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NONPARAMETRIC CHECKS FOR SINGLE-INDEX MODELS
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In this paper we study goodness-of-fit testing of single-index models.
The large sample behavior of certain score-type test statistics is investigated.
As a by-product, we obtain asymptotically distribution-free maximin tests
for a large class of local alternatives. Furthermore, characteristic function
based goodness-of-fit tests are proposed which are omnibus and able to
detect peak alternatives. Simulation results indicate that the approximation
through the limit distribution is acceptable already for moderate sample sizes.
Applications to two real data sets are illustrated.

1. Introduction. Suppose that a response variableY depends on a vector
X = (x1, . . . , xp)T of covariates, whereT denotes transposition. We may then
decomposeY into a function m(X) of X and a noise variableε, which is
orthogonal toX, that is, for the conditional expectation ofε given X we have
E(ε|X) = 0. When Y is unknown, the optimal predictor ofY given X = x
equalsm(x). Since in practice the regression functionm is unknown, statistical
inference aboutm is an important issue. In a purely parametric framework,
m is completely specified up to a parameter. For example, in linear regression
m(x) = βT x, whereβ is an unknownp-vector which needs to be estimated from
the available data. Slightly more generally we may considerm(x) = �(βT x),
where the link-function� may be nonlinear but is again specified. This is the
so-called generalized linear model.

When � remains unspecified, we arrive at a semiparametric model which
is more flexible on the one hand and, on the other hand, avoids the curse of
dimensionality one faces in fully nonparametric models. The estimator ofβ, as
well as of the link function�, in this so-called single-index model was studied by
among others, Li and Duan [25], Härdle, Hall and Ichimura [16], Ichimura [23]
and Hristache, Juditsky and Spokoiny [22]. Related work is [6] and [20]. Clearly,
any statistical analysis within the model, to avoid wrong conclusions, should be
accompanied by a check of whether the model is valid at all. For the single-index
model the diagnostic methods are less elaborate. We only mention Fan and Li [14],
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Aït-Sahalia, Bickel and Stoker [1] and Xia, Li, Tong and Zhang [38] here but come
back to them later. See Discussion 2.6, when we are prepared to compare their
approaches and results with ours. The paper by Härdle, Mammen and Proença
[19] considers a parametric link structure and therefore does not fall into the area
studied in this paper.

In the present paper, we aim at developing some formal tests for model checking
when the link function remains unspecified.

For more specified regression models the literature is much more elaborate. To
review only a few contributions, Cox, Koh, Wahba and Yandell [8] introduced
tests of the null hypothesis that a regression function has a particular parametric
structure. Azzalini, Bowman and Härdle [3] considered nonparametric regression
as an aid to model checking. Cox and Koh [7] developed spline-based tests of
model adequacy. Eubank and Spiegelman [11] considered spline approaches to
testing the goodness of fit of a linear model. Simonoff and Tsai [28] proposed
diagnostic methods for assessing the influence of individual data values on
goodness-of-fit tests based on nonparametric regression. Gu [15] used spline
methods in a diagnostic approach to model fitting. Azzalini and Bowman [2] used
nonparametric regression to check linear relationships. Eubank and LaRiccia [10]
derived properties of two-sided tests in nonparametric regression based on Fourier
methods. Härdle and Mammen [17] considered comparisons between parametric
and nonparametric fits and used the wild bootstrap for the computation of critical
regions. Härdle, Mammen and Müller [18] investigated testing for parametric
versus semiparametric modeling in generalized linear models, again using the wild
bootstrap.

Note, however, that any test using a nonparametric regression estimator
runs into an ill-posed problem requiring the choice of a smoothing parameter.
Therefore, an alternative approach was developed which circumvents these
problems. To name only a few papers, Bierens [4] proposed to check a parametric
regression model by investigating the sum of properly weighted residuals. See also
[5] for an informative discussion of the resulting tests when local alternatives
are considered. In Stute [33] a method was studied which is based on the
integrated regression function and which corresponds to cumulative quantities
such as empirical distribution functions or ranks known from other areas in
statistics. In this setup the author was able to derive a principle components
decomposition of the underlying test process, which is extremely useful for
design of optimal tests versus local alternatives and for understanding the impact
of the design distribution and the noise variance on the power of the tests. In
particular, optimal Neyman–Pearson tests which are based on linear rather than
quadratic test statistics can be obtained from this decomposition. Stute, González
Manteiga and Presedo Quindimil [35] studied the quality of the distributional
approximation of an associated cusum process via the wild bootstrap, while
Stute, Thies and Zhu [36] proposed an innovation process approach so as to
obtain asymptotically distribution-free and optimal tests. Finally, Stute and Zhu
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[37] developed nonparametric testing for the validity of a generalized linear
model, which is based on a proper transformation of a residual empirical process
and which perfectly adapts to a situation when the design vector is elliptically
contoured.

In the framework of the single-index model the link function is unknown and, as
part of the testing procedure, needs to be estimated in a nonparametric way. From
our preceding remarks on ill-posedness, one might conclude that nonparametric
estimation of the link function necessarily excludes the possibility of constructing
tests which have optimal power versus local alternatives converging to the null
model at the raten−1/2. Fortunately, as this paper will show, this pessimistic
view is not justified. To obtain such tests, rather than comparing the estimator
of � with the hypothetical semiparametric model, we embed the residuals into a
cusum process. This summation has a smoothing effect so that our test is much less
sensitive than usual to a wrong choice of the bandwidth. At the same time, each
residual is properly weighted by a function of the design vector. Our main result,
Theorem 2.1, is formulated for a given fixed weight function. Such an approach
has a long tradition in statistics. Typically, score tests are first analyzed (and
optimized) when the direction from which the alternative tends to the null model is
specified. Classical examples are linear one- and two-sample rank statistics or rank
correlation statistics. Also, robust tests focussing on a neighborhood of a given
family of distributions are designed in this spirit.

Theorem 2.1 not only provides the asymptotic normality of a large class of score
statistics, but also yields (up to a remainder) a representation as a sum of i.i.d.
variables. From this, when the alternative is specified, we shall be able to choose
the weights so as to optimize local power. This discussion will give us a clue as to
how to proceed if the alternative model has arbitrary but finite codimensiond. In
such a situation we propose and study a test which is asymptotically distribution-
free and shown to be maximin (Corollary 2.2). Sinced is arbitrary, Corollary 2.2
covers most situations arising in practice. The i.i.d. representation is also useful
for implementation of a proper bootstrap approximation. See Section 3 for some
details.

For those readers who prefer omnibus tests, we also discuss (Theorem 2.3)
a situation where the deviation from the null model is completely nonparametric.
Also, in this case, the local asymptotic power can be derived. Finally, we include
a discussion of how our test behaves when local peak alternatives are to be
detected.

The paper is organized as follows. In Section 2 we introduce the basic test
statistics and formulate our main results. In Section 3 we report on some simulation
results and apply our method to two data sets. Proofs of theoretical results are
postponed to Section 4. Readers who want to skip the technical part may consult
Section 2 for an informal discussion and some background information on proofs.
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2. Main theorems. Throughout the paper we assume that the available data
(Xi, Yi), 1 ≤ i ≤ n, are independent and have the same distribution as(X,Y ).
Under the null hypothesis, that is, under the single-index model,

Y = �(βT X) + ε,(2.1)

whereβ is an unknownp-vector and� is an unspecified link function defined on
the real line. The noise variableε satisfies

E(ε|X) = E(ε|βT X) = 0,(2.2)

which is tantamount to saying that

E(Y |X) = E(Y |βT X) = �(βT X).(2.3)

Note that (2.2) allowsε to depend onX so that (2.1) may include heteroscedastic
errors. The first equation in (2.3) features the projection pursuit character of the
single-index model in that the conditional mean ofY givenX only depends on a
proper projection ofX.

To motivate our approach, assume for a moment that we already have an
estimatorβ̂ of β. ReplacingβT Xi with β̂T Xi , we could try to estimate� through
a Nadaraya–Watson estimator�̂ or a local linear smoother as discussed, for
example, in [13]. The disadvantage of these smoothers, at least in our context,
comes from the fact that the distribution ofβ̂, as well asX, will likely have an
effect on the distribution of our test statistic, even in the limit. This phenomenon
is well known in many other statistical problems, when unknown parameters
need to be estimated. Typically, the effect on the distributional character requires
some correction through a proper transformation of the test statistic. See, for
example, [34]. Moreover, the ratio structure of these estimators�̂ creates some
technical problems when the denominator is small, that is, whenx lies in a
region of low density. From time to time some structural assumptions on level
sets are imposed, but when it comes down to estimation, these assumptions can
hardly be justified for�̂. To avoid all these nasty side effects, we decided to
use an estimator of� which employs a transformation of̂βT Xi to a variable
which is approximately uniform on the unit interval(0,1). In other words, we
incorporate a transformation which makes everything distribution-free, as far as
the distribution ofβT X is concerned. This estimator is a symmetrized nearest-
neighbor (NN) estimator. Its consistency was proved by Yang [39], while Stute
[32] provided the asymptotic normality. In these papers, the regression function
itself was, of course, the target and the distribution-freeness only applies to the
random deviation but not to the bias term. In the context of the present paper,
�̂ only appears as a tool to define the residuals. When we consider a properly
weighted sum of the residuals, averaging yields a smaller variance to the effect that
we may choose smoothing parameters so that at the same time the bias becomes
negligible and the variance part remains as the only nonnegligible source of error.
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This more or less enables us to construct tests which have nontrivial power when
the alternatives approach the null model at the raten−1/2.

To motivate our approach on a more technical level, assume thatβT X has a
continuous distribution functionFβ , that is,

F(x) ≡ Fβ(x) := P(βT X ≤ x), x ∈ R.

Here P denotes a probability measure defined on a space(�,A) carrying all
random variables which may appear. Denote byF−1 the quantile function ofF :

F−1(u) = inf{x ∈ R :F(x) ≥ u}, 0 < u < 1.

PutU := F(βT X). By continuity ofF , the variableU has a uniform distribution
on (0,1). Setting

ψ = � ◦ F−1,

equation (2.1) becomes (with probability one)

Y = ψ(U) + ε.

In terms of regression, this may be expressed as

m(x) ≡ E(Y |X = x) = �(βT x) = ψ(u),

where

u = F(βT x) andψ(u) = E
(
Y |F(βT X) = u

)
.

Therefore, the kernel estimator forψ at 0< u < 1 becomes

ψ̂n(u) = 1

n

n∑
i=1

YiKh(u − Ui),

where

Kh(v) = 1

h
K

(
v

h

)

andK is a symmetric kernel on the real line integrating to one, whileh = hn > 0
is a bandwidth. The random variables

Ui = Fβ(βT Xi)

are i.i.d. from the uniform distribution on(0,1). SinceFβ andβ are unknown,ψ̂n

cannot be our final estimator. For this, replaceβ by some estimator̂β andF = Fβ

by the empirical distribution functionFn of β̂T Xi , 1≤ i ≤ n. This yields

Ûi := Fn(β̂
T Xi), 1≤ i ≤ n,

with corresponding estimator

ψn(u) = 1

n

n∑
i=1

YiKh(u − Ûi).
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This estimator is related to that in [32], up to the fact that there univariateXi ’s
were considered and no preliminary projection was required. TheÛi ’s are the
normalized ranks pertaining to the projected valuesβ̂T Xi . Since these values
depend on the random̂β, existing results on rank statistics cannot give us easy
access to the analysis of our final test statistic, in particular, since theÛi ’s appear
as part of the smoothed functionψn atu.

Worse than that, we have to evaluateψn at eachÛj . This finally leads to the
residuals

ε̂j = Yj − ψn(Ûj ), 1≤ j ≤ n.

Actually, to reduce a possible bias, we shall consider estimatorsψ
(j)
n computed in

the same way asψn, but with thej th datum deleted from the observations. Hence,
the residuals are to be redefined as

ε̂j = Yj − ψ(j)
n (Ûj ), 1 ≤ j ≤ n.

The mathematical analysis ofψ
(j)
n (Ûj ) and, hence, of̂εj requires careful study

of the local properties ofFn evaluated atβ̂T Xi . The oscillation behavior for the
ordinary empirical process has been investigated in detail in [30, 32]. In the present
situation we need to study the fluctuations of empirical measures over halfspaces
rather than quadrants.

Our final test statistic will be of the form

T̂n = n−1/2
n∑

j=1

ε̂jWj .

The weightsWj will be of the formWj = W(Xj). The functionW is a smooth
function defined onRp. A discussion of how to chooseW in a testing situation is
postponed to the end of this section. Under the null model (2.2), we may expect
that T̂n behaves similarly to

Tn = n−1/2
n∑

j=1

εjWj .

SinceWj is orthogonal toεj , Tn is centered. Hence, we may expect that alsoT̂n

fluctuates around zero under (2.2). Under (local) alternatives, theε̂j also comprise
quantities which hopefully are not orthogonal to theWj ’s. If we chooseW in a
proper way, this fact will guarantee nontrivial power of the test.

More specifically, we shall first consider models of the type

Yin = �(βT Xi) + n−1/2s(Xi) + εi, 1≤ i ≤ n,(2.4)

where the(Xi, εi) are i.i.d. satisfying

E(εi |Xi) = 0 for 1≤ i ≤ n.(2.5)
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The function�, as well as the parameterβ, remain unspecified, as will be the
distribution ofXi andεi . The functions may or may not be specified. Whens ≡ 0,
the single-index model holds. For specified alternatives, we shall later discuss how
to chooseW in order to maximize local power.

So far we have not discussed how to estimateβ. We shall come back to this
point in Section 3 when we apply our method in a simulation study and to real
data. In fact, the discussion of̂β may be delayed since our assumptions onβ̂ are
very general and do not assume any particular form forβ̂.

We now state the assumptions needed for Theorem 2.1 below. For this, put, for
0< u < 1,

W̄ (u) = E[W(X)|U = u], s̄(u) = E[s(X)|U = u].

THEOREM 2.1. Assume that (2.4), (2.5)and the following conditions hold:

A (i) ψ, s̄ and W̄ are twice continuously differentiable.
(ii) YW(X) and εW(X) have finite second moments.

B (i) E‖X‖γ < ∞ for some γ > 2.
(ii) For all θ in a neighborhood of β, the variables θT X have continuous

densities f θ which are uniformly bounded.
(iii) The distribution functions Fθ of θT X are continuous in θ at θ = β.
(iv) The estimator β̂ satisfies n1/2(β̂ − β) = OP(1).

C (i) n1/2h2 → 0 and h−1n−1/2+1/γ → 0.
(ii) K is a symmetric kernel with compact support, twice continuously

differentiable with
∫

K = 1. Furthermore, K is nonincreasing on the positive
real numbers.

Then we have

T̂n = µ + n−1/2
n∑

i=1

εi[Wi − W̄ (Ui)] + oP(1)(2.6)

and, therefore, by the CLT,

T̂n → N (µ,σ 2) in distribution,

where

σ 2 = E{ε2[W(X) − W̄ (U)]2}
and

µ = E
{[

s(X) − E
(
s(X)|U )]

W(X)
}
.

A discussion of A–C will be postponed until the end of this section.
The drift comprises the deviation ofs(X) from the space of variables spanned

by βT X. Under the single-index model, the bracket equals zero and so doesµ.
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Also, W(X) should not depend onX throughβT X, since then alsoµ = 0. The
variance does not depend ons but, among other things, measures the deviations
betweenW(Xj) and the projected values̄W(Uj). The limit varianceσ 2 also does
not depend on the unknown�. A consistent estimator ofσ 2 is obtained by

σ 2
n = 1

n

n∑
j=1

ε̂2
j

[
W(Xj) − W̄ (j)

n (Ûj )
]2

,

where W̄
(j)
n is defined similarly toψ

(j)
n . Just replaceYi with W(Xi) in the

definition of the NN-estimator. Putting

T̄n := T̂n/σn,

we then obtain

T̄n → N (C,1) in distribution,

with

C = µ/σ.

The null model is rejected at levelα if

|T̄n| ≥ λ1−α/2 ≡ λ,

whereλ is the (1 − α
2)-quantile of the standard normal distribution functionΦ.

Hence, the asymptotic power of|T̄n| against the local alternatives (2.4) equals
1− [Φ(C + λ) − Φ(C − λ)]. This is a monotone function of|C|. Thus, we should
select the weight functionW in a way that makesC2 as large as possible. If we
write, in an obvious notation,

C2 = C2(s,W) = µ2(s,W)

σ 2(W)
,

it is easy to determine the optimal solution of our problem when theε’s are
independent ofX, that is, if the homoscedastic case holds. Then the above ratio
equals

µ2(s,W)

Eε2E[W(X) − W̄ (U)]2 ,

and the Cauchy–Schwarz inequality immediately yields that the optimal weight
functionW0 equals, up to a constant factor, the functions:

W0(x) = s(x).(2.7)

Next we study an important extension of (2.4). For this, lets1, . . . , sd be any finite
number of functions, whered ≥ 1. In applications, these functions may constitute
a possible (mean) dependence ofY on X = x other than projections ofx. For
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example, some of thes-functions may be quadratic forms, and others may be in
charge of possible interactions between coordinates ofX.

Instead of (2.4), we therefore consider the more complex model

Yin = �(βT Xi) + n−1/2
d∑

j=1

γj sj (Xi) + εi, 1≤ i ≤ n,(2.8)

whereβ ∈ R
p, γ1, . . . , γd ∈ R are unknown parameters and� is a nonspecified

link function. The null model thus corresponds to

H0 :γ1 = · · · = γd = 0.

In the following we shall derive maximin tests forH0 versus‖γ ‖ ≥ c, where‖ · ‖
is a proper norm andγ T = (γ1, . . . , γd). Needless to say, such test problems have
been well studied in the context of linear regression. The present situation is much
more complex since now the null model is the semiparametric single-index model.
To the best of our knowledge, the following setup provides the first maximin-test
in semiparametric regression. For this, and in view of (2.7), we consider the score-
statisticsT̂ j

n pertaining toW = sj , j = 1, . . . , d. Put

T̂n = (T̂ 1
n , . . . , T̂ d

n )T .

Theorem 2.1 implies that, under (2.8) (in the homoscedastic case), we have in
distribution, asn → ∞,

T̂n → �




γ1

...

γd


 + Nd(0, ρ2�).(2.9)

Here,� = (σij )1≤i,j≤d with

σij = E
{[

si(X) − E
(
si(X)|U )][

sj (X) − E
(
sj (X)|U )]}

,

Nd denotes a normal distribution onRd andρ2 = Eε2. Assertion (2.9) exhibits
that, in the limit,T̂n is a standard Gaussian shift model. Distributional character-
istics of the model (2.8) only appear through the (estimable) covariance matrix.
This observation once again supports our approach, in particular, the use of the
NN-smoother and the rank transformation.

We may now use existing maximin-theory to obtain optimal tests forH0. See,
for example, [29], Theorem 30.2. For this define

∑
n = (σijn)1≤i,j≤d through

σ 2
ijn = 1

n

n∑
k=1

ε̂2
k

[
si(Xk) − s̄

(k)
i (Ûk)

][
sj (Xk) − s̄

(k)
j (Ûk)

]
.
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COROLLARY 2.2. For a given significance level 0< α < 1, the test

t = 1{T̂ T
n

∑−1
n T̂n≥cα}

is a maximin α-test for H0 versus H1 :γ T �γ ≥ ρ2a. Here cα is the (1− α)-quan-
tile of the chi-square random variable χ2

d with d degrees of freedom. The
asymptotic maximin power is given by P(χ2

d (a) ≥ cα), where now a is the
noncentrality parameter.

Since the codimensiond is arbitrary, Corollary 2.2 covers many examples of
interest. Some, for example, interaction alternatives, are studied in Section 3.
For those who prefer omnibus tests, we now discuss a class of tests which has
reasonable power over a nonparametric class of alternatives.

Hence, we come back to (2.4) but leaves unspecified. In order to achieve power,
we need to consider a family of weight functions{Wγ }γ guaranteeing that at least
oneWγ is able to detect a possible deviation ofs(X) − s̄(U) from zero. A class
of (smooth) score functions which has found a lot of interest in classical empirical
process theory is the family of trigonometric functions. This led to an intensive
study of the empirical characteristic function. See, for example, [12] for a nice
review and further applications. In our context,Wγ therefore becomes

W(γ,x) = exp[iγ T x],(2.10)

wherei is the complex unit andγ ∈ R
p. If we take only finitely manyγ ’s, we may

conceive, as in Corollary 2.2, asymptotically distribution freeχ2-tests. To handle
a nonparametric alternative, we have to letγ vary overRp. Hence, we come up
with a stochastic process

T̂n(γ ) := n−1/2
n∑

j=1

ε̂jWj (γ ),

where Wj(γ ) = W(γ,Xj ). Note that T̂n has continuous sample paths inγ .
The convergence of the finite-dimensional distributions again follows from (2.6).
Tightness is not difficult as long asγ varies in a compact set, since theW(γ,x) are
smooth functions inγ andx. For detailed arguments, one needs to check the proof
of Theorem 2.1 and show that the remainders are uniformly small on compact
γ -sets, while the leading terms are uniformly continuous. After all this we then
come up with the following result.

THEOREM 2.3. Under the assumptions of Theorem 2.1, the stochastic
processes {T̂n(γ ) :γ ∈ R

p} converge in distribution (on compact sets) to a
continuous Gaussian stochastic process T̂∞ such that

µ(γ ) ≡ ET̂∞(γ ) = E{[s(X) − s̄(U)]W(γ,X)}(2.11)

and

Cov
(
T̂∞(γ1), T̂∞(γ2)

) = E{ε2[W(γ1,X) − W̄ (γ1,U)][W(γ2,X) − W̄ (γ2,U)]}.
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A Kolmogorov–Smirnov (KS) type test rejectsH0 if

T̃n ≡ sup
γ

|T̂n(γ )| ≥ cα,

wherecα is the(1 − α)-quantile of supγ |T̂∞(γ )| underH0, that is,s ≡ 0. Since
this test is no longer distribution-free, a bootstrap approximation is recommended.
See Section 3 for further details. For power considerations, we expandµ(γ ) at β
yielding

µ(γ ) = E{[s(X) − s̄(U)]W(β,X)exp[i(γ − β)T X]}
∼ E{[s(X) − s̄(U)]W(β,X)}

+ i(γ − β)T E
{(

s(X) − s̄(U)
)
W(β,X)X

}
.

The first integral vanishes, sinces(X) − s̄(U) is orthogonal to the space of
random variables measurable w.r.t.βT X. The second (vector-valued) integral
I = I (s), say, usually does not vanish so that, for example,

sup
γ

|µ(γ )| ∼ sup
γ

‖γ − β‖‖I‖ > 0.

This property guarantees that the KS-test has asymptotic power> α uniformly for
all s for which‖I (s)‖ is bounded away from zero.

Needless to say, a version of Theorem 2.3 also holds for other parametric
families of functionsW(γ, ·). We focussed on trigonometric functions since they
are at the same time smooth and measure determining and allow for a simple
expansion of the drift function.

Though our results cover a large class of local alternatives, people sometimes
are interested in detecting so-called “peak alternatives.” For this, one needs to
consider shift functionss which depend onn in such a way that, asn → ∞, sn
(weakly) converges to a Dirac function or a linear combination of such functions.
A typical candidate is

s0
n(x) = a−p

n ϕ

(
x − x0

an

)
,(2.12)

wherean → 0 but na
p
n → ∞. The “density”ϕ, as well asx0, the center of the

peak, remain unspecified. The test processT̂n(·) may also serve as a basis to detect
alternatives (2.8), where some of thesj ’s are of “global type,” that is, do not depend
on n. Others may be of type (2.12). Since the covariance is not affected by the
shift, the limit covariance remains the same as in Theorem 2.3. Relevant proofs
only deal with the null model so that no changes are required. The shift only enters
into Lemmas 4.4 and 4.5, resulting in Corollary 4.6. Taking into account the local
flavor of (2.12), these lemmas need some minor modifications resulting, under
s = s0

n from (2.12), in the drift function

µ(γ ) = ET̂∞(γ ) = [s(x0) − s̄(u0)]W(γ,x0)ϕ(0)f (x0),(2.13)
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wheref is the density ofX. Hereu0 = F(βT x0). Details are omitted. The function
(2.13) nicely features the components which determine the power of the test when
s equals (2.12):

• TheX-density atx0 :f (x0).
• The “height” of the peak atx0 :ϕ(0).
• The deviation ofs from the null model atx0 : s(x0) − s̄(u0).

If we let γ vary over a large compact set, the Kolmogorov–Smirnov test
associated withT̂n is able to detect peak alternatives which converge to the
null model at the raten−1/2. The asymptotic power exceedsα but is less than
one, depending on the three components discussed above. In particular, our
approach yields the correct asymptotics. This finding should be compared with
other approaches, where, for much simpler purely parametric regression models,
alternatives had to converge to the null model at a rate lower thann−1/2. See, for
example, [21] and references therein. Not unexpectedly, the power then converges
to one.

We continue with some comments on A–C.

REMARK 2.4. Condition A comprises standard smoothness and moment as-
sumptions on the involved functions. Condition B requires some weak conditions
on the design vector and on̂β. In C,

√
nh2 → 0 will be needed to make the bias

tend to zero. The second assumption onh will be needed to control the fluctuations
of the random sums. In view of the fact that we always deal with standardized sums
and also that largeXi ’s may enter the statistics, some connection with the tails ofX

(in terms ofγ ) are natural. The conditions onK are also standard. The monotonic-
ity of K guarantees thatK ′ has identical signs on the positive and negative reals.
Moreover,K ′(0) = 0. In other words,K may be decomposed into two parts, each
of which is compactly supported, by the positive and negative real lines, respec-
tively, and having identical signs there. This property is useful in proofs when,
after Taylor’s expansion,K ′ appears as a smoothing kernel.

REMARK 2.5. The conditions onh are weak and are satisfied for a large
class of bandwidths. A referee pointed out that this fact could be interpreted as
a kind of robustness of the method w.r.t. the choice ofh. In particular, they do not
depend, as in related work, on the dimensionp of theX-vector or higher degrees
of smoothness of the involved functions. We may chooseh so thatn1/2h2 and
h−1n−1/2+1/γ are of the same order. This yields

h ∼ n−1/3+1/3γ .

In the next section we propose two adaptive methods of bandwidth choice
which worked very well in our simulation study. If we are not only interested
in maximizing power for a given alternative, we may choose aW with compact
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support. In this way the test is robust against outliers among theXi ’s. Our proof
then works withγ = ∞, that is, 1

γ
= 0. In this case,h ∼ n−1/3.

DISCUSSION2.6. It is time to compare our approach and results with those
of Fan and Li [14], Aït-Sahalia, Bickel and Stoker [1] and Xia, Li, Tong and
Zhang [38]. The tests of the first two papers are based on a (weighted) residual
sum of squares and are in the spirit of Härdle and Mammen [17]. The asymptotic
normality of the test statistic is achieved by a clever application of central limit
theorems for sequences of degenerateU -statistics. More precisely, Fan and Li
[14] (FL) based their test on a quadratic form of the estimated residuals. Since no
rank transformation is involved, they had to weight each residual with estimators
of marginal and high-dimensional densities, to get rid of the denominator in the
Nadaraya–Watson estimator. Consequently, two different smoothing parameters
need to be involved. It is heuristically argued that local alternatives only can be
detected when they approach the null model at the rateO((nhp/2)−1/2), which
gets worse as the dimension ofX increases. The estimator ofβ, being square-root
consistent, does not have any impact on the limit distribution because the other
quantities converge at a slower rate, thus compensating for the effect of estimating
unknown parameters. In a general situation of testing a model or hypothesis,
efficient methods involve test statistics and estimators which admit expansions
of the same order. See, for example, [9], to name only one landmark paper on
this topic. Unless some orthogonality assumptions are satisfied, the parameter
estimator does have an impact on the limit, and martingale transformations, as
in [36], were designed to keep track of this issue. See also [34]. Efficient model
checks would therefore create terms which when replacingβ̂ with β are not
negligible and thus have an impact on the distributional behavior of the test
statistic. As to practical applications, computation of critical values would then
not be easy. Worse than that, the complicated geometric structure of the test
statistic would not enable us to derive optimal scores. Actually, these are only
two of several reasons why we designed our test as we did. There are others.
As a by-product, the assumptions on the design variableX remain weak. No
additional support or higher smoothness conditions need to be assumed. The
variableY may be discrete and no joint density ofX andY is required. Compared
with Fan and Li [14], Aït-Sahalia, Bickel and Stoker [1] is mainly concerned
with the problem of dimension reduction for high-dimensional inputs. Only some
comments on the applicability to single-index models are included. Their test
statistic is a sum of weighted residual squares, the weights now being deterministic
functions of the regressors. In their Proposition 2 the local power of the test is
derived when the alternatives tend to the null model at a rate depending onp.
It should also be mentioned that the test statistic admits a bias increasing to
infinity as n → ∞. Moreover, the constants defining the asymptotic bias are
unknown and require further smoothing when being estimated. Similarly, in Xia,
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Li, Tong and Zhang [38], who extended the marked empirical process approach
of Stute, González Manteiga and Presedo Quindimil [35] in the parametric case
to the single index model. Compared with these papers our test achieves local
power known from parametric tests, though the nonparametric components can
only be estimated at a worse rate. Mathematically, we have to pay a price for
this. For example, Theorem 2.1 cannot be obtained by just applying Taylor’s
expansion andU -statistic theory. Rather, our proofs require some new techniques
involving (local and global) properties of the rank-transformed projected values
β̂T Xi,1 ≤ i ≤ n. Unfortunately, techniques also developed in [31] to analyze the
(rank-transformed) nearest-neighbor regression function estimator at a point are of
no help here.

3. Simulation study and applications.

3.1. A simulation study. In our simulations we studied two models. The first
is with continuous response, namely,

Y = (βT X)3 + c

( p∑
l=1

|xl|
)

+ ε,(3.1)

whereX andε are independent,xl are the components ofX and the distributions
of X and ε are N(0, Ip) and N(0,1), respectively. The hypothetical model is
�(βT X) = (βT X)3 ands(X) = ∑p

l=1 |xl|. Therefore, the null model holds if and
only if c = 0.

The second model is with binary response,

Y = exp(−βT X + c(
∑p

l=1 |xl|))
1+ exp(−βT X + c(

∑p
l=1 |xl|)) + ε

(3.2)

=: �(
βT X + cs(X)

) + ε,

whereY = 0,1 is a binary variable for whichY = 1 with probability�(βT x +
cs(x)) for any givenX = x. Also, herec = 0 corresponds to the hypothetical
model, that is, the logit model. It is heteroscedastic, andX and ε are not
independent. Again,X ∼ N (0, Ip). We usedc = 1,2,3 to investigate the power
of the test.

Two weight functions were considered in the simulation,W1(x) = s(x) and
W2(x) = ∑p

l=1 x2
l . Based on our findings in Section 2,W1 is optimal for

model (3.1) asε is independent ofX, and W2 is a natural candidate for an
even function. For model (3.2), we also use these two weight functions due
to the following observation: Whenc is small, �(−βT x + cs(x)) is close to
�(−βT x) + c�′(βT x)s(x), where�′(·) is the derivative of�(·). Therefore,s(x)

is also a good choice of a weight function in this case.
In order to implement the omnibus test based onT̃n = supγ |T̂n(γ )| of

Theorem 2.3, we have to use a resampling approximation to determine critical
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values. The wild bootstrap is clearly an option. In view of (2.6), however, we
suggest the following algorithm: for anyγ , T̂n(γ ) is asymptotically equal to
µ+n−1/2 ∑n

i=1 εi[Wi −W̄ (Ui)]. UnderH0, µ = 0. For any i.i.d. random variables
ei , i = 1, . . . , n, independent of the(xi, yi)’s with mean 0 and variance 1, it is
easy to prove that, for almost all sequences{(x1, y1), . . . , (xn, yn), . . .}, the process
T r

n (γ ) = n−1/2 ∑n
i=1 ei ε̂i[Wi − W̄

(i)
n (Ûi)] has the same limit aŝTn(γ ). It is

worthwhile noting that, using this resampling scheme, we do not need to estimate
the variance. In a different setup, this algorithm has been used by Zhu [40] and
Zhu and Ng [42]. The proof and the procedure are similar. We omit the details.
To implement the test, we can generate, by Monte Carlo,m sets of{e1, . . . , en}
and then computem values ofT̃ r

n = supγ |T̂ r
n (γ )|. The [(1− α)m]th value can be

used as the critical value, whereα is the significance level and [a] stands for the
integer part ofa. In the following simulation, we used standard normal random
variablesei .

Another concern is bandwidth selection. As we noticed in Remark 2.5,h ∼
n−1/3. In other words, compared with nonparametric estimation of regression, in
the context of model checking, undersmoothing is needed. So existing bandwidth
selection methods cannot be recommended in the setting of this paper and, indeed,
may lead to a considerable bias. Therefore, we adopt a semidata driven selection
procedure. The steps are as follows:

1. Selecth1 by minimizing the mean integrated squared error, subject to weight
functionW(·),

MISE(h) =
n∑

j=1

(
Yj − ψ̂(j)

n (Ûj )
)2

W(Xj)
2,(3.3)

which is analogous to the criterion used by Härdle, Hall and Ichimura [16]. The
kernelK is 15/16(1− u2)2I (|u| ≤ 1); see [17].

2. Our final choice forh is h = h1 × n−1/3+1/5.

The rationale of this algorithm is that, under our conditions and the choice of the
kernel function, the rate ofh1 is n−1/5. Therefore,h is of the ordern−1/3 and,
hence, ensures convergence of the test statistic. For validation purposes we also
considered a grid point search and choseh so that the empirical level was closest
to the nominal level.

Finally, we need to estimate the parameterβ. There are at least three methods
in the literature; see [16, 20, 25]. In our simulation study we applied Li and Duan’s
least squares estimator for ease of implementation.

We considered the case withp = 2,3 andβ = (1,−1)T /
√

2, β = (1,−1,1)T /√
3, respectively. The sample sizes weren = 50,100. The significance level was

α = 0.05. The test statistics were computed for 1000 replications.
Table 1 presents the attained levels for the various scenarios.
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TABLE 1
Size of the tests T̄n and T̃n

a

Model (3.1) Model (3.2)

n = 50 n = 100 n = 50 n = 100

W1 p = 2 0.048(0.046) 0.045(0.047) W1 p = 2 0.060(0.056) 0.057(0.054)
W1 p = 3 0.053(0.053) 0.047(0.052) W1 p = 3 0.054(0.052) 0.052(0.054)
W2 p = 2 0.048(0.047) 0.052(0.053) W2 p = 2 0.055(0.054) 0.052(0.054)
W2 p = 3 0.047(0.053) 0.046(0.051) W2 p = 3 0.055(0.055) 0.050(0.054)
T̃n p = 2 0.048(0.051) 0.053(0.052) T̃n p = 2 0.058(0.056) 0.057(0.051)
T̃n p = 3 0.045(0.048) 0.052(0.054) T̃n p = 3 0.061(0.053) 0.054(0.049)

a The values in parentheses are the estimated sizes when the bandwidth is selected by a grid search.

It becomes apparent that the significance level is well attained in most cases,
although, for model (3.2), the size of the tests forn = 50 is slightly larger
than 0.05. Furthermore, the size of the tests with the bandwidth selected by the
above algorithm is similar to that obtained from the grid point search. This shows
that our data-driven approach works well. We will therefore use this algorithm also
to select the bandwidth in the following simulation and the applications to two real
data examples.

To demonstrate power through simulations, we considered models (3.1)
and (3.2) withc = 1,2,3.

For model (3.1), as expected, the testTn based on the optimalW1 outperforms
the others. In model (3.2), when we have dependent errors andTn is no longer
optimal, all three tests have a similar behavior.

To compare the performance of our method with other existing tests through a
simulation study, we considered two scenarios. The first aim was to test the single
index model versus the existence of interaction effects. Particularly, we considered

m(x) = (βT x)3 + c1|x1x2| + c2|x1x3| + c3|x2x3|.(3.4)

For nonvanishingc’s, this model allows for interaction terms. The comparison
is among our maximin test, the omnibus testT̃n, Fan and Li [14] (FL-test) and
Aït-Sahalia, Bickel and Stoker [1] (ABS-test). In the simulation, similar to the
previous case, we tookβ = (1,−1,1)T /

√
3. The sample size wasn = 50, while

the significance level was 0.05. The constants were taken to be equal:c1 = c2 =
c3 = c with c = 0,1.0,2.0,3.0. c �= 0 corresponds to the alternative. In Figure 3
the estimated power was computed from 1000 replications. Recall that FL- and
ABS-tests require selection of two bandwidths. Since the significance levels of
their tests heavily depend on the choice of the bandwidths and there is no data
driven selection, a fair comparison causes some problems. In a simulation study,
however, one may determine (through replications) the bandwidth on a grid in such
a way that the nominal level is best attained. In this way we are able to produce
tests which attain the right level for the null model.
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FIG. 1. The estimated power for model (3.1): The dashdot line is for our test with the weight
function W1, the solid line with the weight function W2, and the dotted line is for T̃n.

We also ran many simulations with other bandwidths. It turned out that the
FL-test and the ABS-test are nonrobust inh so that the nominal level may not be
attained after a slight change inh.

As expected,Tn with optimal weightW1 has larger power than the test with
weight functionW2. T̃n has a power similar toTn with W2. The FL- and ABS-tests
are clearly outperformed but behave similarly otherwise in the situation considered
by us. Similar to the case with model (3.1), the FL-test has larger power than the
ABS-test.

We also compared the performance of all tests for a model studied by Xia, Li,
Tong and Zhang [38] in their Example 1, where, in our notation,p = 2 and

m(x) = x1 + x2 + 4exp{−(x1 + x2)
2} + c(x2

1 + x2
2)1/2,

and the errorsε are independent ofX with ε ∼ N (0, σ 2
ε ).

In Table 2 we report on the power results ofTn with W1(·) and W2(·), T̃n,
ABS- and FL-tests and the XLTZ-test. The bootstrap approximation of the XLTZ-
test is similar to that of Theorem 2.3. ForTn, we again used the weightsW1(x) =
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FIG. 2. The estimated power for model (3.2): The dashdot line is for our test with the weight
function W1, the solid line with the weight function W2, and the dotted line is for T̃n.

|x1|+|x2| andW2(x) = x2
1 +x2

2. The significance level was 0.05. The test statistics
were computed for 1000 replications. Note that these two weights are not optimal
for this model. We do not report the results with the optimal weights because the
previous simulations have provided evidence of its good performance and, from
Table 2, we can see that the suboptimal weightsW1 andW2 already work well.
Again, for ABS and FL, bandwidths were chosen so as to yield the nominal level
underH0 as closely as possible.

In Table 2, the values for the XLTZ-test are from Table 1 of [38]. We see that
Tn with W1 is best. Second, betweeñTn and the XLTZ-test, when the varianceσ 2

ε

of the errorsεi is small, the XLTZ-test is slightly better, while whenσ 2
ε gets large,

T̃n outperforms the XLTZ-test. Third, comparing̃Tn with Tn with W2, we see that
T̃n performs slightly worse. For this model, we find that the ABS- and FL-tests do
not work well.

3.2. Applications. In this section we apply our test to two data sets.
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FIG. 3. The estimated power for model (3.4): The dashdot line is for the maximin test with the
weight function W1, the solid line with the weight function W2; the dotted line is for the ABS-test,
the dashed line for the FL-test, and the dashed line plus star ∗ for T̃n.

EXAMPLE 3.1. The data set is the bull data; see [24]. The data are the
measured characteristics of 76 young bulls sold at an auction. It is interesting
to study the relationship between the selling prices and the characteristics of the
bulls: yearling height at shoulder; fat-free body (pounds); percentage of fat-free
body; scale from 1 (small) to 8 (large); back fat (inches); sale height at shoulder
(inches) and scale weight (pounds). The responseY is the standardized selling
price and the other standardized measurements are the covariatesX = (x1, . . . , x7).
Figure 4(a) provides a plot of̂βT X against the responseY . This linear fitting was
also used in [24]. There is some indication of a relationship between the residuals
ε̂j and β̂T Xj , see Figure 4(b). We tested the linearity of the model using the
Stute, González Manteiga and Presedo Quindimil [35] test. Thep-value was 0.044.
Therefore, the linear model needs to be rejected at levelα = 0.05.

Next consider single-index fitting. Againβ was estimated as in [25]. To justify
their estimation method, we first tested the elliptical symmetry of the distribution
of X. The nonparametric Monte Carlo test proposed by Zhu and Neuhaus [41] was
employed. Thep-value was 0.83. The statisticT̄n was computed for the weight
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TABLE 2
Estimated power of six tests with n = 50,p = 2a

σε 0.30 0.50

c 0 0.25 0.50 0 0.25 0.50

Tn(W1) 0.044 0.122 0.508 0.052 0.106 0.452
Tn(W2) 0.060 0.092 0.408 0.062 0.090 0.300
XLTZ-test 0.063 0.099 0.376 0.043 0.043 0.163
T̃n 0.063 0.090 0.350 0.043 0.073 0.253
ABS-test 0.050 0.060 0.140 0.050 0.055 0.085
FL-test 0.042 0.052 0.090 0.050 0.046 0.065

a Tn(Wi), i = 1,2, stand for the testsTn with W1 andW2, respectively.

function W(x) = ∑p
j=1 x2

j . The kernel functionK(·) is the same as for (3.3),
and the bandwidth ish = 0.35. Thep-value was 0.310. Therefore, a single-index
model need not be rejected.

EXAMPLE 3.2. The data are the automobile collision data as analyzed by
Härdle, Hall and Ichimura [16]. The sample size isn = 58. We also tested the
elliptical symmetry of the distribution of theX-data using the nonparametric
Monte Carlo test of Zhu and Neuhaus [41]. Thep-value was 0.25. This justifies
the use of the Li–Duan method for estimating the projection directionβ for
this data set. For a single-index fitting, the kernel functionK(·) was again the
same as for (3.3), the bandwidth wash = 0.4, while the weight function was
W(x) = ∑p

j=1 x2
j . The test statisticT̄n was used and the asymptoticp-value

was 0.32. The single-index model is therefore tenable.

FIG. 4. (a)Fit to the bulls data: the projected data β̂T Xj versus the linear fit (solid line) and the
response data (dots); (b) the projected data versus the residuals.
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4. Proofs. To prove Theorem 2.1, we expand our test statisticT̂n as

n1/2T̂n =
n∑

j=1

ε̂jWj =
n∑

j=1

[
Yj − ψ(j)

n

(
Fn(β̂

T Xj )
)]

Wj

=
n∑

j=1

[
Yj − Y 0

j − ψ(j)
n

(
Fn(β̂

T Xj )
) + ψ

(j)
n0

(
Fn(β̂

T Xj )
)]

Wj(4.1)

+
n∑

j=1

[
Y 0

j − ψ
(j)
n0

(
Fn(β̂

T Xj )
)]

Wj ≡ I + II,

whereY 0
j is computed under the null models ≡ 0, andψ

(j)
n0 is computed asψ(j)

n ,

with the sameβ̂ but with Y 0
j . The second sum will be further decomposed. For

this, put

ψ̄
(j)
n0 (u) = 1

(n − 1)h

n∑
i=1
i �=j

Y 0
i K

(
u − F(βT Xi)

h

)
.

This function is based on the trueβ andF and is therefore unknown in practice. It
will, however, play an important role in proofs, since it is close toψ

(j)
n0 and, on the

other hand, is computed from independent observations. Write

II =
n∑

j=1

[
Y 0

j − ψ̄
(j)
n0

(
F(βT Xj )

)]
Wj

+
n∑

j=1

[
ψ̄

(j)
n0

(
F(βT Xj )

) − ψ
(j)
n0

(
Fn(β̂

T Xj )
)]

Wj ≡ III + IV.

Observe that

III =
n∑

j=1

Y 0
j Wj − 1

(n − 1)h

n∑
j=1
i �=j

n∑
i=1

Y 0
i WjK

(
Uj − Ui

h

)
,

with

Uj = F(βT Xj ), j = 1, . . . , n,

being independent and uniformly distributed on[0,1]. Hence,III is aU -statistic
of degree two. Summarizing, we have

n∑
j=1

ε̂jWj = I + III + IV.(4.2)

After standardization, termI will be shown to tend to a limit which depends on the
shift s and, hence, will determine the local power of the test. As already mentioned,
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III is aU -statistic of degree two, with a kernel depending onh, and hence onn.
The termIV is more complicated, since the kernel contains empirical quantities.
After all, it will turn out that III and IV admit i.i.d. representations which will
partly cancel out and jointly determine the (limit) distribution ofT̂n underH0. To
carry out this program, note that bothψ(j)

n andψ
(j)
n0 are evaluated atFn(β̂

T Xj ).
Hence, the mathematical analysis of our test statistic requires a careful study of the
terms

K

(
Fn(β̂

T Xj ) − Fn(β̂
T Xi)

h

)
, 1 ≤ i �= j ≤ n.(4.3)

For this, denote byFθ
n the empirical distribution function ofθT X1, . . . , θ

T Xn.
Hence,Fn = Fθ

n if θ = β̂. SinceK has compact support, say[−1,1], indicesi, j
only contribute to (4.3) if

|Fθ
n (θT Xj ) − Fθ

n (θT Xi)| ≤ h, θ = β̂.(4.4)

Since by assumption B(iv)

n1/2(β̂ − β) = OP(1),

for each givenε > 0, we may find a large constantC such that

P(n1/2‖β̂ − β‖ ≥ C) ≤ ε for all n ≥ 1.

In other words, up to a small event,β̂ is contained in theCn−1/2-neighborhood
of β. The first goal will be to analyze the effect of replacingFn(β̂

T Xj ) and
Fn(β̂

T Xi) in (4.3) withUj = F(βT Xj ) andUi = F(βT Xi), respectively, subject
to (4.4). IntroduceFθ , the distribution function ofθT X. Hence,F = Fθ for θ = β.

In our first lemma we derive a maximal bound forFθ − Fβ evaluated atθT Xj

andβT Xj . Recall that, by assumption B(i),E‖X‖γ < ∞. This implies that

max
1≤i≤n

‖Xi‖ = OP(nα) for α = γ −1.

For this reason, it will suffice to analyze all leading and error terms on the set
where

max
1≤i≤n

‖Xi‖ ≤ C1n
α for some large finiteC1.(4.5)

Denote by� the set of allp-vectors.

LEMMA 4.1. Put, for each θ ∈ � and 1≤ j ≤ n,

aθ
j := Fθ(θT Xj ) − Fβ(βT Xj ).

We then have, on the set (4.5),

max
‖θ−β‖≤Cn−1/2

max
1≤j≤n

|aθ
j | = OP(n−1/2+α).
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PROOF. We shall first deal with an upper bound for theaθ
j ’s. Fix a possible

valuexj of Xj . Then

aθ
j = Fθ(θT xj ) − Fβ(βT xj ) = P(θT X ≤ θT xj ) − P(βT X ≤ βT xj )

= P(θT X ≤ θT xj , β
T X ≤ βT xj ) + P(θT X ≤ θT xj , β

T X > βT xj )

− P(βT X ≤ βT xj ) ≤ P(θT X ≤ θT xj , β
T X > βT xj ).

Now, θT X ≤ θT xj implies

βT X = θT X + (β − θ)T X ≤ θ txj + (β − θ)T X

= βT xj + (β − θ)T (X − xj ) ≤ βT xj + Cn−1/2{‖X‖ + ‖xj‖}.
Under (4.5) we therefore obtain, for each 1≤ j ≤ n,

aθ
j ≤ P(βT xj < βT X ≤ βT xj + 2CC1n

−1/2+α) + P(‖X‖ > C1n
α).

Since, by B(ii),βT X has a bounded density, the first probability isO(n−1/2+α).
As to the second probability, apply Markov’s inequality to get

P(‖X‖ > C1n
α) ≤ E‖X‖γ

C
γ
1 n

.

This completes the proof. For the lower bound, just reverse the roles ofθ andβ.
Now one needs the fact that the densities ofθT X are uniformly bounded for allθ
in a small neighborhood ofβ. �

In the following lemma we investigate the local oscillations of the empirical
process

(x, θ) → Fθ
n (x) − Fθ(x)

in a neighborhood ofβ. For this, introduce

Gθ
n(x, y) := Fθ

n (x) − Fθ(x) − Fβ
n (y) + Fβ(y)

for θ ∈ � andx, y ∈ R satisfying

(i) ‖θ − β‖ ≤ Cn−1/2,
(ii) |x − y| ≤ C1n

−1/2+α.

LEMMA 4.2. Under the assumptions of Theorem 2.1,we have

sup
x,y;θ

|Gθ
n(x, y)| = OP

(√
n−3/2+α lnn

)
,

where the supremum extends over all x, y and θ satisfying (i) and (ii).
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PROOF. The proof is a modification of the proof of Theorem 37 in [26],
page 34. First note that the halfspaces form a class with a polynomial covering
number. The measure of each set involved in the above supremum,Fθ(x)−Fβ(y),
is bounded from above in absolute value by

|P(θT X ≤ x) − P(βT X ≤ y)|
≤ |P(θT X ≤ x) − P(βT X ≤ x)|

+ |P(βT X ≤ x) − P(βT X ≤ y)| ≤ C2n
−1/2+α,

by (i), (ii) and assumption B. For the first difference apply a technique already
used in the proof of the previous lemma. If we replace the smallε in Pollard’s [26]
Theorem 37 by a largeK > 0 and set

α2
n = lnn

nδ2
n

therein, we obtain the required in-probability boundO(δ2
nαn), rather than a

convergence rate to zero. Hereδ2
n equals the maximal measure of the included

sets. Sinceδ2
n = O(n−1/2+α), the result follows. �

In the next lemma, we expandn−1/2III into a sum of independent random
variables plus a negligible error. The leading term will contribute to the limit of
our test statistic when the null hypothesis is true. Recall

W̄ (u) = E[W1|U1 = u].
LEMMA 4.3. Under the assumptions of Theorem 2.1,we have in probability

as n → ∞,

n−1/2III ≡ Sn1 = n−1/2
n∑

j=1

εjWj − n−1/2
n∑

j=1

[Y 0
j W̄ (Uj ) − EY 0

1 W̄ (U1)] + oP(1)

= n−1/2
n∑

j=1

{εj [Wj − W̄ (Uj )]

− �(βT Xj )W̄ (Uj ) + E[�(βT Xj )W̄ (Uj )]}
+ oP(1).

PROOF. Sn1 is aU -statistic of degree two with a kernel depending onh and

therefore onn. The Hájek projection ofY 0
i WjK(

Uj−Ui

h
) equals

Y 0
i

∫ 1

0
W̄ (v)K

(
v − Ui

h

)
dv + Wj

∫ 1

0
ψ(u)K

(
Uj − u

h

)
du

−
∫ 1

0

∫ 1

0
W̄ (v)ψ(u)K

(
v − u

h

)
dv du.
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Conclude that the Hájek projection ofSn1 equals

Ŝn1 = n−1/2
n∑

j=1

Y 0
j Wj − n−1/2h−1

n∑
i=1

Y 0
i

∫ 1

0
W̄ (v)K

(
v − Ui

h

)
dv

− n−1/2h−1
n∑

j=1

Wj

∫ 1

0
ψ(u)K

(
Uj − u

h

)
du

+ h−1n1/2
∫ 1

0

∫ 1

0
W̄ (v)ψ(u)K

(
v − u

h

)
dv du.

Furthermore (see [27]),

E
{
Sn1 − Ŝn1

}2 = O

(
1

nh

)
,

whence

Sn1 − Ŝn1 = OP

(
(nh)−1/2) = oP(1).

Hence, it suffices to further expandŜn1. For this, put

Eh =
∫ 1

0

∫ 1

0
W̄ (u)ψ(v)K

(
v − u

h

)
dv du

and consider

Rn1 = n−1/2h−1
n∑

i=1

[
Y 0

i

∫ 1

0
W̄ (v)K

(
v − Ui

h

)
dv − Eh

]

+ n−1/2h−1
n∑

j=1

[
Wj

∫ 1

0
ψ(u)K

(
Uj − u

h

)
du − Eh

]

− n−1/2
n∑

i=1

[
Y 0

i W̄ (Ui) − E
(
Y 0

1 W̄ (U1)
)]

− n−1/2
n∑

j=1

[
Wjψ(Uj ) − E

(
W1ψ(U1)

)]
.

It may be written as a single sum of centered i.i.d. random variables. Its variance
is bounded from above by the second moment of

Y 0
1

[
h−1

∫ 1

0
W̄ (v)K

(
v − U1

h

)
dv − W̄ (U1)

]

+ W1

[
h−1

∫ 1

0
ψ(u)K

(
U1 − u

h

)
du − ψ(U1)

]
,
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which is easily seen to go to zero ash → 0. Conclude thatRn1 = oP(1) and,
therefore,

Sn1 = Ŝn1 + oP(1)

= n−1/2
n∑

j=1

Y 0
j Wj − n−1/2

n∑
j=1

[
Y 0

j W̄ (Uj ) − E
(
Y 0

1 W̄ (U1)
)]

− n−1/2
n∑

j=1

[
Wjψ(Uj ) − E

(
W1ψ(U1)

)] − n1/2h−1Eh + oP(1)

= n−1/2
n∑

j=1

εjWj − n−1/2
n∑

j=1

[
Y 0

j W̄ (Uj ) − E
(
Y 0

1 W̄ (U1)
)]

+ n1/2[
E

(
W1ψ(U1)

) − h−1Eh

] + oP(1).

To complete the proof of the lemma, it suffices to show, in view of assumption C(i),
that the last bracket isO(h2). But

[· · ·] =
∫ 1

0
W̄ (v)

[
ψ(v) − h−1

∫ 1

0
ψ(u)K

(
v − u

h

)
du

]
dv

=
∫ 1

0
W̄ (v)

[
ψ(v) −

∫ v/h

(v−1)/h
ψ(v − sh)K(s) ds

]
dv.

Forh ≤ v ≤ 1−h, the inner integral extends over the whole support ofK , namely,
[−1,1]. Using the facts thatK is symmetric at zero,

∫ 1
−1 K(s) ds = 1 andψ is

twice continuously differentiable, Taylor’s expansion yields that the difference is
uniformly in h ≤ v ≤ 1 − h of the orderO(h2). For 0≤ v < h (and similarly for
1 − h < v ≤ 1), the difference isO(h). Since, however, 0≤ v < h has Lebesgue
measureh, we also obtain the upper boundh2 for this part of the integral. �

The quantitySn2 introduced and studied below will be the leading term for
n−1/2I with I from the expansion (4.2).

LEMMA 4.4. Under the assumptions of Theorem 2.1,we have in probability
as n → ∞,

Sn2 ≡ n−1
n∑

j=1

s(Xj )Wj − 1

n(n − 1)h

n∑
j=1

n∑
i=1
i �=j

s(Xi)WjK

(
Uj − Ui

h

)

→ E
{[

s(X) − E
(
s(X)|U )]

W(X)
} = µ.

PROOF. Sn2 is aU -statistic of degree two. Recalls̄(u) = E(s(X)|U = u). The
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Hájek projection ofs(Xi)WjK(
Uj−Ui

h
) equals

s(Xi)

∫ 1

0
W̄ (v)K

(
v − Ui

h

)
dv + Wj

∫ 1

0
s̄(u)K

(
Uj − u

h

)
du

−
∫ 1

0

∫ 1

0
s̄(u)W̄ (v)K

(
v − u

h

)
dv du.

Hence, the projection ofSn2 equals

Ŝn2 = n−1
n∑

j=1

s(Xj )Wj − 1

nh

n∑
i=1

s(Xi)

∫ 1

0
W̄ (v)K

(
v − Ui

h

)
dv

− 1

nh

n∑
j=1

Wj

∫ 1

0
s̄(u)K

(
Uj − u

h

)
du

+ 1

h

∫ 1

0

∫ 1

0
s̄(u)W̄ (v)K

(
v − u

h

)
dv du.

Furthermore,E{Sn2 − Ŝn2}2 is of the orderO(n−1h−1) = o(1).
Hence, it remains to show thatŜn2 tends to the desired limit. Now similar to the

proof of the previous lemma, it may be shown that

Ŝn2 − n−1
n∑

j=1

s(Xj )Wj + n−1
n∑

i=1

s(Xi)W̄ (Ui)

+ n−1
n∑

j=1

Wj s̄(Uj ) −
∫ 1

0
s̄(u)W̄ (u) du → 0 in probability.

The assertion of the lemma now is a straightforward consequence of the law of
large numbers upon noticing that

E[s(X)W̄ (U)] =
∫ 1

0
s̄(u)W̄ (u) du. �

The next lemma will be helpful to find the final expansion and limit ofI .

LEMMA 4.5. Under the assumptions of Theorem 2.1,we have

Sn3 ≡ 1

n(n − 1)h

×
n∑

j=1

n∑
i=1
i �=j

s(Xi)Wj

[
K

(
Fn(β̂

T Xj ) − Fn(β̂
T Xi)

h

)
− K

(
Uj − Ui

h

)]

→ 0 in probability as n → ∞.
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PROOF. By Taylor’s formula,

Sn3 = 1

n(n − 1)h

n∑
j=1

n∑
i=1
i �=j

s(Xi)WjK
′(�ij )

[
Fn(β̂

T Xj ) − Fn(β̂
T Xi) − Uj + Ui

h

]
,

where�ij is between the twoK-ratios in the definition ofSn3. For eachj (and
similarly for i),

|Fn(β̂
T Xj ) − Uj | ≤ |Fn(β̂

T Xj ) − F β̂(β̂T Xj )| +
∣∣aβ̂

j

∣∣
≤ sup

t;θ
|Fθ

n (t) − Fθ(t)| + sup
θ

|aθ
j |,

where the suprema extend (with large probability) over the set ofθ ’s with
‖θ −β‖ ≤ Cn−1/2. Now it is well known that empirical measures approach the true
measure at the rateOP(n−1/2) uniformly over the class of all halfspaces. See, for
example, [26]. In other words, the first supremum isOP(n−1/2). From Lemma 4.1,
the second supremum isOP(n−1/2+α) uniformly in 1≤ j ≤ n. Conclude that

sup
1≤j≤n

|Fn(β̂
T Xj ) − Uj | = OP(n−1/2+α) = OP(h).(4.6)

Furthermore, sinceK has support[−1,1], the summation inSn3 takes place only
w.r.t. thosei, j for which at least one of the ratios falls into[−1,1]. If this happens
to be true for the first ratio, then by (4.6) also

|Uj − Ui | ≤ C3h,

with large probability for some appropriateC3. Summarizing, sinceK ′ is bounded,
we get, with large probability,

∣∣Sn3

∣∣ ≤ C4
n−1/2+α

n(n − 1)h2

n∑
j=1

n∑
i=1
i �=j

|s(Xi)||Wj |1{|Uj−Ui |≤C3h}.

The expectation of the right-hand side is, however, of the orderO(n−1/2+αh−1) =
o(1). This completes the proof of the lemma.�

We are now ready to analyze the termI . From its definition we have

n−1/2I = n−1
n∑

j=1

s(Xj )Wj

− 1

n(n − 1)h

n∑
j=1

n∑
i=1
i �=j

s(Xi)WjK

(
Fn(β̂

T Xj ) − Fn(β̂
T Xi)

h

)
.

In view of Lemmas 4.4 and 4.5 we therefore get the following result.
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COROLLARY 4.6. Under the assumptions of Theorem 2.1,we have

n−1/2I → µ in probability.

To summarize the results obtained so far, Lemma 4.3 yielded an i.i.d.
representation ofn−1/2III, while Corollary 4.6 provided an in-probability limit
for n−1/2I . The analysis forn−1/2IV is a bit tricky. At the end it will turn out that
it admits an i.i.d. expansion which cancels with the second sum in Lemma 4.3. We
may thus conclude that

T̂n = µ + n−1/2
n∑

i=1

εi[Wi − W̄ (Ui)] + oP(1),

which coincides with the i.i.d. representation (2.6) of Theorem 2.1. So it remains
to show the following representation ofn−1/2IV .

LEMMA 4.7. Under the assumptions of Theorem 2.1,

n−1/2IV = n−1/2
n∑

j=1

{�(βT Xj )W̄ (Uj ) − E[�(βT Xj )W̄ (Uj )]} + oP(1).

PROOF. By Taylor’s expansion,

−n−1/2IV = 1

n1/2(n − 1)h

×
n∑

i=1

n∑
j=1
i �=j

Y 0
i Wj

{
K

(
Fn(β̂

T Xj ) − Fn(β̂
T Xi)

h

)
− K

(
Uj − Ui

h

)}

= 1

n1/2(n − 1)h
(4.7)

×
n∑

i=1

n∑
j=1
i �=j

Y 0
i WjK

′
(

Uj − Ui

h

)
Fn(β̂

T Xj ) − Fn(β̂
T Xi) − Uj + Ui

h

+ 1

2n1/2(n − 1)h

n∑
i=1

n∑
j=1
i �=j

Y 0
i WjK

′′(�ij )
[· · ·]2
h2 ,

where�ij is between the twoK-ratios in the representation ofIV . We shall show
that the second double sum is negligible, while the first contributes to the i.i.d.
representation of̂Tn. First, we write

Fn(β̂
T Xj ) = Fn(β̂

T Xj ) − F β̂(β̂T Xj ) − Fβ
n (βT Xj ) + Fβ(βT Xj )

+ F β̂(β̂T Xj ) + Fβ
n (βT Xj ) − Fβ(βT Xj ),
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and similarly for the indexi. The first line equals, withθ = β̂ andx = β̂T Xj ,

y = βT Xj , the quantityGθ
n(x, y) appearing in Lemma 4.2. Conclude from that

result that

1

n1/2(n − 1)h2

n∑
i=1

n∑
j=1

|Y 0
i Wj |

∣∣∣∣K ′
(

Uj − Ui

h

)∣∣∣∣|Gθ
n(x, y)|

(4.8)

= OP

(√
n−1/2+α lnn

) 1

n2h2

n∑
i=1

n∑
j=1

|Y 0
i Wj |

∣∣∣∣K ′
(

Uj − Ui

h

)∣∣∣∣.
The double sum is easily seen to be bounded in probability. Since

n−1/2+α lnn → 0,

this proves that (4.8) tends to zero in probability. Next we study

1

n1/2(n − 1)h2

n∑
i=1

n∑
j=1

Y 0
i WjK

′
(

Uj − Ui

h

)

× [Fβ
n (βT Xj ) − Fβ(βT Xj ) − Fβ

n (βT Xi) + Fβ(βT Xi)].
This sum is aV -statistic (see [27]), with a kernel depending onh and hence onn.
It is asymptotically equal to aU -statistic whose Hájek projection equals

h−2
∫ 1

0

∫ 1

0
ψ(u)W̄ (v)K ′

(
v − u

h

)
[ᾱn(v) − ᾱn(u)]dudv.

Here,ᾱn is the (uniform) empirical process pertaining to theUj ’s. Transformation
of integrals,C-tightness ofᾱn, n ≥ 1, and the fact thatK ′ has compact support
[−1,1] yield that the last double integral is equivalent to

h−1
∫ 1

0

∫ 1

−1
ψ(v − wh)W̄(v)K ′(w)[ᾱn(v) − ᾱn(v − wh)]dw dv.

By continuity ofψ , this is asymptotically equivalent to

h−1
∫ 1

0

∫ 1

−1
ψ(v)W̄ (v)K ′(w)[ᾱn(v) − ᾱn(v − wh)]dw dv

(4.9)

= −h−1
∫ 1

0

∫ 1

−1
ψ(v)W̄ (v)K ′(w)ᾱn(v − wh)dw dv.

Check that

1

h

∫ 1

−1
K ′(w)ᾱn(v − wh)dw = √

n[f̄n(v) − 1].
Here

f̄n(v) = 1

nh

n∑
i=1

K

(
v − Ui

h

)



1078 W. STUTE AND L.-X. ZHU

is the kernel density estimator for the uniform sampleU1, . . . ,Un.
Hence, (4.9) equals

−√
n

∫ 1

0
ψ(v)W̄ (v)[f̄n(v) − 1]dv.(4.10)

Introducing the smoothed empirical distribution,

dF̃n = f̄n dv,

and the pertaining empirical processα̃n = √
n(F̃n − Id), whereId denotes the

identity function on(0,1), (4.10) becomes

−
∫ 1

0
ψ(v)W̄ (v)α̃n(dv).

It is known that ∫ 1

0
ψW̄ dα̃n =

∫ 1

0
ψW̄ dᾱn + oP(1).(4.11)

A simple proof of (4.11) may be obtained by using oscillation results for empirical
processes; see [30]. We shall shortly see that all other terms will be negligible for
the i.i.d. representation ofn−1/2IV , so that

n−1/2IV =
∫ 1

0
ψW̄ dᾱn + oP(1),(4.12)

as desired. To justify (4.12), we next bound

1

n1/2(n − 1)h2

n∑
i=1

n∑
j=1

Y 0
i WjK

′
(

Uj − Ui

h

)
(Ûj − Uj − Ûi + Ui),(4.13)

where

Ûj = F β̂(β̂T Xj ), 1≤ j ≤ n.

Hence, theÛj andUj incorporate the theoretical distribution functions

Fθ(x) = P(θT X ≤ x)

at θ = β̂ andθ = β, respectively. From Lemma 4.1,

max
1≤j≤n

|Ûj − Uj | = OP(n−1/2+α).(4.14)

This bound will sometimes be helpful to further simplify (4.13). First, becauseK ′
is an odd function, (4.13) may be written as

1

n1/2(n − 1)h2

n∑
i=1

n∑
j=1

(Y 0
i Wj + Y 0

j Wi)K
′
(

Uj − Ui

h

)
(Ûj − Uj).(4.15)
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We shall only deal with the sum involvingY 0
i Wj , the other being dealt with in

a similar way. Now

1

n1/2(n − 1)h2

n∑
j=1

Wj(Ûj − Uj)

n∑
i=1

Y 0
i K ′

(
Uj − Ui

h

)

= 1

(n − 1)h

n∑
j=1

Wj(Ûj − Uj)

[
1√
nh

n∑
i=1

εiK
′
(

Uj − Ui

h

)]

+ 1

(n − 1)h

n∑
j=1

Wj(Ûj − Uj)

×
[

1√
nh

n∑
i=1

{
�(βT Xi)K

′
(

Uj − Ui

h

)
− E[· · ·]

}]

+ 1√
nh2

n∑
j=1

Wj(Ûj − Uj)

∫ 1

0
ψ(v)K ′

(
Uj − v

h

)
dv.

In the first two double series, first apply (4.14) to bound|Ûj − Uj | uniformly
in j . The expectation of, for example,

1

n

n∑
j=1

|Wj |
∣∣∣∣∣ 1√

nh

n∑
i=1

εiK
′
(

Uj − Ui

h

)∣∣∣∣∣,
is easily seen to be bounded. Similarly for the second series. Conclude that each
sum is

OP(h−1n−1/2+α) = oP(1).

As to the lastj -sum, substitutew = Uj−v

h
, apply Taylor’s expansion toψ(Uj −

wh) and use the fact that

∫ 1

−1
K ′(w)dw = 0,

∫ 1

−1
wK ′(w)dw = −1

to finally get that the last sum equals

1√
n

n∑
j=1

Wjψ
′(Uj )(Ûj − Uj) + oP(1)

= 1√
n

n∑
j=1

W̄ (Uj )ψ
′(Uj )(Ûj − Uj) + oP(1).
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Similar arguments yield for the double sum in (4.15) including the factorsY 0
j Wi

the representation

1√
n

n∑
j=1

W̄ ′(Uj )ψ(Uj )(Ûj − Uj) + oP(1).

Conclude that so far we have shown that (4.13) equals

n−1/2
n∑

j=1

(W̄ψ)′(Uj )(Ûj − Uj) + oP(1).(4.16)

At this point we see that another simple application of (4.14) even for
boundedX’s, that is,α = 0, does not yield anoP(1) term. Therefore, we have to
analyzeÛj andUj in a different way. As we shall see, finally, and in a disguised
form, we take advantage of the fact that, for eachθ every projectionθT X of X is
transformed into a uniform random variableFθ(θT X). Fix such aθ and note that,
for a random vectorX with the same distribution asX1 but being independent of
the sample(Xi, Yi),1≤ i ≤ n, one gets

Fθ(θT Xj ) = E
{
1{θT X≤θT Xj }|Fn

}
.

Here Fn = σ(Xi, Yi,1 ≤ i ≤ n) is the σ -field generated by the observations.
Conclude that, forθ = β̂,

Ûj − Uj = E
{
1{θT X≤θT Xj } − 1{βT X≤βT Xj }|Fn

}
= E

{
1{θT X≤θT Xj } − 1{θT X≤βT Xj }|Fn

}
+ E

{
1{θT X≤βT Xj } − 1{βT X≤βT Xj }|Fn

}
,

whence

n−1/2
n∑

j=1

(W̄ψ)′(Uj )(Ûj − Uj)

= n−1/2
n∑

j=1

(W̄ψ)′(Uj )(β̂ − β)T Xjf
β(βT Xj ) + oP(1)(4.17)

+ E

{
n−1/2

n∑
j=1

(W̄ψ)′(Uj )
[
1{θT X≤βT Xj } − 1{βT X≤βT Xj }

]|Fn

}
.(4.18)

The process inside the conditional expectation is, after centering, asymptotically
C-tight. With θ = β̂ → β, we therefore obtain

E{· · · |Fn} = n1/2
E

{∫ Fβ(βT X)

Fβ(θT X)
(W̄ψ)′(u) du|Fn

}
+ oP(1)

= n1/2(β − β̂)E{(W̄ψ)′(U)Xf β(βT X)} + oP(1),
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where the last equality follows from the mean value theorem,n1/2(β̂ −β) = OP(1)

and the facts that̂β is measurable with respect toFn andX is independent ofFn.
Inserting this in (4.17) and (4.18), we thus get

n−1/2
n∑

j=1

(W̄ψ)′(Uj )(Ûj − Uj)

= n1/2(β̂ − β)n−1
n∑

j=1

{(W̄ψ)′(Uj )Xjf
β(βT Xj ) − E[· · ·]} + oP(1).

Sincen1/2(β̂ − β) is stochastically bounded and the sample mean tends to zero
according to the SLLN, this shows that (4.16) tends to zero in probability.

It remains to bound (4.7), but this is easy. In view of Lemma 4.2, upon applying
by now standard arguments, we have

|(4.7)| = oP(1).

This completes the proof of Lemma 4.7.�
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