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In this paper we study goodness-of-fit testing of single-index models.
The large sample behavior of certain score-type test statistics is investigated.
As a by-product, we obtain asymptotically distribution-free maximin tests
for a large class of local alternatives. Furthermore, characteristic function
based goodness-of-fit tests are proposed which are omnibus and able to
detect peak alternatives. Simulation results indicate that the approximation
through the limit distribution is acceptable already for moderate sample sizes.
Applications to two real data sets are illustrated.

1. Introduction. Suppose that a response varialfledepends on a vector
X = (xq,.. .,xp)T of covariates, wherd denotes transposition. We may then
decomposeY into a functionm(X) of X and a noise variable, which is
orthogonal toX, that is, for the conditional expectation efgiven X we have
E(e|X) = 0. WhenY is unknown, the optimal predictor of given X = x
equalsm(x). Since in practice the regression functi@nis unknown, statistical
inference aboutn is an important issue. In a purely parametric framework,
m is completely specified up to a parameter. For example, in linear regression
m(x) = BT x, wherep is an unknowrp-vector which needs to be estimated from
the available data. Slightly more generally we may considéx) = & (87 x),
where the link-functiond may be nonlinear but is again specified. This is the
so-called generalized linear model.

When ® remains unspecified, we arrive at a semiparametric model which
is more flexible on the one hand and, on the other hand, avoids the curse of
dimensionality one faces in fully nonparametric models. The estimat@r, ak
well as of the link function®, in this so-called single-index model was studied by
among others, Li and Duan [25], Hardle, Hall and Ichimura [16], Ichimura [23]
and Hristache, Juditsky and Spokoiny [22]. Related work is [6] and [20]. Clearly,
any statistical analysis within the model, to avoid wrong conclusions, should be
accompanied by a check of whether the model is valid at all. For the single-index
model the diagnostic methods are less elaborate. We only mention Fan and Li [14],
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Ait-Sahalia, Bickel and Stoker [1] and Xia, Li, Tong and Zhang [38] here but come
back to them later. See Discussion 2.6, when we are prepared to compare their
approaches and results with ours. The paper by Hardle, Mammen and Proenca
[19] considers a parametric link structure and therefore does not fall into the area
studied in this paper.

In the present paper, we aim at developing some formal tests for model checking
when the link function remains unspecified.

For more specified regression models the literature is much more elaborate. To
review only a few contributions, Cox, Koh, Wahba and Yandell [8] introduced
tests of the null hypothesis that a regression function has a particular parametric
structure. Azzalini, Bowman and Hardle [3] considered nonparametric regression
as an aid to model checking. Cox and Koh [7] developed spline-based tests of
model adequacy. Eubank and Spiegelman [11] considered spline approaches to
testing the goodness of fit of a linear model. Simonoff and Tsai [28] proposed
diagnostic methods for assessing the influence of individual data values on
goodness-of-fit tests based on nonparametric regression. Gu [15] used spline
methods in a diagnostic approach to model fitting. Azzalini and Bowman [2] used
nonparametric regression to check linear relationships. Eubank and LaRiccia [10]
derived properties of two-sided tests in nonparametric regression based on Fourier
methods. Hardle and Mammen [17] considered comparisons between parametric
and nonparametric fits and used the wild bootstrap for the computation of critical
regions. Hardle, Mammen and Miller [18] investigated testing for parametric
versus semiparametric modeling in generalized linear models, again using the wild
bootstrap.

Note, however, that any test using a nonparametric regression estimator
runs into an ill-posed problem requiring the choice of a smoothing parameter.
Therefore, an alternative approach was developed which circumvents these
problems. To name only a few papers, Bierens [4] proposed to check a parametric
regression model by investigating the sum of properly weighted residuals. See also
[5] for an informative discussion of the resulting tests when local alternatives
are considered. In Stute [33] a method was studied which is based on the
integrated regression function and which corresponds to cumulative quantities
such as empirical distribution functions or ranks known from other areas in
statistics. In this setup the author was able to derive a principle components
decomposition of the underlying test process, which is extremely useful for
design of optimal tests versus local alternatives and for understanding the impact
of the design distribution and the noise variance on the power of the tests. In
particular, optimal Neyman—Pearson tests which are based on linear rather than
quadratic test statistics can be obtained from this decomposition. Stute, Gonzalez
Manteiga and Presedo Quindimil [35] studied the quality of the distributional
approximation of an associated cusum process via the wild bootstrap, while
Stute, Thies and Zhu [36] proposed an innovation process approach so as to
obtain asymptotically distribution-free and optimal tests. Finally, Stute and Zhu
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[37] developed nonparametric testing for the validity of a generalized linear
model, which is based on a proper transformation of a residual empirical process
and which perfectly adapts to a situation when the design vector is elliptically
contoured.

In the framework of the single-index model the link function is unknown and, as
part of the testing procedure, needs to be estimated in a nonparametric way. From
our preceding remarks on ill-posedness, one might conclude that nonparametric
estimation of the link function necessarily excludes the possibility of constructing
tests which have optimal power versus local alternatives converging to the null
model at the rate:~Y/2. Fortunately, as this paper will show, this pessimistic
view is not justified. To obtain such tests, rather than comparing the estimator
of ® with the hypothetical semiparametric model, we embed the residuals into a
cusum process. This summation has a smoothing effect so that our test is much less
sensitive than usual to a wrong choice of the bandwidth. At the same time, each
residual is properly weighted by a function of the design vector. Our main result,
Theorem 2.1, is formulated for a given fixed weight function. Such an approach
has a long tradition in statistics. Typically, score tests are first analyzed (and
optimized) when the direction from which the alternative tends to the null model is
specified. Classical examples are linear one- and two-sample rank statistics or rank
correlation statistics. Also, robust tests focussing on a neighborhood of a given
family of distributions are designed in this spirit.

Theorem 2.1 not only provides the asymptotic normality of a large class of score
statistics, but also yields (up to a remainder) a representation as a sum of i.i.d.
variables. From this, when the alternative is specified, we shall be able to choose
the weights so as to optimize local power. This discussion will give us a clue as to
how to proceed if the alternative model has arbitrary but finite codimerasidm
such a situation we propose and study a test which is asymptotically distribution-
free and shown to be maximin (Corollary 2.2). Sintées arbitrary, Corollary 2.2
covers most situations arising in practice. The i.i.d. representation is also useful
for implementation of a proper bootstrap approximation. See Section 3 for some
details.

For those readers who prefer omnibus tests, we also discuss (Theorem 2.3)
a situation where the deviation from the null model is completely nonparametric.
Also, in this case, the local asymptotic power can be derived. Finally, we include
a discussion of how our test behaves when local peak alternatives are to be
detected.

The paper is organized as follows. In Section 2 we introduce the basic test
statistics and formulate our main results. In Section 3 we report on some simulation
results and apply our method to two data sets. Proofs of theoretical results are
postponed to Section 4. Readers who want to skip the technical part may consult
Section 2 for an informal discussion and some background information on proofs.
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2. Main theorems. Throughout the paper we assume that the available data
(X;,Y:), 1 <i <n, are independent and have the same distributionXay’).
Under the null hypothesis, that is, under the single-index model,

(2.1) Y =d(BTX) +e,

whereg is an unknowrp-vector and® is an unspecified link function defined on
the real line. The noise variabdesatisfies

(2.2) E(e|X) =E(e|T X) =0,
which is tantamount to saying that
(2.3) E(Y|1X)=EY ' X) = d(BT X).

Note that (2.2) allows to depend orX so that (2.1) may include heteroscedastic
errors. The first equation in (2.3) features the projection pursuit character of the
single-index model in that the conditional meanYofjiven X only depends on a
proper projection ofX.

To motivate our approach, assume for a moment that we already have an
estimators of 8. Replacingd” X; with A7 X;, we could try to estimaté through
a Nadaraya—Watson estimatdr or a local linear smoother as discussed, for
example, in [13]. The disadvantage of these smoothers, at least in our context,
comes from the fact that the distribution Af as well asX, will likely have an
effect on the distribution of our test statistic, even in the limit. This phenomenon
is well known in many other statistical problems, when unknown parameters
need to be estimated. Typically, the effect on the distributional character requires
some correction through a proper transformation of the test statistic. See, for
example, [34]. Moreover, the ratio structure of these estimaforseates some
technical problems when the denominator is small, that is, whdies in a
region of low density. From time to time some structural assumptions on level
sets are imposed, but when it comes down to estimation, these assumptions can
hardly be justified ford. To avoid all these nasty side effects, we decided to
use an estimator o which employs a transformation ¢f’ X; to a variable
which is approximately uniform on the unit intervéd, 1). In other words, we
incorporate a transformation which makes everything distribution-free, as far as
the distribution of8” X is concerned. This estimator is a symmetrized nearest-
neighbor (NN) estimator. Its consistency was proved by Yang [39], while Stute
[32] provided the asymptotic normality. In these papers, the regression function
itself was, of course, the target and the distribution-freeness only applies to the
random deviation but not to the bias term. In the context of the present paper,
® only appears as a tool to define the residuals. When we consider a properly
weighted sum of the residuals, averaging yields a smaller variance to the effect that
we may choose smoothing parameters so that at the same time the bias becomes
negligible and the variance part remains as the only nonnegligible source of error.
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This more or less enables us to construct tests which have nontrivial power when
the alternatives approach the null model at the nats?.

To motivate our approach on a more technical level, assumesthsithas a
continuous distribution functiof?, that is,

F(x)=FP(x):=PBTX <x), xeR.

Here P denotes a probability measure defined on a sp&reA) carrying all
random variables which may appear. Denoterby the quantile function of':

Flw) =inf{x e R: F(x) > u}, O<u<1

PutU := F(BT X). By continuity of F, the variablel/ has a uniform distribution
on (0, 1). Setting

Y =doF 1
equation (2.1) becomes (with probability one)

Y=y U)+e.
In terms of regression, this may be expressed as

m(x) =EY|X =x) = (B %) =y w),
where
u=F(BTx) andy (u) =E(Y|F(BT X) =u).

Therefore, the kernel estimator fgrat 0< u < 1 becomes

~ 12
Y () = ;ZY,-Kh(u - Uy,

i=1

1 v
K;(v) = EK(_)

where

h

andK is a symmetric kernel on the real line integrating to one, white i,, > 0
is a bandwidth. The random variables

U =FP(BT X))

are i.i.d. from the uniform distribution of®, 1). SinceF”? andg are unknowm/?,,
cannot be our final estimator. For this, repldicky some estimatg$ and F' = F#
by the empirical distribution functiof, of 87 X;, 1<i < n. This yields

U = F,(BT X)), 1<i<n,

with corresponding estimator

12 N
Ya(u) ==Y Y;iKp(u—Uy).
i
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This estimator is related to that in [32], up to the fact that there univaiate
were considered and no preliminary projection was required. U= are the
normalized ranks pertaining to the projected valgdsy;. Since these values
depend on the random, existing results on rank statistics cannot give us easy
access to the analysis of our final test statistic, in particular, sincé;te@ppear
as part of the smoothed functian, atu.

Worse than that, we have to evaluatg at each(?j. This finally leads to the
residuals

8 =Yj—¥uUp, 1l=<j=n

Actually, to reduce a possible bias, we shall consider estimmgr)scomputed in
the same way a$,,, but with thejth datum deleted from the observations. Hence,
the residuals are to be redefined as

The mathematical analysis cj}f(”(U_,-) and, hence, of; requires careful study
of the local properties of;, evaluated aB” X;. The oscillation behavior for the
ordinary empirical process has been investigated in detail in [30, 32]. In the present
situation we need to study the fluctuations of empirical measures over halfspaces
rather than quadrants.

Our final test statistic will be of the form

n
fn :n_l/ZZ§jW
j=1

The weightsW; will be of the formW; = W(X ;). The functionW is a smooth
function defined ofR?. A discussion of how to choos# in a testing situation is
postponed to the end of this section. Under the null model (2.2), we may expect
that7;, behaves similarly to

n
T, =n_1/228jW
j=1

SinceW; is orthogonal tce, 7, is centered. Hence, we may expect that dliso
fluctuates around zero under (2.2). Under (local) alternatives,;thso comprise
quantities which hopefully are not orthogonal to thg's. If we chooseW in a
proper way, this fact will guarantee nontrivial power of the test.

More specifically, we shall first consider models of the type

(2.4) Yin=®(BT X)) +n 2s(X)) +&,  1<i=<n,
where the(X;, ¢;) are i.i.d. satisfying
(2.5) E(&|X;) =0 forl<i <n.
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The function®, as well as the paramet@;, remain unspecified, as will be the
distribution ofX; ande;. The functions may or may not be specified. Whee= 0,

the single-index model holds. For specified alternatives, we shall later discuss how
to chooseW in order to maximize local power.

So far we have not discussed how to estimatéVe shall come back to this
point in Section 3 when we apply our method in a simulation study and to real
data. In fact, the discussion gfmay be delayed since our assumptionsfoare
very general and do not assume any particular forngfor

We now state the assumptions needed for Theorem 2.1 below. For this, put, for
O<u<l,

W) =EW)IU =ul, 5w =ElsX)|U = ul.

THEOREM2.1. Assumethat (2.4), (2.5)and the following conditions hold:

A (i) ¥,5and W aretwice continuously differentiable.
(i) YW(X) and eW (X) have finite second moments.
B ) EIIX||Y < oo for some y > 2.
(i) For all 6 in a neighborhood of B, the variables #7 X have continuous
densities ¢ which are uniformly bounded.
(i) Thedistribution functions F? of 67 X are continuousin at 6 = g.
(iv) Theestimator 8 satisfiesnY/2(8 — ) = Op(1).
C (i) nY/2h? > 0and h~1n~1/2+1r 0.
(i) K is a symmetric kernel with compact support, twice continuously
differentiable with [ K = 1. Furthermore, K is nonincreasing on the positive
real numbers.

Then we have
(2.6) To=pu+n"2Y &[W; — WU + op(1)
i=1
and, therefore, by the CLT,
T, — N(u,0®  indistribution,
where
o? =E{A[W(X) — W)
and

w=E{[s(X) —E(s(X)|U)]W(X)}.

A discussion of A—C will be postponed until the end of this section.
The drift comprises the deviation oX) from the space of variables spanned
by BT X. Under the single-index model, the bracket equals zero and sodoes
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Also, W(X) should not depend oX throughg” X, since then alsq = 0. The
variance does not depend erbut, among other things, measures the deviations
betweenW (X ;) and the projected valuéis’(Uj). The limit variances2 also does
not depend on the unknowh. A consistent estimator ef? is obtained by

1 . — A
j=1

where _n("') is defined similarly tow,(,j). Just replacey; with W(X;) in the

definition of the NN-estimator. Putting

Ty = Tn/on,
we then obtain
T, — N(C,1) in distribution
with
C=u/o.
The null model is rejected at levelif
I T| > M—qj2 = A,

where is the (1 — %)-quantile of the standard normal distribution functién

Hence, the asymptotic power ¢f;,| against the local alternatives (2.4) equals
1—[D(C+ 1) —d(C —A)]. This is a monotone function of|. Thus, we should
select the weight functio in a way that make€? as large as possible. If we
write, in an obvious notation,

125, W)
o2(W)
it is easy to determine the optimal solution of our problem whenshkeare

independent o, that is, if the homoscedastic case holds. Then the above ratio
equals

C?=C?%s,W)=

u?(s, W)
Ee2E[W (X) — W(U)]?’

and the Cauchy—Schwarz inequality immediately yields that the optimal weight
function Wy equals, up to a constant factor, the function

(2.7) Wo(X) = s(X).

Next we study an important extension of (2.4). For thissiet. ., s; be any finite
number of functions, wherg > 1. In applications, these functions may constitute
a possible (mean) dependenceYofon X = x other than projections af. For
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example, some of the-functions may be quadratic forms, and others may be in
charge of possible interactions between coordinatés. of
Instead of (2.4), we therefore consider the more complex model

d
(2.8) Yin=®BTX) +n Y2y yisj(Xi) + & 1<i<n,
=1

whereg € R?, y1, ..., vs € R are unknown parameters addis a nonspecified
link function. The null model thus corresponds to

Hoiyp=---=ya=0.

In the following we shall derive maximin tests féfy versus||y || > ¢, where|| - ||

is a proper norm ang” = (y1, ..., y4). Needless to say, such test problems have
been well studied in the context of linear regression. The present situation is much
more complex since now the null model is the semiparametric single-index model.
To the best of our knowledge, the following setup provides the first maximin-test
in semiparametric regression. For this, and in view of (2.7), we consider the score-

statisticsfnj pertaining toW =s;, j=1,...,d. Put
Tp=T ..., THT.

Theorem 2.1 implies that, under (2.8) (in the homoscedastic case), we have in
distribution, as: — oo,

Y1
(2.9) T,— x| : |+ M0 p?%).
Vd

Here,X = (0ij)1<i,j<d with
oij = E{[si(X) — E(s; (X)|U)][s;(X) — E(s;(X)|U)]},

Ny denotes a normal distribution d&? and p? = Ec2. Assertion (2.9) exhibits
that, in the limit, 7}, is a standard Gaussian shift model. Distributional character-
istics of the model (2.8) only appear through the (estimable) covariance matrix.
This observation once again supports our approach, in particular, the use of the
NN-smoother and the rank transformation.

We may now use existing maximin-theory to obtain optimal testdHgrSee,
for example, [29], Theorem 30.2. For this defing = (0i;n)1<i, j<a through

1 ; 5
ofn =3 85 (X = 57 O0)]ls; (X0 = 5 O],
k=1



SINGLE-INDEX MODELS 1057

COROLLARY 2.2. For agiven significancelevd 0 < o < 1, thetest

P=17 1, ,)

isamaximin a-test for Ho versus Hy:y ! Xy > p2a. Herec, isthe (1 — «)-quan-
tile of the chi-square random variable Xj with 4 degrees of freedom. The
asymptotic maximin power is given by ]P’(Xj(a) > ¢y), Where now a is the
noncentrality parameter.

Since the codimensiod is arbitrary, Corollary 2.2 covers many examples of
interest. Some, for example, interaction alternatives, are studied in Section 3.
For those who prefer omnibus tests, we now discuss a class of tests which has
reasonable power over a nonparametric class of alternatives.

Hence, we come back to (2.4) but leavenspecified. In order to achieve power,
we need to consider a family of weight functiofi¥, }, guaranteeing that at least
one W, is able to detect a possible deviations¢¥X) — 5(U) from zero. A class
of (smooth) score functions which has found a lot of interest in classical empirical
process theory is the family of trigonometric functions. This led to an intensive
study of the empirical characteristic function. See, for example, [12] for a nice
review and further applications. In our contet, therefore becomes

(2.10) W(y,x) =expiy!x,

wherei is the complex unit angt € R?. If we take only finitely many/’'s, we may
conceive, as in Corollary 2.2, asymptotically distribution figetests. To handle
a nonparametric alternative, we have tojevary overR?. Hence, we come up
with a stochastic process

n
T,(y) :=n"Y2" 8, W;(y),
j=1

where W;(y) = W(y, X;). Note that7, has continuous sample paths jn

The convergence of the finite-dimensional distributions again follows from (2.6).
Tightness is not difficult as long asvaries in a compact set, since thgy, x) are
smooth functions iy andx. For detailed arguments, one needs to check the proof
of Theorem 2.1 and show that the remainders are uniformly small on compact
y-sets, while the leading terms are uniformly continuous. After all this we then
come up with the following result.

THEOREIYI 2.3. Under the assumptions of Theorem 2.1, the stochastic
processes {7,(y):y € RP} converge in distribution (on compact sets) to a
continuous Gaussian stochastic process T, such that
(2.11) 1(y) =ETw(y) = B{[s(X) = 5(U)IW (v, X)}
and

CoV(Too (1), Too(v2)) = E{e2[W (1, X) — W (y1, D)W (2, X) — W (12, U)1}.
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A Kolmogorov—Smirnov (KS) type test reject if
T, = sup| T, ()| = ca,
14

wherec, is the (1 — a)-quantile of sup |Too(y)| under Hp, that is,s = 0. Since

this test is no longer distribution-free, a bootstrap approximation is recommended.
See Section 3 for further details. For power considerations, we expgndat g
yielding

nw(y) =E{[s(X) — 5(U)IW(B, X) exfi(y — B)T X1}
~ E{[s(X) — 5(U)IW (B, X))
+i(y — BTE{(s(X) = 5(U))W(B, X)X}

The first integral vanishes, sine€X) — 5(U) is orthogonal to the space of
random variables measurable w.it! X. The second (vector-valued) integral
I = I(s), say, usually does not vanish so that, for example,

suplu(y)| ~suplly — BllIZII > 0.
¥ v

This property guarantees that the KS-test has asymptotic peweuniformly for
all s for which || (s)|| is bounded away from zero.

Needless to say, a version of Theorem 2.3 also holds for other parametric
families of functionsW (y, -). We focussed on trigonometric functions since they
are at the same time smooth and measure determining and allow for a simple
expansion of the drift function.

Though our results cover a large class of local alternatives, people sometimes
are interested in detecting so-called “peak alternatives.” For this, one needs to
consider shift functions which depend om in such a way that, as — oo, s,
(weakly) converges to a Dirac function or a linear combination of such functions.
A typical candidate is

(2.12) 52(%) :an_pgo(X;XO),

n

wherea,, — 0 butnal — oo. The “density” ¢, as well asxg, the center of the
peak, remain unspecified. The test procEgs) may also serve as a basis to detect
alternatives (2.8), where some of thés are of “global type,” that is, do not depend

on n. Others may be of type (2.12). Since the covariance is not affected by the
shift, the limit covariance remains the same as in Theorem 2.3. Relevant proofs
only deal with the null model so that no changes are required. The shift only enters
into Lemmas 4.4 and 4.5, resulting in Corollary 4.6. Taking into account the local
flavor of (2.12), these lemmas need some minor modifications resulting, under
s = s from (2.12), in the drift function

(2.13) 1(y) =ETo(y) = [s(X0) — 5u0)IW (. X0)p(0) f (X0).
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wheref is the density ofX. Hereug = F (87 Xg). Details are omitted. The function
(2.13) nicely features the components which determine the power of the test when
s equals (2.12):

e The X-density atXg: f(Xp).
e The “height” of the peak atg: ¢(0).
e The deviation of from the null model akg:s(Xg) — §(uo).

If we let y vary over a large compact set, the Kolmogorov—Smirnov test
associated with7,, is able to detect peak alternatives which converge to the
null model at the rate:~Y/2. The asymptotic power exceedsbut is less than
one, depending on the three components discussed above. In particular, our
approach yields the correct asymptotics. This finding should be compared with
other approaches, where, for much simpler purely parametric regression models,
alternatives had to converge to the null model at a rate lower/thaff. See, for
example, [21] and references therein. Not unexpectedly, the power then converges
to one.

We continue with some comments on A—C.

REMARK 2.4. Condition A comprises standard smoothness and moment as-
sumptions on the involved functions. Condition B requires some weak conditions
on the design vector and ¢h In C, \/nh%2 — 0 will be needed to make the bias
tend to zero. The second assumptiorkamill be needed to control the fluctuations
of the random sums. In view of the fact that we always deal with standardized sums
and also that larg&;’s may enter the statistics, some connection with the tai of
(in terms ofy) are natural. The conditions dn are also standard. The monotonic-
ity of K guarantees that’ has identical signs on the positive and negative reals.
Moreover,K’(0) = 0. In other wordsX may be decomposed into two parts, each
of which is compactly supported, by the positive and negative real lines, respec-
tively, and having identical signs there. This property is useful in proofs when,
after Taylor's expansionk’ appears as a smoothing kernel.

REMARK 2.5. The conditions ot are weak and are satisfied for a large
class of bandwidths. A referee pointed out that this fact could be interpreted as
a kind of robustness of the method w.r.t. the choicé.dh particular, they do not
depend, as in related work, on the dimensjoaf the X-vector or higher degrees
of smoothness of the involved functions. We may chobso thatn'/?42 and
h~1n=Y2+1/Y gre of the same order. This yields

o~ n-Y31/3y

In the next section we propose two adaptive methods of bandwidth choice
which worked very well in our simulation study. If we are not only interested
in maximizing power for a given alternative, we may choos# avith compact
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support. In this way the test is robust against outliers amongdttee Our proof
then works withy = oo, that is,% = 0. In this caseh ~ n~1/3.

DiscussiON2.6. Itis time to compare our approach and results with those
of Fan and Li [14], Ait-Sahalia, Bickel and Stoker [1] and Xia, Li, Tong and
Zhang [38]. The tests of the first two papers are based on a (weighted) residual
sum of squares and are in the spirit of Hardle and Mammen [17]. The asymptotic
normality of the test statistic is achieved by a clever application of central limit
theorems for sequences of degener@tstatistics. More precisely, Fan and Li
[14] (FL) based their test on a quadratic form of the estimated residuals. Since no
rank transformation is involved, they had to weight each residual with estimators
of marginal and high-dimensional densities, to get rid of the denominator in the
Nadaraya—Watson estimator. Consequently, two different smoothing parameters
need to be involved. It is heuristically argued that local alternatives only can be
detected when they approach the null model at the €xt@:?/%)~1/2), which
gets worse as the dimensionXfincreases. The estimator gf being square-root
consistent, does not have any impact on the limit distribution because the other
guantities converge at a slower rate, thus compensating for the effect of estimating
unknown parameters. In a general situation of testing a model or hypothesis,
efficient methods involve test statistics and estimators which admit expansions
of the same order. See, for example, [9], to name only one landmark paper on
this topic. Unless some orthogonality assumptions are satisfied, the parameter
estimator does have an impact on the limit, and martingale transformations, as
in [36], were designed to keep track of this issue. See also [34]. Efficient model
checks would therefore create terms which when replagngith g are not
negligible and thus have an impact on the distributional behavior of the test
statistic. As to practical applications, computation of critical values would then
not be easy. Worse than that, the complicated geometric structure of the test
statistic would not enable us to derive optimal scores. Actually, these are only
two of several reasons why we designed our test as we did. There are others.
As a by-product, the assumptions on the design varidbleemain weak. No
additional support or higher smoothness conditions need to be assumed. The
variableY may be discrete and no joint densityXfandY is required. Compared
with Fan and Li [14], Ait-Sahalia, Bickel and Stoker [1] is mainly concerned
with the problem of dimension reduction for high-dimensional inputs. Only some
comments on the applicability to single-index models are included. Their test
statistic is a sum of weighted residual squares, the weights now being deterministic
functions of the regressors. In their Proposition 2 the local power of the test is
derived when the alternatives tend to the null model at a rate dependipg on
It should also be mentioned that the test statistic admits a bias increasing to
infinity as n — oo. Moreover, the constants defining the asymptotic bias are
unknown and require further smoothing when being estimated. Similarly, in Xia,
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Li, Tong and Zhang [38], who extended the marked empirical process approach
of Stute, Gonzalez Manteiga and Presedo Quindimil [35] in the parametric case
to the single index model. Compared with these papers our test achieves local
power known from parametric tests, though the nonparametric components can
only be estimated at a worse rate. Mathematically, we have to pay a price for
this. For example, Theorem 2.1 cannot be obtained by just applying Taylor's
expansion and/-statistic theory. Rather, our proofs require some new techniques
involving (local and global) properties of the rank-transformed projected values
BT X;,1<i < n. Unfortunately, techniques also developed in [31] to analyze the
(rank-transformed) nearest-neighbor regression function estimator at a point are of
no help here.

3. Simulation study and applications.

3.1. A simulation study. In our simulations we studied two models. The first
is with continuous response, namely,

p
(3.1) Y:(,BTX)3+C<Z|XZI> +e,
1=1
whereX ande¢ are independent; are the components &f and the distributions
of X ande are N(O,1,) and N (O, 1), respectively. The hypothetical model is
d(BTX) = (BT X)® ands(X) = Y7, |x;|. Therefore, the null model holds if and
only if ¢ =0.
The second model is with binary response,

exp(—BT X + c(X1_; 1xi)
(3.2) 1+exp(—BTX + (X 1xi])

= (BT X + cs(X)) +e,

whereY = 0,1 is a binary variable for whicly = 1 with probability ® (87 x +
¢s(X)) for any givenX = x. Also, herec = 0 corresponds to the hypothetical
model, that is, the logit model. It is heteroscedastic, ahdand ¢ are not
independent. AgainX ~ A (0, I,). We usedc = 1, 2, 3 to investigate the power
of the test.

Two weight functions were considered in the simulatid¥y,(x) = s(X) and
Wa(x) = 3P, x2. Based on our findings in Section 2y; is optimal for
model (3.1) ase is independent ofX, and W> is a natural candidate for an
even function. For model (3.2), we also use these two weight functions due
to the following observation: When is small, ®(—87x + cs(x)) is close to
& (—BTX) + c®'(BTx)s(X), whered'(-) is the derivative ofb(-). Therefore s(x)
is also a good choice of a weight function in this case.

In order to implement the omnibus test based Bn= sup, 1T, (y)| of
Theorem 2.3, we have to use a resampling approximation to determine critical
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values. The wild bootstrap is clearly an option. In view of (2.6), however, we
suggest the following algorithm: for any, fn(y) is asymptotically equal to
p+n"Y2Y" o) [W; — W (U;)]. UnderHp, i = 0. For any i.i.d. random variables
ei, i =1,...,n, independent of thé€x;, y;)’s with mean 0 and variance 1, it is
easy to prove that, for almost all sequenfies, y1), ..., (xu, yn), ...}, the process
T (y) = n~ Y250 e;8;[Wi — W\ (0))] has the same limit ad, (y). It is
worthwhile noting that, using this resampling scheme, we do not need to estimate
the variance. In a different setup, this algorithm has been used by Zhu [40] and
Zhu and Ng [42]. The proof and the procedure are similar. We omit the details.
To implement the test, we can generate, by Monte Catleets of{es, ..., e,}
and then compute: values ofT,{ =sup, |fn’(y)|. The [(1 — a)m]th value can be
used as the critical value, wheseis the significance level and] stands for the
integer part ofa. In the following simulation, we used standard normal random
variablese;.

Another concern is bandwidth selection. As we noticed in Remark/2:5,
n~1/3. In other words, compared with nonparametric estimation of regression, in
the context of model checking, undersmoothing is needed. So existing bandwidth
selection methods cannot be recommended in the setting of this paper and, indeed,
may lead to a considerable bias. Therefore, we adopt a semidata driven selection
procedure. The steps are as follows:

1. Selectkh; by minimizing the mean integrated squared error, subject to weight
function W (.),

3.3) MISE(h) = (¥} — §3(0))*W(X )2,
j=1

which is analogous to the criterion used by Hardle, Hall and Ichimura [16]. The
kernelK is 15/16(1 — u?)?I (Ju| < 1); see [17].
2. Our final choice fok is h = hq x n=1/3+1/5,

The rationale of this algorithm is that, under our conditions and the choice of the
kernel function, the rate of; is n=1/°. Therefore: is of the ordern~1/3 and,
hence, ensures convergence of the test statistic. For validation purposes we also
considered a grid point search and chass that the empirical level was closest
to the nominal level.

Finally, we need to estimate the parametehere are at least three methods
in the literature; see [16, 20, 25]. In our simulation study we applied Li and Duan'’s
least squares estimator for ease of implementation.

We considered the case with=2,3 andg = (1, —-1)7 /v/2, 8= (1, -1, )T/

V3, respectively. The sample sizes ware- 50, 100. The significance level was
o = 0.05. The test statistics were computed for 1000 replications.
Table 1 presents the attained levels for the various scenarios.
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TABLE 1 i
Szeof thetests T, and 7,2

Model (3.1) Modél (3.2)
n=>50 n =100 n=>50 n =100
Wi p=2 00480.046 0.045(0.047) W; p=2 00600.056 0.057(0.054)
Wi p=3 00530.053 0.047(0.052) W; p=3 00540052 0.052(0.054)
Wy p=2 00480.047 0.052(0.053) W, p=2 00550.054 0.052(0.054)
W, p=3 00470.053 0.046(0.051) W, p=3 00550.055 0.050(0.054)
T, p=2 00480051 0.053(0.052) 17, p=2 00580056 0.057(0.051)
T, p=3 00450.048 0.052(0.054) 7T, p=3 00610.053 0.054(0.049)

2The values in parentheses are the estimated sizes when the bandwidth is selected by a grid search.

It becomes apparent that the significance level is well attained in most cases,
although, for model (3.2), the size of the tests foe= 50 is slightly larger
than 0.05. Furthermore, the size of the tests with the bandwidth selected by the
above algorithm is similar to that obtained from the grid point search. This shows
that our data-driven approach works well. We will therefore use this algorithm also
to select the bandwidth in the following simulation and the applications to two real
data examples.

To demonstrate power through simulations, we considered models (3.1)
and (3.2) withc =1, 2, 3.

For model (3.1), as expected, the t&stbased on the optimal/; outperforms
the others. In model (3.2), when we have dependent errors/ams no longer
optimal, all three tests have a similar behavior.

To compare the performance of our method with other existing tests through a
simulation study, we considered two scenarios. The first aim was to test the single
index model versus the existence of interaction effects. Particularly, we considered

(3.9 m(x) = (B7%)3 + c1lx1x2| 4 calx1xs| + calxaxa).

For nonvanishing:’s, this model allows for interaction terms. The comparison

is among our maximin test, the omnibus td5t Fan and Li [14] (FL-test) and
Ait-Sahalia, Bickel and Stoker [1] (ABS-test). In the simulation, similar to the
previous case, we took = (1, —1, 1)7 /4/3. The sample size was= 50, while

the significance level was.@. The constants were taken to be equak= c> =

c3 =c with ¢ =0, 1.0, 2.0, 3.0. ¢ # 0 corresponds to the alternative. In Figure 3
the estimated power was computed from 1000 replications. Recall that FL- and
ABS-tests require selection of two bandwidths. Since the significance levels of
their tests heavily depend on the choice of the bandwidths and there is no data
driven selection, a fair comparison causes some problems. In a simulation study,
however, one may determine (through replications) the bandwidth on a grid in such
a way that the nominal level is best attained. In this way we are able to produce
tests which attain the right level for the null model.
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Fic. 1. The estimated power for model (3.1): The dashdot line is for our test with the weight
function W1, the solid line with the weight function W5, and the dotted lineis for 7,,.

We also ran many simulations with other bandwidths. It turned out that the
FL-test and the ABS-test are nonrobustiso that the nominal level may not be
attained after a slight change/n

As expectedT;,, with optimal weightW1 has larger power than the test with
weight functionWs. T, has a power similar t@, with W». The FL- and ABS-tests
are clearly outperformed but behave similarly otherwise in the situation considered
by us. Similar to the case with model (3.1), the FL-test has larger power than the
ABS-test.

We also compared the performance of all tests for a model studied by Xia, Li,
Tong and Zhang [38] in their Example 1, where, in our notatjps; 2 and

m(x) =x1+ x2 + 4exp—(x1 + xz)z} + c(xf + x%)l/z,

and the errors are independent of with ¢ ~ A (0, 082).

In Table 2 we report on the power results Bf with W1(-) and Wa(), T,
ABS- and FL-tests and the XLTZ-test. The bootstrap approximation of the XLTZ-
test is similar to that of Theorem 2.3. F6if, we again used the weightg; (x) =
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Fic. 2. The estimated power for model (3.2): The dashdot line is for our test with the weight
function W1, the solid line with the weight function W, and the dotted lineisfor 7.

|x1] + |x2| andWa(x) = x? +x3. The significance level was@. The test statistics
were computed for 1000 replications. Note that these two weights are not optimal
for this model. We do not report the results with the optimal weights because the
previous simulations have provided evidence of its good performance and, from
Table 2, we can see that the suboptimal weighisand W» already work well.
Again, for ABS and FL, bandwidths were chosen so as to yield the nominal level
underHy as closely as possible.

In Table 2, the values for the XLTZ-test are from Table 1 of [38]. We see that
T,, with W1 is best. Second, betwedh and the XLTZ-test, when the varianoé
of the errorss; is small, the XLTZ-test is slightly better, while wherrj gets large,
T, outperforms the XLTZ-test. Third, comparirffg with 7,, with W», we see that
T, performs slightly worse. For this model, we find that the ABS- and FL-tests do
not work well.

3.2. Applications. In this section we apply our test to two data sets.



1066 W. STUTE AND L.-X. ZHU

1 T T T T T
n=50, p=3

0.9

estimated power
o o o o
[} [} ~ e}

N
S

FIG. 3. The estimated power for model (3.4): The dashdot line is for the maximin test with the
weight function W1, the solid line with the weight function W; th~e dotted line is for the ABStest,
the dashed line for the FL-test, and the dashed line plus star * for 7;,.

ExamMpPLE 3.1. The data set is the bull data; see [24]. The data are the
measured characteristics of 76 young bulls sold at an auction. It is interesting
to study the relationship between the selling prices and the characteristics of the
bulls: yearling height at shoulder; fat-free body (pounds); percentage of fat-free
body; scale from 1 (small) to 8 (large); back fat (inches); sale height at shoulder
(inches) and scale weight (pounds). The respadnss the standardized selling
price and the other standardized measurements are the covariatés,, ..., x7).

Figure 4(a) provides a plot gf” X against the responge This linear fitting was

also used in [24]. There is some indication of a relationship between the residuals
€j and g7 X, see Figure 4(b). We tested the linearity of the model using the
Stute, Gonzalez Manteiga and Presedo Quindimil [35] test pFt@lue was 0.044.
Therefore, the linear model needs to be rejected at teveD.05.

Next consider single-index fitting. Agajfiwas estimated as in [25]. To justify
their estimation method, we first tested the elliptical symmetry of the distribution
of X. The nonparametric Monte Carlo test proposed by Zhu and Neuhaus [41] was
employed. Thep-value was 83. The statisticZ,, was computed for the weight
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TABLE 2
Estimated power of six testswith n = 50, p = 22

o¢ 0.30 0.50

c 0 0.25 0.50 0 0.25 0.50
T,(Wp) 0.044 0.122 0.508 0.052 0.106 0.452
T, (W2) 0.060 0.092 0.408 0.062 0.090 0.300
XLTZ-test 0.063 0.099 0.376 0.043 0.043 0.163
T, 0.063 0.090 0.350 0.043 0.073 0.253
ABS-test 0.050 0.060 0.140 0.050 0.055 0.085
FL-test 0.042 0.052 0.090 0.050 0.046 0.065

aT,(W;),i=1,2, stand for the tests, with W, and W5, respectively.

function W(x) = Zlesz. The kernel functionk (-) is the same as for (3.3),
and the bandwidth i8 = 0.35. Thep-value was B10. Therefore, a single-index
model need not be rejected.

EXAMPLE 3.2. The data are the automobile collision data as analyzed by
Hardle, Hall and Ichimura [16]. The sample sizenis= 58. We also tested the
elliptical symmetry of the distribution of th&-data using the nonparametric
Monte Carlo test of Zhu and Neuhaus [41]. Thevalue was 0.25. This justifies
the use of the Li-Duan method for estimating the projection direcfiofor
this data set. For a single-index fitting, the kernel functiof) was again the
same as for (3.3), the bandwidth was= 0.4, while the weight function was
W) = ﬁ.’:lsz.. The test statisticZ, was used and the asymptotjevalue
was 032. The single-index model is therefore tenable.

residual

) . . .
3 -2 -1 0 1 2 3

FiGc. 4. (a)Fit to the bulls data: the projected data ;§TX]- versus the linear fit (solid line) and the
response data (dots); (b) the projected data versus the residuals.
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4. Proofs. To prove Theorem 2.1, we expand our test statiftias

n2T, =38 W =Y [¥; =y (R (BT X)W

j=1 j=1
(4.1) — Z [¥; — YO — gD (Fu(BT X)) + v (Fa(BT X ))]W;

j=1

+Z — D (FBTX )W =1 +11,

whereY0 is computed under the null modek 0, andw( is computed as{f(’)

with the sameB but with YO The second sum will be further decomposed. For
this, put

G)yn Ox u—FPBTX;)
7D w) = l)hZY (—h )
i#j

This function is based on the trigeand F' and is therefore unknown in practice. It

will, however, play an important role in proofs, since it is closd/ﬁé) and, on the
other hand, is computed from independent observations. Write

Il = f[ — U (F(BTX)))]W;

j=1

+ S [SDFBT X)) =D (FBTX )W =11 +1V.

j=1
Observe that
" —U;
H=>"yw, - thZYOWK( - )
j=1 )

j=1li=1
i#]

with
Ui=FB"X), Jj=1...n

being independent and uniformly distributed [@)1]. Hence,lll is a U-statistic
of degree two. Summarizing, we have

(4.2) Zsl =1+ +1V.

After standardization, term WI|| be shown to tend to a limit which depends on the
shifts and, hence, will determine the local power of the test. As already mentioned,
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Il is a U-statistic of degree two, with a kernel depending/igrand hence on.

The termlV is more complicated, since the kernel contains empirical quantities.
After all, it will turn out thatlll and 1V admit i.i.d. representations which will
partly cancel out and jointly determine the (limit) distributionTofunder Ho. To

carry out this program, note that boti’’ and %) are evaluated aF, (87 X ;).
Hence, the mathematical analysis of our test statistic requires a careful study of the
terms

(4.3) 1<i#j<n.

K(FMWX;);F,Z(BTX»)’

For this, denote byr? the empirical distribution function o7 X1, ...,07 X,,.
Hence,F, = FY if 0 = B. SinceK has compact support, séy1, 1], indicesi, j
only contribute to (4.3) if

(4.4) [FP 0" X)) = F/O"Xpl<h,  6=5.
Since by assumption B(iv)
n'%(B - B) = Op(D),
for each givere > 0, we may find a large consta@tsuch that
PnY?IB—B|>C)<e foralln>1.

In other words, up to a small everg, is contained in then~1/2-neighborhood
of B. The first goal will be to analyze the effect of replacilﬁg(ﬁTXj) and
Fu(BTX;)in (4.3)withU; = F(B” X ;) andU; = F(B” X;), respectively, subject
to (4.4). Introducer?, the distribution function o#” X. Hence F = F? for o = 8.
In our first lemma we derive a maximal bound 8¢ — F# evaluated a#” X ;
and,BTXj. Recall that, by assumption B(ilL|| X || < oo. This implies that

max || X;|| = Op(n®)  fora=y"1
1<i<n

For this reason, it will suffice to analyze all leading and error terms on the set
where

(4.5) max || X;|| < Cin® for some large finite";.
1<i<n
Denote by® the set of allp-vectors.

LEMMA 4.1. Put,foreachfe®andl<j <n,
a} =F©0"Xx;) - FF(B"X)).
We then have, on the set (4.5),

max  max |af| = Op(n~1/**®).
10—l <Cn-1/21=j<n
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PrROOE We shall first deal with an upper bound for th%’s. Fix a possible
valuex; of X ;. Then

af =F°0"x;) — FF(B"x)) =PO" X <0"x;) —P(B" X < 7 x;)
=POTX <0"x;, 87X <pTx;)) +POTX <67x;, BT X > p7x))
~PBTXx <BTx;)) <POTX <0"x;, BT X > pTx)).
Now, 67 X <67x; implies
B'X=0"X+(B—-60)"X<6%+(B-0)X
=B %+ (B =" (X —x;) < BTx; + Cn VX | + 11X}
Under (4.5) we therefore obtain, for eacklj <n,
af <P(BTx; < BTX < BTX; +2CC1n M2 + P(| X|| > C1n®).

Since, by B(ii), 7 X has a bounded density, the first probabilitydgn —1/2+).
As to the second probability, apply Markov’s inequality to get
EllXx|”

P(|X|| > C1n%) < .
{p.¢ 1n") < Ci/n

This completes the proof. For the lower bound, just reverse the roleésandl 3.
Now one needs the fact that the densitie§ ok are uniformly bounded for al
in a small neighborhood ¢f. O

In the following lemma we investigate the local oscillations of the empirical
process
(x,0) = F; (x) = F’(x)
in a neighborhood oB. For this, introduce
Gh(x, y) = Ff(x) = F'(x) = Ff () + FF ()
for 6 € ® andx, y € R satisfying
(i) 1l6 - Bl < Cn™ 2,

(i) |x—y| < Cin~ Y2,

LEMMA 4.2. Under the assumptions of Theorem 2.1, we have

sup|GY(x,y)| = Op(Vn=3/2+Inn),

x,y;0

where the supremum extends over all x, y and 6 satisfying (i) and (ii).
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PrROOF The proof is a modification of the proof of Theorem 37 in [26],
page 34. First note that the halfspaces form a class with a polynomial covering
number. The measure of each set involved in the above suprefium),— F#(y),
is bounded from above in absolute value by

IPO"X <x) —P(B"X < y)l
<[P@O"X <x)—PB"X <)
+P(BTX <x) —P(B"X <y)| < Con™ /2,
by (i), (ii) and assumption B. For the first difference apply a technique already

used in the proof of the previous lemma. If we replace the sgmalPollard’s [26]
Theorem 37 by a larg& > 0 and set

2_|nn

o= —
n 2
nés

therein, we obtain the required in-probability bou(s2«,), rather than a
convergence rate to zero. Hef¢ equals the maximal measure of the included
sets. Sincé? = 0 (n~1/2+%), the result follows. O

In the next lemma, we expand /2l into a sum of independent random
variables plus a negligible error. The leading term will contribute to the limit of
our test statistic when the null hypothesis is true. Recall

W () = E[W1|U1 = u].

LEMMA 4.3. Under the assumptions of Theorem 2.1, we have in probability
asn — 00,

n PN =8, =02y ;W —n V2N [YOW(U)) — EYPW (U] 4 0p(1)

=n" Y23 e (W, — WU
j=1

— (BT X)HWU;)) +E[®BT X )HW WU}
+ op(1).

PrROOF §,, is aU-statistic of degree two with a kernel depending/oand
therefore om. The Hajek projection oYiOWjK(#) equals

1 77 1 .
YZ.O/O W(v)K(” U’)dv+Wj/0 w(u)K(U]h ”)du

h

11 v—u
—/0/0 W(v)t/f(u)K(T)dvdu.
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Conclude that the Hajek projection §f, equals

R n n 1 — U
Spp=n"12> "YW, —n7V2n7tY :YP/ W(v)K(v - ’)dv
: : 0
j=1 i=1

u
)du
+hnt 1/2// W(u)w(u)K< p )dvdu

Furthermore (see [27]),

n 1 Ui —
_ 12,1 . J
n~“h E: WJ/O w(u)K(

A 2 1
Ei{Sy, — Sy, | =0 — ),
{ 1 l} (l’lh)
whence
Sny — Spy = Op((nh)~ %) = 0p(1).

Hence, it suffices to further expa&jl. For this, put

f/ W(u)W(v)K( p )dvdu

_Ui)dv—Eh]
u)du—Eh]

and consider

n 1
R, :n_l/zh_lz[YiO/ W(v)K(U
P 0

+nY?%p 12[ /w(u)K<

Y YO W) — (W (U)]
i=1

—n Y23 (Wi (U)) — E(Way (UD)].

j=1

It may be written as a single sum of centered i.i.d. random variables. Its variance
is bounded from above by the second moment of

Yf[h_1/1W(v)K<v
™ /vf( )K(

— Ul) dv — W(Ul)}

“)du -~y )
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which is easily seen to go to zero 4s— 0. Conclude thatk,, = op(1) and,
therefore,

Sn1 = S'nl +op(1)

n n
S, ) i)
j= =

—n 2 WU)) = E(Wiy (UD)] = n*/2h ™ Ep + op(1)
i=1

n n
p-1/2 S e Wi — n1/2 Z[YJQW(U/) —E(Y2W (U1))]
j=1 j=1

+ nY2[E(Wiy (U1)) — h LEL] + op(D).

To complete the proof of the lemma, it suffices to show, in view of assumption C(i),
that the last bracket i® (h2). But

g ]—/ W) W - /ww)K( ) du o

v/h
—/ W(v)[w(v)—/ 1)/h1ﬂ(v—sh)K(s)ds]dv.

Forh < v < 1—h, the inner integral extends over the whole suppo® phamely,

[—1, 1]. Using the facts thaK is symmetric at zerof_llK(s)ds =1 andy is
twice continuously differentiable, Taylor's expansion yields that the difference is
uniformly in 2 <v <1 — h of the orderO(hZ). For 0< v < h (and similarly for
1-h < v < 1), the difference i (k). Since, however, & v < h has Lebesgue
measure:, we also obtain the upper bouhd for this part of the integral. O

The quantityS,, introduced and studied below will be the leading term for
n~12] with I from the expansion (4.2).

LEMMA 4.4. Under the assumptions of Theorem 2.1, we have in probability
asn — oo,

n Ut
Spp = 071D S(X)HW; — - 1)hZZS(X)WJ ( )

i=1 —1! 1
/ i#j

E{[s(X) —E(s(X)|U)]W(X)} = u

PROOFE S, is aU-statistic of degree two. Recallu) = E(s(X)|U =u). The
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h
— U")du+ W, /015(14)1(<$> du
// s(u)W(v)K( )dvdu

Hence, the projection of,,, equals

1
s(X,-)/ W(v)K(v

Sy 1ZS(X)W 1 s(X)/ W(v)K( hU')du

1 _ Uj—u
—%ng/(‘)s(u)K< p )du

h// s(u)W(v)K( )dvdu

FurthermoreE(S,,, — S,,}? is of the order0 (n~*h~1) = 0(2).
Hence, it remains to show th&j, tends to the desired limit. Now similar to the
proof of the previous lemma, it may be shown that

S, = I S(XHWj+n1 D s(X)W(U;)

j=1 i=1
n 1 _

+n 1Y WiEU)) —/ S@W(u)du—0  in probability
=1 0

The assertion of the lemma now is a straightforward consequence of the law of
large numbers upon noticing that

- 1 -
Els(X)W(U)] :/ SW)Wu)du. 0
0
The next lemma will be helpful to find the final expansion and limif of

LEMMA 4.5. Under the assumptions of Theorem 2.1, we have

1t
nn—1Dh

X i iS(Xi)Wj [K(Fn(’éTXj) ; Fn(léTXi)) a K(#ﬂ

=1i=1
/= i#]j

-0 in probability asn — oo.

Sny =
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PrROOFE By Taylor’s formula,

_ 1 Fa(BTX ) — Fu(BT X)) — U; + U
Sn3—m2§s(X)WK(AU)[ ; }
i#]

where A;; is between the twd -ratios in the definition ofS, 3. For each; (and
similarly for i),

\F.(BTX ) — U < |Fu(BT X)) — FP(BT X)) + laf!

<sup|Fy (1) — F* ()] + sgplaf-l,
t;0

where the suprema extend (with large probability) over the sef’'®fwith
16 — Bl < Cn~2, Now it is well known that empirical measures approach the true
measure at the rai@p(n~/2) uniformly over the class of all halfspaces. See, for
example, [26]. In other words, the first supremun®ig(n —%/2). From Lemma 4.1,
the second supremum @p (2 ~1/2t®) uniformly in 1< j < n. Conclude that
(4.6) sup |F,(B" X ;) — Ujl = Op(n™Y%*%) = Op(h).

1<j=n
Furthermore, sinc& has supporf—1, 1], the summation ir$,., takes place only
w.r.t. those, j for which at least one of the ratios falls inte 1, 1]. If this happens
to be true for the first ratio, then by (4.6) also

|Uj — Uil < Csh,
with large probability for some appropriatg. Summarizing, sinc&’ is bounded,
we get, with large probability,
n—1/2+ot n

nn—1h? 4 > D IsXDIW;ILqu;-uy1=cah-

=1i=1
i#j

|Sn3| =< C4
The expectation of the right-hand side is, however, of the ofder /2tep—1) =
o(1). This completes the proof of the lemma.]

We are now ready to analyze the tefimFrom its definition we have

n
n 2 =p-1 Z s(X)W;
j=1

F,(BTX ;) — Fu(BTX;
ZZS(X)W K( B X)) (B )>.

/ =1i=1 h
i#]

In view of Lemmas 4.4 and 4.5 we therefore get the following result.

1)h
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COROLLARY 4.6. Under the assumptions of Theorem 2.1, we have
n~Y21 > i inprobability.

To summarize the results obtained so far, Lemma 4.3 yielded an i.i.d.
representation of~1/211, while Corollary 4.6 provided an in-probability limit
for n=Y21. The analysis for~Y/21V is a bit tricky. At the end it will turn out that
it admits an i.i.d. expansion which cancels with the second sum in Lemma 4.3. We
may thus conclude that

n
To=pu+n"Y23 &[W; — WU+ op(D),
i=1
which coincides with the i.i.d. representation (2.6) of Theorem 2.1. So it remains
to show the following representation of /2| V.

LEMMA 4.7. Under the assumptions of Theorem 2.1,

n YAV =n"V23 (@ (BT X )W (U;) — E[@(BT X )W (U} + op(D).
j=1

PROOF By Taylor’'s expansion,

1
12
N = R o
nox Fu(BTX)) — Fu(BT X)) U — U
S (PR ) -k ()
i=1j=1
i#]j
1
4.7) =7 i

Fu(BT X)) — Fu(BT X)) —U; + U;

XZZYiOWjK/<Uj;Ui> !

i=1j=1
i#]
1 n n 0 ” [“‘]2
i=1;=1
i#]

whereA;; is between the twd& -ratios in the representation bf. We shall show
that the second double sum is negligible, while the first contributes to the i.i.d.
representation of;,. First, we write

Fa(BTX ) = Fu(BTX ) — FP(BTX ;) — FE(BTX ;) + FA(BT X))

+ FPBTX )+ FE(BT X)) — FE(BT X)),
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and S|m|IarIy for the index. The first line equals, witlh = 8 andx = g7 X,
y = BT X;, the quantityG? (x, y) appearing in Lemma 4.2. Conclude from that

result that
1/2(n—1)h2 lelWo ( >‘|69(x 9l
(4.8) /
ZOP(\/n_l/Z-F“Inn ZZZ|YO (U U)‘

i=1j=1
The double sum is easily seen to be bounded in probability. Since
n~ Y2t n, - o,
this proves that (4.8) tends to zero in probability. Next we study
1/2(n i ;}Zly WK (UJ . Ul)
x [F (BT X ;) — FP(BT X ;) — FJ (BT Xi) + FP (BT X)].

This sum is &V -statistic (see [27]), with a kernel depending/oand hence on.
It is asymptotically equal to & -statistic whose Hajek projection equals

h // VWK (" )id ) - ) dudv.
Here,a, is the (uniform) empirical process pertaining to tigs. Transformation

of integrals,C-tightness ofx,,, n > 1, and the fact thak’ has compact support
[—1, 1] yield that the last double integral is equivalent to

1,1 _
h_l/ f Y (v —wh)W W) K (w)[a,(v) — a,(v —wh)]dwdv.
0/-1
By continuity ofy, this is asymptotically equivalent to

1,1 _
h_1/ / Y)W @)K (w)[a,(v) — a,(v — wh)]dwdv
0J-1

(4.9) -
= —h—lf f Y ()W) K (w)a, (v — wh) dw dv.
0J-1
Check that
1 1 _
- f K/ (w)an (v — wh) dw = /il fi (v) —
hJ-
Here

- 12
fn<v>=n—hl_:211<<

v U,')
h
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is the kernel density estimator for the uniform samigie. .., U,,.
Hence, (4.9) equals

1 - _
(4.10) i [CY W10 ~11dv,
Introducing the smoothed empirical distribution,
dF, = f,dv,

and the pertaining empirical proceds = /n(F, — Id), whereld denotes the
identity function on(0, 1), (4.10) becomes

- Y W ) @)
It is known that
(4.11) Alxpwd&F/Olde&ﬁoP(l).
A simple proof of (4.11) may be obtained by using oscillation results for empirical

processes; see [30]. We shall shortly see that all other terms will be negligible for
the i.i.d. representation af~/2|V, so that

1
(4.12) ,1—1/2|V=/0 YW dé, + op(L),

as desired. To justify (4.12), we next bound

n n
Yy YPW,-K’(

i=1j=1

1

(413) I—E:

Ui — Ui\, A N
p )(Uj —U;—-U; +U),
where
0j=F3(/§TXj), 1<j=<n
Hence, thel/; andU; incorporate the theoretical distribution functions
Flx)=POTXx <x)
ato = B andd = B, respectively. From Lemma 4.1,

(4.14) max |U; — U;| = Op(n~Y/2™®).

1<j<n

This bound will sometimes be helpful to further simplify (4.13). First, becddse
is an odd function, (4.13) may be written as

n n U _ U R
YooYW+ Y?WI)K/(%%UJ —Uj).
i=1j=1

(4.15) LTI
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We shall only deal with the sum involving®W;, the other being dealt with in
a similar way. Now

1 " A - U;
n2(n — K2 X;WJ(UJ_UJ)ZYO < )
]=

1 & U
(—DhZW’(Uf [ngK( i )}

1

+ " h 1)hZW(U Uj)

x [ﬁ ;{mﬂxim/(#) —EL- ]”

*)av.

In the first two double series, first apply (4.14) to bouﬁ@ — Uj| uniformly
in j. The expectation of, for example,

1 1 & Ui —-U;
n,-zzl' N T 2 s

thZW(U U)/ w(v)K<

’

i=1

is easily seen to be bounded. Similarly for the second series. Conclude that each
sum is

Op(h~tn=Y2+) — op(2).

As to the lastj-sum, substitutes = =Y,
wh) and use the fact that

1 1
/ K'(w)dw =0, / wK' (w)dw =—-1
1 -1

to finally get that the last sum equals

1 < ) N
—= D Wiy (U)W, —Uj)+op(d)
Vn
j=1

[ Z WU )Y U)(U; —Uj)+op(D).
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Similar arguments yield for the double sum in (4.15) including the fac?@m’i
the representation

1 & - N
T Y WUNYWUHWU; —Uj) +op(d).
j=1

Conclude that so far we have shown that (4.13) equals

n

(4.16) n Y23 (W) UHU; - Uj) +op(D).
j=1

At this point we see that another simple application of (4.14) even for
boundedX’s, that is,« = 0, does not yield anp(1) term. Therefore, we have to
analyzeU; andU; in a different way. As we shall see, finally, and in a disguised
form, we take advantage of the fact that, for edavery projectiord” X of X is
transformed into a uniform random variabf& (67 X). Fix such & and note that,
for a random vectoX with the same distribution a%1 but being independent of
the sample€X;, Y;), 1 <i <n, one gets

FO 0" X)) =E{1grxcgrx )| Fu}-
Here ¥, = o(X;, Y;, 1A§ i <n) is the o-field generated by the observations.
Conclude that, foé = 8,
Uj - UJ = E{]]‘{@TXSQTXJ'} - ]]‘{ﬁTXS,BTXj”j{Tn}
=E{Ljprx<p7x,) — Lorx<p7 x| Fn}

+E{Lrx<prx;) — Liprx<prx )1 Ful.
whence

n Y23 W) (WU (U; - Uj)
j=1

@17) =72 W) WUHEB - BT X FPBTX;) + op(D)

j=1

n
(4.18) + E{n‘”z 2 (W) Wp[igrx<prx;) - ﬂ{ﬁTXSﬁij}]lfn}-
j=1

The process inside the conditional expectation is, after centering, asymptotically
C-tight. With = 8 — B, we therefore obtain

FPTX)
Bl =t 2B| [0 ) dul |+ 0D

—nY2(8 — HE(W) (W)X FE (BT X)) + op(),
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where the last equality follows from the mean value theoreh?(8 — B) = Op(1)
and the facts thag is measurable with respect %, and X is independent of~,.
Inserting this in (4.17) and (4.18), we thus get

n~ 2N (W) (U0 - Uj)
j=1

=n'2(B =Pt Y AWy UNX; P (BT X)) —EL--1) +op(D).

j=1

Sincen/2(8 — B) is stochastically bounded and the sample mean tends to zero
according to the SLLN, this shows that (4.16) tends to zero in probability.

It remains to bound (4.7), but this is easy. In view of Lemma 4.2, upon applying
by now standard arguments, we have

|(4.7)] = op(D).

This completes the proof of Lemma 4.7
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