non-

degenerate functions. Since sampling and integration are

the two modes in which priors are applied in Bayesian in-

ference, all computations involving the base measure are

significantly simplified. Section 5 will introduce a sampling

algorithm based on this property.

Assume that M(θi |θ−i) is the full conditional of an MRF

interaction term, with a cost function satisfying (20). Com-

bining P with M yields

M(θi |θ−i)P (θi |θ−i)

∝ M(θi |θ−i)
∑

k

n−i
k δθ∗

k
(θi) + αM(θi |θ−i)G0(θi). (29)

As an immediate consequence of the cost function property

(20), the support of H is at most the set of the cluster para-

meters Θ∗ := {θ∗
1 , . . . , θ∗

NC
},

supp(H(θi |θ−i)) ⊂ θ−i ⊂ Θ∗. (30)

Since Θ∗ is a finite subset of the infinite domain Ωθ

of the base measure, G0(Θ
∗) = 0. A random draw from

G0 will not be in Θ∗ with probability 1, and hence

exp(−H(θi |θ−i)) = 1 almost surely for θi ∼ G0(θi). With

M(θi |θ−i) = 1
ZH

almost surely,

M(θi |θ−i)G0(θi) =
1

ZH

G0(θi) (31)

almost everywhere. Sampling M(θi |θ−i)G0(θi) is therefore

equivalent to sampling G0. Integration of M(θi |θ−i)G0(θi)

against a non-degenerate function f yields

∫

Ωθ

f (θi)M(θi |θ−i)G(θi)dθi

=

∫

Ωθ

f (θi)
1

ZH

exp(−H(θi |θ−i))G0(θi)dθi

=

∫

Ωθ\Θ∗
f (θi)

1

ZH

exp(−H(θi |θ−i))G0(θi)dθi

=
1

ZH

∫

Ωθ

f (θi)G0(θi)dθi . (32)

The MRF constraints change only the finite component of

the MDP model (the weighted sum of Dirac measures), and

the full conditional of Π almost everywhere assumes the

form

Π(θi |θ−i) ∝

NC
∑

k=1

M(θi |θ−i)n
−i
k δθ∗

k
(θi) +

α

ZH

G0(θi). (33)

The formal argument above permits an intuitive inter-

pretation: The finite component represents clusters already

created by the model. The smoothness constraints on cluster

assignments model a local consistency requirement: con-

sistent assignments are encouraged within neighborhoods.

Therefore, the MRF term favors two adjacent sites to be as-

signed to the same cluster. Unless the base measure G0 is

finite, the class parameter drawn from G0 will differ from

the parameters of all existing classes with probability one. In

other words, a draw from the base measure always defines a

new class, and the corresponding site will not be affected by

the smoothness constraint, as indicated by (31).

5 Sampling

Application of the constrained MDP model requires a

method to estimate a state of the model from data. Inference
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for MDP and MRF models is usually handled by Markov

chain Monte Carlo sampling. Since full conditionals of suf-

ficiently simple form are available for both models, Gibbs

sampling in particular is applicable. We propose a Gibbs

sampler for estimation of the combined MDP/MRF model,

based on the full conditionals derived in the previous sec-

tion.

The combined MDP/MRF model (26) can be sampled by

a modified version of MacEachern’s algorithm (MacEachern

1994, 1998), a Gibbs sampler for MDP models. The original

algorithm executes two alternating steps, an assignment step

and a parameter update step. For each data value xi , the as-

signment step computes a vector of probabilities qik for xi

being assigned to cluster k, according to the current state

of the model. An additional probability qi0 is estimated for

the creation of a new cluster to explain xi . The assignment

indicators Si are sampled from these assignment probabil-

ities. Given a complete set of assignment indicators Si , a

posterior is computed for each cluster based on the data it

currently contains, and the model parameters θ∗
k are updated

by sampling from the posterior. More concisely, the algo-

rithm repeats:

1. For each observation xi , compute the probability qik of

each class k = 0, . . . ,NC and sample a class label ac-

cordingly. Class k = 0 indicates the base measure term

in (28).

2. Given the class assignments of all sites, compute the

resulting likelihoods and sample values for the class pa-

rameters.

The sampler notably resembles the expectation-maximi-

zation (EM) algorithm for finite mixture models. A MAP-

EM algorithm applied to a finite mixture with a prior on the

cluster parameters computes a set of assignment probabili-

ties in its E-step, and maximum a posteriori point estimates

in the M-step. In the sampler, both steps are randomized, the

former by sampling assignment indicators from the assign-

ment probabilities, and the latter by substituting a posterior

sampling step for the point estimate.

A sampler for the MDP/MRF model can be obtained by

adapting MacEachern’s algorithm to the full conditionals of

the constrained model, which were computed in the pre-

vious section. We define the algorithm before detailing its

derivation. Let G0 be an infinite probability measure, i.e. a

non-degenerate measure on an infinite domain Ωθ . Let F be

a likelihood function such that F , G0 form a conjugate pair.

Assume that G0 can be sampled by an efficient algorithm.

Let H be a cost function of the form (20), and x1, . . . ,xn a

set of observations drawn from the nodes of the MRF. Then

the MDP/MRF model (26) can be sampled by the following

procedure:

Algorithm 1 (MDP/MRF Sampling)

Initialize: Generate a single cluster containing all points:

θ∗
1 ∼ G0(θ

∗
1 )

n
∏

i=1

F(xi |θ
∗
1 ). (34)

Repeat:

1. Generate a random permutation σ of the data indices.

2. Assignment step. For i = σ(1), . . . , σ (n):

a) If xi is the only observation assigned to its cluster k =

Si , remove this cluster.

b) Compute the cluster probabilities

qi0 ∝ α

∫

Ωθ

F(xi |θ)G0(θ)dθ (35)

qik ∝ n−i
k exp(−H(θ∗

k |θ−i))F (xi |θ
∗
k )

for k = 1, . . . ,NC.

c) Draw a random index k according to the finite distri-

bution (qi0, . . . , qiNC
).

d) Assignment:

– If k ∈ {1, . . . ,NC}, assign xi to cluster k.

– If k = 0, create a new cluster for xi .

3. Parameter update step. For each cluster k = 1, . . . ,NC:

Update the cluster parameters θ∗
k given the class assign-

ments S1, . . . , Sn by sampling

θ∗
k ∼ G0(θ

∗
k )

∏

i|Si=k

F(xi |θ
∗
k ). (36)

Estimate assignment mode: For each point, choose the

cluster it was assigned to most frequently during a given

final number of iterations.

The sampler is implemented as a random scan Gibbs sam-

pler, a design decision motivated by the Markov random

field. Since adjacent sites couple, the data should not be

scanned by index order. Initialization collects all data in

a single cluster, which will result in comparatively stable

results, since the initial cluster is estimated from a large

amount of data. Alternatively, one may start with an empty

set of clusters, such that the first cluster will be created dur-

ing the first assignment step. The initial state of the model is

then sampled from the single-point posterior of a randomly

chosen observation, resulting in more variable estimates un-

less the sampler is run for a large number of iterations to

ensure proper mixing of the Markov chain. The final assign-

ment by maximization is a rather primitive form of mode

estimate, but experiments show that class assignment prob-

abilities tend to be pronounced after a sufficient number

of iterations. The estimates are therefore unambiguous. If
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strong variations in cluster assignments during consecutive

iterations are observed, maximization should be substituted

by a more sophisticated approach.

The algorithm is derived by computing the assignment

probabilities qik and the cluster posterior (36) based on the

parametric likelihood F and the full conditional probabili-

ties (33) of the MDP/MRF model. The posterior for a single

observation xi is

p(θi |θ−i,xi) =
F(xi |θi)Π(θi |θ−i)

∫

Ωθ
F(xi |θ)Π(θ |θ−i)dθ

. (37)

Substituting (33) for Π(θi |θ−i) gives

p(θi |θ−i,xi) ∝ F(xi |θi)M(θi |θ−i)

NC
∑

k=1

n−i
k δθ∗

k
(θi)

+ F(xi |θi) ·
α

ZH

G0(θi). (38)

The probabilities of the individual components can be

computed as their relative contributions to the mass of

the overall model, i.e. by integrating each class compo-

nent of the conditional (38) over Ωθ . For each cluster

k ∈ {1, . . . ,NC} of parameters, the relevant integral mea-

sure is degenerate at θ∗
k . Integrating an arbitrary function

f against the degenerate measure δθj
“selects” the function

value f (θj ). Hence,

∫

Ωθ

δθ∗
k
(θi)F (xi |θi)

1

ZH

exp(−H(θi |θ−i))dθi

=
1

ZH

F(xi |θ
∗
k ) exp(−H(θ∗

k |θ−i)). (39)

The MRF normalization constant ZH appears in all compo-

nents and may be neglected. Combined with the coefficients

of the conditional posterior (37), the class probabilities qi0

and qij are thus given by (35).

The class posterior for sampling each cluster parameter

θ∗
k is

θ∗
k ∼ G0(θ

∗
k )

∏

i|Si=k

F(xi |θ
∗
k )M(θ∗

k |θ−i). (40)

Once again, a random draw θ ∼ G0 from the base measure

will not be an element of Θ∗ a.s., and

F(xi |θ
∗
k )M(θ∗

k |θ−i) = F(xi |θ
∗
k )

1

ZH

(41)

almost everywhere for a non-degenerate likelihood. There-

fore, θ∗
k may equivalently be sampled as

θ∗
k ∼ G0(θ

∗
k )

∏

i|Si=k

F(xi |θ
∗
k ), (42)

which accounts for the second step of the algorithm.

If F and G0 form a conjugate pair, the integral in (35)

has an analytical solution, and the class posterior (42) is

an element of the same model class as G0. If G0 can be

sampled, then the class posterior can be sampled as well.

Consequently, just as MacEachern’s algorithm, Algorithm. 1

is feasible in the conjugate case. The fact that the clustering

cost function gives a uniform contribution a.e. is therefore

crucial. With the inclusion of the MRF contribution, the

model is no longer conjugate. Due to the finite support of

the cost function, however, it reduces to the conjugate case

for both steps of the algorithm relying on a conjugate pair.

MacEachern’s algorithm is not the only possible ap-

proach to MDP sampling. More straightforward algorithms

draw samples from the posterior (37) directly, rather than

employing the two-stage sampling scheme described above

(Escobar 1994). For the MDP/MRF model, the two-stage

approach is chosen because of its explicit use of class labels.

The choice is motivated by two reasons: First, the MRF con-

straints act on class assignments, which makes an algorithm

operating on class labels more suitable than one operating

on the parameters θi . The second reason similarly applies in

the unconstrained case, and makes MacEachern’s algorithm

the method of choice for many MDP sampling problems.

If a large class exists at some point during the sampling

process, changing the class parameter of the complete class

to a different value is possible only by pointwise updates,

for each θi in turn. The class is temporarily separated into

at least two classes during the process. Such a separation is

improbable, because for similar observations, assignment to

a single class is more probable then assignment to several

different classes. Thus, changes in parameter values are less

likely, which slows down the convergence of the Markov

chain. Additionally, if a separation into different classes oc-

curs, the resulting classes are smaller and the corresponding

posteriors less concentrated, causing additional scatter. The

two-stage algorithm is not affected by the problem, since

parameters are sampled once for each class (rather than for

each site). Given the current class assignments, the poste-

rior does not depend on any current parameter values θi .

The difference between the two algorithms becomes more

pronounced when MRF smoothness constraints are applied.

For a direct, sequential parameter sampling algorithm, con-

straints favoring assignment of neighbors to the same class

will make separation into different classes even less proba-

ble. A two-stage sampling approach therefore seems more

suited for sampling the MRF-constrained model.

6 Application to Image Processing

We will now discuss how the previously described and de-

veloped methods can be applied to image segmentation,

both with a standard MDP approach and with a MDP/MRF
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model. The results derived in the previous section have not

assumed any restriction on the choice of base measure G0

and likelihood F (except for the assumption that the base

measure is infinitely supported). In the following, we spe-

cialize the model by choosing specific distributions for G0,

F and the MRF term M , to define a suitable histogram clus-

tering model for use with the MDP/MRF method.

6.1 A Histogram Clustering Model

Our approach to image segmentation is based on histogram

clustering. Given a grayscale image, local histograms are ex-

tracted as features. This feature extraction is performed on a

rectangular, equidistant grid, placed within the input image.

Pixels coinciding with nodes of the grid are identified with

sites, indexed by i = 1, . . . , n. A square histogram window

is placed around each site, and a histogram hi is drawn from

the intensity values of all pixels within the window. The size

of the window (and therefore the number Ncounts of data

values recorded in each histogram) is kept constant for the

whole image, as is the number Nbins of histogram bins. Each

histogram is described by a vector hi = (hi1, . . . , hiNbins
)

of non-negative integers. The histograms h1, . . . ,hn are the

input features of the histogram clustering algorithm. They

replace the observations x1, . . . ,xn in the previous discus-

sion.

The parameters θi drawn from the DP in the MDP model

are, in this context, the probabilities of the histogram bins

(i.e. θij is the probability for a value to occur in bin j of a

histogram at site i). Given the probabilities of the individ-

ual bins, histograms are multinomially distributed, and the

likelihood is chosen according to

F(hi |θi) = Ncounts!

Nbins
∏

j=1

θ
hij

ij

hij !

=
1

ZM(hi)
exp

(

Nbins
∑

j=1

hij log(θij )

)

. (43)

The normalization function ZM (hi) does not depend on the

value of θi .

The prior distribution of the parameter vectors is assumed

to be conjugate, and therefore a Dirichlet distribution of di-

mension Nbins. The Dirichlet distribution (Kotz et al. 2000)

has two parameters β , π , where β is a positive scalar and π

is a Nbins-dimensional probability vector. It is defined by the

density

G0(θi |βπ) =
Γ (β)

∏Nbins

j=1 Γ (βπj )

Nbins
∏

j=1

θ
βπj −1

ij

=
1

ZD(βπj )
exp

(

Nbins
∑

j=1

(βπj − 1) log(θij )

)

. (44)

Sampling of this model will be discussed below, along with

sampling of the MRF-enhanced model.

6.2 Histogram Clustering with MRF Constraints

Combining the histogram clustering model with a MRF

constraint requires the choice of a cost function for local

smoothness. We have used the simple function

H(θi |θ−i) = −λ
∑

l∈∂(i)

δθi ,θl
. (45)

The resulting MRF will make a larger local contribution

if more neighbors of site i are assigned to the same class,

thereby encouraging spatial smoothness of cluster assign-

ments.

To sample the MRF-constrained histogram clustering

model, the sampler (Algorithm 1) has to be derived for the

particular choice of distributions (43) and (44), which re-

quires computation of the class probabilities qi0 and qik in

(35) and the respective posterior (36).

Since F , G0 form a conjugate pair, their product is (up to

normalization) a Dirichlet density:

F(xi |θi)G0(θi) ∝ exp

(

∑

j

(hij + βπj − 1) log(θij )

)

= G0(θi |hi + βπ). (46)

Therefore, qi0 has an analytic solution in terms of partition

functions:
∫

Ωθ

F(hi |θi)G0(θi)dθi

=

∫

Ωθ

exp(
∑

j (hij + βπj − 1) log(θij ))

ZM(hi)ZD(βπ)
dθi

=
ZD(hi + βπ)

ZM(hi)ZD(βπ)
. (47)

For k = 1, . . . ,NC,

qik ∝ n−i
k exp(−H(θ∗

k |θ−i))F (hi |θ
∗
k )

=
n−i

k

ZM(hi)
exp

(

λ
∑

l∈∂(i)

δθi ,θl
+

∑

j

hij log(θ∗
kj )

)

. (48)

Since the multinomial partition function ZM(hi) appears in

all equations, the cluster probabilities may be computed for

each i by computing preliminary values

q̃i0 :=
ZD(hi + βπ)

ZD(βπ)
,

q̃ik := n−i
k exp

(

λ
∑

l∈∂(i)

δθi ,θj
+

∑

j

hij log(θ∗
kj )

)

. (49)
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From these, cluster probabilities are obtained by normaliza-

tion:

qik :=
q̃ik

∑NC

l=0 q̃il

. (50)

The posterior to be sampled in (42) is Dirichlet as well:

G0(θ
∗
k |βπ)

∏

i|Si=k

F(xi |θ
∗
k )

∝ exp

(

∑

j

(

βπj +
∑

i|Si=k

hij − 1

)

log(θ∗
kj )

)

∝ G0

(

θ∗
k

∣

∣

∣
βπ +

∑

i|Si=k

hi

)

. (51)

Dirichlet distributions can be sampled efficiently by means

of Gamma sampling; cf. for example (Devroye 1986). Sam-

pling of the unconstrained model may be conducted by

choosing λ = 0 in the MRF cost function.

6.3 Behavior of the Segmentation Model

Since both the base measure and the posterior sampled in

the algorithm are Dirichlet, the properties of this distribu-

tion have a strong influence on the behavior of the clustering

model. Dirichlet densities are delicate to work with, since

they involve a product over exponentials, and because their

domain covers a multidimensional real simplex, which ren-

ders them difficult to plot or illustrate. The clustering model,

however, which has been obtained by combining the Dirich-

let base measure and the multinomial likelihood behaves in

a manner that is intuitive to understand: Each observed his-

togram hi is assumed to be generated by the likelihood F ,

which is determined at each site by the parameter θi . The

vector θi lies in the Nbins-dimensional simplex S
Nbins , and it

can be regarded as a finite probability distribution on the his-

togram bins. Its distribution G0(θi |βπ) is parameterized by

another vector π ∈ S
Nbins , which defines the expected value

of G0. The scalar parameter β controls the scatter of the

distribution: The larger the value of β , the more tightly G0

will concentrate around π . For βπ = (1, . . . ,1)t , G0 is the

uniform distribution on the simplex. Consider the posterior

(51), which is a Dirichlet distribution with the scaled vector

βπ replaced by βπ +
∑

i|Si=k hi . By setting

β̃k :=

∥

∥

∥

∥

βπ +
∑

i|Si=k

hi

∥

∥

∥

∥

1

,

(52)

π̃k :=
1

β̃

(

βπ +
∑

i|Si=k

hi

)

,

the posterior assumes the form G0( . |β̃kπ̃k). For each clus-

ter k, the expected value of the posterior is π̃k , and its scatter

is determined by β̃k . The expected value π̃k is the (normal-

ized) average of the histograms assigned to the cluster, with

an additive distortion caused by the base measure parame-

ters. The larger β , the more influence the prior will have, but

generally, it has less influence if the number of histograms

assigned to the cluster is large. Since β̃k controls the scatter

and grows with the number of histograms assigned, the pos-

terior of a large cluster will be tightly concentrated around

its mean. In other words, for a very large cluster, drawing

from the posterior will reproduce the cluster’s normalized

average with high accuracy. Therefore, larger clusters are

more stable. For a smaller cluster, draws from the posterior

scatter, and the additive offset βπ has a stronger influence.

Assignments to clusters are determined by sampling from

the finite distributions (qi0, . . . , qiNC
), which are based on

the multinomial likelihood F . For illustration, consider a

non-Bayesian maximum likelihood approach for F . Such an

approach would assign each histogram to the class which

achieves the highest likelihood score. Multinomial likeli-

hood maximization can be shown to be equivalent to the

minimization of the Kullback–Leibler divergence between

the distribution represented by the histogram and that de-

fined by the parameter. Each histogram would thus be as-

signed to the “nearest” cluster, in the sense of the Kullback–

Leibler divergence. The behavior of our histogram clus-

tering model is similar, with two notable differences: The

greedy assignment is replaced by a sampling approach, and

the MDP model may create a new class for a given his-

togram, instead of assigning it to a currently existing one.

The key properties of the model are not affected or altered by

adding or removing the MRF constraints, except for the as-

signment step: The assignment probabilities computed from

the basic, unconstrained model are modified by the con-

straint to increase the probability of a smooth assignment.

7 Extensions of the Constrained Model

The histogram clustering model introduced in Sect. 6 char-

acterizes image patches by a set of intensity histograms.

We will extend this concept to include additional features

by modeling multiple channels and side information not

contained in the features. The segmentation algorithm be-

comes directly applicable to multi-channel data, such as

color images, multiple frequency bands in radar images,

or image filter response data. For color images or multi-

band radar data, the segmentation algorithm can draw on

marginal intensity histograms extracted from each channel.

Filter responses of local image filters can be represented as

an image, and be included as additional channels. For ex-

ample, texture information may be included in color image

segmentation by including histograms of Gabor responses.

Including multiple channels increases the amount of data.

The information provided by the different channels affects
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the behavior of the model by means of the likelihood F .

The MDP/MRF model provides a second generic way of

including additional information, by using side information

to adjust the edge weights wij of the MRF neighborhood

graph. The wij must not depend on the current state of the

model (i.e. the values of the model variables θi ), but they

may depend on the data. The coupling strength between ad-

jacent sites may thus be modeled conditional on the local

properties of the input image.

7.1 Multiple Channels

The MDP/MRF histogram clustering model introduced

above represents each site by a single histogram. To model

multiple channels, we again assume the marginal his-

tograms to be generated by a multinomial likelihood F ,

with parameter vectors drawn from a Dirichlet distribu-

tion prior G0. For Nch separate channels, a local histogram

hc
i = (hc

i1, . . . , h
c
iNbins

) is assumed to be drawn from each

channel c at each site i. The channels are parameterized

individually, so each histogram hc
i is associated with a bin

probability vector θc
i with prior probability G0(θ

c
i |βcπc).

The joint likelihood is assumed to factorize over channels.

The resulting posterior for site i has the form

(θ1
i , . . . , θ

Nch

i ) ∼

Nch
∏

c=1

F(hc
i |θ

c
i )G0(θ

c
i |βc

π
c). (53)

This generalization of the MDP/MRF clustering model

(Sect. 4) only affects the base measure G0 and the random

function G in (25), it does not alter the MRF interaction term

M . Both the MDP/MRF model and the sampling algorithm

remain applicable. In the sampler, only the computation of

the cluster probabilities qik and the cluster posterior in (36)

have to be modified. Substituting the multi-channel likeli-

hood F into (49) yields

q̃i0 :=

Nch
∏

l=1

ZD(hc
i + β lπ l)

ZD(βc
π

l)ZM (hc
i )

,

q̃ik := nk
−i exp(−H(θ∗

k |θ−i))

Nch
∏

c=1

F(hc
i |θ

∗c
k ).

(54)

Each site remains associated with a single assignment vari-

able Si (the clustering model groups sites, rather than indi-

vidual histograms). The cluster posterior (36) is

(θ∗1
i , . . . , θ

∗Nch

i ) ∼

Nch
∏

c=1

G0

(

θ∗c
i

∣

∣

∣
βc

π
c +

∑

i|Si=k

hc
i

)

. (55)

This model with multiple channels assumes that local

marginal histograms are obtained individually from each

channel. It is not applicable to joint histograms. The advan-

tage of marginal histograms is that, unlike joint histograms,

they are not affected by the curse of dimensionality. At a

constant level of discretization, the number of bins in a joint

histogram grows exponentially with the number of dimen-

sions, as opposed to linear growth for a set of marginal

histograms. Marginal histograms therefore provide more ro-

bust estimates and require less complex models for their

representation. Their disadvantages are (i) the loss of co-

occurrence information, and (ii) the independence assump-

tion in (53) required to obtain a feasible model. Choosing

marginal histograms can be justified by observing that both

problems are limited by the use of local features.

Marginalization of histograms can incur a substantial loss

of image information. The global marginal histograms of an

RGB image, for example, are informative about the amount

of red and blue occurring in the image, but not about the

amount of purple. The latter requires a joint histogram.

Since the segmentation algorithm relies on local features,

the loss of co-occurrence information is limited: If the lo-

cal marginals show the occurrence of both red and blue

within a small local window, a joint histogram will not pro-

vide much additional information. Joint histograms measure

co-occurrence at pixels, whereas local marginal histograms

coarsen the resolution from pixels to local windows.

A similar argument applies for independence: The prod-

uct in (53) constitutes a local independence assumption, i.e.

the marginal histograms h1
i ,h2

i , . . . are assumed to be inde-

pendent at site i. Histograms of two different channels at

two different sites (e.g. h1
i and h2

l ) are not independent, since

they interact through the cluster parameters and MRF con-

straints. Local independence of channels is a more accurate

assumption than global independence. Loosely speaking,

given a single channel of an entire color image, guessing the

image structure (and therefore significant information about

the remaining channels) is usually easy. This is not the case

for local image patches containing only a few pixels, since

their resolution is below the scale of image structures.

7.2 Side Information: Image Edges

Smoothing constraints may result in unsolicited coupling

effects at segment boundaries. Two sites may belong to dif-

ferent segments and still be caused by the smoothing term to

be assigned to the same cluster.

Side information on image edges can be used to improve

the resolution of segment boundaries, in addition to the input

features of the algorithm. Edge information is particularly

useful for segmentation, since segment boundaries can be

expected to coincide with an image edge. A priori we as-

sume that two sites should not be coupled by a smoothing

constraint if they are separated by an image edge. There-

fore, edge information may be taken into account in the

MDP/MRF model by modifying the neighborhood graph N

of the MRF:
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1. Generate an edge map using a standard edge detector.

2. If two sites i and j are separated by an image edge, set

wij = wji to zero.

Since the MRF constraints act only along edges of the neigh-

borhood graph, this will eliminate coupling between the

features hi and hj . Neighborhoods in the MRF graph are

usually of small, constantly bounded size (|∂(i)| ≤ 8 for the

examples provided in the following section), such that the

computational expense of this preprocessing step will be lin-

ear in the number of sites (rather than quadratic, despite the

pairwise comparison).

Given an edge map, i.e. a binary matrix indicating pixels

which are classified as edges by the edge detector, the algo-

rithm has to determine whether or not a given pair of sites is

separated by an edge. The method used in the experiments

presented in Sect. 8 is to remove sites containing an edge

pixel in their local image neighborhood from all neighbor-

hoods in N . A single edge is then reinserted (by setting the

corresponding weight to 1), such that each site links with at

least one of its neighbors. The reinserted edge is chosen in

the same direction for all sites (e.g. the edge connecting the

site with its left neighbor in the image). This may cause an

inaccuracy of edge positions, but only on the scale of the

subsampling grid. Simply removing sites completely from

the graph neighborhood turns out to interact unfavorably

with the model selection property of the MDP algorithm:

The histogram windows of sites close to segment boundaries

contain mixture distributions from two segments, which typ-

ically differ significantly from other local distributions. If

coupling constraints with their neighbors are removed, these

edge sites tend to be assigned clusters of their own. Edges

become visible in the segmentation solution as individual

segments. In other words, the approach is prone to remove

constraints in regions where they are particularly relevant.

7.3 Side Information: Local Data Disparity

Alternatively, the coupling weights wil may be set accord-

ing to local data disparity, an approach originally introduced

in (Geman et al. 1990). The idea is to define a similarity

measure d(xi,xl) between local data vectors and set wil :=

d(xi,xl). Substitution into the cost function (19) yields

M(θi |θ−i) ∝
1

ZH

exp

(

−λ
∑

l∈∂(i)

d(xi,xl)δSi ,Sl

)

(56)

for the MRF interaction term. The point-wise contribution P

is not affected. Computing the weights from data makes the

partition function ZH = ZH (λ,xi,x∂(i)) data-dependent,

but the dependence is uniform over clusters at any given

site, and the partition function still cancels from the com-

putation of assignment probabilities in the same manner as

described in Sect. 5. The similarity function has to be sym-

metric, i.e. satisfy d(x,y) = d(y,x), to ensure symmetry of

the edge weights. In the case of Euclidean data xi ∈ R
m, for

example, d may be chosen as a regularized inverse of the

Euclidean distance:

d(xi,xl) :=
1

1 + ‖xi − xl‖2
. (57)

The corresponding edge weight wil will be 1 (maximum

coupling) for identical data, and decay hyperbolically as the

distance between data values increases. Histograms repre-

sent finite probability distributions (up to normalization).

Hence, for histogram data, norms may be substituted by

distribution divergence measures, such as the Kolmogorov–

Smirnov statistic (Lehmann and Romano 2005) or the

Jensen–Shannon divergence (Lin 1991). The Kullback–

Leibler divergence and chi-square statistic (Lehmann and

Romano 2005) are not directly applicable, since neither is

symmetric. The dissimilarity measure should be carefully

chosen for robustness, since local dissimilarities are mea-

sured between individual data values, with no averages to

temper the effect of outliers. High-order statistics, such as

the Jensen–Shannon divergence, are notoriously hard to es-

timate from data. For practical purposes, Euclidean norms or

the Kolmogorov–Smirnov distance seem a more advisable

choice.

In the Bayesian setting, the MRF interaction term is part

of the prior. If the MRF cost function depends on the data,

the prior function depends on both the parameter variables

and the data, a role usually reserved for the likelihood. The

data-dependent prior may be justified as a joint distribution

on data and parameters, where the data is “fixed by observa-

tion”, as outlined in (Geman et al. 1990). We note the formal

difference: A likelihood is a function of both data and para-

meter, but constitutes a density only with respect to the data.

The MRF prior defined above is a density with respect to the

parameter variables.

The cost term in (56) measures local differences between

the data vectors associated with adjacent sites. The over-

all model can be interpreted in terms of distances: Many

parametric distributions may be regarded as exponentials of

average divergences between data and parameters. Multino-

mial and Dirichlet distributions measure divergence between

data and parameters in a Kullback–Leibler sense, and the

Gaussian by an average Euclidean distance. Suppose the

multinomial/Dirichlet model described in Sect. 6 is com-

bined with the cost function (19) and edge weights wil =

d(hi,hl). The log-posterior of each cluster is a weighted

sum of divergence measures, between data and parameter

variables (contributed by the likelihood F ), hyperparame-

ters and parameter variables (base measure G0) and data at

adjacent sites (MRF interaction term M). The DP hyperpa-

rameter α adjusts the sensitivity with which the DP will react
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to the differences measured by the parametric model by cre-

ating new classes.

8 Experimental Results

The experiments presented below implement both the un-

constrained MDP model and the MDP/MRF model for

image segmentation. The unconstrained model is applied

to natural images (from the Corel database), which are

sufficiently smooth not to require spatial constraints. The

MDP/MRF model is applied to synthetic aperture radar

(SAR) images and magnetic resonance imaging (MRI) data,

chosen for their high noise level.

8.1 Model Parameters

In addition to the parameter α and the input data, the esti-

mate of the number of clusters NC depends on the paramet-

ric model used with the MDP/MRF approach. The Dirichlet

process estimates the number of clusters based on disparities

in the data. The disparities are measured by the paramet-

ric model, which consists of the likelihood F and the base

measure G0. The parameters θ of F are random variables

estimated during inference, but any parameters of G0 are

hyperparameters of the overall model. Adjusting the para-

meters of G0 changes the parametric model, and thereby

influences the model order selection results of the DP prior.

In general, increasing the scatter of the distribution G0 will

increase the number of clusters in the MDP solution: The pa-

rameters θ∗
k representing the clusters are effectively sampled

from a posterior with prior G0. A concentrated distribution

G0 biases the cluster parameters towards its expected value,

and restricts the adaptation of each cluster to the data it con-

tains.

Our strategy is to set the expectation of the base measure

to a generic value. The bias incurred from the base mea-

sure can then be regarded as data regularization: When a

new cluster is created by the algorithm, its initial parame-

ter is based on a single observation. The biasing effect of

the hyperparameters will prevent the cluster parameter from

adapting to individual outliers. As more observations are

collected in the cluster, the influence of the bias decreases.

The relative magnitude of the bias is determined by the scat-

ter of the base measure.

The histogram clustering model described in Sect. 6

uses a Dirichlet distribution as its base measure, G0 =

G0( . |βπ). The expected value is the parameter π and the

scatter is controlled by β (increasing the value decreases

scatter). Since π ∈ S
d represents a finite probability distrib-

ution, the obvious choice for a generic value is the uniform

vector π = (1/Nbins, . . . ,1/Nbins), which was used for most

experiments in this section. For some cases, π was chosen as

the normalized average histogram of the input image, which

adapts the method somewhat better to the input data than a

uniform parameter vector, but also tends to result in an al-

gorithm which neglects small segments, as will be discussed

below. We propose to choose a β of the same order of mag-

nitude as the mass of a histogram (β = 2Ncounts was used

for the experiments in this section). The regularization effect

will be substantial for the creation of new clusters contain-

ing only a single histogram, and prevent overfitting of cluster

representations to outliers. As soon as the cluster contains a

significant number of observations (in particular when it is

large enough to be visible in an image segmentation solu-

tion), the effect of the bias becomes negligible.

8.2 Image Segmentation by a MDP Model

As a first test of the model selection property of the MDP

clustering algorithm, the (unconstrained) algorithm was ap-

plied to an image with unambiguously defined segments (the

noisy Mondrian in Fig. 1); the classes are accurately recov-

ered for a wide range of hyperparameter values (α ranging

from 10−5 to 101). For a very small value of the hyperpara-

meter (α = 10−10), the estimated number of clusters is too

small, and image segments are joined erroneously.

Figures 2 and 3 show images from the Corel database.

The three classes in Fig. 2 are clearly discernible, and are

once again correctly estimated by the process for α = 10−2

and α = 10−7. For α = 10−9, the process underestimates the

number of segments. Note that this results in the deletion of

Fig. 1 Behavior of the unconstrained MDP sampler on an image with

clearly defined segments. Upper row: Input image (left) and segmen-

tation result for α = 10 (right). Bottom row: Segmentation results for

α = 10−4 (left) and α = 10−10
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Fig. 2 Unconstrained MDP results on a simple natural image (Corel

database): Original image (upper left), MDP results with α = 10−2

(upper right), α = 10−7 (bottom left), α = 10−9 (bottom right)

Fig. 3 Natural image (Corel database, left) and unconstrained MDP

segmentation result (right)

the smallest segment (in this case, the moon): The scatter

of the Dirichlet posterior distribution (36) is controlled by

the total mass of its parameter vector (βπ +
∑

i|Si=k hi).

Since large clusters contribute more histogram mass to the

parameter vector than small clusters, they are more stable

(cf. Sect. 6.3). A small cluster defines a less concentrated

posterior, and is less stable. The effect is more pronounced

if π is chosen to be the average normalized histogram of the

input image, since small segments will be underrepresented.

If π is chosen uniform, the offset βπ acts as a regularization

term on the average histogram.

The segmentation result in Fig. 3 exhibits a typical weak-

ness of segmentation based exclusively on local histograms:

The chapel roof is split into two classes, since it contains

significantly different types of intensity histograms due to

shading effects. Otherwise, the segmentation is precise, be-

cause the local histograms carry sufficient information about

the segments.

8.3 Segmentation with Smoothness Constraints

The results discussed so far do not require smoothing: The

presented images (Figs. 2 and 3) are sufficiently smooth, and

the noise in Fig. 1 is additive Gaussian, which averages out

well even for histograms of small image blocks.

Fig. 4 Segmentation results on real-world radar data. Original image

(upper left), unconstrained MDP segmentation (upper right), con-

strained MDP segmentation at two different levels of smoothing, λ = 1

(lower left) and λ = 5 (lower right)

Fig. 5 Original SAR image (left), unconstrained MDP segmentation

(middle), smoothed MDP segmentation (right)

Synthetic aperture radar (SAR) images and MRI data

are more noisy than the Corel images. The images shown

in Figs. 4 and 5 are SAR images of agricultural areas. In

both cases, the unconstrained MDP clustering result are in-

homogeneous. Results are visibly improved by the MRF

smoothing constraint. Fig. 6 shows results for an image

which is hard to segment by histogram clustering, with sev-

eral smaller classes that are not well-separated and a high

noise level. In this case, the improvement achievable by

smoothing is limited. Results for a second common type of

noisy image, MRI data, are shown in Fig. 8.

The Dirichlet process approach does not eliminate the

class number parameter. Like any Bayesian method, it effec-

tively replaces the parameter by a random variable, which is

equipped with a prior probability. The prior is controlled by
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means of the hyperparameter α. The number of classes de-

pends on α, but the influence of the hyperparameter can be

overruled by observed evidence. A question of particular in-

terest is therefore the influence of the hyperparameter α on

the number of clusters. Table 1 shows the average number of

clusters selected by the model for a wide range of hyperpa-

rameter values, ranging over several orders of magnitude.

Averages are taken over ten randomly initialized experi-

ments each. In general, the number of clusters increases

Fig. 6 A SAR image with a high noise level and ambiguous segments

(upper left). Solutions without (upper right) and with smoothing

Fig. 7 Segmentation results for α = 10, at different levels of smooth-

ing: Unconstrained (left), standard smoothing (λ = 1, middle) and

strong smoothing (λ = 5, right)

monotonically with an increasing value of the DP scatter pa-

rameter α. With smoothing activated, the average estimate

becomes more conservative, and more stable with respect

to a changing α. The behavior of the estimate depends on

the class structure of the data. If the data is well-separated,

estimation results become more stable, as is the case for

the MRI image (Fig. 8). With smoothing activated, the es-

timated number of clusters stabilizes at NC = 4. In contrast,

the data in Fig. 4 does not provide sufficient evidence for

a particular number of classes, and no stabilization effect

is observed. We thus conclude that, maybe not surprisingly,

the reliability of MDP and MDP/MRF model selection re-

sults depends on how well the parametric clustering model

used with the DP is able to separate the input features into

different classes. The effect of the base measure scatter, de-

fied here by the parameter β , is demonstrated in Fig. 9. The

number of clusters selected is plotted over α at two differ-

ent values of β = 50 and β = 200, each with and without

smoothing. The number of clusters is consistently decreased

by increasing β and activating the smoothing constraint.

The stabilizing effect of smoothing is particularly pro-

nounced for large values of α, resulting in a large number

of clusters selected by the standard MDP model. Results

Fig. 8 MR frontal view image of a monkey’s head. Original image

(upper left), unsmoothed MDP segmentation (upper right), smoothed

MDP segmentation (lower left), original image overlaid with segment

boundaries (smoothed result, lower right)

Table 1 Average number of

clusters (with standard

deviations), chosen by the

algorithm on two images for

different values of the

hyperparameter. When

smoothing is activated (λ = 5,

right column), the number of

clusters tends to be more stable

with respect to a changing α

α Image Fig. 4 Image Fig. 8

MDP Smoothed MDP Smoothed

1e-10 7.7 ± 1.1 4.8 ± 1.4 6.3 ± 0.2 2.0 ± 0.0

1e-8 12.9 ± 0.8 6.2 ± 0.4 6.5 ± 0.3 2.6 ± 0.9

1e-6 14.8 ± 1.7 8.0 ± 0.0 8.6 ± 0.9 4.0 ± 0.0

1e-4 20.6 ± 1.2 9.6 ± 0.7 12.5 ± 0.3 4.0 ± 0.0

1e-2 33.2 ± 4.6 11.8 ± 0.4 22.4 ± 1.8 4.0 ± 0.0
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Fig. 9 Influence of the base measure choice: Average number of clus-

ters plotted against α, for two different values of base measure scatter.

Blue curves represent β = 50, red curves β = 200. In either case, the

upper curve corresponds to the unsmoothed and the lower curve to the

smoothed model

in Fig. 7 were obtained with α = 10, which results in

an over-segmentation by the MDP model (N̄C = 87.1).

With smoothing, the estimated number of clusters decreases

(N̄C = 29.1). The level of smoothing can be increased by

scaling the cost function. By setting λ = 5, the number of

clusters is decreased further, to N̄C = 8.2.

8.4 Extensions: Edges and Multiple Channels

Long runs of the sampler with a large value of λ, which

may be necessary on noisy images to obtain satisfactory

solutions, can result in unsolicited smoothing effects. Com-

paring the two smoothed solutions in Fig. 4 (lower left and

right), for example, shows that a stronger smoothing con-

straint leads to a deterioration of some segment boundaries.

The segment boundaries can be stabilized by including edge

information as described in Sect. 7.2. An example result is

shown in Fig. 10.

For SAR images consisting of multiple frequency bands,

the multi-channel version of the MDP/MRF model

(Sect. 7.1) can be applied. A segmentation result is shown

in Fig. 11. Both solutions were obtained with smooth-

ing. To demonstrate the potential value of multiple channel

information, only a moderate amount of smoothing was ap-

plied. One solution (middle) was obtained by converting the

multi-channel input image into a single-channel grayscale

image before applying the MDP/MRF model. The sec-

ond solution (right) draws explicitly on all three frequency

bands by the multi-channel model. Parameter values for the

single-channel and multi-channel approach are not directly

comparable. When computing the cluster assignment proba-

bilities qik , the multi-channel model multiplies probabilities

over channels. Hence, the computed values are generally

smaller than in the single-channel case. This increases the

relative influence of α, and the multi-channel approach tends

to select more clusters for the same parameter values than

the single-channel model. To make the result comparable,

Fig. 10 Stabilization of segmentation results by edge information for

a strong smoothing constraint: Smoothed segmentation (left), and the

same experiment repeated using edge information (right), both con-

ducted on the image in Fig. 4

Fig. 11 Multi-channel information: A SAR image consisting of three

frequency bands (left), segmentation solutions obtained from the aver-

aged single channel by the standard MRF/MDP model (middle) and by

the multi-channel model (right)

we have chosen examples with similar number of clusters

(NC = 7 and NC = 5, respectively). The segmentation result

is visibly improved by drawing on multi-channel features.

8.5 Comparison: Stability

Relating the approach to other methods is not straightfor-

ward, since model order selection methods typically try to

estimate a unique, “correct” number of clusters. We use the

stability method to devise a comparison that may offer some

insight into the behavior of the MDP model.

Stability-based model selection for clustering (Dudoit

and Fridyland 2002; Breckenridge 1989; Lange et al. 2004)

is a frequentest model selection approach for grouping algo-

rithms, based on cross-validation. It has been demonstrated

to perform competitively compared to a wide range of pub-

lished cluster validation procedures (Lange et al. 2004). The

stability algorithm is a wrapper method for a clustering algo-

rithm specified by the user. It is applicable to any clustering

algorithm which computes a unique assignment of an object

to a cluster, e.g. it can be applied to a density estimate (such

as mixture model algorithms) with maximum a posteriori as-

signments. The validation procedure works as follows: The

set of input data is split into two subsets at random, and the

clustering algorithm is run on both subsets. The model com-

puted by the clustering algorithm on the first set (training

data) is then used to predict a solution on the second set
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(test data). The two solutions on the second set, one obtained

by clustering and one by prediction, are compared to com-

pute a “stability index”. The index measures how well the

predicted solution matches the computed one; the mismatch

probability is estimated by averaging over a series of random

split experiments. Finally, the number of clusters is selected

by choosing the solution most stable according to the index.

The MDP model is built around a Bayesian mixture

model, consisting of the multinomial likelihood F and the

Dirichlet prior distribution G0. The Bayesian mixture with-

out the DP prior can be used as a clustering model for a

fixed number of segments. Inference of this model may be

conducted by a MCMC sampling algorithm closely related

to MacEachern’s algorithm for MDP inference. The only

substantial difference between the algorithms is the addi-

tional assignment probability term corresponding to the base

measure, as observed in (Roberts 1996). A wrapper method

like stability allows us to compare the behavior of the MDP

approach to a method using exactly the same parametric

model, including the base measure and its scatter parame-

ter β . Only the parameter α is removed from the overall

model, and the random sampling of the model order replaced

by a search over different numbers of clusters.

Stability index results are shown in Fig. 12 for two im-

ages, the monkey image in Fig. 8 and the SAR image in

Fig. 4. Results are not smoothed, because the subsampling

strategy will break neighborhoods. In both cases, model or-

der selection results for these noisy images are ambiguous.

For the monkey image (upper graph), results for NC ≥ 5

are mostly within error bars of each other. A smaller num-

ber of clusters is ruled out, which is consistent with the

unsmoothed MDP results (Table 1). For the SAR image, sta-

bility results are also ambiguous, but exhibit a significant,

monotonous growth with the number of clusters, which is

consistent with the monotonous behavior or the MDP results

as α increases.

In general, stability has been reported to produce some-

what conservative estimates, since only the stability index

of a solution is taken into account (Lange et al. 2004). This

observation is apparently reflected by the behavior of both

methods on the monkey image, where the MDP approach

settles at 6 clusters (with very small standard deviation),

whereas stability advocates solutions with NC ≥ 5.

8.6 Convergence Behavior

Gibbs sampling algorithms are notoriously slow, and it is

often difficult to determine whether or not the algorithm has

converged to the distribution of interest. Gibbs sampling re-

sults reported in the MDP literature are typically based on

several thousand iterations.

To the advantage of our algorithm, we are interested in

segmentation results rather than parameter estimates. The

Fig. 12 Stability index results over number of clusters, plotted for im-

ages in Fig. 8 (top) and Fig. 4 (bottom)

cluster labels are discrete and tend to stabilize after the ini-

tial burn-in. Therefore, after discarding the burn-in, class

assignments can be estimated reliably from a small number

of samples. The indicator for convergence used in the exper-

iments is the relative fluctuation of class labels per iteration.

The burn-in phase is assumed to be over once the number

of assignments changed per iteration remains stable below

1% of the total number of sites. For the non-smoothing

MDP sampler, this condition is usually met after no more

than 500–1000 iterations—details depending on the input

data and the scatter of the DP. These figures are compara-

ble to those reported in the MDP literature. For example,

(MacEachern 1994) discards 1000 iterations as burn-in (and

estimates are then obtained from 30 000 subsequent itera-

tions).

Figure 13 shows the behavior of class assignment dur-

ing the sampling process, for the noisy Mondrian and one

radar image. For the Mondrian image with its well-separated

segments, 40 iterations suffice for the clustering solution

to stabilize (the cluster graph turns constant). On the radar

image, both the non-smoothing and the smoothing version

of the algorithm take about 600 iterations to stabilize, but

their splitting behavior differs significantly: The standard

MDP algorithm creates the last new significant cluster after
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Fig. 13 Split-merge behavior of the sampler for different images and

parameters. The number nk of sites assigned to each cluster (verti-

cal) are drawn against the number of iterations (horizontal), with each

graph representing a cluster. Top: Mondrian image (Fig. 1, lower left),

no smoothing. Middle: Radar image (Fig. 4), no smoothing. Bottom:

Radar image (Fig. 4), with smoothing

about 150 iterations, while the MDP/MRF algorithm creates

its classes during the first few iterations and slowly ad-

justs assignments throughout the sampling process. Without

smoothing, large batches of sites are suddenly reassigned

from one cluster to another (visible as jumps in the dia-

gram). With smoothness constraints, clusters change grad-

ually. Since the curves represent cluster sizes, they do not

indicate the explorative behavior of the sampler. Even if the

curve is smooth, the sampler may still explore a large num-

ber of possible states in parameter space, depending on the

posterior.

9 Conclusions

Segmentation models for mid-level vision have to address

the two core issues of what a suitable model for individual

segments should capture and how many segments should be

inferred from an image. The last decade has seen significant

progress in segmentation algorithms ranging from graph-

based methods like partitioning models (Geman et al. 1990),

pairwise clustering (Hofmann et al. 1998; Fischer and Buh-

mann 2003) and Normalized Cut (Shi and Malik 2000) to

variational (Morel and Solimini 1995) and statistical (Tu and

Zhu 2002) approaches. The specific nature of the images and

the intended computer vision task most often determine the

appropriateness of a model and the success of its related al-

gorithm. The comparison is still subjective to a large degree,

although the Berkeley data base of hand segmented natural

color images (Martin et al. 2004) allows us to benchmark

new algorithms against human performance.

The principal focus of this paper is on the second ques-

tion, i.e. choosing the number of segments. Dirichlet process

mixture models have been applied to image segmentation

when the statistical model of an individual segment is de-

fined by a parametric likelihood, such as a multinomial dis-

tribution. We have theoretically and experimentally demon-

strated how MDP models can be combined with Markov

random fields to model spatial constraints. A suitable his-

togram clustering model has been defined, and its properties

have been discussed for a number of different images.

A Gibbs sampling algorithm for the Dirichlet process mix-

ture combined with the Markov random field constraint has

been derived, which can be executed as efficiently as a

conjugate-case algorithm for standard MDP models.

The applicability of the MDP/MRF model is not re-

stricted to either image segmentation or histogram cluster-

ing. Any kind of parametric mixture model may be used, by

choosing the likelihood function F appropriately, and defin-

ing a suitable base measure to generate the parameter values.

One might, for example, consider a k-means model with

variable number of clusters and smoothness constraints, by

defining F to be a Gaussian of fixed scale. The mean para-

meters are drawn from the base measure. If the base measure

is also defined as a Gaussian (and therefore conjugate to F ),

the sampling algorithm proposed in Sect. 5 remains ap-

plicable as well. Similar models without spatial constraints

(a conjugate pair of normal distributions in the MDP frame-

work) have already been studied in statistics (MacEachern

and Müller 2000). Furthermore, we expect that our model

covers a large part of the landscape of segmentation algo-

rithms since normalized cut and pairwise clustering can be

written as weighted and unweighted versions of k-means in

feature space (Roth et al. 2003).

MDP methods do not “solve” the model order selection

problem, because the number of clusters is replaced rather
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than removed as an input parameter. The utility of DP priors

is not a decrease in the number of parameters, but the substi-

tution of the constant model order by a random variable. The

behavior of the random variable is parameter-controlled, and

its eventual value estimated from data. Rather than speci-

fying a number of image segments, the user can specify a

“level of resolution” for the resulting segmentation. Part of

the appeal of MDP-based models is their simplicity. Despite

lengthy theoretical derivations, the final form of the model

relevant for application is essentially a parametric mixture

model with an additional term defined by the base measure.

Familiar intuition for parametric mixture models remains

applicable, and inference can be conducted by a sampling

algorithm with a structure reminiscent of the expectation-

maximization algorithm.

Since MDP and MDP/MRF models are built around a

parametric model, careful parametric modeling is crucial for

their successful application. The DP parameter α specifies a

sensitivity with which the DP prior reacts to disparities in

the data by creating additional clusters. The disparities are

measured by the parametric model. As discussed in Sect. 8,

modification of the parametric model will directly influence

the MDP results. Hence, an MDP model can only be ex-

pected to work well if the class structure in the features

is properly resolved by the parametric model. A clearly

discernible cluster structure results in stable model order

selection. Smoothing constraints can serve to emphasize

cluster structure and stabilize results.

The present work is focused on the segmentation of indi-

vidual images. We expect, however, that MDP-based models

will develop their full potential when applied to multiple

images. Possible examples include video sequences or col-

lections of radar images obtained by a satellite. In both

cases, the number of segments may vary from image to

image, but the images are drawn from the same source or

very similar sources. If the number of segments is an in-

put parameter, it has to be reset manually for each instance.

Nonparametric Bayesian models treat the number of seg-

ments as a random variable, with a distribution depending

on the image instance. Since the distribution is controlled by

parameters, they enable the data analyst to specify a segment

resolution, possibly by calibrating the model parameters on

a small subset of the data. Applied to new image instances

with similar statistical properties, the model will automati-

cally adapt the number of segments to variations in the data.

Application to large numbers of image instances will require

efficient inference algorithms for MDP models. Consider-

ing the progress made in inference for auxiliary variable

problems in recent years, both by MCMC sampling and vari-

ational inference, feasible methods for large-scale inference

can be expected to become available in the near future. The

first results on efficient approximations for MDP models are

already available (Blei and Jordan 2006). We believe that, as

the focus of computer vision shifts towards large collections

of images and video sequences, random modeling of the

number of clusters may emerge as a valuable and compet-

itive alternative to existing heuristics for selecting the model

complexity.

Code and data for the work presented in this article are

available from the first author’s website, currently at http://

www.inf.ethz.ch/~porbanz/ijcv06/.
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