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Nonparametric confidence intervals

for receiver operating characteristic curves

Peter G. Hall1, Rob J. Hyndman2, and Yanan Fan3 17 July 2003

Abstract: We study methods for constructing confidence intervals, and confidence

bands, for estimators of receiver operating characteristics. Particular emphasis is placed

on the way in which smoothing should be implemented, when estimating either the char-

acteristic itself or its variance. We show that substantial undersmoothing is necessary if

coverage properties are not to be impaired. A theoretical analysis of the problem sug-

gests an empirical, plug-in rule for bandwidth choice, optimising the coverage accuracy

of interval estimators. The performance of this approach is explored. Our preferred tech-

nique is based on asymptotic approximation, rather than a more sophisticated approach

using the bootstrap, since the latter requires a multiplicity of smoothing parameters all

of which must be chosen in nonstandard ways. It is shown that the asymptotic method

can give very good performance.
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Nonparametric confidence intervals for receiver operating characteristic curves

1 Introduction

A receiver operating characteristic curve is often used to describe the performance of a

diagnostic test which classifies individuals into either group G1 or group G2. It is most

commonly used with medical data where, for example, G1 may contain individuals with a

disease and G2 those without the disease.

We assume that the diagnostic test is based on a continuous measurement T and that a

person is classified as G1 if T ≥ τ and G2 otherwise. Let G(t) = Pr(T ≤ t | G1) and

F (t) = Pr(T ≤ t | G2) denote the distribution functions of T for each group. Then the

receiver operating characteristic curve is defined as R(p) = 1 − G{F−1(1 − p)} where

0 ≤ p ≤ 1.

Zweig and Campbell (1993) discussed the importance and application of receiver operating

characteristic plots in clinical medicine. See also Lloyd (1998), who addressed aspects

of the plots’ estimation and use. There is a rapidly growing literature on methods for

estimating the plots, ranging from parametric approaches (e.g. Goddard and Hinberg,

1990) to nonparametric and semiparametric techniques (e.g. Hsieh and Turnbull, 1996;

Li, Tiwari and Wells, 1999). Nonparametric methods range from those based on kernel

ideas (e.g. Zhou, W. Hall and Shapiro, 1997; P. Hall and Hyndman, 2003) to techniques

founded on local linear smoothing (Peng and Zhou, 2002). G. Claeskens and co-authors,

in an unpublished 2002 manuscript, have considered empirical likelihood methods for

constructing confidence intervals.

Against the background of this growing interest in both point and interval estimation, the

present paper shows how the bandwidth used to construct an estimator of R influences the

performance of pointwise confidence bands. For example, we demonstrate that bandwidths

which are appropriate for point or curve estimation are not of the right size for good

coverage accuracy. To achieve good performance in the latter sense, an order of magnitude

less smoothing is necessary. This is true no matter whether asymptotic methods, or

techniques based on the bootstrap, are used to construct the bands. However, we favour

the asymptotic approach, since, as we show, bootstrap methods require a multiplicity of

decisions about smoothing, all of them needing nonstandard solutions. This makes the

bootstrap relatively unattractive for constructing confidence bands for receiver operating

characteristic curves.

It is one thing to determine theoretically that undersmoothing is necessary, and quite

another to develop a practicable technique for selecting the appropriate amount of un-

dersmoothing. However, we shall show that the theoretical analysis which leads to our

conclusions about undersmoothing, can also be employed to develop an explicit and ef-

fective device for selecting the correct amount of smoothing for confidence bands. The

performance of this approach is demonstrated using both numerical simulation and theory.

Section 2 discusses point and curve estimators of receiver operating characteristic curves,

and introduces the two main approaches to interval, or band, estimators, based on asymp-
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totic and bootstrap methods, respectively. Theoretical properties of coverage are sum-

marised in section 3, leading to the conclusions drawn two paragraphs above, and to the

methodology mentioned in the previous paragraph. Numerical properties of our confidence

bands are summarised in section 4. Technical arguments are outlined the Appendix.

2 Methodology

2.1 Distribution estimators

Suppose we are given independent random samples X = {X1, . . . , Xm} and Y =

{Y1, . . . , Ym} from distributions with respective distribution functions F and G. Let

F̂emp and Ĝemp denote the corresponding empirical distribution functions. For example,

F̂emp(x) = m−1
∑

i I(Xi ≤ x), where I(E) denotes the indicator function of an event E .

We could estimate the function, R(p), by R̂(p) = 1 − Ĝemp{F̂−1
emp(1 − p)}. However, F̂emp

and Ĝemp are discontinuous, and, especially if the sample sizes m and n differ, R̂(p) can

have a very erratic appearance.

For this reason, and another given later in this section, it can be advantageous to smooth

F̂emp and Ĝemp prior to calculating the estimator of R(p). To this end, let L be a known,

smooth distribution function, let h1 and h2 denote bandwidths, and put

F̂ (x) = m−1
m∑

i=1

L

(
x − Xi

h1

)
, Ĝ(y) = n−1

n∑

i=1

L

(
y − Yi

h2

)
. (2.1)

Then F̂ and Ĝ are smoothed versions of F̂emp and Ĝemp, respectively. Their derivatives,

f̂ = F̂ ′ and ĝ = Ĝ′, are conventional kernel estimators of the densities f = F ′ and g = G′,

computed using the kernel K = L′. Optimal choice of bandwidth for F̂ and Ĝ is quite

different from that which is appropriate for f̂ and ĝ, and indeed h1 and h2 at (2.1) can

be often chosen quite small without seriously hindering performance. See, for example,

Azzalini (1981), Reiss (1981), Mielniczuk, Sarda and Vieu (1989), Sarda (1993), Altman

and Léger (1995), Bowman, P. Hall and Prvan (1998), de Una-Alvarez, Gonzalez-Manteiga

and Cadarso-Suarez (2000) and Polansky and Baker (2000).

The kernel estimate of R(p) is R̂(p) = 1 − Ĝ{F̂−1(1 − p)}. Bandwidth choice for R̂(p)

has been considered by Lloyd and Yong (1999), P. Hall and Hyndman (2003), Zou and

W. Hall (2000), Zhou, W. Hall and Shapiro (1997) and Zhou and Harezlak (2002).

In Sections 2.2 and 2.3 we shall suggest asymptotic and bootstrap methods, respectively,

for constructing pointwise confidence intervals for R(p). The former are based on the

normal distribution, and so make no attempt to capture the skewness of the estimator of

R(p). The latter have an opportunity for capturing skewness, but in both cases optimal

performance can only be realised if the distribution function estimators are smoothed.

To appreciate why, note that while F̂emp(x) can be represented by a sum of independent
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and identically distributed random variables, the component variables I(Xi ≤ x) are

lattice-valued. It is known even from very early work on bootstrap approximation (Singh,

1981) that in such cases the bootstrap can fail to capture the main effects of skewness.

Likewise, “rounding errors” are present in the coverage of confidence intervals and bands

based on asymptotic approximations. Doing a little smoothing, for example using F̂

rather than F̂emp, can overcome these difficulties. To some extent the problems might

be alleviated by the amount of smoothing that is implicit in studentisation, but this

is unclear and quite awkward to verify. For these reasons, smoothing the distribution

function estimator is advantageous from the viewpoint of improving the accuracy of the

bootstrap, in addition to enhancing the appearance of an estimate of R(p).

2.2 Asymptotic confidence intervals

It can be shown that, to a first-order approximation, if 0 < t < 1 then Ĝ{F̂−1(t)} −
G{F−1(t)} is distributed as

Ĝ{F̂−1(t)} − G{F−1(t)}

≈ Ĝ
{
F−1(t)

}
− G

{
F−1(t)

}
− g{F−1(t)}

f{F−1(t)}
[
F̂

{
F−1(t)

}
− t

]
. (2.2)

See, for example, Hsieh and Turnbull (1993). For the relatively small bandwidths that

would be used to construct F̂ and Ĝ, the quantity on the right-hand side of (2.2) is

asymptotically normally distributed with zero mean and variance given by

σ(t)2 = n−1 G
{
F−1(t)

} [
1 − G

{
F−1(t)

}]
+ m−1 g{F−1(t)}2

f{F−1(t)}2
t (1 − t) . (2.3)

Here we have made use of the assumption that X and Y are independent samples of

independent data.

Replacing F , G, f and g at (2.3) by respective estimators F̂ , Ĝ, f̃ and g̃, we obtain an

estimator of σ:

σ̂(t)2 = n−1 Ĝ
{
F̂−1(t)

} [
1 − Ĝ

{
F̂−1(t)

}]
+ m−1 g̃{F̂−1(t)}2

f̃{F̂−1(t)}2
t (1 − t) . (2.4)

We might take f̃ and g̃ here to be simply the estimators f̂ and ĝ, noted earlier. However,

a substantially different size of bandwidth can be necessary when optimising confidence

intervals for coverage accuracy, relative to that which is appropriate when constructing

distribution or density estimators with good pointwise accuracy. We recognise this by

using “tilde” rather than “hat” notation. For future reference, let hf and hg denote the

bandwidths used for f̃ and g̃:

f̃(x) =
1

mhf

m∑

i=1

K

(
x − Xi

hf

)
, g̃(y) =

1

nhg

n∑

i=1

K

(
y − Yi

hg

)
. (2.5)
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One-sided, asymptotic, (1 − α)-level confidence intervals for R(p) are therefore given by

(R̂(p)−zα σ̂(1−p), 1) and (0, R̂(p)+zα σ̂(1−p)), where zα > 0 is the upper 1−α point of

the standard normal variable distribution. A two-sided confidence interval has of course

endpoints R̂(p) ± zα/2 σ̂(1 − p). Here, R̂(p) is based on (2.1) and (2.2), but it does not

necessarily use the same bandwidths as are used in (2.4). In our numerical examples, we

estimate R̂(p) using the bandwidth proposal of P. Hall and Hyndman (2002).

2.3 Bootstrap confidence intervals

An alternative approach to constructing interval estimators is to approximate the distri-

bution of

S =
[
G{F−1(t)} − Ĝ{F̂−1(t)}

]/
σ̂ ,

using the bootstrap and Monte Carlo simulation. Specifically, draw data X ∗ =

{X∗

1 , . . . , X∗

m} and Y∗ = {Y ∗

1 , . . . , Y ∗

n } randomly, without replacement, from distributions

with respective densities f̌ and ǧ, where f̌ and ǧ are smoothed estimators of f and g and

are computed from X and Y, respectively. Compute the bootstrap versions, F̂ ∗, Ĝ∗, f̃∗

and g̃∗ say, of F̂ , Ĝ, f̃ and g̃; let σ̂∗ denote the version of σ̂ at (2.4) that is obtained on

replacing the latter estimators by their bootstrap forms; write F̌ and Ǧ for the respective

distribution functions corresponding to the densities f̌ and ǧ; and put

S∗ =
[
Ǧ{F̌−1(t)} − Ĝ∗{(F̂ ∗)−1(t)}

]/
σ̂∗ . (2.6)

Then, the distribution of S∗, conditional on the original data Z = (X ,Y), is an approxi-

mation to the unconditional distribution of S.

In particular, we may compute ẑα = ẑα(Z) as the solution of the equation P (S∗ ≤ ẑα |
Z) = α, for 0 < α < 1, and take one-sided, (1 − α)-level confidence intervals for R(p) to

be (R̂(p) − ẑα σ̂(1 − p), 1) and (0, R̂(p) − ẑ1−α σ̂(1 − p)). These are of course percentile-t

intervals.

We have introduced a third density estimator, f̌ , rather than use one of the existing

estimators f̂ or f̃ , since it is initially far from clear what the appropriate level of smoothing

in the bootstrap resampling step should be. We may of course take f̌ to have the same

form as f̂ and f̃ , but with a different choice of bandwidth. Likewise, we introduce ǧ rather

than rely on ĝ or g̃. Without choosing bandwidth appropriately the bootstrap algorithm

may fail to adequately capture the effects of bias on the distribution of S. Indeed, we

shall argue in Section 3.2 that it is necessary to choose the bandwidths for f̌ and ǧ much

larger than those for f̂ , f̃ , ĝ and g̃. See Härdle and Bowman (1988) for an early account of

the need to resample from a smoothed distribution when constructing confidence intervals

where smoothed estimators are involved.
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3 Coverage probabilities

3.1 Effect of bandwidth choice on asymptotic intervals

Let α ∈ (1
2 , 1), and define zα by Φ(zα) = 1 − α, where Φ denotes the standard normal

distribution function. Also, let y1 = F̂−1(t) and y = F−1(t). Since {Ĝ(y1) − G(y)}/σ̂

is asymptotically N(0, 1) then examples of asymptotic confidence intervals for R(p) =

1 − G{F−1(1 − p)} are given by

(
−∞ , R̂(p) + σ̂ zα

] [
R̂(p)− σ̂ zα , −∞

) [
R̂(p)− σ̂ zα/2 , R̂(p) + σ̂ zα/2

]
. (3.1)

The coverage probability of each converges to α as n → ∞.

In familiar semiparametric problems, for example confidence intervals for a population

mean, the three intervals at (3.1) would have coverage errors of sizes n−1/2, n−1/2 and

n−1, respectively. This reflects results in the theory of Edgeworth expansion; see, for

example, Bhattacharya and Ghosh (1978) and P. Hall (1992, Chapter 2). In particular,

the terms in n−1/2 that dominate coverage-error formulae for one-sided intervals cancel,

in the two-sided case, through a fortuitous parity property, and then second-order terms,

of size n−1, prevail.

In the present setting, however, such a simple account of coverage accuracy is prevented

by the fact that σ̂ involves a nonparametric component, depending critically on the band-

widths hf and hg used to construct f̃ and g̃ at (2.5), and employed to compute σ̂. It can

be shown that if hf and hg are chosen to be of conventional size, n−1/5, appropriate for

point estimation of f and g, then the coverage errors of each of the confidence intervals

at (3.1) are of size n−2/5, which falls short even of the level n−1/2 that is available in the

one-sided case in a classical setting.

That this is true even for the third, two-sided interval at (3.1) follows from the fact that

the leading terms which introduce hf and hg to coverage-error formulae do not enjoy the

classical parity property. As a result, errors of size n−2/5 persist for each of the three

intervals at (3.1). They compound, rather than cancel, in passing from one-sided to two-

sided intervals. There are, of course, two other bandwidths, h1 and h2, used to construct

F̂ and Ĝ at (2.1). These, however, have only a minor impact, and can be chosen within a

wide range without seriously affecting coverage error.

These results motivate a careful analysis of the impact that choosing hf and hg has on

coverage accuracy. We shall show that it is optimal to select these bandwidths to be

constant multiples of m−1/3 and n−1/3, respectively, and we shall suggest formulae for

the constants. With this choice of the bandwidths, the coverage errors of the one-sided

intervals at (3.1) are of size n−1/2, reducing to n−2/3 in the two-sided setting. Thus,

accuracy in the one-sided case coincides with that in classical problems, while in the two-

sided setting it is a little less than in the classical case, but still better than for one-sided

intervals.

Hall, Hyndman and Fan: 17 July 2003 6
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Next we describe our main theoretical results. Put ρ = n/m, κ =
∫

K2, κ2 =
∫

u2 K(u) du

and

a =
ρ {g(y)/f(y)}2 t (1 − t)

G(y) {1 − G(y)} + ρ {g(y)/f(y)}2 t (1 − t)
. (3.2)

Note that 0 < a < 1. Define the even, quadratic polynomials

qf (x) = κ
(
3 − a − a x2

)
+ 2K(0)

(
a + a x2 − 1

)
, qg(x) = κ

(
a − 1 − a x2

)
.

For ψ = f or g, put pψ(x) = ax {qψ(x)−κ2 mh3
ψ ψ′′(y)}/2ψ(y), an odd, cubic polynomial.

Construct f̃ and g̃ using the kernel K and the respective bandwidths hf and hg. We shall

show that, provided hf and hg are of respective sizes m−1/3 and n−1/3,

P
[
{Ĝ(y1) − G(y)}/σ̂ ≤ x

]
= Φ(x) + n−1/2 p(x)φ(x)

+
pf (x)

2mhf
φ(x) − pg(x)

2nhg
φ(x) + o

(
n−2/3

)
, (3.3)

where p denotes an even, quadratic polynomial, the coefficients of which do not depend

on hf or hg, and which involve m and n only through the ratio ρ, remaining bounded as

long as ρ is bounded away from zero and infinity. Regularity conditions for (3.3) will be

given later in this section.

The implications of (3.3) are tied to parity properties of the polynomials p, pf and pg.

Note that p is even, whereas pf and pg are odd, and so (3.3) implies that the two-sided

confidence interval, I = [R̂(p) − σ̂ zα/2, R̂(p) + σ̂ zα/2], has coverage probability

P
{
R(p) ∈ I

}
= α +

{
pf (zα/2)

mhf
−

pg(zα/2)

nhg

}
φ(zα/2) + o

(
n−2/3

)
. (3.4)

Depending on the values of a, α, m, n, f (j)(y) and g(j)(y) for j = 1, 2, it can be possible

to choose hf and hg at (3.4) so that the quantity within braces there vanishes. This is

not always feasible, however, and a simpler approach is to select hf and hg separately, to

minimise absolute values of the respective terms within braces. Either approach produces

bandwidths of size m−1/3 and n−1/3, respectively; the second approach results in the

formulae hf = cf m−1/3 and hg = cg n−1/3, where

cf = θ

∣∣∣∣
qf (zα/2)

κ2 f ′′(y)

∣∣∣∣
1/3

, cg = θ

∣∣∣∣
qg(zα/2)

κ2 g′′(y)

∣∣∣∣
1/3

, (3.5)

and θ = 1 or 2−1/3 according as the ratio of the term within modulus signs is positive

or negative. This approach to bandwidth choice is also appropriate when constructing

the one-sided interval J = (−∞, R̂(p) + σ̂ zα]. There the formulae at (3.5) remain valid,

except that zα/2 should be replaced by zα. For a constant bandwidth over the curve, we

integrate the numerator and denominator of (3.5) over y.

By way of regularity conditions for (3.3) we require: (a) f and g have two continuous

derivatives in a neighbourhood of y, (b) neither f(y) nor g(y) vanishes, (c) K is a con-
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tinuous, symmetric, compactly supported density, (d) the bandwidths h1 and h2 used to

construct F̂ and Ĝ, at (2.1), satisfy hj = o(n−7/12) and nhj/ log n → ∞ as n → ∞, and

(e) the sample-size ratio, ρ, is bounded away from zero and infinity as n → ∞.

The regularity conditions (a)–(e) are mild, and it is clear that except possibly for (d) they

are usually assured in practical settings. Moreover, (d) is guaranteed, in most cases of

interest, if we choose h1 and h2 to be as small as possible subject to the jump discontinuities

of F̂emp and Ĝemp being “smoothed away” by F̂ and Ĝ, respectively, except in the extreme

tails. This follows from the fact that, away from the tails, the maximum spacing of order

statistics is of size n−1 log n, and, across the entire distribution, is an order of magnitude

larger provided that at least one tail of each of f and g descends to zero. Choosing a

bandwidth that is just sufficiently large to smooth away jumps is the approach that is

often followed in practice when using kernel methods to estimate a distribution function.

To implement the asymptotic intervals requires ten different smoothing parameters: very

small bandwidths h1 and h2 for F̂ and Ĝ, at (2.1); bandwidths hf and hg for f̃ and g̃,

at (2.5); bandwidths H1 and H2 for estimating f ′′(y) and g′′(y) in (3.5); bandwidths Hf

and Hg for estimating f(y) and g(y) in (3.2); and bandwidths HF and HG for estimating

F (y) and G(y) in (3.2).

In our numerical examples we choose h1 and h2 to be 0.25 times the plug-in bandwidths

for conditional distribution estimation (Lloyd and Yong, 1999); we choose hf and hg

using (3.5); H1 and H2 are chosen to be optimal assuming f and g are normal, thus

H1 = (4/7)1/9m−1/9sx where sx is the standard deviation of the X , and H2 is chosen

analogously; we choose Hf and Hg using the Sheather-Jones (1991) plug-in rule; and an

analogous plug-in rule for HF and HG. R code to carry out these calculations is available

from Rob Hyndman.

3.2 Bootstrap intervals

A bootstrap version of (3.3) is readily developed. It has the form

P (S∗ ≤ x | Z) = Φ(x) + n−1/2 p(x)φ(x) +
pf (x)

2 mhf
φ(x) − pg(x)

2nhg
φ(x) + op

(
n−2/3

)
, (3.6)

where S∗ is as defined at (2.6). Recall that Z denotes the set of all data Xi and Yj . The

right-hand side of (3.6) is identical to its counterpart at (3.2), except that the remainder

is now stochastic.

Results (3.6) follows from a close analogue of (3.3), in which the quantities f , g and their

derivatives, appearing in formulae for pf and pg, are replaced by their counterparts involv-

ing f̌ and ǧ. In order for (3.6) to follow from this particular expansion it is necessary that

f̌ and ǧ involve sufficient smoothing to ensure that their second derivatives consistently

estimate the second derivatives of f and g, respectively. In mathematical terms this means

that the bandwidths used to construct f̃ and g̃ should converge to zero more slowly than
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m−1/5 and n−1/5, respectively. Ideally, in the case of sufficiently smooth densities, the

bandwidths should be of sizes m−1/9 and n−1/9. Thus, oversmoothing is required at this

level; conventional bandwidth choices are of sizes m−1/5 and n−1/5. Without oversmooth-

ing, the bootstrap method described in section 2.3 may not lead to improvements over

the asymptotic approach. If sufficient oversmoothing is used, however, then it can be de-

duced from (3.3) and (3.6) that the bootstrap will produce one- and two-sided confidence

intervals with coverage error equal to o(n−2/3).

Therefore, choice of bandwidth for constructing the smoothed distribution estimators, F̃

and G̃, from which bootstrap sampling is done is a critical matter. For proper implemen-

tation the bootstrap technique requires six quite different, and all nonstandard, smoothing

parameters: very small bandwidths h1 and h2 for F̂ and Ĝ, at (2.1); larger, but still smaller

than usual, bandwidths hf and hg for f̃ and g̃, at (2.5); and quite large bandwidths for

F̌ and Ǧ. This complexity makes the bootstrap approach particularly challenging, and

relatively unattractive, to implement.

4 Examples

We compute the actual probability coverage of our confidence intervals using simulations

on four examples having a range of density shapes. These are:

1. F = β(2, 3); G = β(2, 4);

2. F = β(1.2, 3); G = β(1.2, 2);

3. F = γ(2); G = γ(3);

4. F = t(5); G = 0.2(t(5) − 1) + 0.8(t(5) + 1).

where β(a, b) denotes the Beta distribution with density f(x) = Γ(a + b){Γ(a)Γ(b)}−1

x(a−1)(1 − x)(b−1), 0 ≤ x ≤ 1; γ(a) denotes the Gamma distribution with density

xa−1e−x/Γ(a), x > 0; and t(v) denotes the t distribution with v degrees of freedom.

For each example, we generated 1000 sets of data from F and G, each of size m = n = 100.

Then the curve R̂(p) was computed with bandwidths chosen using the method of P. Hall

and Hyndman (2003). Confidence intervals around the curve were computed using the

method outlined in Section 2.2.

The proportion of times the confidence interval contained the true R(p) for each p is

plotted in Figure 1. Except in the extreme tails of the distributions, our approach is

usually conservative.
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Figure 1: Actual coverage of asymptotic confidence intervals computed as described in

Section 2.2. In each example, the percentage is computed from 1000 simulated sets of data.

Sample sizes were m = n = 100. Nominal coverage was 95%.
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Appendix: Derivation of (3.3)

Recall that y = F−1(t) and y1 = F̂−1(t), and define B = Ĝ(y1) {1 − Ĝ(y1)}, B0 =

ρ {g(y)/f(y)}2 t (1 − t), B1 = ρ {g̃(y1)/f̃(y1)}2 t (1 − t), Aj = B + Bj , A = B0/A0, ∆f =

{f̃(y1) − f(y)}/f(y), ∆g = {g̃(y1) − g(y)}/g(y) and

S1 = A (∆g − ∆f ) + 1
2 A (3 − A)∆2

f + 1
2 A (1 − A)∆2

g + A (A − 2)∆f ∆g . (A.1)

Then, omitting cubic and higher-order terms in expansions,

A
1/2
1 =

{
B + B0

(
1 + 2∆g − 2∆f + ∆2

g + 3∆2
f − 4∆f ∆g

)}1/2

= A
1/2
0

{
1 + A

(
2∆g − 2∆f + ∆2

g + 3∆2
f − 4∆f ∆g

)}1/2
= A

1/2
0 (1 + S1) . (A.2)

Put b = G(y) {1−G(y)}, a0 = b+B0, U1 = {Ĝ(y1)−G(y)}/σ̂ = n1/2{Ĝ(y1)−G(y)}/A1/2
1

and U0 = n1/2{Ĝ(y1) − G(y)}/A1/2
0 , and let Φ denote the standard normal distribution

function. Note too that a = B0/a0 and A0 = a0 + Op(n
−1/2). Write S2 for the version of

S1 that is obtained if, in the definition at (A.1), A is replaced by a. Assume hf ∼ cf n−1/3

and hg ∼ cg n−1/3, for constants cf , cg > 0 still to be determined. Then |∆f | + |∆g| =

Op(n
−1/3). It follows that S1 − S2 = Op(n

−(1/2)−(1/3)) = Op(n
−5/6), and that the cubic

terms that have been omitted from (A.2) are of order n−1.

Let δf = {f̃(y) − f(y)}/f(y) and ∆ = {g̃(y) − g(y)}/g(y). It can be shown that, with

ψ = f or g, E(∆ψ − δψ)2 = O(n−1). Therefore, if we define

S3 = a (∆g − ∆f ) + 1
2 a (3 − a) δ2

f + 1
2 a (1 − a) δ2

g + a (a − 2) δf δg ,

then S2 − S3 = Op(n
−5/6). Combining this result with those derived in the previous

paragraph we deduce that

U1 =
U0

1 + S1
+ Op

(
n−1

)
=

U0

1 + S2
+ Op

(
n−5/6

)
=

U0

1 + S3
+ Op

(
n−5/6

)
.

Therefore, by the delta method,

P (U1 ≤ x) = P
{
U0 ≤ x (1 + S3)

}
+ o

(
n−2/3

)
. (A.3)

Note that U0 ≤ x (1 + S3) is equivalent to Z ≤ z, where Z = V − W , z = v − w,

V = (n/A0)
1/2 {Ĝ(y1) − G(y1)} + n1/2 {G(y1) − G(y)}

(
A

−1/2
0 − a

−1/2
0

)
,

W = x
{
a∆g + 1

2 a (1 − a) δ2
g

}
+ a (a − 2) δf δg

}
,

v = x − (n/a0)
1/2 {G(y1) − G(y)} , w = x

{
a ∆f − 1

2 a (3 − a) δ2
f

}
. (A.4)

We shall evaluate P{U0 ≤ x (1 + S3)} as E{P (Z ≤ z | X )}, where X = {X1, . . . , Xm},
and so we seek initially an approximate formula for P (Z ≤ z | X ).
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Noting that the random variables V and δg are asymptotically independent, that δf is a

function of X , and that δg is independent of X , we show first that

E
(
eiuZ

∣∣X
)

= E
{
eiuV (1 − iuax∆g)

∣∣X
}

− 1
2

{
iuax (1 − a) + (uax)2

}
E

(
δ2
g

)
E

(
eiuV

∣∣X
)

− iua (a − 2) δf E(δg)E
(
eiuV

∣∣X
)

+ op

(
n−2/3

)
, (A.5)

where i =
√
−1. Then, after Fourier inversion and some algebra, we obtain:

P (Z ≤ z | X ) = H(z) + ax
{
E(∆g | X ) + 1

2 (1 − a)E
(
δ2
g

)
+ (a − 2) δf E(δg)

}
H ′(z)

+ 1
2 (ax)2 E

(
δ2
g

)
H ′′(z) + op

(
n−2/3

)
, (A.6)

where H(z) = P (V ≤ z | X ). Taking the expected value of both sides, and noting that

E(∆g | X ) = E(δg) + (y1 − y) g′(y) g(y)−1 + op(n
−2/3), gives:

P (Z ≤ z) = E{H(v)} + n−1/2 π1(x) − axE{∆f H ′(v)}
+ 1

2 E
(
δ2
f

) {
ax (3 − a)φ(x) + (ax)2 φ′(x)

}

+ ax
{
E(δg) + 1

2 (1 − a)E
(
δ2
g

)}
φ(x)

− 1
2 (ax)2 E

(
δ2
g

)
φ′(x) + o

(
n−2/3

)
, (A.7)

where, here and below, πj denotes an even polynomial not depending on hf or hg. Now,

E{H(v)} = Φ(x) + n−1/2 π2(x) + o(n−2/3), and

E{∆f H ′(v)}/φ(x) = E(δf ) +
cx

n1/2
+

K(0)

m hf f(y)

(
1 − a + a x2

)
+ o

(
n−2/3

)
,

where c depends on ρ but not on hf or hg. Substituting these results into (A.7), and

expanding E(δ2
f ), E(δg) and E(δ2

g) in the usual way, we deduce an expansion of P{U0 ≤
x (1+S3)} = P (Z ≤ z) which is identical to the right-hand side of (3.3). The latter result

now follows from (A.3).

The Fourier inversion which leads to (A.6) requires the small amount of smoothing implicit

in the assumption, in (d), that nhj/ log n → ∞ for j = 1, 2. This removes “rounding

error” terms, deriving from the lattice nature of the unsmoothed distribution functions

F̂emp and Ĝemp. The condition hj = o(n−7/12), in (d), is just sufficient to eliminate bias

effects of smoothing these distributions to F̂ and Ĝ. Bias effects are of size n1/2 h2
j , which

in view of (d) equals o(n−2/3).
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