
 Open access  Journal Article  DOI:10.1089/CMB.2011.0175

Nonparametric combinatorial sequence models. — Source link 

Fabian L. Wauthier, Michael I. Jordan, Nebojsa Jojic

Institutions: University of California, Berkeley

Published on: 01 Nov 2011 - Journal of Computational Biology (J Comput Biol)

Topics: Sequence

Related papers:

 Nonparametric combinatorial sequence models

 Computing rna coding spaces and efficient combinatorial library construction

 Efficient generative modeling of protein sequences using simple autoregressive models

 Beyond thermodynamic constraints: Evolutionary sampling generates realistic protein sequence variation

 Learning protein sequence embeddings using information from structure

Share this paper:    

View more about this paper here: https://typeset.io/papers/nonparametric-combinatorial-sequence-models-
1g8xk28eiy

https://typeset.io/
https://www.doi.org/10.1089/CMB.2011.0175
https://typeset.io/papers/nonparametric-combinatorial-sequence-models-1g8xk28eiy
https://typeset.io/authors/fabian-l-wauthier-1ygww5obnf
https://typeset.io/authors/michael-i-jordan-1e4a7hi120
https://typeset.io/authors/nebojsa-jojic-17qejk8jww
https://typeset.io/institutions/university-of-california-berkeley-24veh4gb
https://typeset.io/journals/journal-of-computational-biology-sjpw91ir
https://typeset.io/topics/sequence-a6hgnyy8
https://typeset.io/papers/nonparametric-combinatorial-sequence-models-38bmjgjxmq
https://typeset.io/papers/computing-rna-coding-spaces-and-efficient-combinatorial-2lyexzy38h
https://typeset.io/papers/efficient-generative-modeling-of-protein-sequences-using-3ud737wyiw
https://typeset.io/papers/beyond-thermodynamic-constraints-evolutionary-sampling-3irb527x6a
https://typeset.io/papers/learning-protein-sequence-embeddings-using-information-from-1ouhgtv1fr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/nonparametric-combinatorial-sequence-models-1g8xk28eiy
https://twitter.com/intent/tweet?text=Nonparametric%20combinatorial%20sequence%20models.&url=https://typeset.io/papers/nonparametric-combinatorial-sequence-models-1g8xk28eiy
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/nonparametric-combinatorial-sequence-models-1g8xk28eiy
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/nonparametric-combinatorial-sequence-models-1g8xk28eiy
https://typeset.io/papers/nonparametric-combinatorial-sequence-models-1g8xk28eiy


Nonparametric Combinatorial Sequence Models

Fabian L. Wauthier, Michael I. Jordan, and Nebojsa Jojic

1 University of California, Berkeley, flw@cs.berkeley.edu
2 University of California, Berkeley, jordan@cs.berkeley.edu

3 Microsoft Research, Redmond, jojic@microsoft.com

Abstract. This work considers biological sequences that exhibit combi-
natorial structures in their composition: groups of positions of the aligned
sequences are “linked” and covary as one unit across sequences. If mul-
tiple such groups exist, complex interactions can emerge between them.
Sequences of this kind arise frequently in biology but methodologies for
analyzing them are still being developed. This paper presents a non-
parametric prior on sequences which allows combinatorial structures to
emerge and which induces a posterior distribution over factorized se-
quence representations. We carry out experiments on three sequence
datasets which indicate that combinatorial structures are indeed present
and that combinatorial sequence models can more succinctly describe
them than simpler mixture models. We conclude with an application
to MHC binding prediction which highlights the utility of the posterior
distribution induced by the prior. By integrating out the posterior our
method compares favorably to leading binding predictors.

Keywords: Sequence models, Chinese restaurant process, Chinese restau-
rant franchise, MHC binding, mixture models

1 Introduction

Proteins and nucleic acids, polymers whose primary structure can be described
by a linear sequence of letters, are found in nature in an astounding diversity.
Understanding the diversity of biological sequences has been a major topic in
computational biology. Through inheritance, and close functional coupling, the
nearby sequence positions in a family of biological sequences are often at a link-
age disequilibrium, i.e., the letters at nearby sites tend to covary. However, in
their folded form, these molecules also have secondary, tertiary, and quaternary
structure, which may reveal geometric proximity, and provide a basis for poten-
tial interactions of residues at distant sequence sites and even across different
molecules. This creates significant difficulties in modeling diversity of certain
families of sequences, where both the nearby and distant sequence positions
may exhibit patterns of covariation. This difficulty is exacerbated by the fact
that with only a limited number of sequences available for analysis we could
arrive at multiple diversity models which are almost equally well supported by
data. We model such sequence data starting with a basic componential strategy
outlined in Figure 1. We show four aligned subsequences from Influenza HA1
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(a) Observations (b) Profiles

Fig. 1. 1(a) Four aligned short subsections of the sequences exhibiting the combina-
torial pattern according to the partition highlighted by color. The blue component,
zsite = 1, comes in two variants, TGCATC and CATGAT, while the green component,
zsite = 2, follows either ACA or CTG. All four combinations of types of these segments
are found in the data. Each of those configurations can be combined with two further
variants, GGG and AAA, in the red component, zsite = 3. 1(b) Slight perturbations on the
basic types are possible as captured by the profiles inferred whose appropriate sections
are shown. The profiles and subsequences correspond to appropriate sections of the In-
fluenza HA1 genes analyzed in Section 4. The sequence sites switch among profiles in
groups—the entire component follows one of the three profiles. (In general, some com-
ponents may be less entropic than others and the sequences may then not be mapped
to all three different types.) The four sequences in this example can be represented by
the pointers zprof for each of the three components which map the components to the
appropriate profiles: 213, 113, 223, and 222. Such compression of the variability can
increase statistical power of techniques mapping genotypic and phenotypic variation
as we demonstrate for the case of MHC binding prediction in Section 4.

genes whose diversity is well explained by first partitioning the sites into three
groups and then representing each partition’s induced subsequences by one of
several prototypes. The site groupings do not need to follow linear patterns, and
distant sites may be grouped together. Assuming that the three types in the three
groups can be arbitrarily mixed, the model represents 27 different variants, and
could thus also be expressed as a mixture with that many components. However,
the use of a traditional mixture model would require considerably more data for
training, as having obtained only 50–100 sequences it is likely that we did not
see all 27 combinations. On the other hand, it is likely that we observed all
three types in all three components multiple times, thus facilitating parameter
estimation in a componential model. Furthermore, the componential structure
itself may be of importance. If for instance, a phenotype of interest is linked only
to one variant of one of the components, then the mixture model would capture
this variant in nine components needed to represent the relevant type in combi-
nation with three types in each of the other two components. Thus a traditional
clustering would lead to nine different statistical tests, lowering statistical power
by an order of magnitude. In this sense, the combinatorial structure allows for
pooling the traditional mixture components based on the finer-grained patterns
of covariation. In this paper we outline a probabilistic model that can be used
to discover such structure in several gene and protein families while coping with
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Family Forces shaping componential diversity

Immunoglobulin/TCR Clonal V(D)J recombination
Pathogenic proteins Recombination, mutation
MHC/KIR Large and small scale recombination, mutation

Table 1. Sequence families exhibiting combinatorial structures.

the dearth of sequence data and the possible additional correlations among the
groups. Such combinatorial diversity is ubiquitous at larger scales such as entire
chromosomes. However, some very important biomolecules have relatively short
segments that are under significant diversifying selection. In Table 1, we high-
light molecules involved in host-pathogen interactions and whose subsequences
fit the model discussed above. All these families of molecules have to maintain
their biological function, while exhibiting a high degree of variation concentrated
in a short subsequence, and the solution to these conflicting requirements has
componential structure.

As the first example, we point to the genes encoding immunoglobulin and
T cell receptor proteins which are split into multiple gene segments in the
germline. These segments are made contiguous by recombination in somatic tis-
sues by the well known V(D)J recombination process [3]. To assemble an antigen
receptor gene, one V (variable), one J (joining) and, sometimes, one D (diversity)
segment are joined to create an exon that encodes the binding portion of the
receptor chain. As there are typically many V, D, and J gene segments, V(D)J
recombination creates an immense combinatorial diversity of antibody and TCR
binding specificities, responding to the diversity of the immune system’s targets.

Pathogen proteins whose subsequences are often targets of immunoglobulin
and TCR binding also exhibit combinatorial diversity. For instance, VAR2CSA,
a member of the P. falciparum erythrocyte membrane 1 protein family and a
potential vaccine candidate for pregnancy-associated malaria, contains short seg-
ments in which the isolate variation can be well summarized by a small number of
very different types. While human-infecting P. falciparum isolates exhibit com-
binatorial diversity resulting from fairly arbitrary mixing of segment types, each
type is remarkably conserved across isolates that have them, including isolates
of P. reichenowi which infects other primates [2]. This indicates a possible role
of recombination with other V gene segments in creating combinatorial diversity
in the binding domains of these proteins, which have to facilitate adhesion to
the placenta while avoiding recognition by the immune system.

The third example we highlight is the major histocompatibility complex
(MHC) class I family of molecules which again participate in the interaction
between the host immune system and pathogens. In virtually all cells of higher
organisms, these molecules present antigenic cellular peptides on the cellular sur-
face for surveillance by cytotoxic T cells. The T cell receptor proteins discussed
above may bind to the complex made of the MHC molecule and the antigenic
peptide which can lead to the destruction of the infected cell. To properly facil-
itate the surveillance of the cellular proteome, MHC molecules are again faced
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with complex requirements: Across different situations, the MHC molecules will
encounter a large number of different targets that may need to be carried to
the surface, but at any given time, the cellular presentation should be limited
to useful targets. Furthermore, as pathogens adapt to immune pressure quickly,
a population of hosts is more resilient if it is diverse in its immune surveillance
properties. Nature’s solution here is somewhat different than in the case of the
TCR and immunoglobulin. The immune system needs to learn to tolerate normal
self proteins and the variation in binding properties through clonal recombina-
tion in one individual would complicate this tolerance. Instead, in humans, three
highly diverse loci encode for MHC class I, leading to diversity of MHC binding
specificities across individuals, not within one host. The residues forming the
peptide binding groove of the MHC molecules have been found to be under a
diversifying selection. The statistical study of MHC alleles has yielded evidence
of both large-scale recombination events (involving entire exons) and low-scale
recombination events (involving apparent exchange of short DNA segments), but
convergent evolution in parts of the MHC from different alleles is also supported
by the data [5]. Thus, a variety of mutation and recombination events, whose
combinations were selected based on the resulting binding properties of the MHC
groove lead to the immense diversity at this locus, the most polymorphic in the
human genome.

In these three examples, and many more (Figure 1 illustrates diversity in an
influenza protein), the functional requirements have created sequence families
that exhibit high levels of diversity with combinatorial structure similar to the
one illustrated in Figure 1. Models that capture such structure have immediate
applications in low-level tasks such as sequencing, haplotype recovery, as well as
in higher level tasks involving the matching of the genetic diversity to phenotypic
variation. In the case of the immunoglobulin, this structure is essentially encoded
in the human genome, and the different V, D, and J variants can be directly
read off there. But, when diversity is maintained on a population level, as is
the case with most pathogen proteins and RNA molecules, as well as MHC or
KIR (receptor on natural killer cells) among human proteins, then we can only
recover the structure by analyzing sequences from a number of individuals. This
is complicated by two effects: first, the illustration in Figure 1 is a simplification.
The groups of sites are only approximately independent of each other. Some
residual weak linkage is expected to exist even in the case of the optimal sequence
partition. Secondly, due to the high polymorphism in the families of interest
the structure in Figure 1 can only be estimated reliably when sufficient data
is available. When data is scarce, multiple different solutions are possible that
differ little in the data fit.

In this paper we propose a model that differs from existing models in the
way it addresses these two issues. In [1, 2], the partition is assumed to consist of
contiguous segments, a constraint that does not hold for many interesting diver-
sity patterns (cf. Figure 1), and a single optimal segmentation (cf. the pattern
library/epitome approach of [7, 8]). A combinatorial optimization algorithm for
site clustering that does not promote contiguous segments is proposed in [12],
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but, as the basic generative model creates blocks with limited diversity [6, 8], the
result is again a single optimal segmentation which can be sensitive to the size
of the sequence set used to estimate it.

We propose a Bayesian hierarchical site clustering approach with a minimal
number of parameters which not only captures weak linkage among components
at the first level of the clustering hierarchy, but also naturally adjusts to the size
of the dataset. Furthermore, we develop a sampling procedure that produces an
estimate of the posterior over possible sequence partitions. In Section 4 we illus-
trate for three families of proteins—MHC class I, Influenza HA1 and KIR—that
the componential model discussed here is a better fit than traditional mixture
models, which cluster entire sequences (phylogenetic methods fall in this cate-
gory). We also show an example where by using the distribution over multiple
partitions we improve on the ability to match the genetic diversity with the phe-
notype variation. In particular, by representing MHC sequences by the latent
variables in our model we train simple MHC class I–peptide binding estimators.
We show that by integrating over possible MHC sequence representations based
on different partitions we obtain better predictions than when we use the latent
variables for the MAP estimate of the segmentation structure.

2 Model

Most approaches to capturing diversity in sets of aligned sequences treat each se-
quence as a whole, applying clustering techniques (e.g., neighbor-joining or max-
imum likelihood approaches) or building a hierarchical clustering of sequences
(e.g., a phylogenetic tree). A special case of such approaches are mixture models
which describe aligned sequences as being sampled from a mixture of a small
number of “latent profiles,” also known as “position-specific scoring matrices,”
e.g., [10]. As outlined above, a considerable drawback of a whole sequence mix-
ture model is that each observed sequence corresponds in its entirety to one
latent profile. Our model is a generalized mixture model that relaxes this con-
straint and allows different sequence positions to correspond to different profiles.
To retain some structure, however, our model introduces a latent partitioning
that groups site positions into linked sites that must be sampled from the same
profile. Each such “site group” thus induces a different mixture model on its
component sites. This allows us to capture combinatorial diversity that is not
captured by a flat mixture model—n site groups with k profiles would need nk

mixed profiles if the data was to be represented by a flat mixture. Moreover, as
discussed in Section 1, we wish to also couple the mixture models in order to
capture additional weaker links among the site groups. Our model achieves this
by implicitly coupling the mixing proportions of the different mixtures.

When analyzing data with traditional mixture models, one is faced with the
perennial problem of choosing the number of mixture components. Since the
model we are proposing can be thought of as a refined mixture model, it is not
immune to this issue. While information-theoretic techniques do exist for esti-
mating the structural parameters in mixture models, they are difficult to justify
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when the number of components required to represent a large dataset is large [24].
In a number of biological applications [17, 22–24] nonparametric methods based
on the Chinese restaurant process (CRP), or the closely related Dirichlet process,
have been shown to elegantly circumvent such issues by effectively introducing
a prior distribution on the number of latent components. A second advantage is
that the induced prior automatically accommodates more latent components as
the amount of data grows. This allows us to infer conservative representations
with few components when little data is available while being flexible enough to
represent complex patterns emerging from larger datasets.

Our model relies on a composition of two nonparametric priors—the Chi-
nese restaurant process (CRP) [16] and the related Chinese restaurant franchise
(CRF) [21]. By incorporating these two nonparametric priors we circumvent fix-
ing the number of site groups and the number of profile variants a priori, and
instead average over these choices under a posterior distribution.

In this section we present our model by means of a sequential, generative
description. In this description we use the index s to index sequences and i to
index the sites (sequence positions) within a sequence. Let M denote an S × I

matrix of aligned sequences, so that ms denotes the s-th sequence and ms,i

denotes the i-th symbol in the s-th sequence. Our model relies on four sets of
latent random variables: zsite, zclust, zprof and θ, sampled in top-down fashion
according to a CRF that is conditioned on a partition sampled from a CRP.

2.1 Chinese Restaurant Process Linkage Model

The CRP [16] is a nonparametric prior on partitions of a set of items. In its gen-
erative form it describes a sequential process that produces a dataset exhibiting
clusters. The language of the CRP likens the sequential process to a (potentially
endless) stream of customers entering a restaurant one by one. Upon entering,
each patron randomly chooses a table to sit at with probability proportional to
the number of customers already seated there, or sits at an empty table. Each
table is assigned a parameter that is shared by all customers at that table. For
clustering, the datapoints are thought of as patrons, and the clusters as tables,
which are parameterized by the tables’ parameter.

The first step in our model is to sample a partition of the site indices into
groups of linked sites. At this level of the model site indices are not yet associated
with any data—we only use the CRP seating process to induce a site partitioning.
The partition is sampled from a CRP where sites act as customers and site groups
as tables. Representing the allocation of sites to groups (tables) by a set of latent
variables zsite(i), i = 1, . . . , I, the process operates as follows: Customers (site
indices) enter the restaurant one by one and choose to sit either at an existing
table or to open a new table. At each step of the sequential process, let the
number of existing site tables be denoted by nsite, and the number of site indices
at table t by csite(t), t = 1, . . . , nsite. If we parameterize the CRP by αsite, then
the seating probabilities for site i given the seating assignment for all previous
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sites 1, . . . , i− 1 are given as

p(zsite(i) = t|zsite(1:i− 1)) ∝

{

csite(t) if t ≤ nsite

αsite if t = nsite + 1 .
(1)

From this definition we see that just as the number of sites visiting the restaurant
can in principle be unbounded, so can the number of tables at which they sit.
However, as the number of sites grows, it becomes less likely that new tables will
be opened; indeed, the growth rate can be shown to be O(αsite log i). Note the
role of the parameter αsite in scaling this growth rate in the prior distribution.

In the following, a site group is treated as an inseparable entity which can be
grouped further. In the overall process, it is the preliminary site grouping which
captures most of the site linkage in the observed data.

2.2 Chinese Restaurant Franchise Observation Model

The second part of our model represents a combinatorial observation model over
aligned sequences in the form of a CRF [21] that is conditioned on the initial
partitioning zsite by the CRP. The CRF is a generalization of the CRP to allow
multiple parallel restaurants to share parameters. Specifically, where in the CRP
each table is given a parameter which is shared among its occupants, in the CRF
these parameters can also be shared across multiple CRPs. It will turn out that
the “parameters” that are being shared in our application are pointers to profiles,
rather than the profiles themselves. As such, our model can be thought of as an
instance of a dependent nonparametric process, discussed by MacEachern [11],
where individual parameters are replaced by stochastic processes. In the CRF we
interpret each observed sequence as its own restaurant. But instead of thinking
of site positions as customers, as in a standard application of the CRF, we now
consider the previously induced site groups to be customers. Each restaurant is
visited by all site groups, so that the union of the site groups at each restaurant
captures the entire set of sequence indices. The CRF is defined as follows. At
each sequence ms the nsite site groups indicated in zsite are seated at tables a
second time according to the rules of a CRP. The seating arrangement of the site
groups is represented by latent variables zclust(s, t), t = 1, . . . , nsite. Denote by
nclust(s) the number of (second-level) tables formed at sequence s at each step
of the process, and let cclust(s, u), u = 1, . . . , nclust(s) denote the number of site
groups present at the table u. If we parameterize the sequential seating process
at each restaurant by αclust, then conditioned on the seating assignment of the
site groups 1, . . . , t− 1, the seating probabilities for group t are

p(zclust(s, t) = u|zclust(s, 1:t− 1)) ∝

{

cclust(s, u) if u ≤ nclust(s)
αclust if u = nclust(s) + 1 .

(2)

In order to produce observed sequences, the CRF model next introduces param-
eters. Each table u in a sequence restaurant s in the CRF is assigned a latent
variable zprof(s, u), that indicates which of a set of shared parameters θ is used
at table u of restaurant s. We will refer to one such shared parameter θp as
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a “sequence profile.” As before, at each step of the sequential algorithm, the
variable nprof denotes how many distinct profiles the set of zprof variables points
to. The function cprof(p), p = 1, . . . , nprof reports how many of the tables in all
processed sequence restaurants picked profile p. In the sequential description of
the CRF, the choice of profile made by each table is influenced by the number
of other tables that have previously chosen that profile. That is, the process can
be thought of as another CRP in which distinct profiles can be thought of as
tables. If we use parameter αprof to define this CRP, then the probability that
table u in restaurant s chooses profile p, given the profile choices of all tables in
restaurants 1, . . . , s− 1 and tables 1, . . . , u− 1 in restaurant s, is given by

p (zprof(s, u)=p|zprof(1:s−1, ·), zprof(s, 1:u−1)) ∝

{

cprof(p) if p ≤ nprof

αprof if p = nprof+1.
(3)

For sequences with an alphabet of sizeA, each sequence profile θp, p = 1, . . . , nprof

is comprised of I A-vectors, one for each site index. Each vector θp(·, i) is a proba-
bility distribution over the A possible symbols that could be observed at position
i. When a new table in one of the restaurants chooses a new profile θp which has
not yet been chosen before, the profile vectors θp(·, i), i = 1, . . . , I are sampled
from a Dirichlet prior, parameterized by αdir.

Once all latent variables and profiles have been sampled, the observed se-
quences are generated as follows: given the latent variables zsite, zclust, zprof and
profiles θ, we generate the symbol at position i in sequence s by sampling from
a multinomial with parameter θp(·, i), where p = zprof(s, zclust(s, zsite(i))).

The sampling procedure generates data that exhibit the combinatorial struc-
ture discussed in Figure 1 and found in a variety of biological sequence fami-
lies. Of course, our goal is to reverse this process. Starting from the observed
sequences we need to reconstruct the latent variables zsite, zclust, zprof and the
profile sequences, while making explicit our uncertainty over these structures.
In the next section we develop an inference algorithm that achieves this by ap-
proximating the full posterior over latent structures.

3 Inference

We use a collapsed Gibbs sampler in which the profiles θ are integrated out.
The algorithm cycles through resampling the site grouping zsite, the secondary
grouping of site groups zclust and the assignment of profiles zprof, at each step
conditioning on all remaining latent variables. A central property of the CRP and
CRF that facilitates this sampling process is exchangeability. Exchangeability
allows us to treat any customer of a restaurant as if it were the last customer to
enter the restaurant. This is consistent with our modeling assumption that sites
have unique positions that need to be grouped, but that the ordering of these
positions is of little value, since parts may be non-contiguous. The consequence of
this exchangeability is that we can now easily sample an updated table seating for
any customer in a restaurant. In the following we show the main computations for
resampling the site grouping zsite. The posteriors for sampling updated variables
zclust and zprof can be derived analogously to Teh et al. [21].
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3.1 Resampling Site Groupings zsite

We denote by z−i
site, z

−i
clust and z−1

prof the latent variables that remain when site i is

removed from the representation. Let n−i
site be the number of distinct site tables

when site i is removed. Similarly, let c−i
site(t) be the number of site indices seated

at table t when site i is removed. Due to the exchangeability of site indices in
the top CRP, we may treat site i as if it were the last to enter the restaurant.
In order to sample a new site grouping we must compute the probability that a
particular site i is seated at a table, given all other relevant information:

p
(

zsite(i) = t|m·,i, z
−i
clust, z

−i
prof

)

. (4)

Because we treat i as the last customer to enter the restaurant the prior proba-
bility of seating site i at table t is given by

p
(

zsite(i) = t|z−i
site

)

∝

{

c−i
site(t) if t ≤ n−i

site

αsite if t = n−i
site + 1 .

(5)

In a collapsed sampler, if t is an existing site table then we compute the
likelihood of seating site i at table t by integrating the induced conditional
likelihood of sequence symbols at position i against the prior distributions on
θp(·, i), ∀p. If we define for zsite(i) = t ≤ n−1

site (an existing table was chosen) the
count that a symbol at position i is of type a and is generated by profile p as

ct(a, p) =
∑

s

1(ms,i = a, zprof(s, zclust(s, t)) = p), (6)

then for t ≤ n−1
site the integrated likelihood of the observed sequence symbols in

position i can be computed as

p(m·,i|zsite(i) = t, z−i
clust, z

−i
prof) =

∏

p

Γ (
∑

a αdir(a))
∏

a Γ (αdir(a))

∏

a Γ (αdir(a)+ct(a, p))

Γ (
∑

a αdir(a)+ct(a, p))
. (7)

It is more complicated to compute the likelihood that site index i is seated at
a new table t = n−1

site + 1 since the creation of a new site index table triggers a
cascade of other choices that need to be made for the zclust and zprof variables.
In computing the likelihood of a new site table, the parameters θp(·, i), as well
as these new choices need to be integrated out. Rather than computing this
complicated integral, we adopt a simpler strategy and approximate the likelihood
by sampling a set of new assignments for zclust(s, n

−1
site + 1), s = 1, . . . , S and if

necessary also zprof(s, zclust(s, n
−1
site+1)), s = 1, . . . , S by following the sequential

generative model outlined before. Once sample allocations have been generated
for the proposal that t = n−1

site + 1, we can compute the integrated likelihood of
the seating proposal by similar means as in equation (7), giving us the last term

p(m·,i|zsite(i) = nsite + 1, z−i
clust, z

−i
prof) . (8)
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Fig. 2. Comparison of the log likelihood assigned by the combinatorial model (blue
scatter) with the log likelihood assigned by a mixture model of comparable complexity
(red scatter) as a function of different model complexities. From left to right are shown
results for MHC, Flu and KIR sequences. Flu sequences require only relatively few
profiles and site groups (cf. Figure 1); thus only two model complexities were explored.

Combining this likelihood with those computed in (7) and the prior in equa-
tion (5) allows us to compute the posterior in equation (4) from which we may
now sample a new site group allocation for site index i. If an existing site group
is chosen, nothing more needs to be done. If a new site group is created we copy
the previously sampled allocations into the current state zclust and zprof.

3.2 Resampling zclust and zprof

Once the site partition zsite has been resampled, the resampling of zclust and
zprof conditioned on zsite is performed in similar fashion as in the standard CRF.
As before, our implementation integrates out the profile parameters to improve
sampling efficiency. The computations can be readily derived from Teh et al. [21].

4 Results

To demonstrate the versatility of our model we applied it to three sequence
datasets in which we expect combinatorial patterns to exist. In the following we
have focused our analysis on a small number of the most polymorphic sites in
each dataset. The first dataset are 526 aligned amino-acid sequences of length 50
for MHC class I proteins from all three alleles A, B, C. The flu dataset comprises
aligned 22-long amino-acid sequences for 255 HA1 genes in influenza strains cov-
ering the years 1968–2003. The KIR dataset are sequences of unordered (i.e.,
unphased) pairs of haplotype measurements at 229 SNPs. These SNPs encode
variability of a killer cell immunoglobulin-like receptor. If we knew the phase, we
could order each pair and turn the data into aligned sequences that could easily
be analyzed as outlined before. We have thus extended our model to work with
unphased KIR data by introducing extra latent variables zphase that encode the
phasing information for each pair. The modified algorithm iterates between sam-
pling phasing variables to turn aligned sequences of pairs into aligned sequences,
and then sampling new latent variables zsite, zclust, as well as zprof, as before.
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We have carried out experiments to demonstrate that our model success-
fully isolates combinatorial structures from the data and learns a much more
parsimonious sequence model that yields higher log likelihood than a compara-
ble mixture model. For each of the datasets we set up a combinatorial sequence
model and computed posterior samples for different settings of the model param-
eters αsite, αcluster, αprofile, and αdir. Each combination of parameters induces a
different nonparametric prior over aligned sequences. We wish to compare the
average data likelihoods assigned by the posterior combinatorial models to the
likelihoods obtained from flat mixture models. To facilitate this comparison, we
ensure that the mixture models we compare against have similar complexity as
the nonparametric model. We estimate the complexity of a given model by mea-
suring how many parameters it would take to represent a set of sequences in a
typical posterior sample. If for example a sample with nsite site tables and nprof

profiles of length I with a symbol alphabet of size A was found, we require a
total of I(nsite− 1)+nprofI(A− 1) parameters as a shared representation across
all sequences. The first I(nsite−1) parameters encode which site position is allo-
cated to which site group while the remaining account for the profile parameters.
In comparison, a mixture model that links all site positions asserts that n′

site = 1
and for n′

prof profiles requires n
′

profI(A− 1) parameters. Assuming that a single
set of such parameters is fixed, to encode a set of sequences we would need to also
infer for each sequence the posterior distributions over latent variables (mixture
components for the mixture model, or profile pointers zprof in our model). Then
any remaining uncertainty as to the identity of the letters in individual positions
would also have to be collapsed by encoding these individual letters. Information
theory prescribes techniques for making the minimum required code length for
encoding all this directly dependent on the uncertainties in the data, with less
uncertain pieces encoded with shorter messages, so that the total code length in
bits reduces to the log2 likelihood under the model [18]. By adding the cost of
encoding the parameters that are shared by the sequences (profiles, partitioning
information), we would obtain a description length of the dataset. The cost of
encoding parameters would be proportional to the number of the parameters.
Similarly, for comparing model fits, statistical literature recommends the use of
the Bayesian information criterion (BIC) [19] or the Akaike information criterion
(AIC) which combine the log likelihood of the data with a penalty reflecting the
number of free parameters. However, rather than comparing the two models by
an MDL, BIC or AIC score for only one model complexity, we present a stronger
argument here: it turns out that for a wide range of model complexities, the log
likelihood of the data is higher under the combinatorial model than under the
mixture model.

To show this, for posterior samples of varying complexity under our model,
we compute the smallest number of mixture profiles that would exceed it in
complexity, i.e., n′

prof so that I(nsite − 1) + nprofI(A − 1) ≤ n′

profI(A − 1). We
then fit five mixture models on the data using n′

prof profiles and compute the
average log likelihood assigned to the data. In Figure 2 we show for the three
datasets the average log likelihood of the combinatorial model across samples
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Fig. 3. (a) Factorized representation for the first 18 SNPs inferred by our model on the
KIR data. Empty fields in the profiles denote that no further variants were found for a
site group. (b) The 5 profiles for the first 18 SNPs learnt by a mixture model on KIR
data. (c) AUC scores for the MHC I binding prediction task across 26 MHC proteins.
Averaging regression results across posterior samples significantly improves the AUC
score over using only the MAP sample to fit a regression.

as a blue scatter and the average log likelihood of the mixture model as a red
scatter. For all three datasets, the log likelihood of the combinatorial model ex-
ceeds that of the mixture model considerably. Additionally, our model provides
a better representation for sequence clustering. The clustering induced by our
combinatorial model for Influenza HA1 sequences matches the hemagglutinin in-
hibition clusters of Smith et al. [20] closer than the clusters obtained by simple
mixture modeling, achieving an average adjusted rand index [4] of 0.70 versus
0.554. In Figure 3(a), we visualize profiles as well as site groups for the first 18
SNPs of the KIR dataset for one posterior sample of the combinatorial model.
Figure 3(b) shows relevant parts of the 5 profiles that were inferred by a simpler
mixture phasing model. As can be seen, our model factorizes the profiles inferred
by the simpler mixture model into a parsimonious form that can still explain the
mixture variants. The green group has variants CACGTTA and TCTAGCG, while the
red group follows either CAGG or TTAT. Three of the four possible combinations
of these patterns occur in the profiles estimated by the mixture model. As a
side effect of the compact representation, our model allows for a more careful
use of data for profile parameter inference. Mixture models can capture many
combinations, but they achieve this by using a substantially greater number
of parameters, while still missing many of the combinations outside the region
shown. This leads to significantly lower likelihood in comparison with the com-
ponential model of similar parametric complexity, as shown in Figure 2.

4 To compute these scores we encoded the sampled latent state of each sequence as
a binary vector and clustered these into the same number of clusters as the target
clustering. The results were averaged over many samples from the posterior.



13

4.1 MHC Class I Binding Prediction

The latent structure inferred under the model fit to MHC class I sequences
above can be used to match these sequences to their binding affinities, and in
this way predict epitopes for different MHC molecules. We model the binding
affinity (measured in terms of the log IC50 concentration) of an MHC class I
protein to an epitope as a linear function that allows sharing across several re-
lated protein variants. For any particular protein, our sequence model produces
a combinatorial representation in terms of site groups and their associated pro-
files5. For a given set of M MHC proteins, we encode this latent structure in
binary vectors bs, s = 1, . . .M . This structure compresses the links produced by
co-evolution of the specific sites in the MHC groove. Assuming that some of this
co-evolution is driven by selection for particular binding specificity patterns, the
latent structure under our model is expected to be useful in binding prediction
tasks. For each protein s, a given set of ns epitopes examples is encoded as bi-
nary vectors esj , j = 1 . . . , ns. If we denote the corresponding binding affinities
as ysj , j = 1, . . . , ns, then the linear regression we solve in terms of Θ is written
as ysj = e⊤sjΘbs. The sharing among related proteins is induced by the latent
structure bs. We evaluated two variants of this regression. The first variant uses
only the MAP sample from our model posterior to produce a single encoding bs,
while the second fits one regression for each posterior sample (each inducing a
different encoding bs) and then averages the final prediction across samples. The
two regression tasks were trained on a total of about 28000 binding affinities
over 26 different human MHC molecules. Some MHC molecules were charac-
terized by only a handful of binding measurements, while others were tested
against over a thousand different peptides. The results in Figure 3(c) show the
AUC score (averaged over five cross-validation runs) obtained from classification
into binding and non-binding epitopes. Integration across latent structure sig-
nificantly boosts the prediction accuracy. Averaged across the 26 MHC variants
the averaged predictor yields an AUC score of 0.8846, while the MAP variant
achieves a score of only 0.8197. Our result compares favorably with state of the
art methods summarized in Peters et al. [14]. The reviewed methods achieve av-
erage AUCs of 0.8500 to 0.9146 on a subset of 21 of the 26 proteins for which our
averaging method gives a mean of 0.8911. Importantly, the method of Nielsen et
al. [13] uses carefully designed nonlinearities and separately known properties of
amino-acids to produce improved prediction results. Other leading methods [9,
15] use further feature design or exploit the protein structure to boost predic-
tion results. In contrast, even though we use a simple binary representation of
epitopes and MHCs, we produce comparable results by virtue of a refined latent
sharing structure which is integrated out.

5 The parameters used for the combinatorial sequence model were αsite = 0.1, αclust =
5, αprof = 10, αdir = 0.5. Posterior samples typically had 3 profiles and 10 site groups
over sequences of length 34.
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5 Conclusion

This paper presented a nonparametric combinatorial sequence prior that was
found to be a good match for a wide range of sequence families. An impor-
tant feature of the model is that it induces a posterior distribution over latent
factorized representations. Our work on MHC binding prediction demonstrates
that integrating out this distribution can be an important ingredient in infer-
ences that follow the initial sequence analysis. One way to explain why averaging
across predictors should be beneficial in the case of MHCs is to consider the po-
tential for suboptimal parsing of the MHC groove. Although many MHC alleles
currently present in human populations are known, we cannot directly access the
extinct alleles. Thus, our estimate of the site covariation and the resulting opti-
mal sequence partition must suffer from the limited number of sequences used
to fit our model. Picking any one segmentation with a high likelihood over MHC
sequences may lead to an oversimplification of the sequence representation. A
posterior over the partitions, accompanied with latent variables giving sequence
types in different parts, reflects more information about a set of amino acids in
each MHC sequence than a latent structure based on one optimal segmentation.

Acknowledgements

We would like to thank Daniel Geraghty for providing access to the KIR dataset.

References

1. Joseph Bockhorst and Nebojsa Jojic. Discovering patterns in biological sequences
by optimal segmentation. In Proceedings of the 23st International Conference on
Uncertainty in Artificial Intelligence (UAI), 2007.

2. Joseph Bockhorst, Fangli Lu, Joel H. Janes, Jon Keebler, Benoit Gamain, Philip
Awadalla, Xin zhuan Su, Ram Samurdala, Nebojsa Jojic, and Joseph D. Smith.
Structural polymorphism and diversifying selection on the pregnancy malaria vac-
cine candidate VAR2CSA. Molecular and Biochemical Parasitology, 155:103–112,
2007.

3. Sebastian D. Fugmann, Alfred I. Lee, Penny E. Shockett, Isabelle J. Villey, and
David G. Schatz. The RAG proteins and V (D) J recombination: complexes, ends,
and transposition. Annual Reviews of Immunology, 18:495–528, 2000.

4. Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classifi-
cation, 2(1):193–218, 1985.

5. Austin L. Hughes, Marianne K. Hughes, and David I. Watkins. Contrasting roles of
interallelic recombination at the HLA-A and HLA-B loci. Genetics, 133:669–680,
1993.

6. Nebojsa Jojic and Yaron Caspi. Capturing image structure with probabilistic index
maps. In In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 212–219, 2004.

7. Nebojsa Jojic, Vladimir Jojic, Brendan Frey, Chris Meek, and David Heckerman.
Using “epitomes” to model genetic diversity: Rational design of HIV vaccine cock-
tails. In Advances in Neural Infomration Processing Systems (NIPS), number 18,
pages 587–594, 2006.



15

8. Nebojsa Jojic, Vladimir Jojic, and David Heckerman. Joint discovery of haplo-
type blocks and complex trait associations from SNP sequences. In Proceedings of
the 20th International Conference on Uncertainty in Artificial Intelligence (UAI),
2004.

9. Nebojsa Jojic, Manuel Reyes-Gomez, David Heckerman, Carl Kadie, and Ora
Schueler-Furman. Learning MHC I–peptide binding. Bioinformatics, 22(14):e227–
e235, 2006.

10. Oliver D. King and Frederick P. Roth. A non-parametric model for transcription
factor binding sites. Nucleic Acids Research, 31(19):e116, 2003.

11. Steven N. MacEachern. Dependent Nonparametric Processes. Proceedings of the
Section on Bayesian Statistical Science, pages 50–55, 1999.

12. Mukund Narasimhan, Nebojsa Jojic, and Jeff Bilmes. Q-clustering. In Advances in
Neural Infomration Processing Systems (NIPS), number 18, pages 979–986, 2006.

13. Morten Nielsen, Claus Lundegaard, Peder Worning, Sanne Lise Lauemoller, Kasper
Lamberth, Soren Buus, Soren Brunak, and Ole Lund. Reliable prediction of T-
cell epitopes using neural networks with novel sequence representations. Protein
Science, 12:1007–1017, 2003.

14. Bjoern Peters, Huynh-Hoa Bui, Sune Frankild, Morten Nielson, Claus Lundegaard,
Emrah Kostem, Derek Basch, Kasper Lamberth, Mikkel Harndahl, Ward Fleri,
Stephen S Wilson, John Sidney, Ole Lund, Soren Buus, and Alessandro Sette.
A community resource benchmarking predictions of peptide binding to MHC-I
molecules. PLoS Comput Biol, 2(6):e65, 2006.

15. Bjorn Peters, Weiwei Tong, John Sidney, Alessandro Sette, and Zhiping Weng.
Examining the independent binding assumption for binding of peptide epitopes to
MHC-I molecules. Bioinformatics, pages 1765–1772, 2003.

16. Jim Pitman. Combinatorial stochastic processes. Springer Lecture Notes in Math-
ematics. Springer-Verlag, 2002. Lectures from the 32nd Summer School on Prob-
ability Theory held in Saint-Flour, 2002.

17. Zhaohui S. Qin. Clustering microarray gene expression data using weighted Chinese
restaurant process. Bioinformatics, 22(16):1988–1997, 2006.

18. Jorma Rissanen. Stochastic Complexity in Statistical Inquiry Theory. World Sci-
entific Publishing Co., Inc., River Edge, NJ, USA, 1989.

19. Gideon Schwarz. Estimating the Dimension of a Model. The Annals of Statistics,
6(2):461–464, 1978.

20. Derek J. Smith, Alan Lapedes, Jan C. de Jong, Theo M. Bestebroer, Guus F.
Rimmelzwaan, Albert D. M. E. Osterhause, and Ron A. M. Fouchier. Mapping
the antigenetic and genetic evolution of influenza virus. Science, 305:371–376, 2004.

21. Yee W. Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hi-
erarchical Dirichlet processes. Journal of the American Statistical Association,
101(476):1566–1581, 2006.

22. Daniel Ting, Guoli Wang, Maxim Shapovalov, Rajib Mitra, Michael I. Jordan, and
Roland L. Dunbrack, Jr. Neighbor-dependent Ramachandran probability distribu-
tions of amino acids developed from a hierarchical Dirichlet process model. PLoS
Comput Biol, 6(4):e1000763, 04 2010.

23. Eric P. Xing, Roded Sharan, and Michael I. Jordan. Bayesian haplotype inference
via the Dirichlet process. In Proceedings of the 21st International Conference on
Machine Learning, pages 879–886. ACM Press, 2004.

24. Eric P. Xing, Kyung-Ah Sohn, Michael I. Jordan, and Yee W. Teh. Bayesian
multi-population haplotype inference via a hierarchical Dirichlet process mixture.
In Proceedings of the 23st International Conference on Machine Learning, pages
1049–1056. ACM Press, 2006.




