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Ensemble learning has recently been intensively studied in the field of machine learning. ‘Bagging’ is

a method of ensemble learning and uses bootstrap data to construct various predictors. The required

prediction is then obtained by averaging the predictors. Harris proposed using this technique with the

parametric bootstrap predictive distribution to construct predictive distributions, and showed that the

parametric bootstrap predictive distribution gives asymptotically better prediction than a plug-in

distribution with the maximum likelihood estimator. In this paper, we investigate nonparametric

bootstrap predictive distributions. The nonparametric bootstrap predictive distribution is precisely that

obtained by applying bagging to the statistical prediction problem. We show that the nonparametric

bootstrap predictive distribution gives predictions asymptotically as good as the parametric bootstrap

predictive distribution.

Keywords: asymptotic theory; bagging; bootstrap predictive distribution; information geometry;

Kullback–Leibler divergence

1. Introduction

Let us suppose that observations xN ¼ fx1, . . . , xNg are independently distributed according

to a distribution p(x; ø) that belongs to a statistical model

fp(x; ø)jø ¼ (øa) 2 U , a ¼ 1, . . . , mg,

where U is a subset of m-dimensional Euclidean space. A future observation xNþ1 is

independent of xN and has the same distribution p(xNþ1; ø). We predict xNþ1 by a

distribution p̂p(xNþ1, xN ). The loss of a predictive distribution p̂p(xNþ1, xN ) is measured by

using the Kullback–Leibler divergence (Aitchison 1975)

Dfp(xNþ1; ø)k p̂p(xNþ1, xN )g ¼
ð
p(xNþ1; ø)log

p(xNþ1; ø)

p̂p(xNþ1, xN )
dxNþ1:

Bernoulli 11(2), 2005, 293–307
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The risk function is given by

Ex N [Dfp(xNþ1; ø)k p̂p(xNþ1, xN )g] ¼
ð
p(xN ; ø)

ð
p(xNþ1; ø)log

p(xNþ1; ø)

p̂p(xNþ1, xN )
dxNþ1dxN:

Methods of ensemble learning, such as bagging (Breiman 1996) and boosting (Freund

and Schapire 1997), have recently been intensively studied in the field of machine learning.

Breiman’s bagging uses bootstrap data to construct various predictors. Prediction is obtained

by averaging the predictors.

Harris (1989) proposed using the bagging technique (at that time unnamed) with the

parametric bootstrap to construct bootstrap predictive distributions; in this paper, we call

Harris’s bootstrap predictive distributions parametric bootstrap predictive distributions to

distinguish them from nonparametric bootstrap predictive distributions. He showed that the

parametric bootstrap predictive distribution asymptotically dominates the estimative

distribution that is a plug-in distribution with the maximum likelihood estimator (MLE)

when the model is a one-parameter exponential family. Vidoni (1995) proposed an

approximation of parametric bootstrap predictive distributions by using the p�-formula.

Fushiki et al. (2004) clarified the relationship between the parametric bootstrap distribution

and Bayesian predictive distribution and showed that the parametric bootstrap predictive

distribution asymptotically dominates the estimative distribution in general distributions

In this paper, we investigate nonparametric bootstrap predictive distributions constructed

by using nonparametric bootstrapping. The nonparametric bootstrap predictive distribution is

precisely that obtained by applying bagging to the statistical prediction problem.

The information-geometric framework (Amari 1985; Amari and Nagaoka 2000) briefly

explained below is used to show the results in the present paper, as is done by Fushiki et

al. (2004). In information geometry, a statistical model is considered as a manifold, which

is called a statistical manifold. A Riemannian metric of a statistical manifold is given by

the Fisher information matrix whose (a, b)th element is

gab(ø) ¼ Ef@a log p(x; ø)@b log p(x; ø)g,

where @a is an abbreviation for the derivative operator @=@øa. The inverse matrix of

(gab(ø)) is written as (gab(ø)). The e-connection coefficients and the m-connection

coefficients are defined by

ˆ
e

ab,c(ø) ¼
ð
@a@b log p(x; ø)@c p(x; ø)dx

and

ˆ
m

ab,c(ø) ¼
ð
@a@b p(x; ø)@ c log p(x; ø)dx

¼ ˆ
e

ab,c(ø) þ Tabc(ø),
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respectively. Here,

Tabc(ø) ¼ Ef@a log p(x; ø)@b log p(x; ø)@c log p(x; ø)g

is the skewness tensor. We can calculate curvatures of the manifold from the connection

coefficients. In differential geometry, the manifold is said to be flat when connection

coefficients vanish in some coordinate systems. If the model is an exponential family (or a

mixture family) and the natural parameter (or the mixture parameter) is adopted as a

coordinate system, the e-connection coefficients (or the m-connection coefficients) become 0.

In information geometry, we say that the model is e-flat (or m-flat). Indices of connection

coefficients are raised or lowered by the metric or the inverse. For example,

ˆ
m

c
ab(ø) ¼ˆ

m

ab,d(ø)gdc(ø), ˆ
m

a(ø) ¼ˆ
m

a
bc(ø)gbc(ø),

where Einstein’s summation convention is used: if an index appears twice in any one term,

once as an upper and once as a lower index, summation over the index is implied (see also

McCullagh 1987). By using the information-geometric framework, Komaki (1996) showed

that the predictive distribution obtained by adding ‘a vector orthogonal to the model’ to an

estimative distribution dominates the estimative distribution.

This paper is organized as follows. We introduce nonparametric bootstrap predictive

distributions in Section 2. In Section 3 an asymptotic expansion of nonparametric bootstrap

predictive distributions is calculated. As a result, it is shown that the nonparametric

bootstrap predictive distribution is equivalent to the parametric bootstrap predictive

distribution up to second order. In Section 4 we show that the nonparametric bootstrap

predictive distribution asymptotically dominates the estimative distribution. Some examples

are given in Section 5, the paper concludes with a discussion.

2. Nonparametric bootstrap predictive distributions

Let ø̂ø(xN ) be the MLE based on the observations xN . We abbreviate ø̂ø(xN ) to ø̂ø when

there is no ambiguity. The parametric bootstrap predictive distribution (Harris 1989) is

defined by

py(xNþ1; ø̂ø(xN )) ¼ E y N fp(xNþ1; ø̂ø(yN ))g ¼
ð
p(xNþ1; ø̂ø(yN ))p(yN ; ø̂ø(xN ))dyN :

Here, we introduce nonparametric bootstrap predictive distributions. Let ø̂ø� be the MLE

calculated from a nonparametric bootstrap sample x�N ¼ fx�1 , . . . , x�Ng independently

obtained from the empirical distribution

p̂p(x) ¼ 1

N

XN
i¼1

�(x� xi):
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Definition. The nonparametric bootstrap predictive distribution is defined by

p�(xNþ1; xN ) ¼ E p̂pfp(xNþ1; ø̂ø�)g ¼
ð
p(xNþ1; ø̂ø�(x�N )) p̂p(x�N ) dx�N : (1)

A Monte Carlo estimate of the nonparametric bootstrap predictive distribution is obtained

by the following procedure:

1. For t ¼ 1 to T :

(a) generate bootstrap data x�N
( t) ¼ fx�( t),1, . . . , x�( t),Ng from the empirical distribution

p̂p(x);

(b) calculate the MLE ø̂ø�( t) from x�N
( t) .

2. Output the predictive distribution

p�T (xNþ1; xN ) ¼ 1

T

XT
t¼1

p(xNþ1; ø̂ø�( t)): (2)

This procedure is precisely the one obtained by applying bagging to the statistical prediction

problem. When T tends to infinity, (2) converges to (1).

The nonparametric bootstrap predictive distribution does not necessarily belong to the

model fp(x; ø)g like the Bayesian predictive distribution (Komaki 1996). We will show

that the part that deviates from the model can be effectively used in prediction.

3. An asymptotic expansion of nonparametric bootstrap
predictive distributions

3.1. Moments of the maximum likelihood estimator when the true

distribution does not belong to the statistical model

In this subsection only, we assume that observations xN ¼ fx1, . . . , xNg are independently

obtained from a distribution p0 that does not necessarily belong to the statistical model

fp(x; ø)jø 2 Ug. Let ø0 be the parameter of the distribution closest to p0 in the model,

that is,

ø0 ¼ argmin
ø2U

Df p0(x)kp(x; ø)g:

The MLE ø̂ø is given by

ø̂ø ¼ argmax
ø2U

flog p(xN ; ø)g:

We calculate the asymptotic moments of the MLE. Let us consider a normalized MLE

~øø ¼
ffiffiffiffiffi
N

p
(ø̂ø� ø0). The first three moments of the normalized MLE are asymptotically

given as follows:
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E p0
(~øøa) ¼ 1ffiffiffiffiffi

N
p ka2(ø0) þ O(N�3=2),

E p0
(~øøa ~øøb) ¼ sab(ø0) þ O(N�1),

E p0
(~øøa ~øøb ~øøc) ¼ O(N�1=2):

Here,

sab(ø) ¼ Jac(ø)Jbd(ø)I cd(ø),

ka2(ø) ¼ J ab(ø)J cd(ø)ˆbc,d(ø) þ 1

2
J ab(ø)J ce(ø)J df (ø)I ef (ø)Kbcd(ø),

I ab(ø) ¼ E p0
f@a log p(x; ø)@b log p(x; ø)g,

Jab(ø) ¼ E p0
f�@a@b log p(x; ø)g,

Kabc(ø) ¼ E p0
f@a@b@c log p(x; ø)g,

ˆab,c(ø) ¼ E p0
f@a@b log p(x; ø)@c log p(x; ø)g,

and (J ab(ø)), (I ab(ø)) and (sab(ø)) are the inverse matrices of (Jab(ø)), (I ab(ø)) and

(sab(ø)), respectively.

3.2. An asymptotic expansion of nonparametric bootstrap predictive

distributions

The moments of ~øø� ¼
ffiffiffiffiffi
N

p
(ø̂ø� � ø̂ø) can be obtained by replacing ø0 by the MLE ø̂ø and

p0 by the empirical distribution p̂p in the moments of ~øø shown by the previous subsection.

Then the moments of the normalized MLE calculated from a nonparametric bootstrap

sample are given by

E p̂p(~øø
�a) ¼ 1ffiffiffiffiffi

N
p k

N ,a

2 (ø̂ø) þ Op(N
�3=2),

E p̂p(~øø
�a ~øø�b) ¼ sN ,ab(ø̂ø) þ Op(N

�1),

E p̂p(~øø�a ~øø�b ~øø�c) ¼ Op(N
�1=2):
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Here,

sNab(ø) ¼ J
N

ac(ø)J
N

bd(ø)I N ,bd(ø),

k
N ,a

2 (ø) ¼ J N ,ab(ø)J N ,cd(ø)ˆ
N

bc,d(ø) þ 1

2
J N ,ab(ø)J N ,ce(ø)J N ,df (ø)I

N

ef (ø)K
N

bcd(ø),

I
N

ab(ø) ¼ E p̂pf@a log p(x; ø)@b log p(x; ø)g ¼ 1

N

XN
Æ¼1

@a log p(xÆ; ø)@b log p(xÆ; ø),

and J
N

ab(ø), K
N

abc(ø) and ˆ
N

ab,c(ø) are defined in the same way. (J N ,ab(ø)), (I N ,ab(ø)) and

(sN ,ab(ø)) are the inverse matrices of (J
N

ab(ø)), (I
N

ab(ø)) and (sNab(ø)), respectively.

From the above, we can prove the following theorem.

Theorem 1. The nonparametric bootstrap predictive distribution p�(xNþ1; xN ) has the

following third-order asymptotic expansion:

p�(xNþ1; xN ) ¼ p(xNþ1; ø̂ø) þ 1

N
k
N ,a

2 (ø̂ø)@a p(xNþ1; ø̂ø)

þ 1

2N
sN ,ab(ø̂ø)@a@b p(xNþ1; ø̂ø) þ Op(N�2): (3)

Proof. Using the Taylor expansion, the theorem is easily obtained. h

According to Fushiki et al. (2004), an asymptotic expansion of the parametric bootstrap

predictive distribution is given by

py(xNþ1; ø̂ø) ¼ p(xNþ1; ø̂ø) þ 1

2N
gab(ø̂ø) @a@b p(xNþ1; ø̂ø) � ˆ

m
c
ab(ø̂ø)@c p(xNþ1; ø̂ø)

	 

þ Op(N�2),

where the second term is ‘the vector orthogonal to the model’ (Komaki 1996). Since

k
N ,a

2 (ø̂ø) ¼ �ˆ
m

a(ø̂ø)

2
þ Op(N�1=2)

and

sN ,ab(ø̂ø) ¼ gab(ø̂ø) þ Op(N
�1=2),

the nonparametric bootstrap predictive distribution coincides with the parametric bootstrap

predictive distribution up to second order.

4. Risk evaluation

In this section, we evaluate the prediction accuracy of the nonparametric bootstrap

predictive distribution.

298 T. Fushiki, F. Komaki and K. Aihara



We use two lemmas to evaluate the risk. The following lemma is proved in the same way

as the proof of the expectation lemma in Hartigan (1998).

Lemma 2. The following relation holds:ð
(ø̂øa � øa) gij(ø̂ø) � I

N

ij (ø̂ø)
n o

p(xN ; ø)dxN ¼ O(N�3=2):

Although (ø̂øa � øa)fgij(ø̂ø) � I
N

ij (ø̂ø)g ¼ Op(N�1), the expectation of the 1=N -order

term of (ø̂øa � øa)fgij(ø̂ø) � I
N

ij (ø̂ø)g vanishes. We can also prove thatð
(ø̂øa � øa) gij(ø̂ø) � J

N

ij (ø̂ø)
n o

p(xN ; ø)dxN ¼ O(N�3=2),

ð
(ø̂øa � øa) 3 ˆ

m

(ij,k)(ø̂ø) � 2Tijk(ø̂ø) � K
N

ijk(ø̂ø)

	 

p(xN ; ø)dxN ¼ O(N�3=2),

ð
(ø̂øa � øa) ˆ

e

ij,k(ø̂ø) � ˆ
N

ij,k(ø̂ø)

	 

p(xN ; ø)dxN ¼ O(N�3=2):

Here, the use of parentheses implies symmetrization with respect to the indices inside them,

for example,

A(ijk) ¼
1

3!
(Aijk þ Aikj þ Ajik þ Ajki þ Akij þ Akji):

It is easy to prove that the above relation holds with respect to the inverse matrix (I N ,ij(ø̂ø)).

Lemma 3. The following relation holds:ð
(ø̂øa � øa) gij(ø̂ø) � I N ,ij(ø̂ø)

� �
p(xN ; ø)dxN ¼ O(N�3=2):

We can also prove thatð
(ø̂øa � øa) gij(ø̂ø) � J N ,ij(ø̂ø)

� �
p(xN ; ø)dxN ¼ O(N�3=2):

Theorem 4. The difference between the risk function of the estimative distribution

p(xNþ1; ø̂ø) and that of the nonparametric bootstrap predictive distribution p�(xNþ1; xN )

is given by

Ex N [Dfp(xNþ1; ø)kp(xNþ1; ø̂ø)g � Dfp(xNþ1; ø)kp�(xNþ1; xN )g]

¼ 1

8N2

ð
1

p(xNþ1; ø)
gab(ø) @a@b p(xNþ1; ø)� ˆ

m
c
ab(ø)@c p(xNþ1; ø)

	 
 �2

dxNþ1 þ o(N�2):

(4)
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Therefore the nonparametric bootstrap predictive distribution p�(xNþ1; xN ) asymptotically

dominates the estimative distribution p(xNþ1; ø̂ø).

Proof. The left-hand side of (4) can be rewritten asð
p(xN ; ø)

ð
p(xNþ1; ø) log

p�(xNþ1; xN )

p(xNþ1; ø̂ø)
dxNþ1dxN

¼
ð
p(xN ; ø)

ð
fp(xNþ1; ø) � p(xNþ1; ø̂ø)g log

p�(xNþ1; xN )

p(xNþ1; ø̂ø)
dxNþ1dxN

þ
ð
p(xN ; ø)

ð
p(xNþ1; ø̂ø) log

p�(xNþ1; xN )

p(xNþ1; ø̂ø)
dxNþ1dxN : (5)

The second term of the right-hand side of (5) isð
p(xN ; ø)

ð
p(xNþ1; ø̂ø) log 1 þ p�(xNþ1; xN ) � p(xNþ1; ø̂ø)

p(xNþ1; ø̂ø)

	 

dxNþ1dxN

¼
ð
p(xN ; ø)

ð
p(xNþ1; ø̂ø)

p�(xNþ1; xN ) � p(xNþ1; ø̂ø)

p(xNþ1; ø̂ø)

	 

dxNþ1dxN

� 1

2

ð
p(xN ; ø)

ð
p(xNþ1; ø̂ø)

p�(xNþ1; xN ) � p(xNþ1; ø̂ø)

p(xNþ1; ø̂ø)

	 
2

dxNþ1dxN þ o(N�2)

¼ � 1

8N 2

ð
1

p(xNþ1; ø)
gab(ø) @a@b p(xNþ1; ø) � ˆ

m
c
ab(ø)@c p(xNþ1; ø)

	 
 �2

dxNþ1 þ o(N�2):

The first term on the right-hand side of (5) is expanded asð
p(xN ; ø)

ð
(øa � ø̂øa)@a p(xNþ1; ø̂ø) log

p�(xNþ1; xN )

p(xNþ1; ø̂ø)
dxNþ1dxN

þ 1

2

ð
p(xN ; ø)

ð
(øa � ø̂øa)(øb � ø̂øb)@a@b p(xNþ1; ø̂ø) log

p�(xNþ1; xN )

p(xNþ1; ø̂ø)
dxNþ1dxN

þ o(N�2): (6)

The second term of (6) is

1

4N2

ð
1

p(xNþ1; ø)
gab(ø) @a@b p(xNþ1; ø)� ˆ

m
c
ab(ø)@c p(xNþ1; ø)

	 
 �2

dxNþ1 þ o(N�2):

It remains to evaluate the first term of (6).
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The asymptotic expansion (3) of the nonparametric bootstrap predictive distribution can

be rewritten as

p̂p�(xNþ1; xN ) ¼ p(xNþ1; ø̂ø) þ 1

2N
gab(ø̂ø) @a@b p(xNþ1; ø̂ø)� ˆ

m
c
ab(ø̂ø)@c p(xNþ1; ø̂ø)

	 


þ 1

N
k
N ,a

2 (ø̂ø) þ ˆ
m

a(ø̂ø)

2

8<
:

9=
;@a p(xNþ1; ø̂ø)

þ 1

2N
sN ,ab(ø̂ø) � gab(ø̂ø)
� �

@a@b p(xNþ1; ø̂ø)

þ Op(N�2), (7)

where the third and fourth terms of (7) are of third order.

Since the second-order term of the first term of (6) is 0 due to orthogonality, we only

evaluate the third-order term:

ð
p(xN ; ø)

ð
(øa � ø̂øa)@a p(xNþ1; ø̂ø)log

p�(xNþ1; xN )

p(xNþ1; ø̂ø)
dxNþ1dxN

¼
ð
p(xN ; ø)

ð
(øc � ø̂øc)

@c p(xNþ1; ø̂ø)

p(xNþ1; ø̂ø)

1

N
k
N ,a

2 (ø̂ø) þ ˆ
m

a(ø̂ø)

2

8<
:

9=
;@a p(xNþ1; ø̂ø)

2
4

þ 1

2N
sN ,ab(ø̂ø) � gab(ø̂ø)
� �

@a@b p(xNþ1; ø̂ø)

�
dxNþ1dxN þ o(N�2)

¼ 1

N
gab(ø)

ð
(øb � ø̂øb) k

N ,a

2 (ø̂ø) þ ˆ
m

a(ø̂ø)

2

8<
:

9=
; p(xN ; ø)dxN

þ 1

2N
ˆ
m

ab,c(ø)

ð
(øc � ø̂øc) sN ,ab(ø̂ø) � gab(ø̂ø)

� �
p(xN ; ø)dxN þ o(N�2): (8)
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Using Lemmas 2 and 3,

ð
(øc � ø̂øc) sN ,ab(ø̂ø) � gab(ø̂ø)

� �
p(xN ; ø)dxN

¼
ð

(øc � ø̂øc) J N ,ai(ø̂ø)J N ,bj(ø̂ø)I
N

ij (ø̂ø) � gai(ø̂ø)gbj(ø̂ø)gij(ø̂ø)
n o

p(xN ; ø)dxN

¼
ð

(øc � ø̂øc) J N ,ai(ø̂ø)J N ,bj(ø̂ø)I
N

ij (ø̂ø) � J N ,ai(ø̂ø)J N ,bj(ø̂ø)gij(ø̂ø)
n o

p(xN ; ø)dxN

þ
ð

(øc � ø̂øc) J N ,ai(ø̂ø)J N ,bj(ø̂ø)gij(ø̂ø) � J N ,ai(ø̂ø)gbj(ø̂ø)gij(ø̂ø)
� �

p(xN ; ø)dxN

þ
ð

(øc � ø̂øc) J N ,ai(ø̂ø)gbj(ø̂ø)gij(ø̂ø) � gai(ø̂ø)gbj(ø̂ø)gij(ø̂ø)
� �

p(xN ; ø)dxN

¼ gai(ø)gbj(ø)

ð
(ø̂øc � øc) gij(ø̂ø) � I

N

ij (ø̂ø)
n o

p(xN ; ø)dxN

þ gai(ø)gij(ø)

ð
(ø̂øc � øc) gbj(ø̂ø) � J N ,bj(ø̂ø)

� �
p(xN ; ø)dxN

þ gbj(ø)gij(ø)

ð
(ø̂øc � øc) gai(ø̂ø) � J N ,ai(ø̂ø)

� �
p(xN ; ø)dxN þ o(N�1)

¼ o(N�1):

Therefore the second term of (8) is o(N�2). We can prove the same thing for the first term of

(8). Finally, the right-hand side of (8) is o(N�2). h

Fushiki et al. (2004) evaluated the risk of the parametric bootstrap predictive distribution.

From the result, the risks of both bootstrap predictive distributions are equal up to order

1=N2.

5. Numerical experiments

Example 1 Normal distribution N (�, � 2). The Fisher information matrix and the connection

coefficients are given by
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g�� ¼ 1

� 2
, g�� ¼ 0, g� � ¼ 2

� 2
,

ˆ
m

��,� ¼ˆ
m

�� ,� ¼ˆ
m

�� ,� ¼ˆ
m

� �,� ¼ˆ
m

� �,� ¼ˆ
m

� � ,� ¼ 0, ˆ
m

��,� ¼ˆ
m

� � ,� ¼ 2

� 3
,

ˆ
e

��,� ¼ˆ
e

�� ,� ¼ˆ
e

� �,� ¼ˆ
e

� � ,� ¼ˆ
e

��,� 0, ˆ
e

�� ,� ¼ˆ
e

� �,� ¼ � 2

� 3
, ˆ

e

� � ,� ¼ � 6

� 3
:

Here, gab(ø), ˆ
e

ab,c(ø) and ˆ
m

ab,c(ø) are abbreviated to gab, ˆ
e

ab,c and ˆ
m

ab,c respectively, and

we use these abbreviations in the following. The improvement of risk is

3

4N2
þ o(N�2):

The comparison between the predictive performance of the parametric bootstrap predictive

distribution and that of the nonparametric bootstrap predictive distribution is shown in Figure

1, where the true distribution is N (0, 1) and 5000 bootstrap samples are used to calculate the

nonparametric bootstrap predictive distribution. The loss function is calculated by numerical

integration and the expectation of the loss is calculated by 10 000 Monte Carlo iterations. In
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Figure 1. Comparison between the predictive performance of the parametric bootstrap predictive

distribution and that of the nonparametric bootstrap predictive distribution when the model is

N( �, � 2) and the true distribution is N(0, 1). We set T ¼ 5000. The loss function is calculated by

numerical integration and the expectation of the loss is calculated by 10 000 Monte Carlo iterations.
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this model, the parametric bootstrap predictive distribution showed slightly better perform-

ance than the nonparametric bootstrap predictive distribution.

Example 2 Normal distribution N (ø, ø2). The Fisher information and the connection

coefficients are given by

gøø ¼ 3

ø2
, ˆ

m

øø,ø ¼ 4

ø3
, ˆ

e

øø,ø ¼ � 10

ø3
:

The improvement of risk is

19

27N2
þ o(N�2):

Figure 2 shows the result of the numerical experiment in this model. In the simulation, the

true distribution is N (1, 1) and 5000 bootstrap samples are used to calculate the

nonparametric bootstrap predictive distribution. The loss function is calculated by numerical

integration and the expectation of the loss is calculated by 10 000 Monte Carlo iterations.
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Figure 2. Comparison between the predictive performance of the parametric bootstrap predictive

distribution and that of the nonparametric bootstrap predictive distribution when the model is

N(ø, ø2) and the true distribution is N (1, 1). We set T ¼ 5000. The loss function is calculated by

numerical integration and the expectation of the loss is calculated by 10 000 Monte Carlo iterations.

304 T. Fushiki, F. Komaki and K. Aihara



Example 3 Poisson distribution Po(º). The Fisher information matrix and the connection

coefficients are given by

gºº ¼
1

º
, ˆ

e
º
ºº ¼ � 1

º
, ˆ

m
º
ºº ¼ 0:

The improvement of risk is

1

4N2
þ o(N�2):

Figure 3 shows the result of the numerical experiment in this model. In the simulation, the

true distribution is Po(1) and 5000 bootstrap samples are used to calculate the nonparametric

bootstrap predictive distribution. The loss function is calculated by numerical summation and

the expectation of the loss is calculated by 100 000 Monte Carlo iterations.
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Figure 3. Comparison between the predictive performance of the parametric bootstrap predictive

distribution and that of the nonparametric bootstrap predictive distribution when the model is Po(º)

and the true distribution is Po(1). We set T ¼ 5000. The loss function is calculated by numerical

summation and the expectation of the loss is calculated by 100 000 Monte Carlo iterations.
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6. Discussion

We have investigated nonparametric bootstrap prediction by using asymptotic theory. Up to

second order, the nonparametric bootstrap predictive distribution coincides with the parametric

bootstrap predictive distribution. Up to order 1=N 2, the risks of both bootstrap pre-

dictive distributions are same. In our numerical experiments, parametric bootstrap predictive

distributions showed slightly better performance than nonparametric bootstrap predictive

distributions. However, we have not calculated the higher-order risk analytically. On the other

hand, from a computational viewpoint, the nonparametric bootstrap predictive distribution is

preferable because it is difficult to generate random numbers according to p(x; ø̂ø) if p(x; ø̂ø) is

not a simple distribution. In applications, it is important to evaluate the appropriate number of

bootstraps. This is a problem for future investigation.

The prediction problem in the conditional setting is also important. This setting includes

regression and classification where bagging is mainly used. Let x ¼ (y, z), where y is a

response variable and z is a covariate. We assume that y has a condistional distribution

p(yjz; ø) and z has a distribution p(z). We consider the problem of predicting yNþ1 based

on data xN ¼ f(y1, z1), . . . , (yN , zN )g. The risk function is defined byð ð ð
p(yNþ1jzNþ1; ø)log

p(yNþ1jzNþ1; ø)

p̂p(yNþ1jzNþ1, xN )
dyNþ1

	 

p(zNþ1)dzNþ1

 �
p(xN ; ø)dxN ,

which can be rewritten asð ðð
p(yNþ1, zNþ1; ø)log

p(yNþ1, zNþ1; ø)

p̂p(yNþ1jzNþ1, xN )p(zNþ1)
dyNþ1dzNþ1

	 

p(xN ; ø)dxN :

If xN and zNþ1 are given, the conditional estimative distribution p(yNþ1jzNþ1; ø̂ø) and the

conditional nonparametric bootstrap predictive distribution

p�(yNþ1jzNþ1; xN ) ¼ E p̂pfp(yNþ1jzNþ1; ø̂ø�)g

do not depend on p(z). Then

p�(yNþ1, zNþ1; xN ) ¼ E p̂pfp(yNþ1, zNþ1; ø̂ø�)g ¼ E p̂pfp(yNþ1jzNþ1; ø̂ø�)gp(zNþ1)

¼ p�(yNþ1jzNþ1; xN ) p(zNþ1):

Therefore, the conditional nonparametric bootstrap predictive distribution asymptotically

dominates the conditional estimative distribution.
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