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Nonparametric Bounds and Sensitivity
Analysis of Treatment Effects
Amy Richardson, Michael G. Hudgens, Peter B. Gilbert and Jason P. Fine

Abstract. This paper considers conducting inference about the effect of a
treatment (or exposure) on an outcome of interest. In the ideal setting where
treatment is assigned randomly, under certain assumptions the treatment ef-
fect is identifiable from the observable data and inference is straightforward.
However, in other settings such as observational studies or randomized trials
with noncompliance, the treatment effect is no longer identifiable without re-
lying on untestable assumptions. Nonetheless, the observable data often do
provide some information about the effect of treatment, that is, the param-
eter of interest is partially identifiable. Two approaches are often employed
in this setting: (i) bounds are derived for the treatment effect under minimal
assumptions, or (ii) additional untestable assumptions are invoked that ren-
der the treatment effect identifiable and then sensitivity analysis is conducted
to assess how inference about the treatment effect changes as the untestable
assumptions are varied. Approaches (i) and (ii) are considered in various set-
tings, including assessing principal strata effects, direct and indirect effects
and effects of time-varying exposures. Methods for drawing formal inference
about partially identified parameters are also discussed.

Key words and phrases: Causal inference, nonparametric bounds, partially
identifiable models, sensitivity analysis.

1. INTRODUCTION

In many areas of science, interest often lies in assess-
ing the causal effect of a treatment (or exposure) on
some particular outcome of interest. For example, re-
searchers may be interested in estimating the difference
between the average outcomes when all individuals are
treated (exposed) versus when all individuals are not
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treated (unexposed). When treatment is assigned ran-
domly and there is perfect compliance to treatment as-
signment, such treatment effects are identifiable and
inference about the effect of treatment proceeds in a
straightforward fashion. On the other hand, if the treat-
ment assignment mechanism is not known to the ana-
lyst or compliance is not perfect, then these treatment
effects are not identifiable from the observable data.

A statistical parameter is considered identifiable if
different values of the parameter give rise to different
probability distributions of the observable random vari-
ables. A parameter is partially identifiable if more than
one value of the parameter gives rise to the same ob-
served data law, but the set of such values is smaller
than the parameter space. Traditionally, statistical in-
ference has been restricted to the situation when pa-
rameters are identifiable. More recent research has con-
sidered methods for conducting inference about par-
tially identifiable parameters. This research has been
motivated to some extent by methods to evaluate causal
effects of treatment, which are frequently partially
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identifiable. For instance, causal estimands are typi-
cally only partially identifiable in observational stud-
ies where the treatment selection mechanism is not
known to the analyst. Noncompliance in randomized
trials may also render treatment effects partially iden-
tifiable and a large amount of research has been de-
voted to drawing inference about treatment effects in
the presence of noncompliance. Partial identifiability
also arises when drawing inference about treatment ef-
fects within principal strata or effects describing rela-
tionships between an outcome and a treatment that are
mediated by some intermediate variable.

In order to conduct inference about treatment ef-
fects that are partially identifiable, two approaches are
often employed: (i) bounds are derived for the treat-
ment effect under minimal assumptions, or (ii) addi-
tional untestable assumptions are invoked under which
the treatment effect is identifiable and then sensitiv-
ity analysis is conducted to assess how inference about
the treatment effect changes as the untestable assump-
tions are varied. Below (i) and (ii) are illustrated in
five settings. In Section 2, we consider treatment ef-
fect bounds and sensitivity analysis when the treatment
assignment mechanism is unknown. In Section 3, par-
tial identifiability of principal strata causal effects are
discussed. In Section 4, the setting of noncompliance
is considered where there is interest in assessing the
effect of treatment if there was perfect compliance. In
Section 5, bounds and sensitivity analysis for direct and
indirect effects in mediation analysis are presented, and
in Section 6 longitudinal treatment effects are consid-
ered. Much of the literature on bounds and sensitivity
analysis focuses on ignorance due to partial identifia-
bility and tends to ignore uncertainty due to sampling
error. Section 7 presents some methods that appropri-
ately quantify this uncertainty when drawing inference
about partially identifiable treatment effects. Section 8
concludes with a discussion.

2. TREATMENT SELECTION

2.1 Minimal Assumptions Bounds

Suppose we have a random sample of individuals
where each potentially receives treatment or control.
Unless otherwise indicated, let Z indicate treatment re-
ceived where Z = 1 denotes treatment and Z = 0 de-
notes control. Denote the observed outcome of interest
by Y . In order to define a treatment effect on the out-
come Y , we first define potential outcomes for an in-
dividual when receiving treatment, denoted Y(1), and
when receiving control, denoted Y(0). Throughout this

paper, we invoke the stable unit treatment value as-
sumption (SUTVA; Rubin, 1980), that is, there is no
interference between units and there are no hidden (un-
represented) forms of treatment such that each individ-
ual has two potential outcomes {Y(0), Y (1)}. The no
hidden forms of treatment guarantees that the observed
outcome is equal to the potential outcome correspond-
ing to the observed treatment, namely that Y = Y(z)

for Z = z. Here, this will be referred to as causal con-
sistency; for further discussion of causal consistency
see Pearl (2010) and references therein. Once an in-
dividual receives treatment Z, the potential outcome
Y(Z) is observed and the other potential outcome (or
counterfactual) Y(1 − Z) becomes missing. Assume
that n i.i.d. copies of (Z,Y ) are observed and denoted
by (Zi, Yi) for i = 1, . . . , n.

In this section, we consider treatment effect bounds
when the treatment assignment mechanism is un-
known. Here, Z can be thought of as treatment selec-
tion by the individual or by nature, rather than random
treatment assignment as in an experiment. Define the
average treatment effect ATE to be E[Y(1) − Y(0)] =
E[Y(1)] − E[Y(0)] where E denotes the expected
value. The ATE can be decomposed as

1∑
z=0

E
[
Y(1)|Z = z

]
Pr[Z = z]

(1)

−
1∑

z=0

E
[
Y(0)|Z = z

]
Pr[Z = z].

Note E[Y(z)|Z = z] = E[Y |Z = z] by causal consis-
tency. Thus, from the observed data E[Y(z)|Z = z] and
Pr[Z = z] are identifiable and can be consistently es-
timated by their empirical counterparts. On the other
hand, the observed data provide no information about
E[Y(z)|Z = 1 − z], such that (1) is only partially iden-
tifiable without additional assumptions.

Bounds on E[Y(1) − Y(0)] can be obtained by en-
tertaining the smallest and largest possible values for
E[Y(z)|Z = 1 − z]. If Y(1) and Y(0) are not bounded
then bounds on E[Y(1) − Y(0)] will be completely
uninformative, ranging from −∞ to ∞. Thus, infor-
mative bounds are only possible if Y(0) and Y(1)

are bounded. Because any bounded variable can be
rescaled to take values in the unit interval, without
loss of generality assume Y(z) ∈ [0,1] for z = 0,1.
Then 0 ≤ E[Y(z)|Z = 1 − z] ≤ 1 and from (1) it fol-
lows that E[Y(1) − Y(0)] is bounded below by setting
E[Y(1)|Z = 0] = 0 and E[Y(0)|Z = 1] = 1, which
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yields the lower bound

E
[
Y(1)|Z = 1

]
Pr[Z = 1]

(2)
− E

[
Y(0)|Z = 0

]
Pr[Z = 0] − Pr[Z = 1].

Similarly, E[Y(1)−Y(0)] is bounded above by setting
E[Y(1)|Z = 0] = 1 and E[Y(0)|Z = 1] = 0, which
yields the upper bound

E
[
Y(1)|Z = 1

]
Pr[Z = 1]

(3)
− E

[
Y(0)|Z = 0

]
Pr[Z = 0] + Pr[Z = 0].

These bounds were derived independently by Robins
(1989) and Manski (1990). The lower and upper
bounds (2) and (3) are sharp in the sense that it is not
possible to derive narrower bounds without additional
assumptions. Note the interval formed by (2) and (3)
is contained in [−1,1] and is of width 1. Thus, the
bounds are informative in that the treatment effect is
now restricted to half of the otherwise possible range
[−1,1]. On the other hand, the bounds will always con-
tain the null value 0 corresponding to no average treat-
ment effect. That is, without additional assumptions
the sign of the treatment effect cannot be determined
from the observable data.

2.2 Additional Assumptions

The bounds (2)–(3) are sometimes called the “no
assumptions” or “worst case” bounds because no as-
sumptions are made about the effect of treatment in the
population (Lee, 2005; Morgan and Winship, 2007).
The only assumptions made in deriving (2) and (3) are
SUTVA and that the observed data constitute a ran-
dom sample. If additional assumptions are invoked, the
treatment effect bounds may become tighter (i.e., nar-
rower) or even collapse to a point (i.e., the treatment
effect may become identifiable). Sometimes these ad-
ditional assumptions will have implications that are
testable based on the observed data. Should the ob-
served data provide evidence against an assumption
under consideration, then bounds should be computed
without making this assumption.

An example of an additional assumption is mean in-
dependence, that is,

E
[
Y(z)|Z = 0

] = E
[
Y(z)|Z = 1

]
for z = 0,1.(4)

Under (4) ATE is identifiable. Specifically the upper
and lower bounds for ATE both equal E[Y(1)|Z =
1] − E[Y(0)|Z = 0], which is identifiable from the
observable data and can be consistently estimated by
the “naive” estimator given by the difference in sam-
ple means between the groups of individuals receiving

treatment and control. Assumption (4) will hold in ex-
periments where treatment is randomly assigned as in
a randomized clinical trial. Moreover, in randomized
experiments the stronger assumption

Y(z) � Z for z = 0,1,(5)

will hold, where � denotes independence. Indepen-
dent treatment assignment (5) implies mean indepen-
dence (4).

In some settings it may be reasonable to consider
additional assumptions that are not as strong as (4)
or (5) but nonetheless lead to tighter bounds than (2)
and (3). For example, monotonicity type assumptions
might be considered, such as monotone treatment se-
lection (MTS)

E
[
Y(z)|Z = 1

] ≥ E
[
Y(z)|Z = 0

]
for z = 0,1.(6)

MTS assumes individuals who select treatment will on
average have outcomes greater than or equal to that of
individuals who do not select treatment under the coun-
terfactual scenario all individuals selected the same z.
Manski and Pepper (2000) consider MTS when exam-
ining the effect of returning to school on wages later
in life. For this example, MTS implies individuals who
choose to return to school will have higher wages on
average compared to individuals who choose to not re-
turn to school under the counterfactual scenario no in-
dividuals return to school. Alternatively, one might as-
sume monotone treatment response (MTR)

Pr
[
Y(1) ≥ Y(0)

] = 1

(Manski, 1997). MTR assumes that under treatment
each individual will have a response greater than or
equal to that under control. For instance, suppose Z =
1 if an individual elects to get the annual influenza vac-
cine and Z = 0 otherwise, and let Y(z) = 1 if an in-
dividual subsequently does not develop flu-like symp-
toms when Z = z, and Y(z) = 0 otherwise. MTR as-
serts that each individual is more or as likely to not
develop flu-like symptoms if they are vaccinated ver-
sus if they are unvaccinated. Given to date there is no
evidence that the annual flu vaccine enhances the prob-
ability of acquiring influenza, MTR might be plausible
for this example.

Assuming MTS or MTR can lead to narrower
bounds than (2) and (3) because they imply addi-
tional constraints on unobserved counterfactual expec-
tations. For example, assuming MTS, E[Y(0)|Z = 1]
is bounded below by E[Y(0)|Z = 0] and E[Y(1)|Z =
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0] is bounded above by E[Y(1)|Z = 1], implying the
upper bound on E[Y(1) − Y(0)] is

E
[
Y(1)|Z = 1

] − E
[
Y(0)|Z = 0

]
,(7)

for which the naive estimator is consistent. Under
MTS, the lower bound remains (2). In contrast to the no
assumptions bounds, assuming MTS the bounds may
exclude 0, specifically when (7) is negative. MTR im-
plies E[Y(1)] ≥ E[Y(0)] which in turn implies that the
ATE lower bound is 0. Under MTR, the upper bound
remains (3).

2.3 AZT Example

To illustrate the bounds above, consider a hypothet-
ical study of 2000 HIV patients (from Figure 2 of
Robins, 1989) where 1400 individuals elected to take
the drug AZT and 600 elected not to take AZT (this is
a simplified version of the problem Robins considers).
The outcome of interest is death or survival at a given
time point. Of the 2000 patients, 1000 died with exactly
500 from each group. Let Z = 1 if the patient elected
to take AZT and Z = 0 otherwise; let Y = 1 if the indi-
vidual died and 0 otherwise. The naive estimator, that
is, the difference in sample means between Z = 1 and
Z = 0, equals 500/1400 − 500/600 ≈ −0.48. The em-
pirical estimates of the no assumptions bounds (2) and
(3) equal −0.7 and 0.3. In this setting, the MTS as-
sumption (6) supposes that individuals who elected to
take AZT would have been more or as likely to die as
individuals who did not take AZT in the counterfactual
scenarios where everyone receives treatment or every-
one does not receive treatment. This might be reason-
able if it is thought that those who took AZT were on
average less healthy than those who did not. Assuming
MTS, the upper bound (7) is estimated to be −0.48.
Thus, in this example the MTS bounds are substan-
tially tighter than the no assumption bounds. The es-
timated MTS bounds lead to the conclusion (ignoring
sampling variability, a point which we return to later)
that AZT reduces the probability of death by at least
0.48 whereas without the MTS assumption we can-
not even conclude whether the effect of treatment is
nonzero.

2.4 Sensitivity Analysis

Assumptions such as (4) or (5) which identify the
ATE, or assumptions such as MTS which sharpen the
bounds, cannot be tested empirically because such as-
sumptions pertain to the counterfactual distribution of
Y(z) given Z = 1 − z. Robins and others (e.g., see
Robins, Rotnitzky and Scharfstein, 2000; Scharfstein,

Rotnitzky and Robins, 1999) have argued that a data
analyst should conduct sensitivity analysis to explore
how inference varies as a function of departures from
any untestable assumptions.

For instance, a departure from assumption (5) might
be due to the existence of an unmeasured variable U

associated with both treatment selection Z and the po-
tential outcomes Y(z) for z = 0,1; a variable such as U

is often referred to as an unmeasured confounder. Un-
der this scenario, one might postulate that Y(z) � Z|U
for z = 0,1 rather than (5). Sensitivity analysis pro-
ceeds by examining how inference drawn about ATE
varies as a function of the magnitude of the associa-
tion of U with Z, Y(0), and Y(1). This idea has roots
as early as Cornfield et al. (1959), who demonstrated
the plausibility of a causal effect of cigarette smoking
(Z) on lung cancer (Y ) by arguing that the absence of
such a relationship was only possible if there existed
an unmeasured factor U associated with cigarette use
that was at least as strongly associated with lung can-
cer as cigarette use. This idea was further developed by
Schlesselman (1978), Rosenbaum and Rubin (1983),
Lin, Psaty and Kronmal (1998), Hernán and Robins
(1999) and VanderWeele and Arah (2011) among oth-
ers.

To illustrate this approach, suppose in the AZT ex-
ample above that the analyst first assumes (5) holds,
and thus estimates the effect of AZT to be −0.48.
To proceed with sensitivity analysis, the analyst posits
the existence of an unmeasured binary variable U and
assumes that Y(z) � Z|U for z = 0,1. Similar to
VanderWeele and Arah (2011), let

c(z) = {
E

[
Y(z)|U = 1

] − E
[
Y(z)|U = 0

]}
· {

Pr[U = 1|Z = z] − Pr[U = 1]}.
Then under the assumption that Y(z) � Z|U for z =
0,1, the naive estimator converges in probability to
E[Y(1)] − E[Y(0)] + c(1) − c(0). Thus the naive esti-
mator is asymptotically unbiased if and only if c(1) =
c(0). For an alternative decomposition of the asymp-
totic bias of the naive estimator, see Morgan and Win-
ship (2007, Section 2.6.3).

Sensitivity analysis proceeds by making varying as-
sumptions about the unidentifiable associations of U

with Y(0), Y(1) and Z. Under the most extreme of
these assumptions, the bounds (2) and (3) are recov-
ered. In particular, the upper bound in (3) is achieved
when Pr[U = 1|Z = 1] = 0, Pr[U = 1|Z = 0] = 1,
E[Y(1)|U = 1] = 1 and E[Y(0)|U = 0] = 0, meaning
that the confounder U is perfectly negatively correlated



600 RICHARDSON, HUDGENS, GILBERT AND FINE

with treatment Z and that if the confounder is present
(U = 1), then a treated individual will die, whereas if
the confounder is absent (U = 0), then an untreated in-
dividual will survive. The lower bound (2) is achieved
under the opposite conditions.

In practice the extreme associations of U with Y(0),
Y(1), and Z leading to the bounds might be consid-
ered unrealistic. Instead the analyst might consider as-
sociations only in a range deemed plausible by subject
matter experts. In order to arrive at an accurate range,
care should be taken in communicating the meaning
of these associations and eliciting this range should
be done in a manner that avoids data driven choices.
Alternatively, the degree of associations required to
change the sign of the effect of interest might be de-
termined. For instance, suppose the analyst further as-
sumes that E[Y(z)|U = 1] − E[Y(z)|U = 0] does not
depend on z. This assumption will hold if the effect
of Z on Y is the same if U = 0 or U = 1. Let-
ting γ0 = E[Y(z)|U = 1] − E[Y(z)|U = 0] and γ1 =
Pr[U = 1|Z = 1] − Pr[U = 1|Z = 0], the asymptotic
bias of the naive estimator is then given by γ0γ1 and
a bias adjusted estimator is found by subtracting γ0γ1
from the naive estimator. Sensitivity analysis may pro-
ceed by determining the values of γ0 and γ1 for which
the bias adjusted estimator of the ATE will have the op-
posite sign of the naive estimator. For the AZT exam-
ple, the bias adjusted estimator will have the opposite
sign of the naive estimator if γ0γ1 < −0.48. This indi-
cates that the product of (i) the difference in the mean
potential outcomes between levels of the confounder
for both treatment and control, and (ii) the difference
in the prevalence of the unmeasured confounder be-
tween the treatment and control groups must be less
than −0.48. Such magnitudes might be considered un-
likely in the opinion of subject matter experts, in which
case the sensitivity analysis would support the exis-
tence of a beneficial effect of AZT on survival among
HIV+ men (ignoring sampling variability). Note the
observed data distribution places some restrictions on
the possible values of (γ0, γ1), that is, (γ0, γ1) is par-
tially identifiable. For instance, if γ1 = 1 then Pr[U =
1|Z = 1] = 1 and Pr[U = 1|Z = 0] = 0 which im-
plies E[Y(z)|U = u] = E[Y(z)|Z = u] and, therefore,
max{E[Y(1)|Z = 1] − 1,−E[Y(0)|Z = 0]} ≤ γ0 ≤
min{E[Y(1)|Z = 1],1 − E[Y(0)|Z = 0]}. Such con-
siderations should be taken into account when deter-
mining the range of values of (γ0, γ1) in sensitivity
analysis.

Because the data provide no evidence about U ,
VanderWeele (2008) and VanderWeele and Arah (2011)

recommend choosing U and any simplifying assump-
tions based on what is considered plausible by rele-
vant subject-matter experts. Such sensitivity analyses
are most applicable when the existence of unmeasured
confounders is known, but these factors could not be
measured for logistical or other reasons. General bias
formulas to be used for sensitivity analyses of unmea-
sured confounding for categorical or continuous out-
comes, confounders and treatments can be found in
VanderWeele and Arah (2011).

In other settings, there might not be any known un-
measured confounders, or it may be thought that there
are numerous unmeasured confounders, in which cases
the sensitivity analysis strategy described above would
not be applicable or feasible. One general alternative
approach entails making additional untestable assump-
tions regarding the unobserved potential outcome dis-
tributions. Typically, these assumptions (or models) are
indexed by one or more sensitivity analysis parameters
conditional upon which the causal estimand of interest
is identifiable (e.g., Scharfstein, Rotnitzky and Robins,
1999; Brumback et al., 2004). Sensitivity analysis then
proceeds by examining how inference changes as as-
sumed values of the parameters are varied over plau-
sible ranges. Examples of such sensitivity analyses are
given below in Sections 3.4 and 6.3.

2.5 Covariate Adjustment

Typically in observational studies baseline (pre-
treatment) covariates X will be collected in addition
to Z and Y . Incorporating information from observed
covariates can help sharpen inferences about partially
identified treatment effects. For example, incorporat-
ing covariates will generally lead to narrower bounds
(Scharfstein, Rotnitzky and Robins, 1999). This fol-
lows because any treatment effect compatible with the
distribution of observed variables (X,Y,Z) must also
be compatible with the distribution of (Y,Z), that is,
the observable variables if we do not observe or choose
to ignore X (Lee, 2009). Covariate adjusted bounds are
discussed further in Section 3.3 below.

Additionally, incorporating covariates may lend
plausibility to some of the bounding assumptions dis-
cussed in Section 2.2. For example, in the absence of
randomized treatment assignment (4) or (5) may be
dubious. Instead of (4), it might be more plausible to
assume

E
[
Y(z)|Z = 0,X = x

]
(8)

= E
[
Y(z)|Z = 1,X = x

]
for z = 0,1.

Similarly, assumption (5) might be replaced by

Y(z) � Z|X for z = 0,1,(9)
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that is, each potential outcome is independent of treat-
ment selection conditional on some set of covariates.
Assumption (9) is commonly referred to as no unmea-
sured confounders. Assumptions such as (8) or weaker
inequalities similar to (6) such as

E
[
Y(z)|Z = 1,X = x

]
≥ E

[
Y(z)|Z = 0,X = x

]
for z = 0,1,

may be deemed plausible for certain levels of X, but
not for others. Availability of covariates also allows for
the consideration of new types of assumptions (e.g., see
Chiburis, 2010).

To conduct covariate adjusted sensitivity analysis,
departures from identifying assumptions such as (9)
can be explored. Similar to the previous section, a de-
parture from (9) might entail positing the existence of
an unmeasured variable U associated with both treat-
ment selection Z and the potential outcomes Y(z) for
z = 0,1. Under this scenario, one might postulate that
Y(z) � Z|{X,U} for z = 0,1 rather than (9) and sen-
sitivity analysis proceeds by examining how inference
varies as a function of the magnitude of the associa-
tion of U with Z, Y(0), and Y(1) given X. Similar
to covariate adjusted bounds, smaller associations or
tighter regions of the values of the sensitivity param-
eters may be deemed plausible within certain levels
of X, potentially yielding sharper inferences from the
sensitivity analyses. However, as cautioned by Robins
(2002), care should be taken in clearly communicating
the meaning of such sensitivity parameters and their re-
lationship to covariates when eliciting plausible ranges
from subject matter experts. In some scenarios, plau-
sible regions for sensitivity parameters may in fact be
wider when conditioning on X than when not condi-
tioning on X.

3. PRINCIPAL STRATIFICATION

3.1 Background

Even if treatment is randomly assigned (e.g., as in a
clinical trial), the causal estimand of interest may still
be only partially identifiable. For example, in many
studies it is often of interest to draw inference about
treatment effects on outcomes that only exist or are
meaningful after the occurrence of some observable
intermediate variable. For instance, in studies where
some individuals die, investigators might be interested
in treatment effects only among individuals alive at the
end of the study. Unfortunately, estimands defined by

contrasting mean outcomes under treatment and con-
trol that simply condition on this observable interme-
diate variable do not measure a causal effect of treat-
ment without additional assumptions. One approach
that may be employed in this scenario entails princi-
pal stratification (Frangakis and Rubin, 2002). Princi-
pal stratification uses the potential outcomes of the in-
termediate post-randomization variable to define strata
of individuals. Because these “principal strata” are not
affected by treatment assignment, treatment effect esti-
mands defined within principal strata have a causal in-
terpretation and do not suffer from the complications of
standard post-randomization adjusted estimands. The
simple framework of principal stratification has a wide
range of applications. For a recent discussion of the
utility (and lack thereof) of principal stratification, see
Pearl (2011) and corresponding reader reactions.

As a motivating example for this section, we con-
sider evaluating vaccine effects on post-infection out-
comes. In vaccine studies, uninfected subjects are
enrolled and followed for infection endpoints, and in-
fected subjects are subsequently followed for post-
infection outcomes such as disease severity or death
due to infection with the pathogen targeted by the vac-
cine; often interest is in assessing the effect of vac-
cination on these post-infection endpoints (Hudgens
and Halloran, 2006). For example, Préziosi and Hallo-
ran (2003) present data from a pertussis vaccine field
study in Niakhar, Senegal. In this study, 3845 vacci-
nated children and 1020 unvaccinated children were
followed for one year for pertussis. In the vaccine
group, 548 children contracted pertussis, of whom 176
had severe infections; in the unvaccinated group 206
children contracted pertussis, of whom 129 had severe
infections. In this setting, investigators are interested in
assessing whether or not the vaccine had an effect on
the severity of infection.

When assessing such post-infection effects, a data
analyst might consider contrasts between study arms
including all individuals under study, or, alternatively,
only those who become infected. Though including all
individuals in the study has the advantage of provid-
ing valid inference about the overall effect of vacci-
nation (assuming independent treatment assignment),
such an approach does not distinguish vaccine effects
on susceptibility to infection from effects on the post-
infection endpoint of interest. An analysis that condi-
tions on infection attempts to distinguish these effects
and may be more sensitive in detecting post-infection
vaccine effects. However, because the set of individu-
als who would become infected under control are not
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likely to be the same as those who would become in-
fected if given the vaccine, conditioning on infection
might result in selection bias. For example, those who
would become infected under vaccine may tend to have
weaker immune systems than those who would become
infected under control, and thus may be more suscepti-
ble to severe infection. Because of this potential selec-
tion bias, comparisons between infected vaccinees and
infected controls do not necessarily have causal inter-
pretations.

3.2 Principal Effects

In this section, treatment is vaccination, with Z = 1
corresponding to vaccination and Z = 0 correspond-
ing to not being vaccinated. Assume that assignment
to vaccine is equivalent to receipt of vaccine, that is,
there is no noncompliance. Denote the potential infec-
tion outcome by S(z), where S(z) = 0 if uninfected
and S(z) = 1 if infected. Here, the focus is on evaluat-
ing the causal effect of vaccine on Y , a post-infection
outcome. For simplicity, we consider the case where Y

is binary, indicating the presence of severe disease. If
S(z) = 1, define the potential post-infection outcome
Y(z) = 1 if the individual would have the worse (or
more severe) post-infection outcome of interest given
z, and Y(z) = 0 otherwise. If an individual’s potential
infection outcome for treatment z is uninfected [i.e.,
S(z) = 0], then we adopt the convention that Y(z) is
undefined. In other words, it does not make sense to
define the severity of an infection in an individual who
is not infected. This convention is similar to that em-
ployed in other settings. For instance, in the analysis of
quality of life studies it might be assumed that quality
of life metrics are not well defined in those who are not
alive (Rubin, 2000).

Define a basic principal stratification P0 accord-
ing to the joint potential infection outcomes SP0 =
(S(0), S(1)). The four basic principal strata or re-
sponse types are defined by the joint potential infec-
tion outcomes, (S(0), S(1)), and are composed of im-
mune (not infected under both vaccine and placebo),
harmed (infected under vaccine but not placebo), pro-
tected (infected under placebo but not vaccine), and
doomed individuals (infected under both vaccine and
placebo). Note the only stratum where both poten-
tial post-infection endpoints are well defined is in the
doomed basic principal stratum, SP0 = (1,1). Thus,
defining a post-infection causal vaccine effect is only
possible in the doomed principal stratum SP0 = (1,1).
Such a causal estimand will describe the effect of vac-
cination on disease severity in individuals who would

become infected whether vaccinated or not. For in-
stance, the vaccine effect on disease severity may be
defined by

E
[
Y(1)|SP0 = (1,1)

]
(10)

−E
[
Y(0)|SP0 = (1,1)

]
.

Frangakis and Rubin call treatment effect estimands
such as (10) “principal effects.”

3.3 Bounds

Assume we observe n i.i.d. copies of (Z,S,Y ) de-
noted by (Zi, Si, Yi) for i = 1, . . . , n. Also assume
that the doomed principal strata is nonempty, Pr[SP0 =
(1,1)] > 0, so that the principal effect in (10) is well
defined. Bounds for (10) are presented below under
two additional assumptions: independent treatment as-
signment, that is,

Z � {
Y (z), S(z)

}
for z = 0,1(11)

and monotone treatment response with respect to S,
that is,

Pr
[
S(0) ≥ S(1)

] = 1.(12)

Assumption (11) will hold in randomized vaccine tri-
als. Monotonicity (12) assumes that the vaccine does
no harm at the individual level, that is, there are no in-
dividuals who would be infected if vaccinated but unin-
fected if not vaccinated. Monotonicity is equivalent to
assuming the harmed principal stratum is empty. Note
no such monotonicity assumption is being made re-
garding Y . Under (11), assumption (12) implies P(S =
1|Z = 1) ≤ P(S = 1|Z = 0), which is testable using
the observed data. For the pertussis example, the pro-
portion infected in the vaccine group was less than in
the unvaccinated group; thus, assuming (11), the data
do not provide evidence against (12).

Assuming independent treatment assignment and
monotonicity, (10) is partially identifiable from the ob-
servable data. The left term of (10) can be written

E
[
Y(1)|SP0 = (1,1)

]
= E

[
Y(1)|S(1) = 1

]
(13)

= E
[
Y(1)|S(1) = 1,Z = 1

]
= E[Y |S = 1,Z = 1],

where the first equality holds under (12), the second
equality under (11), and the third by causal consis-
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tency. On the other hand, the right term of (10) is only
partially identifiable. To see this, note

E
[
Y(0)|S(0) = 1

]
= E

[
Y(0)|SP0 = (1,1)

]
Pr

[
S(1) = 1|S(0) = 1

]
(14)

+ E
[
Y(0)|SP0 = (1,0)

]
Pr

[
S(1) = 0|S(0) = 1

]
.

In (14), only E[Y(0)|S(0) = 1] and Pr[S(1) = s|
S(0) = 1] for s = 0,1 are identifiable. In particular,
E[Y(0)|S(0) = 1] = E[Y |S = 1,Z = 0] by similar
reasoning to (13), and

Pr
[
S(1) = 1|S(0) = 1

]
= Pr[S(1) = 1]

Pr[S(0) = 1] = Pr[S = 1|Z = 1]
Pr[S = 1|Z = 0] ,

where the first equality holds under (12) and the second
under independent treatment assignment (and causal
consistency). The other two terms in (14), namely
E[Y(0)|SP0 = (1,1)] and E[Y(0)|SP0 = (1,0)], are
only partially identifiable. In words, infected con-
trols are a mixture of individuals in the protected and
doomed principal stratum and without further assump-
tions the observed data do not identify exactly which
infected controls are doomed. Therefore, the proba-
bility of severe disease when not vaccinated in the
doomed principal stratum is not identified. Under (12),
the data do however indicate what proportion of in-
fected controls are doomed and this information pro-
vides partial identification of E[Y(0)|SP0 = (1,1)],
and hence (10).

For fixed values of E[Y(0)|S(0) = 1] and Pr[S(1) =
1|S(0) = 1], any pair of expectations (E[Y(0)|SP0 =
(1,1)],E[Y(0)|SP0 = (1,0)]) ∈ [0,1]2 satisfying (14)
will give rise to the same observed data distribution.
Equation (14) describes a line segment with nonposi-
tive slope intersecting the unit square as illustrated in
Figure 1. An upper bound of E[Y(0)|SP0 = (1,1)] and
thus a lower bound for (10) is achieved when the line
intersects the right or lower side of the square, that is,
when either

E
[
Y(0)|SP0 = (1,1)

] = 1 or
(15)

E
[
Y(0)|SP0 = (1,0)

] = 0.

Together (14) and (15) imply E[Y(0)|SP0 = (1,1)] is
bounded above by

min
{

1,
E[Y(0)|S(0) = 1]

Pr[S(1) = 1|S(0) = 1]
}
.(16)

Similarly, E[Y(0)|SP0 = (1,1)] is bounded below by

max
{

0,

(17)
E[Y(0)|S(0) = 1] − Pr[S(1) = 0|S(0) = 1]

Pr[S(1) = 1|S(0) = 1]
}
.

Combining (17) with (13) yields the upper bound
on the principal effect of interest (10) and combin-
ing (16) with (13) yields the lower bound. These
bounds were derived by Rotnitzky and Jemiai (2003),
Zhang and Rubin (2003) and Hudgens, Hoering and
Self (2003). Consistent estimates of (16) and (17)
can be computed by replacing E[Y(0)|S(0) = 1] with∑

i YiI (Si = 1,Zi = 0)/
∑

i I (Si = 1,Zi = 0) and
Pr[S(1) = 1|S(0) = 1] with

min
{

1,

∑
i I (Si = Zi = 1)/

∑
i I (Zi = 1)∑

i I (Si = 1,Zi = 0)/
∑

i I (Zi = 0)

}
.

Returning to the pertussis vaccine study, the estimated
lower and upper bounds of (10) are −0.57 and −0.15.
These estimated bounds exclude zero, leading to the
conclusion (ignoring sampling variability) that vacci-
nation lowers the risk of severe pertussis in individuals
who will become infected regardless of whether they
are vaccinated.

Note if Pr[S(1) = 1|S(0) = 1] = 1, that is, the vac-
cine has no protective effect against infection, then the
protected principal stratum SP0 = (1,0) is empty and
both (16) and (17) equal E[Y(0)|S(0) = 1] meaning
that (10) is identifiable and equals E[Y |Z = 1, S =
1] − E[Y |Z = 0, S = 1]. Intuitively, the lack of vac-
cine effect against infection eliminates the potential for
selection bias.

As discussed in Section 2.5, incorporation of covari-
ates can tighten bounds. For covariates X with finite
support, one simple approach of adjusting for covari-
ates entails determining bounds within strata defined
by the levels of X and then taking a weighted average
of the within strata bounds over the distribution of X.
For the bounds in (16) and (17), adjustment for covari-
ates will always lead to bounds that are at least as tight
as bounds unadjusted for covariates (Lee, 2009; Long
and Hudgens, 2013).

If the observed data provide evidence contrary to
monotonicity (12), then bounds may be obtained un-
der only (11). Without monotonicity (12), the pro-
portion of infected controls that are in the doomed
principal stratum is no longer identified but may be
bounded in order to arrive at bounds for E[Y(0)|SP0 =
(1,1)]. In addition, the harmed principal stratum de-
fined by SP0 = (0,1) is no longer empty and thus
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E[Y(1)|SP0 = (1,1)] is no longer identifiable from
the observed data and may also be bounded in a sim-
ilar fashion to E[Y(0)|SP0 = (1,1)]. Details regard-
ing these bounds without the monotonicity assumption
may be found in Zhang and Rubin (2003) and Grilli
and Mealli (2008).

3.4 Sensitivity Analysis

The bounds (16) and (17) are useful in bounding the
vaccine effect on Y in the doomed stratum. However,
these bounds may be rather extreme. An alternative ap-
proach is to make an untestable assumption that iden-
tifies the post-infection vaccine effect on Y and then
consider how sensitive the resulting inference is to de-
partures from this assumption. For instance, assuming

Pr
[
Y(0) = 1|SP0 = (1,1)

]
(18)

= Pr
[
Y(0) = 1|SP0 = (1,0)

]
,

identifies (10). Hudgens and Halloran (2006) refer to
this as the no selection model. To examine how in-
ference varies according to departures from (18), fol-
lowing Scharfstein, Rotnitzky and Robins (1999), and
Robins, Rotnitzky and Scharfstein (2000), consider the
following sensitivity parameter:

exp(γ ) = (
Pr

[
Y(0) = 1|SP0 = (1,1)

]
/Pr

[
Y(0) = 0|SP0 = (1,1)

])
(19)

· (
Pr

[
Y(0) = 1|SP0 = (1,0)

]
/Pr

[
Y(0) = 0|SP0 = (1,0)

])−1
.

In words, exp(γ ) compares the odds of severe disease
when not vaccinated in the doomed versus the pro-
tected principal stratum. Assuming (18) corresponds to
γ = 0. A sensitivity analysis entails examining how in-
ference about (10) varies as γ becomes farther from 0.
For any fixed value of γ , (10) is identified (see Fig-
ure 1) and can be consistently estimated by maximum
likelihood estimation without any additional assump-
tions (Gilbert, Bosch and Hudgens, 2003). The lower
and upper bounds (17) and (16) are obtained by let-
ting γ → ∞ and γ → −∞. To see this, note that as
γ → ∞ (19) implies in the limit that either

Pr
[
Y(0) = 1|SP0 = (1,1)

] = 1 or

Pr
[
Y(0) = 1|SP0 = (1,0)

] = 0,

which is equivalent to (15). Sensitivity analysis can be
conducted by letting γ range over a set of values �.

Tighter bounds can be achieved by placing restric-
tions on �, perhaps based on prior beliefs about γ

elicited from subject matter experts. For example,
Shepherd, Gilbert and Mehrotra (2007) surveyed 10
recognized HIV experts in order to elicit a plausible
range for a sensitivity parameter representing a depar-
ture from the assumption of no selection bias between
vaccinated and unvaccinated individuals who acquired
HIV during an HIV vaccine trial. Included in this sur-
vey was the analysis approach, a brief explanation of
the potential for selection bias, the definition of the
sensitivity parameter being employed, examples of the
implications of certain sensitivity parameter values on
selection bias and possible justification for believing
certain values of the sensitivity parameter. The expert
responses to the survey were fairly consistent and sev-
eral written justifications for the respondents’ chosen
ranges indicated a high level of understanding of both
the counterfactual nature of the sensitivity parameter
and the need to account for selection bias.

4. RANDOMIZED STUDIES WITH PARTIAL
COMPLIANCE

4.1 Global Average Treatment Effect

In a placebo controlled randomized trial where (5)
holds but there is non-compliance (i.e., individuals are
randomly assigned to treatment or control but they do
not necessarily adhere or comply with their assigned
treatment), the naive estimator is a consistent esti-
mator of the average effect of treatment assignment.
However, in this case parameters other than the ef-
fect of treatment assignment may be of interest. As in
the last section, a principal effect may be defined us-
ing compliance as the intermediate post-randomization
variable over which to define principal strata; namely
the principal strata would consist of individuals who
would comply with their randomization assignment if
assigned treatment or control or “compliers,” individu-
als who would always take treatment regardless of ran-
domization or “always takers,” individuals who never
take treatment “never takers” and individuals who take
treatment only if assigned control or “defiers.” A prin-
cipal effect of interest might be the effect of treat-
ment in the complier principal stratum (Imbens and
Angrist, 1994; Angrist, Imbens and Rubin, 1996), in
which case bounds and sensitivity analyses similar to
those in Section 3 are applicable. However, as sev-
eral authors including Robins (1989) and Robins and
Greenland (1996) have pointed out, such principal ef-
fects may not be of ultimate public health interest be-
cause they only apply to the subpopulation of compli-
ers in clinical trials, which may differ from the pop-
ulation that elect to take treatment once licensed. For
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example, once efficacy is proved, a larger subpopula-
tion of people may be willing to take the treatment.
Effects defined on the subpopulation of compliers are
also of limited decision-making utility because indi-
vidual principal stratum membership is generally un-
known prior to treatment assignment (Joffe, 2011).

Robins and Greenland (1996) suggested that in set-
tings where the trial population could be persuaded to
take the treatment once licensed, a more relevant pub-
lic health estimand is the global average treatment ef-
fect, defined as the average effect of actually taking
treatment versus not taking treatment given treatment
assignment z. This causal estimand is similar to the
average treatment effect defined in Section 2, but re-
quires generalizing the potential outcome definitions
used previously to include separate potential outcomes
for each of the four combinations of treatment assign-
ment and actual treatment received. For further discus-
sion regarding causal models in presence of noncom-
pliance, see Chickering and Pearl (1996) and Dawid
(2003) among others.

Suppose we observe data from a clinical trial where
each individual is randomly assigned to treatment or
control. Let Z indicate treatment assignment where
Z = 1 denotes treatment and Z = 0 denotes control.
Suppose individuals do not necessarily comply with
their randomization assignment and let S be a vari-
able indicating whether or not treatment was actu-
ally taken, where S = 1 denotes treatment was taken
and S = 0 otherwise. Thus, an individual is compli-
ant with their randomization assignment if S = Z. Let
Y be a binary outcome of interest. Denote the po-
tential treatment taken by S(z) for z = 0,1, where
S(z) = 1 indicates taking treatment when assigned z

and S(z) = 0 denotes not taking treatment when as-
signed z. Let Y(z, s) denote the potential outcome
if an individual is assigned treatment z but actually
takes treatment s. Conceiving of these potential out-
comes depends on a supposition that trial participants
who did not comply in the trial could be persuaded to
take the treatment under other circumstances. Given
this supposition, the global average treatment effect
for each treatment assignment z = 1 and z = 0 is de-
fined as GATEz = E[Y(z,1) − Y(z,0)]. For instance,
GATE1 is the difference in the average outcomes un-
der the counterfactual scenario everyone was assigned
vaccine and did comply versus the counterfactual sce-
nario everyone was assigned vaccine but did not com-
ply.

Bounds for GATEz are given below under three as-
sumptions: independent treatment assignment

Z � {
S(0), S(1), Y (0,0),

(20)
Y(0,1), Y (1,0), Y (1,1)

};
monotonicity with respect to S

Pr
[
S(1) ≥ S(0)

] = 1;(21)

and the exclusion restriction

Y(0, s) = Y(1, s) for s = 0,1.(22)

Assumption (22) indicates treatment assignment has no
effect when the actual treatment taken is held fixed.
Under (22), GATE0 = GATE1 which we denote by
GATE. In this case each individual has two potential
outcomes according to s = 0 and s = 1 [which could
be denoted by Y(s) = Y(0, s) = Y(1, s) for s = 0,1]
and GATE is equivalent to the ATE discussed in Sec-
tion 2 with z replaced by s. Robins (1989) derived
bounds for GATE under several different combina-
tions of (20)–(22) as well as some additional assump-
tions such as monotonicity with respect to S, that is,
Y(z,1) ≥ Y(z,0) for z = 0,1. Manski (1990) inde-
pendently derived related results. Under (20)–(22), the
sharp lower and upper bounds on GATE are

−1 + max
z

{
Pr[Y = 1, S = 1|Z = z]}

(23)
+ max

z

{
Pr[Y = 0, S = 0|Z = z]}

and

1 − max
z

{
Pr[Y = 0, S = 1|Z = z]}

(24)
− max

z

{
Pr[Y = 1, S = 0|Z = z]}.

Balke and Pearl (1997) derived sharp bounds for
GATE under a variety of assumptions, including (20)–
(22), by recognizing that the derivation of the bounds
is equivalent to a linear programming optimization
problem. To see that bounds can be formulated as a
linear programming optimization problem, first note
that GATE can be expressed as a linear combina-
tion of probabilities of the joint distribution of L =
(Y (0,0), Y (0,1), Y (1,0), Y (1,1), S(0), S(1))∑

l1∈L1

Pr[L = l1] − ∑
l0∈L0

Pr[L = l0],(25)

where Ls is the set of possible realizations of L where
Y(0, s) = Y(1, s) = 1 for s = 0,1. Under independent
treatment assignment, there exists a linear transforma-
tion between the probabilities in the joint distribution
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of L and the probabilities in the conditional distribu-
tion of the observable random variables Y and S given
Z, namely

Pr[Y = y,S = s|Z = z] = ∑
l∈Oys·z

Pr[L = l],(26)

where Oys·z is the set of possible realizations of L

where S(z) = s and Y(z, s) = y for z, y, s = 0,1. To
find the sharp bounds, the objective function (25) is
minimized (or maximized) subject to the constraints
(26), Pr[L = l] ≥ 0 for every l ∈ L, and

∑
l∈L Pr[L =

l] = 1 where L is the set of all possible realizations of
L assuming (21) and (22). Optimization may be ac-
complished using the simplex algorithm and the di-
mension of this problem permits obtaining a closed
form solution involving probabilities of the observed
data distribution (Balke and Pearl, 1993), namely (23)
and (24).

If in addition to assumptions (20) and (22), it is as-
sumed that

E
[
Y(z,1) − Y(z,0)|Z = 1, S = s

]
(27)

= E
[
Y(z,1) − Y(z,0)|Z = 0, S = s

]
for s, z = 0,1 then GATE is identified and equals

E[Y |Z = 1] − E[Y |Z = 0]
E[S|Z = 1] − E[S|Z = 0](28)

(Hernán and Robins, 2006). For s = 0 assumption (27)
is known as a no current treatment interaction assump-
tion (Robins, 1994), and expression (28) is known as
the instrumental variables estimand (Imbens and An-
grist, 1994; Angrist, Imbens and Rubin, 1996). Sen-
sitivity analyses may be conducted by defining sen-
sitivity parameters representing departures from (20),
(22) or (27) and then examining how inference about
GATE varies as values of these parameters change. For
instance, Robins, Rotnitzky and Scharfstein (2000) de-
fine current treatment interaction functions which rep-
resent a departure from (27) for s = 0.

4.2 Cholestyramine Example

To illustrate the GATE, we consider data presented
in Pearl (2009, Section 8.2.6) on 337 subjects who par-
ticipated in a randomized trial to assess the effect of
cholestyramine on cholesterol reduction. Let Z = 1 de-
note assignment to cholestyramine and Z = 0 assign-
ment to placebo. Let S = 1 if cholestyramine was actu-
ally taken by the participant and S = 0 otherwise. Let
Y = 1 if the participant had a response and Y = 0 oth-
erwise, where response is defined as reduction in the

level of cholesterol by 28 units or more. Pearl reported
the following observed proportions:

P̂r[Y = 0, S = 0|Z = 0] = 0.919,

P̂r[Y = 0, S = 0|Z = 1] = 0.315,

P̂r[Y = 0, S = 1|Z = 0] = 0.000,

P̂r[Y = 0, S = 1|Z = 1] = 0.139,

P̂r[Y = 1, S = 0|Z = 0] = 0.081,

P̂r[Y = 1, S = 0|Z = 1] = 0.073,

P̂r[Y = 1, S = 1|Z = 0] = 0.000,

P̂r[Y = 1, S = 1|Z = 1] = 0.473.

No participants assigned placebo actually took choles-
tyramine, suggesting the monotonicity assumption (21)
is reasonable. On the other hand, 38.8% of individu-
als assigned treatment did not actually take cholestyra-
mine.

From (23) and (24), the bounds on GATE assum-
ing (21), (20) and (22) are estimated to be −1 +
max{0.000,0.473} + max{0.919,0.315} = 0.392 and
1 − max{0,0.139} − max{0.081,0.073} = 0.780. The
positive sign of the estimated bounds indicates the
treatment is beneficial. Pearl interprets the estimated
bounds as follows: “although 38.8% of the subjects de-
viated from their treatment protocol, the experimenter
can categorically state that, when applied uniformly to
the population, the treatment is guaranteed to increase
by at least 39.2% the probability of reducing the level
of cholesterol by 28 points or more.” Such an inter-
pretation does not account for sampling variability, the
topic of Section 7.

5. MEDIATION ANALYSIS

5.1 Natural Direct and Indirect Effects

As demonstrated in Sections 3 and 4, indepen-
dent treatment assignment does not guarantee that the
causal estimand of interest will be identifiable. An-
other setting where this occurs is in mediation analysis,
where researchers are interested in whether or not the
effect of a treatment is mediated by some intermediate
variable. Even in studies where treatment is assigned
randomly and there is perfect compliance, confound-
ing may exist between the intermediate variable and
the outcome of interest such that effects describing the
mediated relationships will not in general be identi-
fiable. Thus, bounds and sensitivity analysis may be
helpful in drawing inference.



NONPARAMETRIC BOUNDS AND SENSITIVITY ANALYSIS 607

To illustrate, let Y be an observed binary outcome
of interest, and S a binary intermediate variable ob-
served some time between treatment assignment Z and
the observation of Y . The goal is to assess whether and
to what extent the effect of Z on Y is mediated by or
through S. Denote the potential outcome of the inter-
mediate variable under treatment z by S(z) for z = 0,1
such that S = S(Z), and the potential outcomes un-
der treatment z and intermediate s as Y(z, s) such that
Y = Y(Z,S(Z)). Here, as in the previous section, it
is assumed that both Z and S can be set to particu-
lar fixed values, such that there are four potential out-
comes for Y per individual. Unless otherwise speci-
fied, independent treatment assignment (20) will be as-
sumed throughout this section.

Define the total effect of treatment to be E[Y(1,

S(1)) − Y(0, S(0))], which is equivalent to the ATE
defined in Section 2.1. The total effect of treatment can
be decomposed in the following way:

E
[
Y

(
1, S(1)

) − Y
(
0, S(0)

)]
= E

[
Y

(
1, S(z)

) − Y
(
0, S(z)

)]
(29)

+ E
[
Y

(
z′, S(1)

) − Y(z′, S(0)
]

for z = 0,1 and z′ = 1 − z. The right-hand side of (29)
decomposes the total effect into the sum of two sep-
arate effects. The first expectation on the right-hand
side of (29) is the natural direct effect for treatment
z, NDEz = E[Y(1, S(z)) − Y(0, S(z))] (Robins and
Greenland, 1992; Pearl, 2001; Robins, 2003; Kaufman,
Kaufman and MacLehose, 2009; Robins and Richard-
son, 2010). The natural direct effect is the average ef-
fect of the treatment on the outcome when the inter-
mediate variable is set to the potential value that would
occur under treatment assignment z. The second expec-
tation on the right-hand side of (29) is the natural indi-
rect effect, NIEz = E[Y(z, S(1)) − Y(z, S(0))] (Pearl,
2001; Robins, 2003; Imai, Keele and Yamamoto,
2010). The natural indirect effect is the difference in
the average outcomes when treatment is set to z and
the intermediate variable is set to the value that would
have occurred under treatment compared to if the inter-
mediate variable were set to the value that would have
occurred under control.

Though the total effect is identifiable assuming (20),
the natural direct and indirect effects are not identifi-
able since they entail E[Y(z, S(1−z))] which depends
on unobserved counterfactual distributions. Sjölander
(2009) derived bounds for the natural direct effects as-
suming only independent treatment assignment (20)
using the linear programming technique of Balke and

Pearl (1997). This results in the following sharp lower
and upper bounds for NDE0 and NDE1:

max

⎧⎨
⎩

−p11·0 − p10·0,
p11·1 + p01·0 − 1 − p10·0,
p10·1 + p00·0 − 1 − p11·0

⎫⎬
⎭

(30)

≤ NDE0 ≤ min

⎧⎨
⎩

p01·0 + p00·0,
1 − p00·1 + p01·0 − p10·0,
1 − p01·1 + p00·0 − p11·0

⎫⎬
⎭ ,

max

⎧⎨
⎩

−p01·1 − p00·1,
p00·0 − 1 − p01·1 + p10·1,
p01·0 − 1 − p00·1 + p11·1

⎫⎬
⎭

(31)

≤ NDE1 ≤ min

⎧⎨
⎩

p11·1 + p10·1,
1 − p01·1 + p10·1 − p11·0,
1 − p00·1 + p11·1 − p10·0

⎫⎬
⎭ ,

where pys·z = Pr(Y = y,S = s|Z = z). These bounds
may exclude 0, indicating a natural direct effect of
treatment z when the intermediate variable is set to
S(z) (ignoring sampling variability). There are in-
stances where the bounds in (30) and (31) may collapse
to a single point, for example, if p10·0 = p10·1 = 1. Us-
ing (29), bounds for NIE0 and NIE1 can be obtained by
subtracting the bounds for NDE1 and NDE0 from the
total effect, which is identified under (20) and equal to
(p11·1 + p10·1) − (p10·0 − p11·0).

Just as in Sections 2–4, monotonicity assumptions
can be made to tighten the above bounds. For instance,
if

Pr
[
S(0) ≤ S(1)

] = 1,

Pr
[
Y(0, s) ≤ Y(1, s)

] = 1 for s = 0,1 and

Pr
[
Y(z,0) ≤ Y(z,1)

] = 1 for z = 0,1,

are assumed, then Pr[L = l] = 0 for all l such that
(i) S(0) = 1 and S(1) = 0, (ii) Y(0, s) = 1 and
Y(1, s) = 0 for s = 0 or 1 or (iii) Y(z,0) = 1 and
Y(z,1) = 0 for s = 0 or 1, which restricts the feasible
region of the linear programming problem. The result-
ing sharp bounds for the natural direct effect are

max
{

0,p01·0 − p01·1,p10·1 − p10·0,
p01·0 − p01·1 + p10·1 − p10·0

}
(32)

≤ NDEz ≤ p10·1 + p11·1 − p10·0 − p11·0
(Sjölander, 2009). The bounds (32) are always at least
as narrow as (30) and (31). Interestingly these narrower
bounds do not depend on z. The bounds in (32) may
also collapse to a single point, for example, if p10·0 =
p10·1 and p01·0 − p01·1 = p11·1 − p11·0.
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The natural direct effect provides insight into whet-
her or not treatment yields additional benefit on the
outcome of interest when the influence of treatment on
the intermediate variable is eliminated. However, re-
searchers might also be interested in what benefit is
provided by treatment if the effect of the intermediate
variable on the outcome is eliminated or held constant.
This question suggests a different causal estimand
known as the controlled direct effect. Bounds for the
controlled direct effect can be found in Pearl (2001),
Cai et al. (2008), Sjölander (2009) and VanderWeele
(2011a).

5.2 Sensitivity Analysis

As in other settings where the effect of interest is not
identifiable, sensitivity analysis in the mediation set-
ting may be conducted by making untestable assump-
tions that identify the direct or indirect effects. Then
sensitivity of inference to departures from these as-
sumptions can be examined. For example, if (20) holds,
then the natural direct and indirect effects are identified
under the following additional assumptions

Y(z, s) � S|Z for z, s = 0,1 and(33)

Y(z, s) � S
(
z′) for z, z′, s = 0,1(34)

(Pearl, 2001; VanderWeele, 2010). Assumption (33)
would be valid if subjects were randomly assigned S

within different levels of treatment assignment Z. In
settings where S is not randomly assigned, (33) might
be considered plausible if it is believed that condi-
tional on Z there are no variables which confound the
mediator–outcome relationship. Both assumptions (33)
and (34) will not hold in general if Z has an effect on
some other intermediate variable, say R, which in turn
has an effect on both S and Y . Thus, (33) and (34) may
fail unless the mediator S occurs shortly after treat-
ment Z. Under assumptions (20), (33) and (34),

NDEz = (−1)z
∑
s

{
E[Y |Z = 1 − z, S = s]

− E[Y |Z = z, S = s]} Pr[S = s|Z = z]
and

NIEz = (−1)z
∑
s

E[Y |Z = z, S = s]

· {
Pr[S = s|Z = 1 − z]
− Pr[S = s|Z = z]}.

Because assumptions (33) and (34) cannot be empiri-
cally tested, sensitivity analysis should be conducted.

Similar to Section 2.4, sensitivity analysis might pro-
ceed by positing the existence of an unmeasured con-
founding variable U associated with the potential me-
diator values S(z) and the potential outcomes Y(z, s)

for z, s = 0,1. Assumption (33) would then replaced
by Y(z, s)�S|{Z,U} and (34) by Y(z, s)�S(z′)|U for
s, z, z′ = 0,1. Sensitivity analysis would then proceed
by exploring how inference about the natural direct and
indirect effects changes as the magnitude of the asso-
ciations of U with S(z) and Y(s, z′) for z, z′, s = 0,1
vary. For further details regarding bounds and sensitiv-
ity analysis in mediation analysis, see Imai, Keele and
Yamamoto (2010), VanderWeele (2010) and Hafeman
(2011).

6. LONGITUDINAL TREATMENT

6.1 Background

In Sections 2–5, treatment is assumed to remain
fixed across follow up time and outcomes are one-
dimensional. However, frequently researchers are in-
terested in assessing causal effects comparing longitu-
dinal outcomes for patients on different treatment regi-
mens where treatment may vary in time. As the number
of times at which an individual may receive treatment
increases, the number of possible treatment regimens
increases exponentially. Because each treatment regi-
men corresponds to a separate potential (longitudinal)
outcome and only one potential outcome is ever ob-
served, the fraction of potential outcomes that are un-
observed quickly grows close to one as the number of
possible treatment times increases. As in other settings,
unless treatment regimens are randomly assigned, reg-
imen effects will not be identifiable without additional
assumptions. In the longitudinal setting, bounds will
typically be largely uninformative because of the high
proportion of unobserved potential outcomes. There-
fore, analyses usually proceed by invoking modeling
assumptions that render treatment effects identifiable
and then conducting sensitivity analysis corresponding
to key untestable modeling assumptions.

Models for potential outcomes as functions of co-
variates (such as treatment) and possibly other po-
tential outcomes are often referred to as structural
models. For longitudinal potential outcomes and treat-
ments, popular models include structural nested mod-
els and marginal structural models (Robins, Rotnitzky
and Scharfstein, 2000; Robins, 1999; van der Laan
and Robins, 2003; Brumback et al., 2004). In Sec-
tion 6.2 below, we consider a marginal structural model
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where the treatment effect is identified assuming condi-
tionally independent treatment assignment. Sensitivity
analyses exploring departures from this assumption are
then considered in Section 6.3.

6.2 Marginal Structural Model

Consider a study where individuals possibly receive
treatment at τ fixed time points (i.e., study visits). In
general let Ā(t) = (A(0), . . . ,A(t)) represent the his-
tory of variable A up to time t and Ā be the entire his-
tory of variable A such that Ā = Ā(τ ). Let z(t) = 1 in-
dicate treatment at visit t , and z(t) = 0 otherwise such
that z̄ represents a treatment regimen for visits 0, . . . , τ .
Denote the observed treatment regimen up to time t as
Z̄(t). Let Y be some outcome of interest that may be
categorical or continuous, and denote the potential out-
come of Y at visit t for regimen z̄ by Y(z̄, t) and the ob-
served outcome by Y(t). Let X̄(t) denote the history of
some set of time varying covariates up to time t , where
X(0) denotes the baseline covariates. Assume for sim-
plicity there is no loss to follow-up or noncompliance
such that we observe n i.i.d. copies of (Z̄, Ȳ , X̄).

Consider the following marginal structural model of
the mean potential outcome were the entire population
to follow regimen z̄ up to time t :

g
(
E

[
Y(z̄, t)|X(0) = x(0)

])
(35)

= β0 + β1 cum
[
z̄(t − 1)

] + β2t + β3x(0)

for t ∈ {1, . . . , τ }, where cum[z̄(t − 1)] = ∑t−1
k=1 z(k)

and g(·) is an appropriate link function. The causal es-
timand of interest is β1, the regression coefficient for
cum[z̄(t − 1)], which is the effect of having received
treatment at one additional visit prior to time t con-
ditional on baseline covariates X(0). Because (35) in-
volves counterfactual outcome distributions, β1 is not
identifiable without additional assumptions. One addi-
tional assumption is conditionally independent treat-
ment assignment

Y(z̄, t) � Z(k)|{Z̄(k − 1), X̄(k)
}

(36)
for all z̄ and t > k

(Robins, Rotnitzky and Scharfstein, 2000; Robins,
1999; Brumback et al., 2004). This assumption is true
if the potential outcome at visit t under treatment regi-
men z̄ is independent of the observed treatment at visit
k given the history of treatment up to visit k − 1 and
the covariate history up to visit k. Assuming both a cor-
rectly specified model (35) and conditionally indepen-
dent treatment assignment (36), fitting the following

model to the observed data:

g
(
E

[
Y(t)|Z̄(t − 1) = z̄(t − 1),X(0) = x(0)

])
= η0 + η1 cum

[
z̄(t − 1)

] + η2t + η3x(0),

using generalized estimating equations with an inde-
pendent working correlation matrix and time varying
inverse probability of treatment weights (IPTW) yields
an estimator η̂1 that is consistent for β1 (Tchetgen Tch-
etgen et al., 2012a, 2012b).

6.3 Sensitivity Analysis

If assumption (36) does not hold, then the IPTW es-
timator η̂1 is not necessarily consistent. Because (36) is
not testable from the observed data, sensitivity analysis
might be considered to assess robustness of inference
to departures from (36). Following Robins (1999) and
Brumback et al. (2004), let

c
(
t, k, z̄(t − 1), x̄(k)

)
= E

[
Y(z̄, t)|Z̄(k) = z̄(k), X̄(k) = x̄(k)

]
− E

[
Y(z̄, t)|Z(k) = 1 − z(k),

Z̄(k − 1) = z̄(k − 1), X̄(k) = x̄(k)
]

for t > k and z̄ such that Pr[Z(k) = z(k)|Z̄(k − 1) =
z̄(k−1)] is bounded away from 0 and 1. The function c

quantifies departures from the conditional independent
treatment assignment assumption (36) at each visit t >

k, where c(t, k, z̄(t −1), x̄(k)) = 0 for all z̄ and t > k if
(36) holds. For the identity link, a bias adjusted estima-
tor of the causal effect β1 may be obtained by recalcu-
lating the IPTW estimator with the observed outcome
Y(t) replaced by Yγ (t) = Y(t)−b(Z̄(t −1), X̄(t −1))

where

b
(
Z̄(t − 1), X̄(t − 1)

)
=

t−1∑
k=0

c
(
t, k, Z̄(t − 1), X̄(k)

)

· f [
1 − Z(k)|Z̄(k − 1), X̄(k)

]
and f [z(k)|z̄(k − 1), x̄(k)] = P̂r[Z(k) = z(k)|Z̄(k −
1) = z̄(k − 1), X̄(k) = x̄(k)] is an estimate of the con-
ditional probability of the observed treatment based on
some fitted parametric model (Brumback et al., 2004).
Provided this parametric model and c are both correctly
specified, this bias adjusted estimator, say η̃1, is consis-
tent for β1. Sensitivity analysis proceeds by examining
how η̃1 changes when varying sensitivity parameters in
c(t, k, z̄(t − 1), x̄(k)).

Because c(t, k, z̄(t − 1), x̄(k)) is not identifiable
from the observable data, Robins (1999) recommends
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choosing a particular c that is easily explainable to
subject matter experts to facilitate eliciting plausi-
ble ranges of the sensitivity parameters. As an exam-
ple of a particular c, Brumback et al. (2004) suggest
c(t, k, z̄(t − 1), x̄(k)) = γ {2z(k) − 1} where γ is an
unidentifiable sensitivity analysis parameter. Note that
c(t, k, z̄(t −1), x̄(k)) = γ for z(k) = 1 and c(t, k, z̄(t −
1), x̄(k)) = −γ for z(k) = 0. Thus, γ > 0 (γ < 0) cor-
responds to subjects receiving treatment at time k hav-
ing greater (smaller) mean potential outcomes at fu-
ture visit t than those who did not receive treatment
at visit k. When γ = 0, Y(t) = Y γ (t) and therefore
η̃1 = η̂1. The function c might depend on the baseline
covariates X(0) or the time-varying covariates X̄(k).
In this case, as in Section 2.5, care should be taken in
clearly communicating the sensitivity parameters’ re-
lationship to these covariates when eliciting plausible
ranges from subject matter experts. Another considera-
tion when choosing a function c is whether it will allow
for the sharp null of no treatment effect, that is, for all
individuals Y(z̄, t) = Y(z̄′, t) for all z̄, z̄′, t . The ex-
ample function c presented above allows for the sharp
null. See Brumback et al. (2004) for other example c

functions and further discussion of sensitivity analysis
for marginal structural models.

7. IGNORANCE AND UNCERTAINTY REGIONS

Treatment effect bounds describe ignorance due to
partial identifiability but do not account for uncer-
tainty due to sampling error. This section discusses
some methods to appropriately quantify uncertainty
due to sampling variability when drawing inference
about partially identifiable treatment effects. Over the
past decade, a growing body of research, especially
in econometrics, has considered inference of partially
identifiable parameters. The approach presented below
draws largely upon Vansteelandt et al. (2006), who
considered methods for quantifying uncertainty in the
general setting where missing data causes partial iden-
tifiability. As questions about treatment (or causal) ef-
fects can be viewed as missing data problems, the ap-
proach of Vansteelandt et al. generally applies (under
certain assumptions) to the type of problems consid-
ered throughout this paper. This approach builds on
earlier work by Robins (1997) and others.

7.1 Ignorance Regions

Let L be a vector containing the potential outcomes
for an individual, let O denote the observed data vec-
tor, and let R be a vector containing indicator vari-
ables denoting whether the corresponding component

of L is observed. For example, L = (Y (1), Y (0)), O =
(Z,Y ), and R = (Z, (1 − Z)) for the scenario de-
scribed in Section 2 and L = (Y (1), Y (0), S(1), S(0)),
O = (Z,Y,S) and R = (Z, (1−Z),Z, (1−Z)) for the
scenario described in Section 3. Denote the distribution
of (L,R) by f (L,R) and let f (L) = ∫

f (L,R)dR.
The goal is to draw inference about a parameter vector
β which is a functional of the distribution of potential
outcomes L; this is sometimes made explicit by writing
β = β{f (L)}. Denote the true distribution of (L,R)

by f0(L,R) and the true value of β by β0 = β{f0(L)}.
For example, β0 = E[Y(1)−Y(0)] for the scenario de-
scribed in Section 2 and β0 = E[Y(1) − Y(0)|SP0 =
(1,1)] for the scenario described in Section 3. De-
note the true observed data distribution by f0(O) =∫

f0(L,R)dL(1−R) where L(1−r) denotes the missing
part of L when R = r (i.e., the unobserved potential
outcomes). The challenge in drawing inference about
β0 is that there may be multiple full data distributions
f (L,R) that marginalize to the true observed data dis-
tribution, that is, f0(O) = ∫

f (L,R)dL(1−R) for some
f 
= f0. When this occurs, β may be only partially
identifiable from O , in which case bounds can be de-
rived for β0 as illustrated in the sections above.

The set of values of β{f (L)} such that f (L,R)

marginalizes to the true observed data distribution is
sometimes called the ignorance region or the identi-
fied set. These ignorance regions or intervals are dis-
tinct from traditional confidence intervals in that as
the sample size tends to infinity these intervals will
not shrink to a single point when β is partially iden-
tifiable. The ignorance region for β can be defined
formally as follows. Following Robins (1997), de-
fine a class M(γ ) of full data laws indexed by some
sensitivity parameter vector γ to be nonparametri-
cally identified if for each observed data law f (O)

there exists a unique law f (L,R;γ ) ∈ M(γ ) such
that f (O) = ∫

f (L,R;γ )dL(1−R). In other words,
the class M(γ ) contains a unique distribution that
marginalizes to each possible observed data distribu-
tion. For example, for the sensitivity analysis approach
in Section 3.4, Hudgens and Halloran (2006, §4.3.3)
defined a class of full data laws indexed by γ given in
(19) that is nonparametrically identified. The ignorance
region for β is formally defined to be

irf0(β,�)

=
{
β

{
f (L)

} : f (L)

=
∫

f (L,R;γ )dR for some(37)
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f (L,R) ∈ M(�) such that∫
f (L,R;γ )dL(1−R) = f0(O)

}
,

where � is the set of all possible values of γ un-
der whatever set of assumptions is being invoked
and M(�) = ⋃

γ∈� M(γ ). Assume M(�) contains
the true full data distribution, that is, f0(L,R) =
f (L,R,γ0) for some γ0 ∈ �. [For considerations when
M(�) does not contain the true full data distribution,
see Todem, Fine and Peng (2010).] Because M(γ ) is
nonparametrically identified, for each γ ∈ � there is
a single β(γ ) = β{∫ f (L,R;γ )dR)} in the ignorance
region (37). If M(�) includes all possible full data
distributions that marginalize to any possible observed
data distribution, then the ignorance region will contain
the bounds.

In practice, the ignorance region will be unknown
because it depends on the unknown true observed data
distribution f0(O). For γ fixed, β(γ ) is identifiable
from the observed data and the ignorance region can
be estimated by estimating β(γ ) for each value of
γ ∈ �, denoted by β̂(γ ). The resulting estimator of
irf0(β,�) is then {β̂(γ ) :γ ∈ �}. For scalar β(γ ), let
β̂l = infγ∈�{β̂(γ )} and β̂u = supγ∈�{β̂(γ )} such that
the estimated ignorance region is contained in the in-
terval [β̂l, β̂u].
7.2 Uncertainty Regions

Estimated ignorance regions convey ignorance due
to partial identifiability and do not reflect sampling
variability in the estimates. Indeed much of the liter-
ature on bounds and sensitivity analysis of treatment
effects tends to report estimated ignorance regions and
either ignores sampling variability or employs ad-hoc
inferential approaches such as pointwise confidence in-
tervals conditional on each value of the unidentifiable
sensitivity parameter. More recent developments have
provided a formal framework for conducting inference
in partial identifiability settings (Imbens and Manski,
2004; Vansteelandt et al., 2006; Romano and Shaikh,
2008; Bugni, 2010; Todem, Fine and Peng, 2010). The
main focus in this research has been the construction
of confidence regions for either the parameter β0 or the
ignorance region irf0(β0,�).

Following Vansteelandt et al. (2006), a (1−α) point-
wise uncertainty region for β0 is defined to be a region
URp(β,�) such that

inf
γ∈�

Prf0

{
β(γ ) ∈ URp(β,�)

} ≥ 1 − α,

where Prf0{·} denotes probability under f0(O). That
is, URp(β,�) contains β(γ ) with at least probability
1 − α for all γ ∈ �. In particular, assuming γ0 ∈ �,
then URp(β,�) will contain β0 = β(γ0) with at least
probability 1 − α.

An appealing aspect of pointwise uncertainty regions
is that they retain the usual duality between confidence
intervals and hypothesis testing. Namely, one can test
the null hypothesis H0 :β0 = βc versus Ha :β0 
= βc for
some specific βc at the α significance level by reject-
ing H0 when the (1 − α) pointwise uncertainty region
URp(β,�) excludes βc. This is easily shown by noting
for βc = β(γ0)

Prf0[reject H0]
= 1 − Prf0

{
β(γ0) ∈ URp(β,�)

}
≤ 1 − infγ∈� Prf0

{
β(γ ) ∈ URp(β,�)

} ≤ α,

where the last inequality follows because URp(β,�) is
a (1 − α) pointwise uncertainty region.

Various methods under different assumptions have
been proposed for constructing pointwise uncertainty
regions. Imbens and Manski (2004) and Vansteelandt
et al. (2006) proposed a simple method for construct-
ing pointwise uncertainty regions for a scalar β with
ignorance region [βl, βu]. Let γl, γu ∈ � be the values
of the sensitivity parameter such that βl = β(γl) and
βu = β(γu). Assume

There exist β̂l such that
√

n(β̂l − βl)
d→ N

(
0, σ 2

l

)
(38)

and β̂u such that
√

n(β̂u − βu)
d→ N

(
0, σ 2

u

)
.

The values γl and γu are the same(39)
for all possible observed data laws.

Under assumptions (38) and (39), an asymptotic (1 −
α) pointwise uncertainty interval for β0 is

URp(β,�)
(40)

= [β̂l − cασ̂l/
√

n, β̂u + cασ̂u/
√

n],
where cα satisfies

	

(
cα +

√
n(β̂u − β̂l)

max{σ̂l, σ̂u}
)

− 	(−cα) = 1 − α,(41)

	(·) denotes the cumulative distribution function of
a standard normal variate, and σ̂l and σ̂u are con-
sistent estimators of σl and σu, respectively (Imbens
and Manski, 2004; Vansteelandt et al., 2006). Note if
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β̂u − β̂l > 0 and n is large such that the left-hand side
of (41) is approximately equal to 1 − 	(−cα), then
cα ≈ z1−α , the (1 − α) quantile of a standard normal
distribution. In contrast, if β̂u = β̂l , then cα = z1−α/2.

In addition to the pointwise uncertainty region,
Horowitz and Manski (2000) and Vansteelandt et al.
(2006) define a (1 − α) strong uncertainty region for
β0 to be a region URs(β,�) such that

Prf0

{
irf0(β,�) ⊆ URs(β,�)

} ≥ 1 − α,

that is, URs(β,�) contains the entire ignorance region
with probability at least 1 − α. Whereas the pointwise
uncertainty region can be viewed as a confidence re-
gion for the partially identifiable target parameter β0,
the strong uncertainty region is a confidence region for
the ignorance region irf0(β,�). Clearly, any strong un-
certainty region will also be a (conservative) pointwise
uncertainty region as β0 ∈ irf0(β,�). Under assump-
tions (38) and (39), an asymptotic (1 − α) strong un-
certainty interval for scalar β0 is simply

URs(β,�)
(42)

= [β̂l − z1−α/2σ̂l/
√

n, β̂u + z1−α/2σ̂u/
√

n].
Note that (42) is equivalent to the union of all pointwise
(1−α) confidence intervals for β(γ ) under M(γ ) over
all γ ∈ �, which is a simple approach often employed
when reporting sensitivity analysis. Because strong un-
certainty intervals are necessarily pointwise intervals,
this simple approach is also a valid method for com-
puting pointwise intervals, although intervals based on
(40) will always be as or more narrow.

The two key assumptions (38) and (39) may not hold
in general. For example, (38) may not hold for all pos-
sible observed data distributions, particularly for ex-
treme values of γl or γu. Assumption (39) may not
hold if different observed data distributions place dif-
ferent constraints on the possible range of γ or if �

is chosen by the data analyst on the basis of the ob-
served data. If (38) or (39) does not hold, alternative
inferential methods are needed (e.g., see Vansteelandt
and Goetghebeur, 2001; Horowitz and Manski, 2006;
Chernozhukov, Hong and Tamer, 2007; Romano and
Shaikh, 2008; Stoye, 2009; Todem, Fine and Peng,
2010; Bugni, 2010).

A third approach to quantifying uncertainty due to
sampling variability is to consider β(·) as function of γ

and construct a (1 − α) simultaneous confidence band
for the function β(·). That is, a random function CB(·)
is found such that

Prf0

{
β(γ ) ∈ CB(γ ) for all γ ∈ �

} ≥ 1 − α.

It follows immediately that
⋃

γ∈� CB(γ ) is a strong
uncertainty region (and thus a pointwise uncertainty re-
gion as well). Todem, Fine and Peng (2010) suggest a
bootstrap approach to constructing confidence bands.

Whether pointwise uncertainty regions, strong un-
certainty regions, or confidence bands are preferred
will be context specific. Typically, it is of interest to
draw inference about a single target parameter and not
the entire ignorance region. Thus, in general point-
wise uncertainty regions may have greater utility than
strong uncertainty regions. Because strong uncertainty
regions are necessarily conservative pointwise uncer-
tainty regions, the strong regions can be useful in set-
tings where determining a pointwise region is more dif-
ficult. Additionally, in some settings it may be of inter-
est to assess whether β is nonzero, for example, if β

denotes the effect of treatment. In these settings, com-
puting a confidence band CB(·) has the advantage of
providing the subset of � where the null hypothesis
β(γ ) = 0 can be rejected. This is especially appeal-
ing if γ is scalar, in which case a confidence band (as
in Figure 3 of Todem, Fine and Peng, 2010) provides
a simple approach to reporting sensitivity analysis re-
sults. On the other hand, if γ is multidimensional, vi-
sualizing confidence bands can be difficult and instead
reporting the (pointwise or strong) uncertainty region
may be more practical.

7.3 Data Example

Returning to the pertussis vaccine study described in
Section 3, an analysis that ignores the potential for se-
lection bias might entail computing a naive estimator
(the difference in empirical means of Y between the
vaccinated and unvaccinated amongst those infected)
along with a 95% Wald confidence interval, which
would be −0.31 (95% CI −0.38, −0.23). If the sensi-
tivity analysis approach in Section 3.4 is applied, the
parameter of interest β(γ ) = E[Y(1) − Y(0)|SP0 =
(1,1)] is identified for fixed values of the sensitiv-
ity analysis parameter γ given in (19). For fixed γ ,
E[Y(0)|SP0 = (1,1)] is determined by the intersection
of the negative sloped line (14) and the curve (19),
which is illustrated in Figure 1 for the pertussis data.
Because E[Y(0)|SP0 = (1,1)] increases with γ , β(γ )

is a monotonically decreasing function of γ . There-
fore γl and γu equal the maximum and minimum val-
ues of � regardless of the observed data law, indicat-
ing (39) holds provided that � is chosen by the ana-
lyst independent of the observed data. For γ fixed and
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FIG. 1. Graphical depiction of the bounds and sensitivity anal-
ysis model described in Sections 3.3 and 3.4. The solid thin line
with negative slope represents a set of joint distribution functions
of (Z,S(1), S(0), Y (1), Y (0)) that all give rise to the same distribu-
tion of the observable random variables (Z,S,Y ). The four dotted
curves depict the log odds ratio selection model for γ = 0,1,2,4.
The γ = 0 model is equivalent to the no selection model. Each se-
lection model identifies exactly one pair of expectations from this
set, rendering the principal effect (10) identifiable. The thick black
lines on the edge of the unit square correspond to the lower bound
of the principal effect.

finite, β(γ ) can be estimated via nonparametric maxi-
mum likelihood (i.e., without any additional assump-
tions). This estimator will be consistent and asymp-
totically normal under standard regularity conditions if
Pr[S(0) > S(1)] > 0 (i.e., the vaccine has a protective
effect against infection). For γ = ±∞ and Pr[S(0) >

S(1)] > 0, Lee (2009) proved that the estimators of the
bounds similar to those given in Section 3.3 are consis-
tent and asymptotically normal for a continuous out-
come Y . The limiting distribution of the estimator of
the upper bound (γ = −∞) for a binary outcome will
be normal if in addition

1 − E[Y |S = 1,Z = 0] 
= Pr[S = 1|Z = 1]
Pr[S = 1|Z = 0] ,(43)

and similarly the estimator of the lower bound (γ =
∞) will be asymptotically normal if in addition

E[Y |S = 1,Z = 0] 
= Pr[S = 1|Z = 1]
Pr[S = 1|Z = 0] .(44)

Likelihood ratio tests for the null hypotheses that (43)
and (44) do not hold yield p-values p < 10−4 and
p = 0.18, respectively, indicating strong evidence that
(43) holds and equivocal evidence regarding (44). As-
suming (43) and (44) both hold implies (38), such that

TABLE 1
Pertussis vaccine study data: Estimated ignorance regions and

95% pointwise and strong uncertainty regions of
β = E[Y (1) − Y (0)|SP0 = (1,1)] for different �

� irf0 (β,�) URp(β,�) URs (β,�)

[−3,3] [−0.49,−0.17] [−0.58,−0.07] [−0.59,−0.06]
[−5,5] [−0.55,−0.15] [−0.66,−0.05] [−0.69,−0.03]
[−10,10] [−0.57,−0.15] [−0.70,−0.04] [−0.73,−0.02]
(−∞,∞) [−0.57,−0.15] [−0.70,−0.04] [−0.73,−0.02]

(40) and (42) can be used to construct (1 − α) point-
wise and strong uncertainty intervals for β0. Estimated
ignorance and uncertainty intervals of β0 for different
choices of � are given in Table 1 and Figure 2, with
standard error estimates obtained using the observed
information. Even for � = (−∞,∞) both the point-
wise and strong uncertainty intervals exclude zero, in-
dicating a significant effect of vaccination. In particu-
lar, with 95% confidence we can conclude the vaccine
decreased the risk of severe disease among individuals
who would have become infected regardless of vacci-
nation.

FIG. 2. Estimated ignorance regions irf0 (β,�) and 95% point-
wise uncertainty regions URp(β,�) for the pertussis vaccine ex-
ample in Section 7.3. The principal effect (10) is denoted β and
� = [−γu, γu] for γu along the horizontal axis. The curve given by
the lower boundary of the area with black slanted lines corresponds
to β̂l , the minimum of the estimated ignorance regions, and the up-
per bound of the area with black slanted lines corresponds to β̂u,
the maximum of the estimated ignorance region. The curve given by
the lower (upper) boundary of the gray shaded area corresponds to
the minimum (maximum) of the 95% pointwise uncertainty region.
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8. DISCUSSION

This paper considers conducting inference about the
effect of a treatment (or exposure) on an outcome of
interest. Unless treatment is randomly assigned and
there is perfect compliance, the effect of treatment may
be only partially identifiable from the observable data.
Through the five settings in Sections 2–6, we discussed
two approaches often employed to address partial iden-
tifiability: (i) bounding the treatment effect under mini-
mal assumptions, or (ii) invoking additional untestable
assumptions that render the treatment effect identifi-
able and then conducting sensitivity analysis to assess
how inference about the treatment effect changes as
the untestable assumptions are varied. Incorporating
uncertainty due to sampling variability was discussed
in Section 7, and throughout large-sample frequen-
tist methods were considered. Analogous Bayesian
approaches to partial identification (Gustafson, 2010;
Moon and Schorfheide, 2012; Richardson, Evans and
Robins, 2011) and sensitivity analysis (McCandless,
Gustafson and Levy, 2007; Gustafson et al., 2010) have
also been developed.

Determining treatment effect bounds is essentially
a constrained optimization problem, where the con-
straints are determined by the relationship between the
distributions of the observable random variables and of
the potential outcomes under whichever assumptions
are being made. In simple cases, such as in Section 2.1,
bounds can easily be derived from first principles and
may have simple closed forms; in more complicated
settings, such as in Section 4, bounds may be deter-
mined using linear programming or other optimization
methods. In many cases, calculating bounds under min-
imal assumptions may seem to be a meaningless exer-
cise because the bounds are often quite wide and may
not exclude the null of no treatment effect as seen with
the “no assumptions” bounds in Section 2. On the con-
trary, in settings like this Robins and Greenland (1996)
write: “Some argue against reporting bounds for non-
identifiable parameters, because bounds are often so
wide as to be useless for making public health deci-
sions. But we view the latter problem as a reason for
reporting bounds in conjunction with other analyses:
Wide bounds make clear that the degree to which pub-
lic health decisions are dependent on merging the data
with strong prior beliefs.”

Bounds may be narrowed by reducing the feasible
region of the optimization problem. This may be ac-
complished by considering further assumptions that
place restrictions on either the distributions of the po-
tential outcomes, the distributions of the observable

random variables, or both. Assumptions that place re-
strictions on the observable random variables may have
implications which are testable. If the observed data
provide evidence against any assumptions being con-
sidered, bounds should be computed without making
these assumptions. Those assumptions without testable
implications can only be determined to be plausible or
not by subject matter experts.

A potentially less conservative approach to comput-
ing bounds is to make untestable assumptions which
identify the causal estimand and then assess the ro-
bustness of inference drawn to departures from these
assumptions in a sensitivity analysis. A general guide-
line for specifying the sensitivity analysis parameters
representing these departures is to choose parameters
that are easily interpretable to subject matter experts.
Parameter specification will depend on whether or not
sensitivity analysis is conducted by directly modeling
the association of an unmeasured confounder U with
treatment selection and the potential outcomes. Sen-
sitivity analyses based on this approach are applica-
ble when the existence of U is known and there is
some historical knowledge of the magnitude associa-
tion of U with Z and the potential outcomes (Robins,
1999; Brumback et al., 2004). Otherwise, alternative
approaches based on directly modeling the unobserved
potential outcome distributions may be preferred. A
second guiding principle should be to avoid specifica-
tions of sensitivity parameters that place restrictions on
the distributions of observable random variables that
are not empirically supported. A third consideration
when conducting sensitivity analysis concerns deter-
mining a plausible region of the sensitivity parame-
ters. That the region be chosen prior to data analysis
is in general necessary for inference, such as described
in Section 7, to be valid. Choice of the region of the
sensitivity parameters may be dictated by whether one
wants to consider only mild or also severe departures
from the identifying assumptions. If the identifying as-
sumption in question is considered plausible, then it
may be that only mild departures from the assumption
are deemed necessary for the sensitivity analysis. In
this case, subject matter experts can be consulted to
determine, prior to data analysis, a plausible region for
the sensitivity parameters. If, on the other hand, severe
departures from untestable identifying assumptions are
to be entertained, sensitivity analyses should be con-
ducted over all possible values of the sensitivity param-
eters. Sensitivity analyses which consider all possible
full data distributions that marginalize to the observed
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data distribution will yield ignorance regions contain-
ing the bounds.

Though the examples presented here demonstrate the
broad scope of scenarios where bounds and sensitivity
analysis methods have been derived and employed to
draw inference about treatment effects, they certainly
are not exhaustive of all settings where these meth-
ods have been developed. For instance, VanderWeele,
Mukherjee and Chen (2012) consider sensitivity anal-
ysis to unmeasured confounding for causal interaction
effects. Bounds and sensitivity analysis methods have
also recently been considered in the presence of in-
terference, that is, in settings where treatment of one
individual may affect the outcome of another individ-
ual, such as in social networks (Ver Steeg and Gal-
styan, 2010; VanderWeele, 2011b; Manski, 2013). For
studies where sensitivity analyses are planned or an-
ticipated, Rosenbaum and colleagues have examined
how aspects of study design and the choice of statistical
tests or estimators may affect the power or precision of
the sensitivity analyses to be conducted (Heller, Rosen-
baum and Small, 2009; Rosenbaum, 2010a; 2010b;
2011).

Bounds and sensitivity analyses of treatment effects
have been utilized in various substantive settings, such
as biomedical research (e.g., Cole et al., 2005; Rerks-
Ngarm et al., 2009; VanderWeele and Hernández-Diaz,
2011; Hu et al., 2012) and economics (e.g., Heckman,
2001; Sianesi, 2004; Armstrong, Guay and Weber,
2010). Nonetheless, despite the wide range of settings
in which these methods are applicable, their use in
substantive settings remains somewhat limited in fre-
quency. Given the large amount of literature detailing
their broad scope of applicability and that formal infer-
ential methods for partially identifiable parameters are
now available, hopefully these approaches will be em-
ployed with greater frequency in substantive settings in
the future.

The sensitivity analyses described throughout this
paper focus on departures from untestable assump-
tions which identify treatment effects. Other types of
sensitivity analyses might be considered as well, for
example, to assess how robust inferences are to var-
ious analytical decisions that are invariably made in
data analysis. Rosenbaum (2002, Section 11.9) refers
to such assessment as “stability analysis,” in contrast
to the types of sensitivity analyses discussed above.
See Rosenbaum (1999, 2002) and Morgan and Win-
ship (2007, Section 6.2) for further discussion regard-
ing various types of sensitivity analyses beyond the
type considered here.

ACKNOWLEDGMENTS

The authors were partially supported by NIH NIAID
grants R01 AI085073 and R37 AI054165. The content
is solely the responsibility of the authors and does not
necessarily represent the official views of the National
Institute of Allergy and Infectious Diseases or the Na-
tional Institutes of Health. The authors thank Guest Ed-
itors Andrea Rotnitzky and Thomas Richardson for the
invitation to contribute to this special issue of Statisti-
cal Science; and the Associate Editor and reviewers for
their helpful comments. This paper was written while
the first author was a Ph.D. student in the Department
of Biostatistics at the University of North Carolina.

REFERENCES

ANGRIST, J. D., IMBENS, G. W. and RUBIN, D. B. (1996). Iden-
tification of causal effects using instrumental variables. J. Amer.
Statist. Assoc. 91 444–455.

ARMSTRONG, C. S., GUAY, W. R. and WEBER, J. P. (2010). The
role of information and financial reporting in corporate gover-
nance and debt contracting. J. Accounting and Economics 50
179–234.

BALKE, A. and PEARL, J. (1993). Nonparametric bounds on
causal effects from partial compliance data. Technical report,
Univ. California, Los Angeles.

BALKE, A. and PEARL, J. (1997). Bounds on treatment effects
from studies with imperfect compliance. J. Amer. Statist. Assoc.
92 1171–1177.

BRUMBACK, B. A., HERNÁN, M. A., HANEUSE, S. J. P. A.
and ROBINS, J. M. (2004). Sensitivity analyses for unmeasured
confounding assuming a marginal structural model for repeated
measures. Stat. Med. 23 749–767.

BUGNI, F. A. (2010). Bootstrap inference in partially identified
models defined by moment inequalities: Coverage of the identi-
fied set. Econometrica 78 735–753. MR2656646

CAI, Z., KUROKI, M., PEARL, J. and TIAN, J. (2008). Bounds on
direct effects in the presence of confounded intermediate vari-
ables. Biometrics 64 695–701. MR2526618

CHERNOZHUKOV, V., HONG, H. and TAMER, E. (2007). Estima-
tion and confidence regions for parameter sets in econometric
models. Econometrica 75 1243–1284. MR2347346

CHIBURIS, R. C. (2010). Semiparametric bounds on treatment ef-
fects. J. Econometrics 159 267–275. MR2733120

CHICKERING, D. M. and PEARL, J. (1996). A clinician’s tool
for analyzing non-compliance. In AAAI-96 Proceedings 1269–
1276. AAAI Press, Menlo Park, CA.

COLE, S. R., HERNÁN, M. A., MARGOLICK, J. B., CO-
HEN, M. H. and ROBINS, J. M. (2005). Marginal structural
models for estimating the effect of highly active antiretroviral
therapy initiation on CD4 cell count. Amer. J. Epidemiol. 162
471–478.

CORNFIELD, J., HAENSZEL, W., HAMMOND, E. C., LILIEN-
FELD, A. M., SHIMKIN, M. B. and WYNDER, E. L. (1959).
Smoking and lung cancer: Recent evidence and a discussion of
some questions. J. Natl. Cancer Inst. 22 173–203.

http://www.ams.org/mathscinet-getitem?mr=2656646
http://www.ams.org/mathscinet-getitem?mr=2526618
http://www.ams.org/mathscinet-getitem?mr=2347346
http://www.ams.org/mathscinet-getitem?mr=2733120


616 RICHARDSON, HUDGENS, GILBERT AND FINE

DAWID, A. P. (2003). Causal inference using influence dia-
grams: The problem of partial compliance. In Highly Structured
Stochastic Systems (P. J. Green, N. L. Hjort and S. Richardson,
eds.) 45–81. Oxford Univ. Press, Oxford. MR2082406

FRANGAKIS, C. E. and RUBIN, D. B. (2002). Principal stratifica-
tion in causal inference. Biometrics 58 21–29. MR1891039

GILBERT, P. B., BOSCH, R. J. and HUDGENS, M. G. (2003).
Sensitivity analysis for the assessment of causal vaccine effects
on viral load in HIV vaccine trials. Biometrics 59 531–541.
MR2004258

GRILLI, L. and MEALLI, F. (2008). Nonparametric bounds on the
causal effect of university studies on job opportunities using
principal stratification. J. Educ. Behav. Stat. 33 111–130.

GUSTAFSON, P. (2010). Bayesian inference for partially identified
models. Int. J. Biostat. 6 1–18. MR2602560

GUSTAFSON, P., MCCANDLESS, L. C., LEVY, A. R. and
RICHARDSON, S. (2010). Simplified Bayesian sensitivity anal-
ysis for mismeasured and unobserved confounders. Biometrics
66 1129–1137. MR2758500

HAFEMAN, D. M. (2011). Confounding of indirect effects: A sen-
sitivity analysis exploring the range of bias due to a cause com-
mon to both the mediator and the outcome. Amer. J. Epidemiol.
174 710–717.

HECKMAN, J. J. (2001). Micro data, heterogeneity, and the evalu-
ation of public policy: Nobel lecture. J. Political Economy 109
673–748.

HELLER, R., ROSENBAUM, P. R. and SMALL, D. S. (2009). Split
samples and design sensitivity in observational studies. J. Amer.
Statist. Assoc. 104 1090–1101. MR2750238

HERNÁN, M. A. and ROBINS, J. M. (1999). Assessing the sensi-
tivity of regression results to unmeasured confounders in obser-
vational studies [letter]. Biometrics 55 1316–1317.

HERNÁN, M. A. and ROBINS, J. M. (2006). Instruments for causal
inference: An epidemiologist’s dream? Epidemiology 17 360–
372.

HOROWITZ, J. L. and MANSKI, C. F. (2000). Nonparametric anal-
ysis of randomized experiments with missing covariate and out-
come data. J. Amer. Statist. Assoc. 95 77–84. MR1803142

HOROWITZ, J. L. and MANSKI, C. F. (2006). Identification
and estimation of statistical functionals using incomplete data.
J. Econometrics 132 445–459. MR2323988

HU, J. C., WILLIAMS, S. B., O’MALLEY, A. J., SMITH, M. R.,
NGUYEN, P. L. and KEATING, N. L. (2012). Androgen-
deprivation therapy for nonmetastatic prostate cancer is asso-
ciated with an increased risk of peripheral arterial disease and
venous thromboembolism. Eur. Urol. 61 1119–1128.

HUDGENS, M. G. and HALLORAN, M. E. (2006). Causal vaccine
effects on binary postinfection outcomes. J. Amer. Statist. Assoc.
101 51–64. MR2252433

HUDGENS, M. G., HOERING, A. and SELF, S. G. (2003). On the
analysis of viral load endpoints in HIV vaccine trials. Stat. Med.
22 2281–2298.

IMAI, K., KEELE, L. and YAMAMOTO, T. (2010). Identification,
inference and sensitivity analysis for causal mediation effects.
Statist. Sci. 25 51–71. MR2741814

IMBENS, G. W. and ANGRIST, J. D. (1994). Identification and
estimation of local average treatment effects. Econometrica 62
467–475.

IMBENS, G. W. and MANSKI, C. F. (2004). Confidence inter-
vals for partially identified parameters. Econometrica 72 1845–
1857. MR2095534

JOFFE, M. (2011). Principal stratification and attribution prohibi-
tion: Good ideas taken too far. Int. J. Biostat. 7 1–22.

KAUFMAN, S., KAUFMAN, J. S. and MACLEHOSE, R. F. (2009).
Analytic bounds on causal risk differences in directed acyclic
graphs involving three observed binary variables. J. Statist.
Plann. Inference 139 3473–3487. MR2549096

LEE, M.-J. (2005). Micro-econometrics for Policy, Program, and
Treatment Effects. Oxford Univ. Press, Oxford. MR2261528

LEE, D. S. (2009). Training, wages, and sample selection: Esti-
mating sharp bounds on treatment effects. Rev. Econom. Stud.
76 1071–1102.

LIN, D. Y., PSATY, B. M. and KRONMAL, R. A. (1998). As-
sessing the sensitivity of regression results to unmeasured con-
founders in observational studies. Biometrics 54 948–963.

LONG, D. M. and HUDGENS, M. G. (2013). Sharpening bounds
on principal effects with covariates. Biometrics 69 812–819.
MR3146777

MANSKI, C. F. (1990). Nonparametric bounds on treatment ef-
fects. Am. Econ. Rev. 80 319–323.

MANSKI, C. F. (1997). Monotone treatment response. Economet-
rica 65 1311–1334. MR1604297

MANSKI, C. F. (2013). Identification of treatment response with
social interactions. Econom. J. 16 S1–S23. MR3030060

MANSKI, C. F. and PEPPER, J. V. (2000). Monotone instrumen-
tal variables: With an application to the returns to schooling.
Econometrica 68 997–1010. MR1771587

MCCANDLESS, L. C., GUSTAFSON, P. and LEVY, A. (2007).
Bayesian sensitivity analysis for unmeasured confounding in
observational studies. Stat. Med. 26 2331–2347. MR2368419

MOON, H. R. and SCHORFHEIDE, F. (2012). Bayesian and fre-
quentist inference in partially identified models. Econometrica
80 755–782. MR2951948

MORGAN, S. L. and WINSHIP, C. (2007). Counterfactuals and
Causal Inference. Cambridge Univ. Press, New York.

PEARL, J. (2001). Direct and indirect effects. In Proceedings of
the 17th Conference in Uncertainty in Artificial Intelligence.
UAI’01 411–420. Morgan Kaufmann, San Francisco, CA.

PEARL, J. (2009). Causality: Models, Reasoning, and Inference,
2nd ed. Cambridge Univ. Press, Cambridge. MR2548166

PEARL, J. (2010). On the consistency rule in causal inference: Ax-
iom, definition, assumption, or theorem? Epidemiology 21 872–
875.

PEARL, J. (2011). Principal stratification: A goal or a tool? Int. J.
Biostat. 7 1–14.

PRÉZIOSI, M.-P. and HALLORAN, M. E. (2003). Effects of pertus-
sis vaccination on disease: Vaccine efficacy in reducing clinical
severity. Clin. Infect. Dis. 37 772–779.

RERKS-NGARM, S., PITISUTTITHUM, P., NITAYAPHAN, S.,
KAEWKUNGWAL, J., CHIU, J., PARIS, R., PREMSRI, N.,
NAMWAT, C., DE SOUZA, M., ADAMS, E., BENENSON, M.,
GURUNATHAN, S., TARTAGLIA, J., MCNEIL, J. G., FRAN-
CIS, D. P., STABLEIN, D., BIRX, D. L., CHUNSUTTIWAT, S.,
KHAMBOONRUANG, C., THONGCHAROEN, P., ROBB, M. L.,
MICHAEL, N. L., KUNASOL, P. and KIM, J. H. (2009). Vacci-
nation with ALVAC and AIDSVAX to prevent HIV-1 infection
in Thailand. N. Engl. J. Med. 361 2209–2220.

RICHARDSON, T. S., EVANS, R. J. and ROBINS, J. M. (2011).
Transparent parametrizations of models for potential outcomes.
In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri,
J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith

http://www.ams.org/mathscinet-getitem?mr=2082406
http://www.ams.org/mathscinet-getitem?mr=1891039
http://www.ams.org/mathscinet-getitem?mr=2004258
http://www.ams.org/mathscinet-getitem?mr=2602560
http://www.ams.org/mathscinet-getitem?mr=2758500
http://www.ams.org/mathscinet-getitem?mr=2750238
http://www.ams.org/mathscinet-getitem?mr=1803142
http://www.ams.org/mathscinet-getitem?mr=2323988
http://www.ams.org/mathscinet-getitem?mr=2252433
http://www.ams.org/mathscinet-getitem?mr=2741814
http://www.ams.org/mathscinet-getitem?mr=2095534
http://www.ams.org/mathscinet-getitem?mr=2549096
http://www.ams.org/mathscinet-getitem?mr=2261528
http://www.ams.org/mathscinet-getitem?mr=3146777
http://www.ams.org/mathscinet-getitem?mr=1604297
http://www.ams.org/mathscinet-getitem?mr=3030060
http://www.ams.org/mathscinet-getitem?mr=1771587
http://www.ams.org/mathscinet-getitem?mr=2368419
http://www.ams.org/mathscinet-getitem?mr=2951948
http://www.ams.org/mathscinet-getitem?mr=2548166


NONPARAMETRIC BOUNDS AND SENSITIVITY ANALYSIS 617

and M. West, eds.) 569–610. Oxford Univ. Press, Oxford.
MR3204019

ROBINS, J. M. (1989). The analysis of randomized and non-
randomized AIDS treatment trials using a new approach to
causal inference in longitudinal studies. Health Service Re-
search Methodology: A Focus on AIDS 113–159.

ROBINS, J. M. (1994). Correcting for non-compliance in random-
ized trials using structural nested mean models. Comm. Statist.
Theory Methods 23 2379–2412. MR1293185

ROBINS, J. M. (1997). Non-response models for the analysis of
non-monotone non-ignorable missing data. Stat. Med. 16 21–
37.

ROBINS, J. M. (1999). Association, causation, and marginal struc-
tural models. Statistics and causation. Synthese 121 151–179.
MR1766776

ROBINS, J. M. (2002). Comment on “Covariance adjustment in
randomized experiments and observational studies”. Statist. Sci.
17 309–321.

ROBINS, J. M. (2003). Semantics of causal DAG models and the
identification of direct and indirect effects. Oxford Statist. Sci.
Ser. 70–82.

ROBINS, J. M. and GREENLAND, S. (1992). Identifiability and
exchangeability for direct and indirect effects. Epidemiology 3
143–155.

ROBINS, J. M. and GREENLAND, S. (1996). Comment on “Iden-
tification of causal effects using instrumental variables” by An-
grist, Imbens and Rubin. J. Amer. Statist. Assoc. 91 456–458.

ROBINS, J. M. and RICHARDSON, T. S. (2010). Alternative graph-
ical causal models and the identification of direct effects. In
Causality and Psychopathology: Finding the Determinants of
Disorders and Their Cures (P. Shrout, ed.). Oxford Univ. Press,
Oxford.

ROBINS, J. M., ROTNITZKY, A. and SCHARFSTEIN, D. O.
(2000). Sensitivity analysis for selection bias and unmeasured
confounding in missing data and causal inference models. In
Statistical Models in Epidemiology, the Environment, and Clin-
ical Trials (Minneapolis, MN, 1997). IMA Vol. Math. Appl. 116
1–94. Springer, New York. MR1731681

ROMANO, J. P. and SHAIKH, A. M. (2008). Inference for iden-
tifiable parameters in partially identified econometric models.
J. Statist. Plann. Inference 138 2786–2807. MR2422399

ROSENBAUM, P. R. (1999). Choice as an alternative to control in
observational studies. Statist. Sci. 14 259–278.

ROSENBAUM, P. R. (2002). Observational Studies, 2nd ed.
Springer, New York. MR1899138

ROSENBAUM, P. R. (2010a). Design sensitivity and efficiency in
observational studies. J. Amer. Statist. Assoc. 105 692–702.
MR2724853

ROSENBAUM, P. R. (2010b). Evidence factors in observational
studies. Biometrika 97 333–345. MR2650742

ROSENBAUM, P. R. (2011). Some approximate evidence factors
in observational studies. J. Amer. Statist. Assoc. 106 285–295.
MR2816721

ROSENBAUM, P. R. and RUBIN, D. B. (1983). Assessing sensitiv-
ity to an unobserved binary covariate in an observational study
with binary outcome. J. R. Stat. Soc. Ser. B Stat. Methodol. 45
212–218.

ROTNITZKY, A. and JEMIAI, Y. (2003). Sharp bounds and sensi-
tivity analysis for treatment effects in the presence of censor-
ing by death. In Harvard Schering-Plough Workshop on Devel-

opment and Approval of Oncology Drug Products: Impact of
Statistics.

RUBIN, D. B. (1980). Discussion of “Randomization analysis of
experimental data in the Fisher randomization test,” by D. Basu.
J. Amer. Statist. Assoc. 75 591–593.

RUBIN, D. B. (2000). Comment on “Causal inference without
counterfactuals”. J. Amer. Statist. Assoc. 95 435–437.

SCHARFSTEIN, D. O., ROTNITZKY, A. and ROBINS, J. M.
(1999). Adjusting for nonignorable drop-out using semipara-
metric nonresponse models. J. Amer. Statist. Assoc. 94 1096–
1146. MR1731478

SCHLESSELMAN, J. J. (1978). Assessing effects of confounding
variables. Amer. J. Epidemiol. 108 3–8.

SHEPHERD, B. E., GILBERT, P. B. and MEHROTRA, D. V. (2007).
Eliciting a counterfactual sensitivity parameter. Amer. Statist. 61
56–63. MR2339148

SIANESI, B. (2004). An evaluation of the Swedish system of active
labor market programs in the 1990s. The Review of Economics
and Statistics 86 133–155.

SJÖLANDER, A. (2009). Bounds on natural direct effects in the
presence of confounded intermediate variables. Stat. Med. 28
558–571. MR2655730

STOYE, J. (2009). More on confidence intervals for partially iden-
tified parameters. Econometrica 77 1299–1315. MR2547075

TCHETGEN TCHETGEN, E. J., GLYMOUR, M. M., WEUVE, J.
and ROBINS, J. (2012a). A cautionary note on specification
of the correlation structure in inverse-probability-weighted es-
timation for repeated measures. Technical Report 140, Harvard
Univ. Biostatistics Working Paper Series.

TCHETGEN TCHETGEN, E. J. T., GLYMOUR, M. M., WEUVE, J.
and ROBINS, J. (2012b). Specifying the correlation structure
in inverse-probability-weighting estimation for repeated mea-
sures. Epidemiology 23 644–646.

TODEM, D., FINE, J. and PENG, L. (2010). A global sensitiv-
ity test for evaluating statistical hypotheses with nonidentifiable
models. Biometrics 66 558–566. MR2758836

VANDERWEELE, T. J. (2008). Sensitivity analysis: Distributional
assumptions and confounding assumptions. Biometrics 64 645–
649. MR2432439

VANDERWEELE, T. J. (2010). Bias formulas for sensitivity analy-
sis for direct and indirect effects. Epidemiology 21 540–551.

VANDERWEELE, T. J. (2011a). Controlled direct and mediated ef-
fects: Definition, identification and bounds. Scand. J. Stat. 38
551–563. MR2833846

VANDERWEELE, T. J. (2011b). Sensitivity analysis for contagion
effects in social networks. Sociol. Methods Res. 40 240–255.
MR2767834

VANDERWEELE, T. J. and ARAH, O. A. (2011). Bias formulas
for sensitivity analysis of unmeasured confounding for general
outcomes, treatments, and confounders. Epidemiology 22 42–
52.

VANDERWEELE, T. J. and HERNÁNDEZ-DIAZ, S. (2011). Is there
a direct effect of pre-eclampsia on cerebral palsy not through
preterm birth? Paediatric and Perinatal Epidemiology 25 111–
115.

VANDERWEELE, T. J., MUKHERJEE, B. and CHEN, J. (2012).
Sensitivity analysis for interactions under unmeasured con-
founding. Stat. Med. 31 2552–2564. MR2972267

http://www.ams.org/mathscinet-getitem?mr=3204019
http://www.ams.org/mathscinet-getitem?mr=1293185
http://www.ams.org/mathscinet-getitem?mr=1766776
http://www.ams.org/mathscinet-getitem?mr=1731681
http://www.ams.org/mathscinet-getitem?mr=2422399
http://www.ams.org/mathscinet-getitem?mr=1899138
http://www.ams.org/mathscinet-getitem?mr=2724853
http://www.ams.org/mathscinet-getitem?mr=2650742
http://www.ams.org/mathscinet-getitem?mr=2816721
http://www.ams.org/mathscinet-getitem?mr=1731478
http://www.ams.org/mathscinet-getitem?mr=2339148
http://www.ams.org/mathscinet-getitem?mr=2655730
http://www.ams.org/mathscinet-getitem?mr=2547075
http://www.ams.org/mathscinet-getitem?mr=2758836
http://www.ams.org/mathscinet-getitem?mr=2432439
http://www.ams.org/mathscinet-getitem?mr=2833846
http://www.ams.org/mathscinet-getitem?mr=2767834
http://www.ams.org/mathscinet-getitem?mr=2972267


618 RICHARDSON, HUDGENS, GILBERT AND FINE

VANSTEELANDT, S. and GOETGHEBEUR, E. (2001). Analyzing
the sensitivity of generalized linear models to incomplete out-
comes via the IDE algorithm. J. Comput. Graph. Statist. 10
656–672. MR1938973

VANSTEELANDT, S., GOETGHEBEUR, E., KENWARD, M. G. and
MOLENBERGHS, G. (2006). Ignorance and uncertainty regions
as inferential tools in a sensitivity analysis. Statist. Sinica 16
953–979. MR2281311

VAN DER LAAN, M. J. and ROBINS, J. M. (2003). Unified Meth-
ods for Censored Longitudinal Data and Causality. Springer,
New York. MR1958123

VER STEEG, G. and GALSTYAN, A. (2010). Ruling out latent ho-
mophily in social networks. In NIPS Workshop on Social Com-
puting.

ZHANG, J. L. and RUBIN, D. B. (2003). Estimation of causal ef-
fects via principal stratification when some outcomes are trun-
cated by “death.” J. Educational and Behavioral Statistics 28
353–368.

http://www.ams.org/mathscinet-getitem?mr=1938973
http://www.ams.org/mathscinet-getitem?mr=2281311
http://www.ams.org/mathscinet-getitem?mr=1958123

	Introduction
	Treatment Selection
	Minimal Assumptions Bounds
	Additional Assumptions
	AZT Example
	Sensitivity Analysis
	Covariate Adjustment

	Principal Stratiﬁcation
	Background
	Principal Effects
	Bounds
	Sensitivity Analysis

	Randomized Studies with Partial Compliance
	Global Average Treatment Effect
	Cholestyramine Example

	Mediation Analysis
	Natural Direct and Indirect Effects
	Sensitivity Analysis

	Longitudinal Treatment
	Background
	Marginal Structural Model
	Sensitivity Analysis

	Ignorance and Uncertainty Regions
	Ignorance Regions
	Uncertainty Regions
	Data Example

	Discussion
	Acknowledgments
	References

