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A principled approach to characterize the hidden structure of networks is to formulate generative models and

then infer their parameters from data. When the desired structure is composed of modules or “communities,” a

suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the

placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method

to infer the modular structure of empirical networks, including the number of modules and their hierarchical

organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard

constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show

how this simple model variation allows simultaneously for two important improvements over more traditional

inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of

priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks

but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only

for networks with a large number of nodes and edges but also with an unlimited number of modules. We show

also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to

perform model selection. We discuss and analyze the differences between sampling from the posterior and simply

finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between

our microcanonical approach and alternative derivations based on the canonical SBM.

DOI: 10.1103/PhysRevE.95.012317

I. INTRODUCTION

One of the most basic goals in the study of social,

biological, and technological networks is the characterization

of their structural patterns. As these systems become large,

this quickly becomes a nontrivial problem, as naive methods of

inspection are no longer useful, and simple statistics often hide

crucial information. A popular approach to this problem is the

development of methods that divide the network by grouping

together nodes that share similar features, thereby reducing it

to a more manageable size, and in the process revealing any

latent modular organization. This is the core idea behind a very

large number of heuristic methods proposed in the last decade

and a half [1,2], which despite sharing the same motivation

differ substantially from each other, due mainly to the various

ways this intuitive idea can be implemented concretely. Over

time it has become clear that most of these methods are marred

by serious limitations, such as the incapacity of distinguishing

structure from noise [3] and to find small structures in large

systems [4], as well as the fact that the same method often

yields multiple diverging results for the same network [5], and

that the outcomes of most methods agree neither with each

other [2] nor with known node annotations [6].

Like some more recent works in this area, here we follow

a different and arguably more principled path, designed to

overcome some of these limitations. Namely, instead of formu-

lating heuristics, we construct probabilistic generative models

of networks that include the aforementioned idea of modular

structure as parameters to the model. The modular organization

is then determined by inferring these parameters from data,

using well-founded methods from Bayesian inference and

*t.peixoto@bath.ac.uk

statistical physics. In this context, the problem of separating

structure from noise is dealt with by employing nonparametric

inference, where generative processes for the model parame-

ters are also formulated via prior probabilities. Additionally,

the comparison of different modular partitions—obtained

either from the same or from different models incorporating

potentially different ideas about modular organization—can

be performed probabilistically, and amount to a comparison

of alternative generative hypotheses according to statistical

evidence.

In this work, we focus on a specific family of generative

models based on the stochastic block model (SBM) [7],

where nodes are divided into groups, and the edges are

placed randomly between nodes, with probabilities that depend

on their group memberships. In particular, we consider a

microcanonical variation of this family, where the structural

constraints are imposed strictly across the ensemble, as

opposed to only on average, as is more typically done. We

show how this approach makes it easier to incorporate more

elaborate generative models, where parameters are sampled

from conditioned prior probabilities, which themselves are

sampled from hyperprior distributions. This yields a more

powerful method that reveals the hierarchical organization

of networks in multiple scales and has a much increased

capacity of finding statistically significant structures in large

data. Furthermore, we show how this particular formulation

allows for a very efficient inference algorithm that scales well

not only for networks with a large number of nodes and edges,

but also with an unlimited number of modules—in contrast

to the majority of other similar inference algorithms that

become increasingly slower as the number of groups becomes

large.

The approach taken here builds upon ideas from previous

work [8–10], but here we focus on obtaining hierarchical
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network partitions that are sampled from the posterior distri-

bution, instead of finding only the most likely partition, which

requires a different ansatz. We also show how model selection

can be used to choose between different model variants

according to the statistical evidence available in the data and

how the method fares for a variety of empirical networks.

Furthermore, we show that the microcanonical formulation

used here is—in its most basic form—equivalent to a specific

Bayesian formulation of the “canonical” SBM, and thus we

establish a bridge between both approaches.

The paper is organized as follows. We begin in Sec. II with

the microcanonical SBM, and follow in Sec. III with the outline

of the nonparametric inference approach, by describing in turn

the priors and hyperpriors of the different set of parameters.

In Sec. IV we show how the microcanonical formulation is

related to the more usual canonical approach, and in Sec. V we

analyze the limitations of the inference procedure and show

how the hierarchical approach is capable of finding a much

larger number of groups in large networks. In Sec. VI we

present an efficient MCMC algorithm to sample hierarchical

partitions from the posterior distribution. In Sec. VII we

show how different model variations can be compared, and

in Sec. VIII we show how the same variations behave for

empirical networks. We finalize in Sec. IX with a discussion.

II. THE MICROCANONICAL DEGREE-CORRECTED SBM

We begin with a “degree-corrected” version of the

SBM [11] (DC-SBM), where in addition to the modular

structure, the networks generated possess a prescribed degree

sequence. However, differently from its original definition,

here we assume that the degree sequence is fixed exactly,

instead of only in expectation. We will see later that the

non-degree-corrected version of the model (NDC-SBM) can

be obtained from this more general formulation as a special

case.

The parameters of the model are the partition b = {bi}
of N nodes into B groups, where bi ∈ [1,B] is the group

membership of node i, the degree sequence k = {ki}, and the

matrix of edge counts between groups e = {ers}, where ers is

the number of edges between groups r and s (for convenience

of notation, err is twice the number of edges inside group r).

Given these parameters, networks are generated like in the

configuration model [12,13]: to each vertex i is attributed

ki half-edges (or “stubs”), which are paired randomly to

each other—allowing for multiple pairings between the same

two nodes as well as self-loops—respecting the constraint

that between groups r and s there are exactly ers pairings.

Assuming momentarily that the half-edges are distinguishable,

the number of possible pairings that satisfy this constraint is

given by

�(e) =
∏

r er !
∏

r<s ers!
∏

r err !!
, (1)

where er =
∑

s ers and (2m)!! = 2mm!. However, many differ-

ent pairings correspond to the same graph. Given an adjacency

matrix A, the number of different half-edge pairings to which

it corresponds is analogously given by

�(A) =
∏

i ki!
∏

i<j Aij !
∏

i Aii!!
. (2)

Hence, the probability of observing a particular network given

the model parameters is simply the ratio between these two

numbers,

P (A|k,e,b) =
�(A)

�(e)
. (3)

(Naturally, the above likelihood only holds if the network A

matches exactly the hard constraints imposed by the parame-

ters, i.e., ers =
∑

ij Aijδbi ,rδbj ,s and ki =
∑

j Aij , otherwise

the likelihood is zero. In order to leave the expressions

uncluttered, we will always implicitly assume that the hard

constraints must hold for the likelihoods to be nonzero.)

The model above generates graphs with multiple edges

between nodes, which may not be strictly appropriate for many

types of networks where this cannot occur. However—as is

true with the traditional configuration model—the probability

of multiple edges will decrease with 1/N for sparse networks

with E ∝ N edges, and hence their occurrence can be

neglected as N becomes large.

III. NONPARAMETRIC BAYESIAN INFERENCE

Although one could find the best divisions of the network

by maximizing, or sampling from Eq. (3) directly, this requires

the number of groups B to be known in advance, i.e., it is a

parametric inference procedure that requires certain properties

of the model to be determined a priori. Instead, here we wish

to formulate a nonparametric framework, where the number

of groups as well as any other model parameter is determined

from the data itself. In order to do this, we need to write the

full joint distribution for the data and the parameters,

P (A,k,e,b) = P (A|k,e,b)P (k|e,b)P (e|b)P (b), (4)

where P (k|e,b), P (e|b), and P (b) are prior probabilities. The

above defines a complete generative model for the data and

parameters, as illustrated in Fig. 1.

Based on this, we can obtain the posterior distribution of

network partitions,

P (b|A) =
P (A,b)

P (A)
, (5)

where the normalization constant,

P (A) =
∑

b

P (A,b), (6)

is called the model evidence, and P (A,b) is the marginal

distribution corresponding to the joint probability summed

over the remaining parameters,

P (A,b) =
∑

k,e

P (A,k,e,b) (7)

= P (A,ê(A,b),k̂(A),b), (8)

where ê and k̂ above are the only parameter choices that fulfill

the model constraints compatible with the particular instance

012317-2
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FIG. 1. Illustration of the complete nonparametric generative

process for the DC-SBM considered in this work. First the partition

of the nodes is sampled (a), followed by the edge counts between

groups (b), the degrees of the nodes (c), and finally the network

itself (d).

of the network A and the partition b, i.e.,

êrs(A,b) =
∑

ij

Aijδbi ,rδbj ,s, (9)

k̂i(A) =
∑

j

Aij . (10)

In other words, any other choice k �= k̂ or e �= ê inserted in

Eq. (3) will result in networks that are invariably different from

the particular value of A used in Eqs. (4) to (10), and thus the

corresponding joint probability in Eq. (7) will be zero. From

this, we already observe a useful property of the microcanon-

ical formulation: because of the hard constraints, there is no

difference between the joint and marginal probabilities. This

means that we encounter no additional computational difficulty

in obtaining the marginal probability after we have determined

our priors. This is, in general, different from “canonical”

model formulations with continuous parameters, where the

marginal likelihood needs to be obtained via integration, which

sometimes cannot be done exactly, even if the choice of prior

happens to be well motivated. In the particular case of the

SBM, there are in fact typical canonical formulations where

the marginal likelihood can be computed exactly [10,14–17],

but this has been done only for simple noninformative or

conjugate priors, which leads to serious problems for large

networks, as we discuss further in Sec. V. Here, instead,

we can focus on priors that are chosen according to more

fundamental principles, without having to worry about the

computation of the marginal likelihood, provided the priors

themselves can be computed. As we will show below, this

will allow deeper Bayesian hierarchies to be developed, which

make fewer assumptions about the data generating process,

and lifts important practical limitations present in shallower

approaches.

A. Sampling versus optimization and the minimum description

length principle (MDL)

The Bayesian formulation outlined above has an

alternative—but entirely equivalent—information-theoretic

interpretation. We can rewrite the joint probability of Eq. (4)

as

P (A,k,e,b) = 2−�, (11)

where

� = − log2 P (A,k,e,b) = S + L (12)

is called the description length of the data [18,19], with

S = − log2 P (A|k,e,b) (13)

being the number of bits necessary to precisely describe the

network, if the model parameters are known, and

L = − log2 P (k,e,b) (14)

being the number of bits necessary to describe the model

parameters. Hence, if we find the network partition that

maximizes the posterior of Eq. (5), we are automatically

finding the choice of parameters that most compresses the data,

i.e., yields the shortest description length. This equivalence

between Bayesian inference and MDL holds much more

generally [19], but with the microcanonical formulation used

here it is more directly evident.

The MDL interpretation also provides an intuitive expla-

nation to why this nonparametric approach is robust against

overfitting: If the number of groups becomes large, it will

decrease S but increase L, with the latter functioning as

a “penalty” that disfavors overly complex models. For the

same reason, the description length can also be used as an

application-independent criterion to select between models of

different classes, i.e., with a different internal structure and set

of parameters. This type of comparison amounts to a formal

implementation of Occam’s razor, where the simplest model

that can explain the data according to its statistical significance

should be selected (see also Sec. VII).

This equivalence means that other Bayesian approaches

such as Refs. [14–17,20–22], and those based on MDL, e.g.,

Refs. [8,10,23], correspond in fact to the same underlying

criterion. The main differences between those lie only in

the actual models used, the choice of priors, as well as

more practical aspects such as algorithmic complexity and

approximations used.

However, it is important to emphasize that using either

the Bayesian or the MDL interpretation, we need to be open to

the possibility that different models—or different parametriza-

tions of the same model—may yield the same or very similar

values for the description length or posterior probability. In

such situations, we should accept these alternative explana-

tions for the data on equal footing. The Bayesian interpretation

offers a more natural approach in these circumstances, where

instead of attempting to find the maximum of the posterior
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distribution, we consider all possibilities, weighted according

to their posterior probability. This can be achieved by sampling

from the posterior distribution using Monte Carlo techniques,

as explained in Sec. VI.

When deciding which route to take—to maximize or sample

from the posterior—we need to acknowledge that therein

lies the typical trade-off between bias and variance: when

maximizing the posterior, we make a very specific statement

about the data-generating process, but which can include

errors from many sources, such as lack of sufficient statistics,

degeneracy in the parameters, or model misspecification. On

the other hand, when sampling from the posterior, we obtain

results that tend to be, on average, less susceptible to those

errors, but which to the same degree are also more uncertain.

Thus, we lose the ability to make more specific assertions.

Due to its nature, the latter approach tends to incorporate more

noise, and so the individual samples run the risk of overfitting

the data. Conversely, the maximization approach tends to yield

more conservative results, and thus runs the risk of underfitting

the data, by omitting meaningful features. Although in the

ideal scenario where the model is well specified and the data is

plentiful both approaches must yield the same result, in more

realistic settings one source of error can only be reduced at

the expense of increasing the other. Hence, the final decision

must involve the ultimate objective of the inference task. In

general, we should expect sampling to be more suitable when

the goal is to generalize from the observed data and make

predictions about new measurements, whereas maximization

tends to produce more accurate representations of the observed

data.

In Secs. VII and VIII we compare results obtained via strict

MDL (i.e., maximization) and the Bayesian (i.e., sampling)

approaches on empirical data. In the following, we proceed

with defining the prior probabilities for the model parameters.

When discussing various possibilities, we will make use of

the MDL interpretation to decide which alternative yields

the shortest description for data that is more likely to be

encountered.

B. Prior for the node partition

We begin with the prior for the partitions. Here we outline

two general approaches that will also be used for the remaining

parameters. First, the simplest choice we could make is to be

completely agnostic about the partitions and choose among all

of them with equal probability,

P (b|B) = B−N . (15)

However, this is not a good choice. The reason for this is that it

inherently assumes that the group sizes will be approximately

the same, since this is a typical property of completely random

partitions. Not only is this unrealistic, but from a MDL

perspective, whenever this is not the case, we would miss

an opportunity to further compress the data. Therefore, we are

better off instead replacing this by a parametric distribution

that is conditioned on the group sizes n = {nr}, where nr is

the number of nodes in group r ,

P (b|n) =
∏

r nr !

N !
, (16)

which is a maximum entropy distribution (all allowed configu-

rations are equally likely), constrained on the fixed group sizes.

In order to remain nonparametric, we need a noninformative

hyperprior on the node counts,

P (n|B) =
((

B

N

))−1

, (17)

where ((
n

m
)) =

(

n+m−1

m

)

counts the number of m combinations

from a set of size n, or equivalently, the number of possible

histograms with n bins with counts that sum to m. One may

argue, however, that the same principle should be applied

again, with the noninformative hyperprior above replaced by

a parametric distribution, with parameters sampled from a

hyper-hyperprior, and so on, indefinitely. However, proceeding

like this yields increasingly diminishing returns, and as we now

show, there are good reasons to stop at this point. If we take the

logarithm of the joint probability P (b,n|B) = P (b|n)P (n|B)

and assume that the groups are sufficiently large so that

Stirling’s factorial approximation can be used, as well as

B ≪ N , we obtain

ln P (b,n|B) ≈ −NH (n) − B ln N, (18)

where H (n) = −
∑

r (nr/N) ln(nr/N ) is the entropy of the

group-size distribution. The first term in the equation above

represents an optimal limit, i.e., for sufficient data the negative

log-probability (the description length) approaches the entropy

of the generating distribution. Hence, if we were to replace

the noninformative hyperprior of Eq. (17) with an even

deeper Bayesian hierarchy, we would gain at most a fairly

marginal improvement proportional to ln N , which is unlikely

to significantly alter the inference outcome.

The joint probability P (b,n|B) above has been used in

Refs. [16,17,20,24], but in some of these works it was equiv-

alently derived as the marginal distribution of the canonical

model,

P (b|B) =
∫

P (b| p)P ( p|B) d p, (19)

with

P (b| p) =
∏

i

pbi
=

∏

r

pnr

r , (20)

where pr is the probability of a node belonging to group r , and

P ( p|B) = (B − 1)! δ(1 −
∑

r pr ) (21)

is a uniform prior. Computing Eq. (19) yields an expres-

sion identical to P (b|B) = P (b,n|B) = P (b|n)P (n|B) using

Eqs. (16) and (17) above. However, there is an apparently

small detail that needs to be addressed. Namely, the maximum

entropy model of Eq. (17) also generates groups with size

zero. This means that if we use it, we need to consider in our

posterior distributions partitions of the network that contain

empty groups, which would force us to treat the number of

groups as a free variable that is not necessarily equal to the

number of observed (nonempty) groups [25]. As shown in

Ref. [17] this requires a further complication of the inference

algorithm, where the number of groups is incorporated as a

state variable. However, empty groups possess no real value

when interpreting the network structure: saying that a network
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has five communities, but one of which is empty, is the same

as saying it has four communities, just in a more roundabout

and potentially misleading way. Hence, in order to avoid

dealing with such empty groups, and solving both of the above

problems at once, we simply exclude them from our prior

distribution by using instead

P (n|B) =
(

N − 1

B − 1

)−1

, (22)

which is a uniform distribution over all histograms with B bins

and counts that sum to N , where no bin is allowed to be empty.

With this simple modification, the number of groups becomes

a hard constraint as well, and is always tied to the partition,

thus obviating the need to treat it as a free variable, and hence

simplifying the inference procedure. We note that while this

modification is easy in the microcanonical model, it is not as

straightforward in the canonical model of Eq. (19), since for

every value of pr < 1, the probability that group r will end up

empty is strictly nonzero.

Last, we need a prior for the number of nonempty

groups itself, which we can choose as P (B) = 1/N , for

B ∈ [1,N ]. (We could argue that, since this amounts to a trivial

multiplicative constant to the overall probability, we could

omit it completely. However, as it will be seen further below,

this term will not be a constant once we consider hierarchical

partitions.) With this, we have a nonparametric prior for the

partition that reads

P (b) = P (b|n)P (n|B)P (B) =
∏

r nr !

N !

(

N − 1

B − 1

)−1
1

N
.

(23)

Since we are forbidding empty groups a priori, from this point

onward the value of B will refer strictly to the number of

nonempty groups.

C. Prior for the degrees

1. Non-degree-corrected model (NDC-SBM)

We can recover a non-degree-corrected version of the

microcanonical SBM as a special case of the model above, by

assuming that the half-edges are randomly distributed among

nodes of the same group, which yields a particular probability

for the degree sequence.

If at first we assume that all er =
∑

s ers half-edges incident

on group r are distinguishable, they can be distributed among

nr nodes in �r = ner
r different ways. A particular degree

sequence inside group r corresponds to exactly �r (k) =
er !/

∏

i∈r ki! such combinations, where the numerator ac-

counts for the number of permutations of half-edges, while

the denominator discounts the fraction of such permutations

involving half-edges that are incident on the same node, and

hence amount to the same half-edge partition. The probability

of a particular degree sequence inside group r is given by

the ratio �r (k)/�r , and thus the overall degree sequence

probability becomes

P (k|e,b) =
∏

r

er !

n
er
r

∏

i∈r ki!
, (24)

which multiplied with Eq. (3) yields the model likelihood

P (A|e,b) =
∏

r<s ers!
∏

r err !!
∏

r n
er
r

×
1

∏

i<j Aij !
∏

i Aii!!
, (25)

which no longer depends explicitly on the degree sequence.

Like its canonical counterpart [11], the NDC-SBM will

generate networks where nodes that belong to the same group

will have similar degrees, with a degree distribution inside

each group approaching asymptotically a Poisson. This means

that the standard deviation of the degrees inside group r will be

σk =
√

〈k〉r , with 〈k〉r = er/nr being the average degree. As

argued in Ref. [11], this is an unrealistic assumption for many

empirical networks, most of which possess very heterogeneous

degree distributions. As a result, attempts to infer the SBM on

such networks can amount largely to a division of the nodes

into degree classes. It is therefore useful to postulate prior

probabilities that can account for arbitrary degree sequences,

as we do in the following.

2. Arbitrary degree sequences

Similar to the partition of the nodes, the simplest choice we

can make is to sample the degrees inside each group from a

uniform distribution,

P (k|e,b) =
∏

r

((

nr

er

))−1

, (26)

where ((
nr

er
)) counts the number of possible degree sequences

on nr nodes, constrained such that their total sum equals er .

But again, such a uniform assumption is not the best choice:

If we sample from this prior, we still obtain degree sequences

where most nodes have very similar degrees. Indeed, if the

number of nodes is sufficiently large, it can be shown that

the expected degree distribution inside each group with the

above prior will approach an exponential pk = p(1 − p)k ,

with an average 〈k〉 = (1 − p)/p (see Appendix A). The

expected standard deviation is therefore σk =
√

1 − p/p =
O(〈k〉), which, although larger than what is obtained with

the NDC-SBM, is still significantly smaller than expected for

many empirical networks [26].

In view of this, and following the same logic employed for

the node partition, a better prior for k should be conditioned

on an arbitrary degree distribution η = {ηr
k}, with ηr

k being the

number of nodes with degree k that belong to group r ,

P (k|e,b) = P (k|η)P (η|e,b), (27)

and where

P (k|η) =
∏

r

∏

k ηr
k!

nr !
(28)

is a uniform distribution of degree sequences constrained by

the overall degree counts, and

P (η|e,b) =
∏

r

q(er ,nr )−1 (29)

is the distribution of the overall degree counts. The quantity

q(m,n) is the number of different degree counts with the

sum of degrees being exactly m and that have at most n

nonzero counts. This is also known as the number of restricted

012317-5



TIAGO P. PEIXOTO PHYSICAL REVIEW E 95, 012317 (2017)

partitions of the integer m into at most n parts [27]. The

function q(m,n) can be computed exactly via the recurrence

q(m,n) = q(m,n − 1) + q(m − n,n), (30)

and the boundary conditions q(m,1) = 1 for m > 0, and

q(m,n) = 0 for m � 0 or n � 0. With this, the full table of

values for m � M and n � m can be computed in time O(M2).

Hence, if the number of edges and nodes is not too large, we can

precompute these values as a setup to the inference procedure.

However, this can still become computationally expensive for

very large systems. Unfortunately, no closed-form expression

for q(m,n) is known which would allow us to compute it

in constant time. Fortunately, however, accurate asymptotic

expressions are known, which permit efficient computation

for large arguments. Namely, for large values of m the

number of partitions approaches asymptotically the following

value [28–30]

q(m,n) ≈
f (u)

m
exp[

√
mg(u)], (31)

where u = n/
√

m and the functions f (u) and g(u) are given

by

f (u) =
v(u)

23/2πu
[1 − (1 + u2/2)e−v(u)]−1/2, (32)

g(u) =
2v(u)

u
− u ln(1 − e−v(u)), (33)

and v(u) is given implicitly by solving

v = u
√

−v2/2 − Li2(1 − ev), (34)

where Li2(z) = −
∫ z

0
[ln(1 − t)/t]dt is the dilogarithm func-

tion. [Equation (34) can be easily solved numerically via

Newton’s method, or simply via repeated iteration, which

converges within machine precision usually after only very

few steps.] This approximation holds for values of n � m1/6.

For smaller values n ≪ m1/3 we have instead [31]

q(m,n) ≈
(

m−1

n−1

)

m!
. (35)

With Eqs. (31) to (35) we have an approximation for q(m,n)

for the entire range of parameters m and n that is remarkably

accurate, as shown in Fig. 2: for arguments of the order

103, the largest log ratio between the approximate and exact

values is only around 0.1, which has a negligible effect on

the outcome of hypothesis testing, and is below the accuracy

usually required for MCMC sampling. In our implementation,

we precompute q(m,n) using the exact Eq. (30) for m < 104,

and resort to Eqs. (31)–(35) only for larger arguments, thus

guaranteeing a computation of q(m,n) in time O(1), and

hence incurring a negligible impact in the overall algorithmic

complexity of the inference procedure.

As seen in Fig. 3, the expected degree distribution sampled

from Eq. (29) is typically significantly broader than the

exponential distribution obtained with Eq. (26). As shown in

Appendix A, this will approach a Bose-Einstein distribution,

with a variance σ 2
k ∝

√
N that will diverge for a large

system size. In particular, the distribution will asymptotically

approach a scale-free form pk ∼ 1/k for k ≪
√

E, followed

by an exponential decay for larger arguments.

FIG. 2. Comparisons between the exact and approximated values

of the number of restricted partitions q(m,n), using Eqs. (30)

and (31)–(35). The top panel shows both values computed for

different values of m and n, and the bottom panel shows the absolute

difference of their logarithms, with the inset displaying a zoom into

the large m region.

Although this prior assumption clearly favors broader

degree distributions, it could be argued that it still does

not properly capture the structure of real networks, most of

which also do not possess a Bose-Einstein degree distribution.

Indeed, it may seem that by changing between the priors

considered above, we have simply switched between Poisson,

geometric and Bose-Einstein distributions, which are just three

of an infinite range of possibilities. However, in reality, the

conditioned prior of Eq. (27) will not concentrate as strongly

on the expected distribution as the other two, and thus will not

significantly penalize distributions that deviate from it, even if

the deviation is very large, as will now be shown.

In order to assess the improvement brought on by the

conditioned prior, it is instructive to obtain the asymptotic

behavior of q(m,n) in the limit of “sufficient data” with m ≫ 1

and n ≫ 1, which is given by [31]

q(m,n) ≈ p(m) exp

(

−
√

6m

π
e−πn/

√
6m

)

, (36)
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FIG. 3. Expected degree distributions for the three different priors

considered in the text for the degree sequence inside each group—the

NDC-SBM, the uniform prior of Eq. (26) and the prior of Eq. (29)

conditioned on a degree distribution sampled randomly—for N =
104 nodes and average degree 〈k〉 = 10. In all cases, the distributions

were sampled from their respective microcanonical distributions

using rejection sampling. The dashed line shows the Bose-Einstein

distribution of Eq. (A13).

as long as n ≫
√

m and where p(m) = q(m,m) is the number

of unconstrained partitions of m, which itself is given exactly

by the recursion

p(m) =
∑

k>0

(−1)k−1p(m − k(3k − 1)/2), (37)

and for large values of m by the Hardy-Ramanujan for-

mula [32,33]

p(m) ≈
1

4
√

3m
exp(π

√

2m/3). (38)

With these results, we see immediately that for “sparse” groups

with er ∝ nr and nr ≫ 1 we have ln q(er ,nr ) ∼ O(
√

nr ), and

hence

ln P (k|e,b) ≈ −
∑

r

nrH (ηr ) + O(
√

nr ), (39)

where H (ηr ) = −
∑

k(ηr
k/nr ) ln(ηr

k/nr ) is the entropy of the

empirical degree distribution in group r . Therefore, for

sufficiently many nodes in each group, the hyperprior of

Eq. (29) will “wash out” and the probability of Eq. (27) will

approach that of the the actual degree sequence, whatever

its form may be, even if it deviates from the typical form of

Fig. 3. This is not the case of the uniform prior of Eq. (26),

which is not able to “learn” the underlying distribution in the

same manner. Equation (39) also means that an exact prior

knowledge of the true degree distribution in each group would

improve the log-probability (and the description length) only

by a factor O(
√

nr ), which will be dwarfed asymptotically by

the remaining terms that scale linearly as O(nr ). Therefore,

any further improvement in the choice of prior for the degree

sequence is confined to a relatively narrow range, similarly to

what happens with the prior for the partition of the nodes into

groups.

D. Prior for the edge counts and nested SBM hierarchies

The remaining piece is the prior for the edge counts between

groups, e. We can start again with a uniform prior

P (e) =

⎛

⎝

⎛

⎝

((

B

2

))

E

⎞

⎠

⎞

⎠

−1

, (40)

where ((
((

B

2
))

E
)) counts the number of symmetric ers matrices

with a constrained sum
∑

rs ers = 2E.

Perhaps unsurprisingly at this point, this is also not a good

choice. This time, however, the negative effects are somewhat

more dramatic than the previous choices of uniform priors.

Namely, this assumption will limit our capacity to detect small

groups in very large networks: It introduces a “resolution

limit,” where the largest number of groups that can be inferred

scales as Bmax ∼
√

N [8], similar to what is observed with the

modularity maximization heuristic [4]. We revisit this issue in

more detail in Sec. V.

As was shown in Ref. [10], this problem can be solved again

by deepening the Bayesian hierarchy. It is useful now to notice

that the matrix e can be interpreted as the adjacency matrix of

a multigraph with B nodes and E edges. Hence, an appropriate

choice seems to be to use the SBM again to generate it, where

each group r belongs to one of another set of groups, and so

on recursively, a L number of times,

P ({el}|{bl}) =
L

∏

l=1

P (el|el+1,bl), (41)

where bl is the partition of the groups in level l, el is the

(weighted) adjacency matrix at level l, and we enforce always

that BL = 1. Note that since the number of edges is the

same in all levels while the number of nodes decreases, the

multigraphs become increasingly denser at the upper levels,

and the occurrence of parallel edges becomes predominant,

even if the graph at the lowest level is sparse and simple.

Although the likelihood of Eq. (3) that was used at the bottom

level also admits arbitrarily dense multigraphs, it will not

generate them uniformly within the SBM constraints, since it

is based on an uniform generation of configurations. Because

of this, it is not a good idea to use the exact same model as the

priors in the upper layers, which will introduce a significant

bias as the multigraphs become dense. Indeed, simply inserting

Eq. (3) into Eq. (41) makes all successive levels cancel out in

the likelihood, yielding a trivial model where only the first

and last levels have any contribution. A much better approach,

which is unbiased and maximally noninformative within the

imposed constraints, is to use a uniform NDC-SBM for

multigraphs directly, where all allowed multigraphs (not their

corresponding configurations) occur with the same probability.

The likelihood can be obtained via basic enumeration [34] and

is given by

P (el|el+1,bl) =
∏

r<s

((

nl
rn

l
s

el+1
rs

))−1
∏

r

((

nl
r (nl

r + 1)/2

el+1
rr /2

))−1

.

(42)

Note that if we make L = 1, we recover the uniform prior of

Eq. (40), making it a special case. To complete the model, we
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need also the prior for the partitions in all levels,

P ({bl}) =
L

∏

l=1

P (bl), (43)

where for each level we use again Eq. (23), but replacing

B → Bl and N → Bl−1, with the boundary condition B0 = N .

The depth L of the hierarchy itself is something that we want

to infer from the data as well. One approach, for instance, is

to put a noninformative prior on it P (L) = 1/Lmax, with some

maximum possible value Lmax that is sufficiently large, e.g.,

Lmax = N . But since this contributes to nothing but an overall

multiplicative constant in the distribution, it can be omitted

altogether.

E. Model summary

Putting together the model likelihood with all the priors, we

have a joint distribution for the hierarchical microcanonical

DC-SBM that reads

P (A,k,{el},{bl}) = P (A|k,e,b1) × P (k|e1,b1) × P ({el}) × P ({bl}) (44)

=
∏

i ki!
∏

r<s ers!
∏

r err !!
∏

r er !
∏

i<j Aij !
∏

i Aii!!

∏

r

∏

k ηr
k!

nr !
q(er ,nr )−1

×
L

∏

l=1

∏

r<s

((

nl
rn

l
s

el+1
rs

))−1
∏

r

((

nl
r (nl

r + 1)/2

el+1
rr /2

))−1

×
∏

r nl
r !

Bl−1!

(

Bl−1 − 1

Bl − 1

)−1
1

Bl−1

. (45)

It is important to emphasize that this likelihood has the

following useful property: When considering the difference in

the log-likelihood after moving a single node i from a group

to another, it is necessary only to consider a number of terms

that is proportional to the number of groups that are involved

in the change, i.e., those of the node that is being moved and

its neighbors. Therefore, in the worse case, we need to update

O(ki) terms, a number that is independent of the total number

of groups in the bottom of the hierarchy, B1. This contrasts with

other formulations that require the computation of a number of

terms that is linearly proportional to the total number of groups

(e.g., Refs. [14–17]), or even quadratic (e.g., Ref. [35]). This

property will permit the inference on large networks, for which

the appropriate number of groups is likely to be large as well,

as we describe in Sec. VI.

In addition to this model, the NDC-SBM and the alternative

version of the DC-SBM with uniform priors on the degrees can

be obtained simply by replacing the prior P (k|e,b0) in Eq. (44)

with the appropriate one. This does not change the efficiency

of the likelihood computation described above. Furthermore,

as mentioned previously, the nonhierarchical version of each

model can be recovered by simply enforcing a hierarchy with

just one level; i.e., L = 1.

IV. ENSEMBLE EQUIVALENCE

The microcanonical model above differs from the most

common “canonical” formulation of the SBM, where the

modular network structure is imposed via “soft” constraints,

which are obeyed only on average. For example, the original

canonical Poisson formulation of the DC-SBM [11] is

P (A|λ,θ ) =
∏

i<j

(θiθjλbibj
)Aij e

−θiθj λbi bj

Aij !

×
∏

i

(

θ2
i λbibi

/

2
)Aij /2

e−θ2
i λbi bi

/2

(Aii/2)!

=
∏

r<s

λers

rs e−λrs θ̂r θ̂s

∏

r

λerr/2
rr e−λrr θ̂

2
r /2

×
∏

i θ
ki

i
∏

i<j Aij !
∏

i Aii/2!
, (46)

where θi determines the propensity of node i to receive edges,

whereas λrs controls the distribution of edges between groups

and with

θ̂r =
∑

i

θiδbi ,r . (47)

In this model, the degrees of the nodes and the number of edges

between groups are fixed only in expectation but otherwise can

fluctuate between samples. If one applies Stirling’s factorial

approximation ln m! ≈ m ln m − m to the terms of Eqs. (1)

and (2), which depend on ers and ki , it is easily seen that

the microcanonical likelihood of Eq. (3) approaches Eq. (46),

which means both models generate the same networks with

the same probability asymptotically, if the parameters are

chosen in a compatible manner, e.g., θi = ki/ebi
and λrs = ers .

However, this only holds if the edge counts between groups

as well as the degrees of the nodes become sufficiently

large. For smaller or sparser networks, on the other hand, the

differences can be important, and it is well understood that the

microcanonical and canonical ensembles are not equivalent

in these cases [34,36–38]. However, an exact equivalence

between these ensembles can in fact be obtained in a Bayesian

setting, via the computation of the marginal likelihood that

involves integrating over the canonical parameters, θ and λ,

weighted with a prior probability, as will now be shown.

Before we can proceed with the computation of the marginal

likelihood, we must notice that the model parameters are

determined only up to an arbitrary multiplicative constant,

since the likelihood of Eq. (46) depends only on their products

θiθjλbibj
. Although their absolute values are in principle

arbitrary, the exact parametrization we choose will affect the

choice of priors we can make and ultimately the marginal

likelihood. Here we will contrast two possible choices. We
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begin with the assumption made in Refs. [17,22],

θ̂r = nr . (48)

If we make this choice, the value of λrs corresponds to the

average probability of two nodes in groups r and s being

connected. We can then choose a noninformative prior for

λ, conditioned only on the expected density of the network,

p = 2E/N2,

P (λrs) = e−λrs/p/p. (49)

For θ , we use also a noninformative distribution,

P (θ |b) =
∏

r

(nr − 1)!

n
nr
r

δ(θ̂r − nr ), (50)

subject only to the scaled simplex constraint of Eq. (48). As

computed in Ref. [17], the marginal likelihood is, therefore,

P1(A|b) =
∫

P (A|λ,θ )P (λ)P (θ |b) dλ dθ

= pE
∏

r<s

ers!

(pnrns + 1)ers+1

∏

r

(err/2)!

(pn2
r/2 + 1)ers/2+1

×
∏

r

ner
r (nr − 1)!

(er + nr − 1)!

∏

i ki!
∏

i<j Aij !
∏

i Aii/2!
. (51)

This marginal likelihood is not equivalent to the microcanon-

ical model presented previously, and hence corresponds to

a different overall generative process. However, things are

different if we assume another parametrization, namely

θ̂r = 1. (52)

In this case, the value of λrs represents the average number of

edges between groups r and s (or twice that for r = s). Similar

to the previous case, we can choose a noninformative prior for

λ, conditioned only on the expected total number of edges,

P (λrs) =

{

e−λrs/λ̄/λ̄ if r �= s,

e−λrs/2λ̄/2λ̄ if r = s,
(53)

with λ̄ = 2E/B(B + 1). Like before, for θ we use noninfor-

mative distribution,

P (θ |b) =
∏

r

(nr − 1)! δ(θ̂r − 1), (54)

but subject now to the simplex constraint of Eq. (52) instead.

Performing the same integral, the marginal likelihood then

becomes

P2(A|b) =
λ̄E

(λ̄ + 1)E+B(B+1)/2
×

∏

r<s ers!
∏

r err !!
∏

i<j Aij !
∏

i Aii!!

×
∏

r

(nr − 1)!

(er + nr − 1)!

∏

i

ki!, (55)

from which we can immediately recognize the microcanonical

model by rewriting the likelihood as

P2(A|b) = P (A|k,e,b)P (k|e,b)P (e), (56)

where P (A|k,e,b) is the microcanonical likelihood of Eq. (3),

P (k|e,b) is the noninformative degree-sequence probability

of Eq. (26), and P (e) is the probability of the degree

counts as B(B + 1)/2 independent exponential variables with

average λ̄,

P (e) =
∏

r<s

(1 − μ)ers μ
∏

r

(1 − μ)err/2μ (57)

= λ̄E/(λ̄ + 1)E+B(B+1)/2, (58)

where μ = 1/(λ̄ + 1). This last prior P (e) is different from

the microcanonical one used in Eq. (40), simply in that

here the total number of edges is allowed to fluctuate, being

constrained only in expectation. Otherwise, the likelihoods

of the canonical and microcanonical models are identical.

This means that although both formulations involve distinct

generative processes, these are not in fact distinguishable from

data. This is fortunate, since it eliminates at least one arbitrary

choice we have to make prior to inferring the modular structure

of networks and shows that the choice of ensemble can be

largely subjective.

However, we are still left with a seemingly arbitrary choice

of parametrization, having to decide between Eq. (48) (option

1) and Eq. (52) (option 2). As the results above show,

these choices correspond to different assumptions about the

data-generating process. In the first case, the expected number

of edges between groups r and s (according to the prior for

λ) is assumed to depend on the sizes of the groups, i.e.,

〈ers〉 = nrnsp. This is the same expected value for the same

partition of a completely random network with density p. In the

second case, however, this value is independent of the group

sizes, 〈ers〉 = λ̄, and deviates from the expected fully random

value whenever the groups sizes are not the same. Hence,

the ensembles generated in each case are indeed different,

and to decide which one should be used is a model selection

problem. As will be discussed in more detail in Sec. VII, this

can be performed by inspecting the marginal likelihood ratio

between both models, assuming the same node partition,

� =
P2(A|b)

P1(A|b)
, (59)

where P1(A|b) and P2(A|b) correspond to Eqs. (51) and (55),

respectively. If we assume N ≫ B2, this ratio amounts to a

simple expression,

ln � ≈
∑

r�s

[

ers

pnrns

− ln
(1 + δrs)N

2

B(B + 1)nrns

− 1

]

. (60)

From this, and if we further assume groups of equal sizes nr =
N/B as well as B ≫ 1, we see that as the network approaches

a fully random structure with ers = pnrns , we have ln � →
−B ln 2 and hence a situation that favors option 1. However,

as the data become more structured, this is more often not the

case. This is better seen by considering a special case known as

the planted partition model [39], composed of B equal-sized

groups and edge counts given by

ers = 2E

[

c

B
δrs +

(1 − c)

B(B − 1)
(1 − δrs)

]

, (61)

with c ∈ [0,1] controlling the degree of assortativity. Substi-

tuting this in the above, we have

ln � ≈
B2(c + 1)

2
−

B(B + 1)

2
ln

(

eB

B + 1

)

− B ln 2, (62)
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which is independent of the size of the network, and grows

only with the number of groups and assortativity. For B ≫ 1,

we have ln � > 0 if c > (2 ln 2)/B ≈ 1.4/B. The ensemble

is equivalent to a fully random network at a slightly smaller

value c = 1/B (but is already undetectable at c = 1/B ± (B −
1)/(B

√
〈k〉) [40]). Hence, as the number of groups increases,

for the vast majority of parameter choices c ∈ [(2 ln 2)/B,1]

we have that option 2 is favored with a confidence that grows

as ln � = O(B2).

Beside these arguments, there are other more important

reasons to prefer option 2. If we adopt its microcanonical

interpretation, we can address the issues with the noninfor-

mative priors discussed in the previous sections, and replace

both P (k|e,b) and P (e) by distributions conditioned on

hyperparameters. Furthermore, as already mentioned, changes

to the likelihood of Eq. (55) can be computed more efficiently

than Eq. (51): if we move a node i to a new group, we need

to update O(B) terms in Eq. (51), whereas in Eq. (55) at most

only O(ki) terms need to be recomputed (independent of B).

This leads to a substantial improvement in the performance of

inference algorithms, as discussed further in Sec. VI.

V. HOW MANY GROUPS CAN BE INFERRED?

One of the main strengths of the nonparametric approach

presented here is that it can be used to determine the number

of groups B, in addition to the other model parameters. One

natural question that arises is whether there are intrinsic

limitations associated with the inference of this parameter.

In particular, here we are interested in the situation where

the inferred number of groups B∗ is smaller than the true

value B used to generated the network, such that parts of the

modular structure are not resolved by inference. As shown

in Ref. [8] with a simplified version of the model presented

here, if the size and density of the network are kept fixed, and

the planted value exceeds a threshold B > Bmax, we have that

B∗ = Bmax and the planted modular structure cannot be fully

resolved. In particular, the choice of a noninformative prior

for the edge counts P (e) leads to a limitation where at most

only Bmax = O(
√

N ) groups can be identified. Replacing this

noninformative prior by a series of nested SBMs was shown

in Ref. [10] to significantly alleviate this limitation, increasing

the maximum number of groups to Bmax = O(N/ ln N ). Here

we revisit this issue, considering the more elaborate models

presented in this work.

We perform our analysis on a degree-corrected planted

partition model, with B planted groups of equal size, each con-

taining exactly E/B edges connecting their nodes randomly,

and no connections at all between nodes of different groups,

i.e., ers = 2Eδrs/B. The likelihood of any particular network

sampled from this model is

P (A|k,e,b) =
(2E/B)!!B

(2E/B)!B
×

∏

i ki!
∏

i<j Aij !
∏

i Aii!!
, (63)

and with prior probabilities

P (b) =
(N/B)!B

N !
×

(

N − 1

B − 1

)−1
1

N
, (64)

FIG. 4. Planted partition of B = 6 equal-sized groups (node

colors), being wrongly fitted as a B∗ = 3 model (shaded region).

In the fitted model, the two groups inside each shaded region are not

properly identified. This problem happens whenever B > Bmax for

Bmax = O(
√

N ) using noninformative priors for the edge counts, but

only for Bmax = O(N/ ln N ) when the hierarchical priors are used

instead.

P (e|b) =
((

B(B + 1)/2

E

))

, (65)

P (k|e,b) =
((

N/B

2E/B

))−B

, (66)

where we have used the noninformative priors for the edge

counts and degrees.

We now pretend we have observed a network realization

A sampled from this ensemble, and compare the likelihood

of the true partition into B groups with a wrong partition

with B∗ < B groups. We will not consider all possible wrong

partitions; instead we will consider only those where the

correct planted groups were merged together into bigger

groups of equal size, as illustrated in Fig. 4. The reason for

this specific construction is twofold: (1) If we show that this

alternative partition has a higher likelihood than the plated one,

this would be sufficient to prove that the planted one will not

be detected by maximum likelihood; (2) The wrong fit induced

by this alternative partition corresponds to the original planted

partition model that is only “rescaled” by replacing the planted

value with the inferred one, B → B∗, in Eqs. (63)–(66). This

leaves us with a single parameter to vary, allowing us to

proceed with the analysis rather easily. The inferred number

of groups will be given simply by maximizing the posterior

likelihood,

B∗ = argmax
q

P (A,k,e,b(q))

P (A)
, (67)

where b(q) = {⌈biq/B⌉} is the re-scaled partition according

to parameter q ∈ [1,B]. Because of point 2 above, and as long

as B∗ � B, this amounts to maximizing the joint likelihood

given by Eqs. (63)–(66), with respect to the number of groups
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B replaced by q. If we assume that N ≫ 1, E ∝ N , B ≫ 1,

as well as N ≫ B (although we make no assumption between

B2 and N ), and discard terms that do not depend on B, as long

as q � B we have

ln P (A,k,e,b(q))

≈ (E − N ) ln q − (E + q2/2)h

(

E

E + q2/2

)

, (68)

where h(x) = −x ln x − (1 − x) ln(1 − x). If we maximize

the above equation with respect to q, we obtain

Bmax = x(〈k〉)
√

N, (69)

with x(〈k〉) being the solution of

〈k〉 − 2 = 2x2f ′(1 + x2/〈k〉), (70)

with f (x) = xh(1/x) and 〈k〉 = 2E/N . Since the rescaling

of the likelihood is only valid for B∗ � B, we have that for

any planted partition with B groups the actual inferred value

will be B∗ = min(B,Bmax). Hence, we obtain the same result

of Ref. [8] that the maximum number of groups scales as

Bmax ∝
√

N . This property is robust with respect to details of

the model and is simply a direct result of a noninformative prior

used for P (e), which is responsible for the dependence on q2

in the last term of Eq. (68): A lack of prior information on the

large-scale structure incurs a cost in the description length that

scales roughly as − ln P (e) ∼ (B2/2) ln E (for B2 ≫ E). This

means that we obtain very similar results when considering

the other model variants considered in this work. In particular,

using either Eq. (51) or (55) we obtain asymptotic expressions

for the joint distribution that are very similar to Eq. (68) and

yield only a slightly worse scaling for the maximum number of

groups, Bmax ∝
√

N/ ln N , with the
√

ln N difference due to

the priors of Eqs. (49) and (53), which allow the total number

of edges to fluctuate. Using the uniform hyperpriors for the

degree sequences also has no effect on this limitation.

On the other hand, as shown in Ref. [10], this issue is

significantly improved by using the hierarchical prior for e.

Here we show this by considering a uniform hierarchical

division where at each level the number of groups decrease

by a factor σ , Bl = B/σ l . Using Eq. (43), we have

P (e) =
logσ B
∏

l=1

((

σ (σ + 1)/2

2Eσ l/B

))−B/σ l

×
σ !B/σ l

(B/σ l−1)!

(

B/σ l−1 − 1

B/σ l − 1

)−1

. (71)

Assuming B ≫ σ , and keeping only the leading terms, we

have ln P (e) ≈ −[Bσ (σ + 1) ln E]/[2(σ − 1)], and hence

ln P (A,k,e,b(q)) ≈ (E − N ) ln q −
σ (σ + 1)

2(σ − 1)
q ln E, (72)

from which we obtain the upper bound,

Bmax =
(σ − 1)(〈k〉 − 2)

σ (σ + 1)
×

N

ln N
. (73)

Hence, this choice of priors enables the identification of a

number of groups that is far larger than what is possible with

the noninformative choice. This comes with no drawbacks,

since this prior includes the noninformative one as a special

case, and we are still protected against overfitting; becoming

only less susceptible to the underfitting that happens when

B > Bmax.

VI. INFERENCE ALGORITHM

The inference task we have is to sample from (or maximize)

the posterior distribution of the hierarchical partition,

P ({bl}|A) =
P (A,{bl})

P (A)
. (74)

The approach we will take is based on a Markov chain

Monte Carlo importance sampling for the partitions at all

hierarchy levels. The algorithm will revolve around moving

the membership of nodes in different hierarchical levels at

random, and accepting or rejecting those moves, so that after a

sufficiently long equilibration time, the hierarchical partitions

are sampled according to Eq. (74). We note that this posterior

can be factorized as

P ({bl}|A) =
∏

l P (el−1,bl|el)

P (A)

=
∏

l

P (bl|el−1,el), (75)

with per-level posteriors,

P (bl|el,el+1) =
P (el|el+1,bl)P (bl)

P (el|el+1)
, (76)

where we assume e0 = A and P (el|el+1) is a normalization

constant.

Therefore, a workable approach is to separately sample

partitions at each level according to its individual posterior,

conditioned on the remaining levels, which are kept unchanged

for the time being. If we sample from each level in this manner

we can guarantee ergodicity, and if the moves at the individual

levels are reversible, the overall distribution will correspond

to the desired full posterior of Eq. (74). Since the hierarchical

levels are coupled, when moving a node at level l, we must

ensure that this does not invalidate the partition at level l + 1.

Hence, we must forbid node moves between groups that are

themselves at different groups in the next level. (This constraint

does not break ergodicity, since all partitions in the upper levels

will be allowed to change at some point.)

In more detail, we proceed as follows. At each individual

level l, we perform a move proposal of node i from its current

group r to a new group s, according to a probability P (b
(l)
i =

r → s) that we will specify shortly. We compute the difference

in the log-likelihood � ln Pl at that level, and we accept the

move according to the Metropolis-Hastings criterion [41,42],

i.e., with a probability

a = min

{

1,e� ln Pl
P (b

(l)
i = s → r)

P (b
(l)
i = r → s)

}

, (77)

where P (b
(l)
i = s → r) is the probability of the reverse move

being proposed. The log-likelihood difference is computed as

� ln Pl = ln
P

(

b
(l)
i = s,bl \ b

(l)
i

∣

∣el,el+1

)

P
(

b
(l)
i = r,bl \ b

(l)
i

∣

∣el,el+1

)
, (78)
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where bl \ b
(l)
i means the partition of the remaining nodes

excluding node i. Note that in computing Eq. (78), we do not

need to determine the normalization constant in Eq. (76), and

the remaining relevant terms correspond only to a subset of

the full joint distribution of Eq. (45). Typically, the number

of groups in the upper levels decreases exponentially, and

hence the algorithmic complexity is dominated by the bottom

level l = 0. As mentioned previously, the number of terms of

the joint distribution that are necessary to compute � ln P0 is

proportional only to the degree ki of node i, and is independent

of B1, and hence can be computed quickly. Therefore, if we

attempt one move for each node in the network, such a “sweep”

can be completed in time O(E), independent on the total

number of groups.

An important element of this algorithm is the move pro-

posal probability P (b
(l)
i = r → s). Any choice with nonzero

probability for all values of s will preserve ergodicity, and—

coupled with the Metropolis-Hastings criterion—also detailed

balance. These two ingredients are sufficient to guarantee that

hierarchical partitions are eventually sampled from the correct

posterior distribution. However, in practice, the equilibration

time will depend strongly on the move proposals, and will

become shorter if they are close to the actual posterior. The

simplest choice we could make is to select from all groups

with equal probability,

P
(

b
(l)
i = r → s

)

=
1

Bl + 1
, (79)

where we also account for the occupation of a new group,

which if the move is accepted will increase Bl by one (provided

the node i is not the last one in its current group). Since

this probability is always nonzero, it fulfills our requirements.

However, it will lead to very large equilibration times, in

particular for large values of Bl . This is because the actual

posterior distribution for node i is likely to be concentrated

only in a small subset of all possible groups, and hence

most such fully random proposals will simply be rejected.

A better approach was developed in Ref. [9], and it consists

in inspecting the current parameters of the model to provide

a better guess of the posterior. It amounts to making move

proposals according to

P
(

b
(l)
i = r → s

)

=
∑

t

P (t |i,l)
el
ts + ǫ

el
t + ǫ(Bl + 1)

, (80)

where P (t |i,l) =
∑

j A
(l)
ij δ(b

(l)
j ,t)/k

(l)
i is the fraction of neigh-

bors of node i in level l that belong to group t , and ǫ > 0

is an arbitrary parameter that enforces ergodicity, but with

no other significant impact in the algorithm, provided it

is sufficiently small. It is worthwhile to emphasize that

these move proposals do not bias the partitions toward any

particular mixing pattern. For example, they do not prefer

assortative versus nonassortative partitions, since they inspect

the neighbors of a node only to access with other groups their

kinds are typically connected—which can be different from

the the group assignment of the original node. Furthermore,

these proposals can be generated efficiently, simply by

(1) sampling a random neighbor j of node i, and inspecting

its group membership t = bj , and then

(2) with probability ǫ(Bl + 1)/[et + ǫ(Bl + 1)] sampling

a fully random group s (which can be a new group),

(3) or otherwise, sampling a group label s with a proba-

bility proportional to the number of edges leading to it from

group t , ets .

The above can be done in time O(ki), again independently

of Bl , as long as a continuous bookkeeping is made of the

edges that are incident to each group, and therefore it does

not affect the overall O(E) time complexity. As reported in

Ref. [9], these move proposals tend to significantly improve

the mixing times and remove an explicit dependency on the

number of groups, which would otherwise be present with the

fully random moves.

This approach is also more efficient than the rejection-free

“heat-bath” algorithm used in Ref. [17], since the latter re-

quires all possible moves to be probed, incurring an additional

time complexity that grows linearly with the number of groups.

In addition to the move proposals, another crucial aspect

of the algorithm’s efficiency is the choice of the starting state.

A simple approach such as starting from a random partition

can lead to metastable states, from which it takes a long

time to escape. Instead, here we adopt the agglomerative

initialization approach presented in Ref. [9], which amounts to

putting each node in their own group, and then progressively

merging groups, while alternatingly allowing for individual

node moves. This can be done for each hierarchical level

iteratively, as described in detail in Ref. [10]. As reported

in Ref. [9], this approach greatly reduces the tendency to get

trapped in a metastable state and serves as an initialization

protocol that further reduces the overall mixing time of the

MCMC.

While the above algorithm serves to sample from the

posterior distribution of Eq. (74), it can be easily modified

to find its maximum by introducing an “inverse-temperature”

parameter β in Eq. (77) via the replacement � ln Pl →
β� ln Pl . By making β → ∞ the algorithm is turned into a

greedy heuristic that, if repeated many times, yields a reliable

estimate of the maximum.

The lack of an explicit dependence on the number of groups

of the algorithm above is atypical, since most other proposed

Bayesian (or semi-Bayesian) algorithms have either quadratic

O(EB2) [15–17,35] or linear O(EB) [14,43] dependencies,

which means that those can be applied to large networks only if

the number of groups is kept small. Furthermore, the increased

efficiency obtained here does not rely on any approximations

made to the likelihood.

A reference implementation of the algorithm is freely

available as part of the graph-tool library [44,45].

VII. MODEL COMPARISON

With the three different model flavors available (NDC-

SBM, DC-SBM with uniform degree prior or uniform hyper-

prior) we are left with the problem of deciding which offers

the best description of a given network. This problem can be

formulated in at least two ways, depending on whether we

want to compare individual partitions or entire model classes,

which we describe now detail.

If we wish to compare two individual partitions, obtained

from the posterior distribution of two different models, we
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need to consider the joint posterior probability P ({bl},H|A),

where H is the model class being used. For example, when

comparing results from the DC-SBM and NDC-SBM, we can

compute the ratio,

�1 =
P ({bl},HNDC|A)

P ({bl}′,HDC|A)

=
P (A,{bl}|HNDC)

P (A,{bl}′|HDC)
×

P (HNDC)

P (HDC)

= 2−��, (81)

where in the last equation �� = �NDC − �DC is the differ-

ence in the description length, and we have assumed that

both model classes are equally likely a priori, P (HNDC) =
P (HDC). If �1 < 1, we have that the data favors the particular

hierarchical partition {bl}′ together with the degree-corrected

model variant, or if �1 > 1 we have the opposite case.

Choosing a model according to �1 is identical to employing

the MDL criterion, but its value can be used to quantify the

degree of confidence. For example, a value �1 = 1/2 indicates

a very modest evidence supporting the DC-SBM that cannot

be reliably distinguished from pure chance, whereas a value

of �1 = 1/105 would clearly indicate that it is a much better

model than the NDC-SBM.

The criterion above should not be confused with the

“frequentist” approach of computing the parametric likelihood

ratio between both models, as was done in Ref. [46]. In the

latter case, which does not involve any prior probabilities, the

ratio needs to be compared to the distribution obtained with the

null model, which is more cumbersome to obtain. However,

as is understood in general (and can also be shown for the

particular case of the SBM [22]), this frequentist criterion

should coincide asymptotically with the Bayesian criterion

above as long as uniform priors are used. On the other hand,

since here we use deeper Bayesian hierarchies, and hence

nonuniform priors, these amount to different tests, with �1

being more sensitive to regularities in the data, since it uses

properties of the parameters themselves in the decision.

The comparison above using �1 is easy to perform,

since it requires one to simply inspect the result of the

inference procedure. However, it may be possible that the

same network admits many alternative fits with very similar

posterior probabilities. A more strict Bayesian stance would

require us to treat those on an equal footing, and any statement

about the generative model behind the data should be averaged

over all possible fits, weighted according to the respective

posterior probability. Hence, in this scenario we may be

interested instead in comparing the entire model classes to each

other, which involves evaluating the so-called model evidence

by summing over all hierarchical partitions,

P (A|H) =
∑

{bl}

P (A,{bl}). (82)

With this, we can again compute the posterior odds ratio, e.g.,

�2 =
P (HNDC|A)

P (HDC|A)
=

P (A|HNDC)

P (A|HDC)
×

P (HNDC)

P (HDC)
. (83)

If we have no prior preference towards either model,

P (HNDC) = P (HDC), the value of �2 is known as the Bayes

factor [47], and like �1 can be used to establish a degree of

confidence in the outcome.

Unfortunately, the exact computation of the sum in Eq. (82)

is intractable. We therefore resort to a variational approach,

first by writing

ln P (A|H) = ln
∑

{bl}

P (A,{bl}) (84)

=
∑

{bl}

q({bl}) ln P (A,{bl}) (85)

−
∑

{bl}

q({bl}) ln q({bl}), (86)

with

q({bl}) =
P (A,{bl})

P (A)
(87)

being precisely the posterior distribution of for the hierarchical

partition that we obtain from with the MCMC algorithm used

above. (Note that so far we have not made any approximations,

with the identities above holding exactly.) The first term in

Eq. (85) is easy to compute, as it amounts to the average log-

likelihood (or minus the description length) of the partitions

we obtain with the MCMC above,

〈ln P (A,{bl})〉 =
∑

{bl}

q({bl}) ln P (A,{bl}). (88)

On the other hand, the second term in Eq. (86) amounts to the

entropy of the posterior distribution,

H ({bl}) = −
∑

{bl}

q({bl}) ln q({bl}), (89)

and measures how strongly it is concentrated. For example,

in the extreme (and unrealistic) case where for each model

being compared only one partition occurs with probability

q({bl}) = 1, the entropy will be zero, and we have that �1 =
�2. Otherwise, the entropy H ({bl}) will effectively measure

how many partitions contribute to the average log-likelihood,

so that a model class with a larger entropy will be preferred over

another with less variance, even if their posterior probabilities

are on average the same. Unfortunately, the entropy H ({bl}) is

notoriously difficult to compute exactly, even asymptotically

via MCMC algorithms, and encapsulates the difficulty of

computing Eq. (82) directly. A brute force approach simply

does not work, since it would require keeping track of all

visited hierarchical partitions, which grow combinatorially in

number with system size. Other approaches such as thermo-

dynamic integration [48], annealed importance sampling [49],

and flat-histogram methods [50] are also possible, but tend

to be significantly inefficient in comparison. Instead, here we

make a so-called “mean-field” assumption on the shape of

q({bl}), which assumes that it factorizes over all levels,

q({bl}) ≈ q1
i (b1)

∏

l>1

∏

i

q l
i

(

bl
i

)

. (90)

For the first level we use the so-called “Bethe approxima-

tion” [51], which takes into account the correlation between
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adjacent nodes in the network,

q1(b1) ≈
∏

i<j

[

q1
ij

(

b1
i ,b

1
j

)]Aij
∏

i

[

q1
i

(

b1
i

)]1−ki
, (91)

with q1
i (r) and q1

ij (r,s) obtained from the posterior node and

edge marginals,

q l
i (r) = P

(

bl
i = r

∣

∣A
)

=
∑

{bl}\bl
i

P
(

bl
i = r,{bl} \ bl

i

∣

∣A
)

, (92)

q1
ij (r,s) = P

(

b1
i = r,b1

j = s
∣

∣A
)

=
∑

{bl}\{b1
i ,b

1
j }

P
(

b1
i = r,b1

j = s,{bl} \
{

b1
i ,b

1
j

}
∣

∣A
)

,

(93)

estimated with the MCMC algorithm above. For the upper

levels l > 1 we cannot use the same approximation since

the adjacency matrices will be in general multigraphs that

will keep changing throughout the algorithm. Therefore, we

used above a mean-field approximation where the posterior

factorizes over all nodes. With this we can finally write Eq. (84)

as

ln P (A) ≈ 〈ln P (A,{bl})〉 +
∑

l

Hl, (94)

where

H1 = −
∑

i<j

Aij

∑

rs

q1
ij (r,s) ln q1

ij (r,s)

−
∑

i

(1 − ki)
∑

r

q1
i (r) ln q1

i (r) (95)

is the entropy of the first level and

Hl = −
∑

i

∑

r

q l
i (r) ln q l

i (r) (96)

is the entropy of the remaining hierarchy levels l > 1. Thus,

Eq. (94) can be computed simply by equilibrating the MCMC,

obtaining the average log-likelihood and the node and edge

posterior marginal distribution, q l
i (r) and q1

ij (r,s).

VIII. RESULTS FOR EMPIRICAL NETWORKS

We demonstrate the use of our approach on empirical

networks (summarized in Table I), which we also use to

compare different model variations. We begin with a network

of political blogs compiled by Adamic and Glance [52] during

the 2004 general election in the USA. In this network nodes

are blogs, and an edge exists between two nodes if one blog

cites the other (hence, the network is directed, and therefore

the directed versions of the SBM were used; see Appendix B).

This network was used in Ref. [11] as an example where the

DC-SBM yielded more meaningful results, since it preferred

a partition of the nodes that was largely compatible with

the original categorization done in Ref. [52], based on the

content of the blogs, into “liberal” and “conservative” sites.

The NDC-SBM, on the other hand, preferred to divide the

nodes only according to degree. However, in that analysis the

number of groups was fixed at B = 2. Using the nonparametric

approach described here, where the number of groups is

TABLE I. Empirical networks used in this work, with their

number of nodes N , average degree 〈k〉 = 2E/N , number of groups

at the lowest hierarchical level B1 according to the MDL criterion,

and the same value averaged from the posterior distribution 〈B1〉, as

well as standard deviation of the distribution, σB1
.

Dataset N 〈k〉 B1 〈B1〉 σB1

Southern women interactions [55] 32 5.6 2 2.4 0.9

Zachary’s karate club [56] 34 4.6 2 2.2 0.5

Dolphin social network [57] 62 5.1 2 2.9 0.5

Characters in Les Misérables [58] 77 6.6 8 8.6 0.7

American college football [59] 115 10.7 10 10.1 0.3

Florida food web (wet) [60] 128 32.9 14 14.2 0.4

Residence hall friendships [61] 217 24.6 20 20 0

C. elegans neural network [62] 297 15.9 20 13.5 0.5

Scientific coauthorships [63] 379 4.8 28 29.6 1.6

Country-language network [64] 868 2.9 4 10.1 1.9

Malaria gene similarity [65] 1104 5.4 56 55.8 1.9

E-mail [66] 1133 9.6 28 26.9 0.3

Political blogs [52] 1222 31.2 15 15 0

Scientific coauthorships [63] 1589 3.5 48 67.3 3.4

Protein iteractions (I) [67] 1706 7.3 26 40.2 0.6

Bible names co-ocurrence [64] 1773 10.3 63 79.1 5.3

Global airport network [10] 3286 41.6 268 264.6 6.1

Western states power grid [68] 4941 2.7 38 37.3 1

Protein iteractions (II) [69] 6327 46.6 419 406.4 18.6

Internet AS [70] 6474 4.3 40 50 7.2

Advogato user trust [71] 6541 15.6 174 80.7 0.6

Chess games [64] 7301 17.8 79 79 0

Dictionary entries [72] 13 356 18 1378 1378.9 2.3

Cora citations [73] 23 166 7.9 575 575 0.2

Google+ social network [74] 23 628 3.3 46 41.3 2.4

arXiv hep-th citations [70] 27 770 25.4 1211 1207.1 4

Linux source dependency [64] 30 837 13.9 448 384.7 3.1

PGP web of trust [75] 39 796 15.2 1350 1323.2 26.4

Facebook wall posts [76] 46 952 37.4 6930 6794.9 129.9

Brightkite social network [77] 58 228 7.4 171 177.4 3.8

Gnutella hosts [78] 62 586 4.7 24 24 0

Youtube group memberships [79] 124 325 4.7 273 266.7 4.7

determined from data itself, the results show a less extreme

amount of discrepancy, as seen in Fig. 5, which shows the

most likely partition according to each model flavor. In all

cases, the division of the nodes is largely compatible with the

accepted one: The hierarchy branches at the top into the two

political factions and then proceeds into further subdivisions

inside each group. However, when inspecting the lower levels

of the hierarchy, we see that the different variants yield

distinct subdivisions inside the two main groups. The non-

degree-corrected version yields the largest number of groups,

followed by the degree corrected one with uniform degree

priors, and finally the version with uniform degree hyperpriors

with the smallest number of groups. In this particular case, the

models with smaller number of groups have also the smallest

description length, which seems to indicate that the division

into a larger number of groups are necessary for the models

that are unable to otherwise properly explain the heterogeneity

in the degree sequence. Thus, despite their uniform agreement
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FIG. 5. Most likely hierarchical partitions of a network of political blogs [52], according to the three model variants considered, as well as

the number of groups B1 at the bottom of the hierarchy, and the description length �: (a) NDC-SBM, B1 = 42, � ≈ 89938 bits; (b) DC-SBM,

uniform prior, B1 = 23, � ≈ 87162 bits; (c) DC-SBM, uniform hyperprior, B1 = 20, � ≈ 84890 bits. The nodes circled in blue were classified

as “liberals” and the remaining ones as “conservatives” in Ref. [52] based on the blog contents. Note that in all cases this division in two groups

is correctly identified at the topmost level of the hierarchy. However, the lower levels yield significantly different subdivisions depending on

which model type is used. The layout is obtained with an algorithm by Holten [53].

with the accepted division, the MDL criterion still confirms

the DC-SBM as a better model for this network.

We now move to a social network between scientists, where

an edge exists if two scientists collaborated on a paper [54].

Here, we compare the results obtained by employing MDL

(i.e., finding the most likely partition) and sampling many

partitions from the posterior distribution, as shown in Fig. 6.

We observe that while the sampled partitions share close

similarities to the MDL result, there is a noticeable variance

among the individual samples. Figure 6 also shows the

marginal distribution for the number of groups at the first three

hierarchical levels. For all three model variants, the typical

number of groups is significantly higher that what is obtained

for the optimal partition (due to the low degree variability in
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FIG. 6. Hierarchical partitions of a network of collaboration between scientists [54]. (a) Most likely hierarchical partition according to

the DC-SBM with a uniform hyperprior. (b) Uncorrelated samples from the posterior distribution. (c) Marginal posterior distribution of the

number of groups at the first three hierarchical levels, according to the model variants described in the legend. The vertical lines mark the value

obtained for the most likely partition.
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FIG. 7. Marginal posterior distribution of the number of groups at the first three hierarchical levels, according to the model variants

described in the legend, for some of the empirical networks listed in Table I: (a) dolphin social network; (b) characters in Les Misérables; (c)

American college football; (d) Southern women interactions; (e) malaria gene similarity; (f) protein interactions (II); (g) global airport network;

(h) dictionary entries. The vertical lines mark the value obtained for the most likely partition (the MDL criterion).

this particular network, it is one of the few that are better

modelled by the NDC-SBM, as seen in Fig. 8). This can be

understood as an entropic effect, where the existence of a

much larger number of more complex models with smaller

yet comparable likelihood pushes the posterior distribution

towards them. This is a good example of the bias-variance

trade-off mentioned in Sec. III A, where we see that the

MDL results in a more conservative partition, whereas the full
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FIG. 8. Posterior odds ratio relative to the best model, according to (a) the MDL criterion, �1 [Eq. (81)] and (b) full posterior probability,

�2 [Eq. (83)] for the empirical networks listed in Table I. The ratio is computed so that the preferred model has �1/2 = 1 and thus appears on

the top of the figures. The remaining points for each dataset correspond to the odds ratio of the remaining models relative to the winning one.

The solid lines mark a � = 10−2 confidence threshold. The networks are ordered by increasing number of nodes (see Table I).

posterior deposits more collective weight on larger models that

are also more numerous. This seems to indicate that no single

partition (and its associated model) serves as a overwhelmingly

better explanation among those considered—a symptom that

no specific model variant can perfectly accommodate the

network structure, and thus that the SBM is possibly not a

suitable generative model for this data.

This disagreement between MDL and posterior sampling is

not universal, and depends strongly on the network structure.

In Fig. 7 we show further results for other networks, that show

a fair amount of diversity in this respect. In many cases the

MDL estimate lies close to the mode of the posterior, indicating

a fair amount of agreement (at least as far as the number of

groups is concerned).

If we compare the different model flavors as outlined in

Sec. VII, we obtain that most typically the DC-SBM with

uniform degree hyperpriors provides the smallest description

length for a large variety of networks, as shown in Fig. 8(a).

As expected, the margin by which the best model is selected

increases with the size of the network, as larger networks

typically contain more data. If we compare instead the whole

model class, by summing over all partitions, we obtain largely

consistent (though not identical) outcomes, as seen in Fig. 8(b).

Exceptions to this include networks where there is no signifi-

cant statistical evidence to support the most complex models—

either due to their small size or narrow degree distributions

(e.g., scientific coauthorships, malaria gene similarity, and

western states power grid)—and often the simpler NDC-SBM

is preferred, as well as some networks for which the DC-SBM

with uniform degree priors is preferred instead (E-mail, arXiv

hep-th citations). A closer inspection of these networks reveal

that their global degree distribution is fairly narrow, well

approximated by an exponential distribution, as shown in

Fig. 9. Since this is what is precisely assumed by the uniform
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FIG. 9. Degree histograms for the Email (left) and arXiv hep-

th citations (right) networks. In both cases the solid lines show a

geometric distribution Nk = Np(1 − p)k−1, with p = 1/〈k〉.

degree prior, this model variation has the advantage in this

case. It is worthwhile to observe that according to both criteria,

the preference toward the DC-SBM over the NDC-SBM is

sometimes only attained with the uniform degree hyperprior. In

many cases the NDC-SBM yields a smaller description length

or larger evidence than the degree-corrected variant with a

uniform prior. This means that correcting for arbitrary degree

frequencies—as opposed to simply the degrees but assuming

uniform frequencies—can reveal important information on the

structure of the network that would otherwise remain obscured.

Nevertheless, our results seem to validate the intuition behind

the DC-SBM as argued in Ref. [11], that most networks are

better modeled as mixtures of groups with heterogeneous

degrees, as opposed to groups with the homogeneous degrees

that are generated by the NDC-SBM. Importantly, we reach

this conclusion aware that the NDC-SBM is a larger model

class with more parameters, since this fact is fully incorporated

in our comparison.

IX. DISCUSSION

The microcanonical approach to the inference of large-

scale network structures offers an opportunity to encode

deeper Bayesian hierarchies into the generative models, which

alleviates the underfitting problems present otherwise, while

at the same time enabling the implementation of efficient

inference algorithms with a complexity that is not explicitly

dependent on the number of groups being inferred.

We showed how the degree-corrected SBM can be formu-

lated in a Bayesian way, via the incorporation of priors for the

degree sequence that depend on the degree distribution, and

hence are more capable of decoupling modular organization

from degree regularities. We have again visited the issue

of the maximum number of groups that can be inferred,

and determined that the hierarchical version of the model is

significantly less susceptible to underfitting, by being able to

uncover small groups in very large networks.

We also showed that the microcanonical model is identical

to a Bayesian version of the typical canonical formulation, if

we consider only its shallower version with uniform priors.

Hence, the main strength of the approach presented here lies

not in details of the model specification, but rather in the

ease with which higher order Bayesian considerations can be

incorporated.

Throughout the work we have contrasted two approaches

to Bayesian inference, one where we search for the single

best network parametrization (the MDL criterion), and the

other where parametrizations are sampled according to their

posterior probability. We showed that the bias-variance trade-

off that these two options represent can manifest itself in

practice, where a lack of quality of fit yields a disagreement

between both approaches. By performing a systematic analysis

of various empirical networks, we observed that the degree of

discrepancy is varied, and itself serves as an indication of the

suitability of the SBM in capturing the network structure.

We argue that the methods proposed here can be useful in

the principled detection of large-scale network structures and

in their interpretation. In particular we believe it can be used

as a basis for a further understanding of the quality of the SBM

family of models in capturing the properties of real networks.

APPENDIX A: ASYMPTOTIC DEGREE DISTRIBUTIONS

SAMPLED FROM UNIFORM PRIORS AND HYPERPRIORS

We can easily obtain the expected degree distribution when

using the uniform prior for the degree sequence in Eq. (26)

if we relax the ensemble to allow the total number of edges

to fluctuate, with the global constraint being enforced only on

average. If we focus on only one group with N nodes and E half

edges on average, a degree sequence k will be sampled with a

probability that maximizes the ensemble entropy constrained

by the average number of edges, obtained via the Lagrangian

F = −
∑

k

P (k) ln P (k) − λ

(

∑

k

P (k)
∑

i

ki − E

)

, (A1)

where λ is a Lagrange multiplier that enforces the con-

straint. Obtaining the saddle point {∂F/∂P (k) = 0,∂F/∂λ =
0} yields the usual canonical ensemble

P (k) =
e−λ

∑

i ki

Z
. (A2)

The normalization constant is called the partition function and

is given by

Z =
∑

k

e−λ
∑

i ki = (1 − e−λ)−N , (A3)

with λ = ln(1 + N/E) obtained by enforcing the constraint

E =
∑

i ki = −∂ ln Z/∂λ. From the above, we obtain imme-

diately that the probability of a given node i having a degree

k is

P (ki = k) = e−λk e−λ
∑

j �=i kj

Z
= (1 − e−λ)e−λk. (A4)

This is a geometric distribution, more commonly parametrized

as

P (k) = (1 − p)pk, (A5)

with an average 〈k〉 = (1 − p)/p = E/N . This canonical

ensemble is not identical to the microcanonical one used

in the main text, but will approach it asymptotically in the

thermodynamic limit, i.e., when the number of nodes and edges

become sufficiently large.

We can use the same approach to obtain the expected

degree distribution generated from the uniform hyperprior of

Eq. (29), which is somewhat more involved, but it is still quite
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feasible. We want to consider the ensemble of nonnegative

integer counts {nk}, subject to a normalization constraint
∑∞

k=0 nk = N and a fixed average
∑∞

k=0 knk = E. Following

the same maximum-entropy ansatz as above yields a partition

function for this ensemble given by

Z =
∑

{nk}

e−λ
∑

k nk−μ
∑

k knk =
∏

k

Zk, (A6)

where λ and μ are Lagrange multipliers that keep the

constraints in place and with

Zk =
1

1 − exp(−λ − μk)
. (A7)

The expected degree counts are given by

〈nk〉 = −
∂ ln Zk

∂λ
=

1

exp(λ + μk) − 1
, (A8)

which is the Bose-Einstein distribution. The parameters λ and

μ are determined via the imposed constraints,

∞
∑

k=0

1

exp(λ + μk) − 1
= N, (A9)

∞
∑

k=0

k

exp(λ + μk) − 1
= E. (A10)

For sufficiently large E and N , the sums may be approximated

by integrals, and using the polylogarithm function, Lis(z) =
Ŵ(s)−1

∫ ∞
0

[t s−1/(et/z − 1)]dt , we have

∫ ∞

0

dk

exp(λ + μk) − 1
=

Li1(e−λ)

μ
= N, (A11)

∫ ∞

0

k dk

exp(λ + μk) − 1
=

Li2(e−λ)

μ2
= E. (A12)

Eq. (A11) can be solved for λ as e−λ = 1 − exp(−N/μ),

but the same cannot be done for Eq. (A12) in closed

form. However, for N ≫ μ, we have λ → 0, and hence

μ ≈
√

Li2(1)/E =
√

ζ (2)/E, with ζ (s) being the Riemann

ζ function. This yields the asymptotic distribution,

〈nk〉 ≈
1

exp(k
√

ζ (2)/E) − 1
. (A13)

Its variance can be obtained from the second moment,

N〈k2〉 =
∫ ∞

0

k2 dk

exp(λ + μk) − 1
=

Li3(e−λ)

2μ3
, (A14)

which leads to

〈k2〉 =
ζ (3)

2

(

〈k〉
ζ (2)

)3/2√
N, (A15)

which diverges in the limit N ≫ 1. For degrees k ≪
√

E,

we have exp(k
√

ζ (2)/E) ≈ 1 + k
√

ζ (2)/E, and hence the

expected distribution of Eq. (A13) will follow a power law

1/k for small arguments, with an exponential cut-off for larger

arguments,

〈nk〉 ≈

{√
E/ζ (2)/k for k ≪

√
E,

exp(−k
√

ζ (2)/E) for k ≫
√

E.
(A16)

Distributions of the form 1/k are often attributed to nonequi-

librium processes or critical behavior, but as the above shows,

they can also come from maximum-entropy ensembles with

simple constraints. This is tantamount to saying that most

discrete distributions with a fixed average tend to have the

above asymptotic form, and therefore no mechanism other

than randomly choosing between them is necessary to explain

this property.

APPENDIX B: DIRECTED NETWORKS

Although in the main text we focused on undirected

networks, directed model variants are easy to obtain, as we

summarize here. For the directed DC-SBM we have the model

likelihood,

P (A|k,e,b) =
∏

i k
+
i !k−

i !
∏

rs ers!
∏

r e+
r !e−

r !
∏

ij Aij !
, (B1)

with k+
i =

∑

j Aji , k
−
i =

∑

j Aij , e+
r =

∑

s esr , e−
r =

∑

s ers .

For the hierarchical prior of edge counts, we have to treat the

multigraphs as directed,

P (el|el+1,bl) =
∏

rs

((

nl
rn

l
s

el+1
rs

))−1

. (B2)

The uniform degree prior is the product of two priors, for the

in- and out-degree sequences,

P (k|e,b) =
∏

r

((

nr

e+
r

))−1((
nr

e−
r

))−1

. (B3)

Analogously for the conditioned degree prior we need to

account for the joint (in, out)-degree distribution,

P (k|η) =
∏

r

∏

k+,k− ηr
k+,k−!

nr !
, (B4)

and a uniform hyperprior,

P (η|e,b) =
∏

r

q(e+
r ,nr )−1q(e−

r ,nr )−1. (B5)

The NDC-SBM is also entirely analogous, corresponding to a

degree probability

P (k|e,b) =
∏

r

e+
r !

n
er+
r

∏

i∈r k+
i !

∏

r

e−
r !

n
er−
r

∏

i∈r k−
i !

, (B6)

which yields the model likelihood

P (A|e,b) =
∏

rs ers!
∏

r n
e+
r

r n
e−
r

r

×
1

∏

ij Aij !
. (B7)
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[4] S. Fortunato and M. Barthélemy, Resolution limit in community

detection, Proc. Natl. Acad. Sci. USA 104, 36 (2007).

[5] B. H. Good, Y.-A. de Montjoye, and A. Clauset, Performance

of modularity maximization in practical contexts, Phys. Rev. E

81, 046106 (2010).

[6] D. Hric, R. K. Darst, and S. Fortunato, Community detection in

networks: Structural clusters versus ground truth, Phys. Rev. E

90, 062805 (2014).

[7] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic

blockmodels: First steps, Social Networks 5, 109 (1983).

[8] T. P. Peixoto, Parsimonious Module Inference in Large Net-

works, Phys. Rev. Lett. 110, 148701 (2013).

[9] T. P. Peixoto, Efficient Monte Carlo and greedy heuristic for the

inference of stochastic block models, Phys. Rev. E 89, 012804

(2014).

[10] T. P. Peixoto, Hierarchical Block Structures and High-

Resolution Model Selection in Large Networks, Phys. Rev. X 4,

011047 (2014).

[11] B. Karrer and M. E. J. Newman, Stochastic blockmodels and

community structure in networks, Phys. Rev. E 83, 016107

(2011).

[12] B. Bollobás, A probabilistic proof of an asymptotic formula

for the number of labeled regular graphs. Eur. J. Comb. 1, 311

(1980).

[13] B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander,

Configuring random graph models with fixed degree sequences,

arXiv:1608.00607 [physics, q-bio, stat] (2016).
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Zdeborová, P. Zhang, and Y. Zhu, Model selection for degree-

corrected block models, J. Stat. Mech. (2014) P05007.

[47] S. H. Jeffreys, The Theory of Probability (Oxford University

Press, Oxford, 1998).

[48] D. Frenkel and B. S. Professor, Understanding Molecular Sim-

ulation: From Algorithms to Applications, 2nd ed. (Academic

Press, San Diego, 2001).

[49] R. M. Neal, Annealed importance sampling, Stat. Comput. 11,

125 (2001).

[50] F. Wang and D. P. Landau, Efficient, Multiple-Range Random

Walk Algorithm to Calculate the Density of States, Phys. Rev.

Lett. 86, 2050 (2001).

[51] M. Mezard and A. Montanari, Information, Physics, and

Computation (Oxford University Press, Oxford, 2009).

[52] L. A. Adamic and N. Glance, The political blogosphere and the

2004 U.S. election: Divided they blog, in Proceedings of the

3rd international workshop on Link discovery, LinkKDD ’05

(ACM, New York, 2005), pp. 36–43.

[53] D. Holten, Hierarchical edge bundles: Visualization of ad-

jacency relations in hierarchical data, IEEE Trans. Visual.

Comput. Graphics 12, 741 (2006).

[54] M. E. J. Newman, Finding community structure in networks

using the eigenvectors of matrices, Phys. Rev. E 74, 036104

(2006).

[55] A. Davis and B. B. Gardner, Deep South: A Social Anthropo-

logical Study of Caste and Class, revised (University of South

Carolina Press, Columbia, SC, 2009).

[56] W. W. Zachary, An information flow model for conflict and

fission in small groups, J. Anthropol. Res. 33, 452 (1977).

[57] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,

and S. M. Dawson, The bottlenose dolphin community of

Doubtful Sound features a large proportion of long-lasting

associations, Behav Ecol. Sociobiol. 54, 396 (2003).

[58] D. E. Knuth, The Stanford GraphBase: A Platform for Combina-

torial Computing, 1st ed. (Addison-Wesley Professional, New

York, NY/Reading, MA, 1993).

[59] M. Girvan and M. E. J. Newman, Community structure in social

and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821

(2002).

[60] R. E. Ulanowicz and D. L. DeAngelis, Network analysis of

trophic dynamics in south florida ecosystems, U.S. Geolog-

ical Survey Program on the South Florida Ecosystem 114

(2005).

[61] L. C Freeman, C. M. Webster, and D. M. Kirke, Exploring social

structure using dynamic three-dimensional color images, Social

Networks 20, 109 (1998).

[62] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, The

structure of the nervous system of the nematode Caenorhabditis

elegans, Philos. Trans. R. Soc. London B 314, 1 (1986).

[63] M. E. J. Newman, Modularity and community structure in

networks, Proc. Natl. Acad. Sci. USA 103, 8577 (2006).

[64] J. Kunegis, KONECT: The Koblenz Network Collection, in

Proceedings of the 22Nd International Conference on World

Wide Web, WWW ’13 Companion (ACM, New York, NY, 2013),

pp. 1343.

[65] D. B. Larremore, A. Clauset, and C. O. Buckee, A network

approach to analyzing highly recombinant malaria parasite

genes, PLOS Comput. Biol. 9, e1003268 (2013).
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