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Abstract

We propose a data-driven approach to facial landmark

localization that models the correlations between each land-

mark and its surrounding appearance features. At runtime,

each feature casts a weighted vote to predict landmark lo-

cations, where the weight is precomputed to take into ac-

count the feature’s discriminative power. The feature voting-

based landmark detection is more robust than previous local

appearance-based detectors; we combine it with nonpara-

metric shape regularization to build a novel facial landmark

localization pipeline that is robust to scale, in-plane rotation,

occlusion, expression, and most importantly, extreme head

pose. We achieve state-of-the-art performance on two es-

pecially challenging in-the-wild datasets populated by faces

with extreme head pose and expression.

1. Introduction

Facial landmark localization seeks to automatically locate

predefined facial landmarks (e.g., the nose tip, mouth cor-

ners, eye centers) in face images. It is an important research

area in computer vision in part because digital face portraits

are ubiquitous. Many compelling applications depend on

it, including face recognition and retrieval, face animation,

and face image editing wizards. At the same time, robust

facial landmark localization is very challenging in practice.

Real-world images can be cluttered, faces can be partially oc-

cluded, and they can exhibit large variations in appearance,

shape, expression, and head pose. In particular, when current

approaches fail, they often fail on faces with extreme expres-

sion and/or head pose.

One primary source for failure is the practical challenge

of initialization. Many landmark localization methods rely

heavily on a reasonable initialization as a prerequisite for

success, and can fail to find the correct solution if the ini-

tial face shape is too far from the true optimum. A popular

strategy, even for recent approaches (e.g., [1, 3, 4, 19, 22] to

name just a few), is to first detect the face (i.e., using [21]),

and then fit a mean face shape (where the shape is defined by

the facial landmarks) to the detection window. For upright

near-frontal faces (i.e., within 30 degrees yaw, pitch, and/or

roll head rotation from frontal) detection and initialization is

seldom a problem. However, for extreme poses and some

Figure 1. Our robust exemplar-based algorithm locates landmarks

on challenging faces with extreme head pose.

expressions, traditional face detectors (e.g., [21]) may fail,

or the true shape of the face inside the detection window will

differ significantly from the initial shape, making a good ini-

tialization unlikely, thereby challenging even recent methods

like [22], as we observe in our results section. This problem

is often minimized in the literature, where popular evaluation

datasets often make initialization easy.

Part-based models [8, 24] can be used to address the ini-

tialization problem, but learning an accurate part graph pa-

rameterization and inferring part labels from the graph can

be challenging. Recent works [26, 29] simplify the graph

structure to a tree and produce impressive results. Failure

cases suggest that human faces, unlike the human body, still

prefer a loopy graph structure. Furthermore, a landmark

graph typically only models interactions between landmarks

but does not model the interactions between landmarks and

non-landmark image patches.

Our goal is to accurately localize landmarks on faces with

extreme head pose and/or expression. To achieve this goal,

we have developed an exemplar-based approach that requires

only a weak initialization. More specifically, we general-

ize and combine a recent exemplar-based approach for shape

regularization [2] with an exemplar-based approach for face

detection [20] to model context interactions between land-

marks and their surrounding local appearance features in a

nonparametric way. By “weak initialization” we mean that

our algorithm does not require (nor does it position) a face

shape for initialization. Our algorithm relies on a face de-

tector (i.e., [20]) only to establish an initial size for the face

and the region of interest in the image. Our algorithm also

searches over multiple face scales and rotations during land-

mark localization, which allows for a large margin of error
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in the initial face detection. The end result is a new pipeline

that achieves state-of-the-art results on unconstrained face

datasets populated with challenging poses and expressions.

The robustness and flexibility of our method comes from its

ability to efficiently and effectively leverage the information

from a large database of face exemplars.

We make three main contributions in this paper:

1. We propose a data-driven approach for modeling the

correlations between each landmark and its surround-

ing appearance features. At runtime, each feature casts

a weighted vote to predict landmark locations, where

the weight is precomputed to take into account the fea-

ture’s discriminative power.

2. We combine nonparametric local appearance modeling

with nonparametric shape regularization to build a novel

facial landmark localization pipeline that is robust to

common types of real-world variation, including scale,

rotation, occlusion, expression, and most importantly,

extreme head pose.

3. We compare our approach to several recent approaches

and show state-of-the-art accuracy on two especially

challenging in-the-wild datasets populated by faces

with extreme head pose and expression.

2. Related Work

Early facial landmark localization and face alignment

methods, e.g., Active Shape Models (ASMs) [6] and Active

Appearance Models (AAMs) [5], relied on global paramet-

ric models for face shape and appearance. Parametric models

work well for favorable face images, e.g., where the illumi-

nation, pose, and expression do not vary greatly.

To overcome the well-known generalization problem in

AAMs, Zhao et al. [27] proposed computing a separate AAM

for each test face using k-nearest neighbor training faces

(w.r.t. the test face) rather than all training faces. Using

k-NN exemplars is an important part of our approach (see

Section 3.3) and others [2, 20, 28], although it is not our

main contribution. Like other AAM-based methods, [27] in-

volves a gradient decent-type optimization over the whole

face (holistic), which is sensitive to initialization.

Constrained Local Models (CLMs) [1, 7, 19] handle a

wider range of faces than generic AAMs by employing an en-

semble of local texture patches or landmark detectors that are

constrained by a global shape model. The local appearance

models are more robust to a range of challenges including oc-

clusion and global illumination changes, but CLMs still rely

on parametric shape models for regularization, which may

not generalize well to a broad range of poses.

Belhumeur et al. [2], and more recently Zhou et al. [28],

use nonparametric global shape models, which generalize

better to challenging real-world faces. However, these two

methods still rely on local landmark detectors (linear sup-

port vector machines (SVMs)) to form the landmark re-

sponse. Because landmark appearance changes dramatically

with large head pose variation, these two methods are limited

to constrained head poses.

Recent regression-based approaches [3, 22] have also

demonstrated increasingly impressive performance on real-

world faces without the need for a parametric shape model.

Although these methods have some tolerance to inaccurate

initialization, for many challenging faces, where pose can

easily vary past 30 degrees yaw, pitch, or roll head rota-

tion, a good initialization is much more difficult. As a result,

descent-based methods can get stuck in local optima.

Zhu and Ramanan [29] address this initialization problem

in their work. They use a tree structured part model of the

face, which both detects faces and locates facial landmarks.

One of the major advantages of their approache is that it can

handle extreme head pose. However, their method only mod-

els pairwise landmark interactions on a tree structure. Yu et

al. [26] speed up [29] by simplifying the mixture of parts for

face detection and initial landmark localization, and they ex-

tend [29] by adding a two-step local refinement procedure,

which resembles the approach in [19] followed by the opti-

mization of several additional constraints via a gradient de-

scent method. Like [29] and [26], we focus on locating facial

landmarks without relying on a good initialization, but we

model the full interactions between each landmark and its

surrounding local features. That is, our context interactions

are not limited to a tree structure, and our approach does not

involve graphical model inference.

We are most inspired by the recent face detection work

of Shen et al. [20], who rely on a Hough transform based

feature voting scheme to transfer many face hypotheses from

a large database of exemplar faces to the test image. The

votes capture the appearance and geometric correlations be-

tween local image features and the face center. While [20]

focuses on face detection, we focus on landmark localiza-

tion, and we compute a set of sparse feature weights, which

naturally amplify reliable features and suppress noisy or un-

reliable features across the database; our weights are tailored

to each {feature, landmark, exemplar} combination and are

computed in a data-driven way.

Several recent object detection [12, 17], tracking [25], and

face landmark localization methods [23] also rely on similar

feature voting schemes to generate object/landmark response

maps. Among these methods, Yang and Patras [23] is most

similar to our work. They use image patches to cast votes

for the location of each facial landmark. Our core approach

is much simpler than [23]: we do not train regression forests

or use SVM classifiers. Instead, we simply use an approxi-

mate nearest neighbor algorithm [16] for image and feature

retrieval, followed by weighted vote accumulation.



3. Our Approach

In this section we first give an overview of our pipeline

followed by technical details of each step. Please see our sup-

plementary material for a visual synopsis of our approach.

3.1. Overview

Database construction Our database is composed of a

large collection of exemplars. Each exemplar has four com-

ponents: a face image, a set of dense quantized SIFT [15]

features, a sparse set of semantic facial landmarks corre-

sponding to mouth corners, nose tip, chin contour, etc., and

a unique set of weights, one weight per {feature, landmark}
pair. Following the approach in [20], we quantize each SIFT

descriptor using fast approximate k-means [16], which effi-

ciently maps each descriptor to a visual word. The weights

are an important aspect of our approach; Section 3.7 de-

scribes in more detail how they are useful and how we com-

pute them.

Runtime Preprocessing Given a test image, we first use

a state-of-the-art face detector [20] to locate the face and

roughly estimate its scale. The test image is cropped to the

face region, and then rescaled to approximately match the

scale of the exemplar faces (scale estimation will be refined

in later steps). Dense SIFT descriptors are then extracted

over the test face at multiple orientations. Finally, each de-

scriptor is quantized for efficient matching in later steps.

Step 1: Top exemplar retrieval Given a detected face re-

gion, retrieve a subset of top similar k exemplar faces from

the database. The goal is to retrieve exemplars that are simi-

lar to the test face in appearance, shape, expression, and pose

so that features in the exemplars will produce accurate land-

mark votes in the test image.

Step 2: Landmark voting For each type of landmark,

generate voting maps using a multi-scale and multi-rotation

generalized Hough transform [14]. Each matched feature

from the top k exemplars casts a vote (for each scale and

rotation) for a possible landmark location in the test image.

The result is a table of voting maps for each landmark, where

each table row corresponds to an in-plane rotation, and each

table column corresponds to a scale estimate.

Step 3: Voting map selection Select a single voting map

for each landmark. We define the score of each voting map as

the height of the maximum peak in the voting map. For each

landmark, we save the top-scoring voting map in each row of

the table of voting maps (each row corresponds to a rotation),

which gives a unique scale estimate for each {landmark, ro-

tation} pair. Among these voting maps, we select the single

global rotation (and corresponding voting maps) that produce

the maximum total score across all landmarks.

Step 4: Final landmark estimation Given a single vot-

ing map for each landmark, estimate a final set of landmark

locations. Due to local ambiguities, noise, occlusions, etc.

each voting map may contain multiple peaks. We employ a

robust nonparametric shape regularization technique [2] that

avoids false peaks in the voting maps and estimates a final

arrangement of landmarks.

3.2. Database construction

We use 17685 images exclusively from the Multi-PIE

Face Database [9] as our exemplars. The Multi-PIE authors

annotated 4685 face images, each with 68 landmarks (or 39
for profile faces). Some Multi-PIE faces have landmarks for

one pose (e.g., -30 degrees yaw), but not the opposite (e.g.,

+30 degrees yaw). For such faces we synthesized the ‘miss-

ing’ landmarks by horizontally flipping the labeled image

and its landmarks. 400 additional Multi-PIE images were

labeled by [29]; we manually labeled 960 more (mostly non-

frontal faces with non-neutral expressions). We used each

unique ground-truth face shape on multiple images with the

same {session, subject, expression, pose} combination, but

different lighting, to obtain 17685 labeled images. Prior to

feature extraction and quantization, we used Procrustes anal-

ysis to align all exemplar faces. Please see our project web-

site for our complete set of landmark annotations and a script

for generating our exemplar dataset.

3.3. Step 1: Top exemplar retrieval

In order to transfer landmarks from the database to the test

image, the shape and appearance of the exemplar faces and

the test face should not be drastically different. For example,

a left-profile face has a much different shape and appearance

than a right-profile face; there are few feature-landmark cor-

relations between the two. We therefore select a top subset

of exemplars for further processing.

Many strategies exist for retrieving similar face images

from a database. We use our generalized Hough transform

framework to score each exemplar image. First, we use a

bag-of-words score to efficiently select the top 3000 exem-

plars. Next, we use the features on the test face to vote for

the center of each exemplar face among the top 3000. The

final score for each exemplar is the height of the maximum

peak in the voting map associated with each exemplar face.

We sort the scores, and select the top k = 200. Shen et

al. [20] adopt a similar strategy for retrieving exemplar faces

in the validation step of their face detection algorithm.

3.4. Step 2: Landmark voting

For efficiency, rather than exhaustively sliding each ex-

emplar over the test image, we use quantized features and

employ an inverted index file to efficiently retrieve matched

features from the top k exemplars. When a feature in the

test image is matched with an exemplar feature, the feature-

to-landmark offset in the exemplar is transferred to the test

image. The offset vector extends from the test feature toward

a potential landmark location, and produces a vote. After



many such votes, a voting map is formed, where the votes

tend to cluster at landmark locations.

This Hough voting strategy is sensitive to scale and rota-

tion differences between the test image and the exemplars.

We therefore produce votes at several different scales (0.7 to

1.3 in increments of 0.1) and in several orientations (−30 to

+30 degrees roll in increments of 10) on the test face. For

efficiency, we use the same extracted features across multiple

scales (this is possible because the scale differences between

the test face and the exemplar faces are close to 1); only the

vote offset vectors are scaled. For votes at different in-plane

rotation angles, we use the corresponding set of orientation-

specific features computed during the runtime preprocessing

step. This is the same approach taken in [20] for face detec-

tion and alignment, except they omit rotation search. In our

evaluation, we found that the rotation search is critical to our

performance, as Figure 4 (a) shows. This is partly due to the

fact that our exemplar faces are aligned and thus exhibit very

little in-plane rotation variation.

3.5. Step 3: Voting map selection
In selecting voting maps, we enforce the constraint that all

voting maps must come from the same in-plane rotation. The

intuition is that faces tend to rotate globally, not locally. On

the other hand, the scale of face regions can vary locally due

to expression or pose. We therefore select scale separately

for each landmark.

3.6. Step 4: Final landmark estimation
There are many approaches in the literature for enforcing

shape constraints (e.g., [6, 7, 19, 26] to name just a few). We

use an exemplar-based approach to shape regularization [2],

which fits nicely within our exemplar-based framework.

Belhumeur et al. [2] use SVM-based landmark detectors

to establish an initial set of landmark location hypotheses,

which forms the input to their final shape optimization al-

gorithm. The SVM-based detectors are limited in that each

appearance feature provides information only about its own

location. In contrast, by aggregating votes from many fea-

tures, our method takes advantage of the appearance context

around each landmark, which provides more robustness to

local noise, occlusions, etc. We therefore use our landmark

voting maps in place of the local detector response maps used

in [2].

Additionally, rather than using the entire set of exemplar

face shapes as input, which is the approach taken in [2],

we use only the top k exemplars retrieved in Step 1 of our

pipeline. The top k exemplar shapes tend to be better tai-

lored to the test face than the general set of exemplar shapes,

which further aids the optimization.

3.7. Computing exemplar feature weights
In this section we describe our approach for computing a

unique weight for each {feature, landmark} pair in each ex-

emplar images. Each weight is a score on the appearance and

geometric consistency of each {feature, landmark} pair rela-

tive to similar pairs in other images. Intuitively, if a {feature,

landmark} pair is consistent with similar pairs in other im-

ages (i.e., the features map to the same visual word and the

feature-to-landmark offsets are similar), then the feature is

a good predictor of the true landmark location, and its vote

should have higher weight. Conversely, if, for example, a

feature is corrupted due to occlusion, or if it describes an am-

biguous local region, then its vote should have lower weight.

For simplicity, our discussion below focuses on a single

generic landmark, but the same procedure applies to all land-

marks. We first define some new notation. Let L(fr
i ) be the

location of feature i in exemplar r, and let L(lr) be the lo-

cation of landmark l in exemplar r. The offset vector from

L(fr
i ) to L(lr) is denoted ∆L(fr

i , l
r) = L(lr) − L(fr

i ).
Let w(f) denote the mapping from feature f to its visual

word, i.e. w(fr
i ) = w(fr′

j ) means that feature i in exemplar

r matches feature j in another image r′.

Our goal is to compute the probability that fr
i will vote for

the correct landmark location L(lr
′

) in other face images.

Here, we assume that if two features fr
i and fr′

j in two ex-

emplar images r and r′ correspond to the same visual word,

i.e., w(fr
i ) = w(fr′

j ), the relative location offsets from the

feature to the landmark should be approximately the same.

For “other similar face images” we use the top k retrieved

exemplar images from Step 1 of our approach.

We estimate the above probability by counting the number

of correct votes (i.e., counting the number of matched offset

vectors that are approximately the same) and dividing by the

total number of votes. This can be written as

P (∆L(fr
i , l

r))

=
1

N

∑

r′ 6=r

∑

j ∈ r′ s. t.

w(fr′

j ) = w(fr
i )

Ψ
(∥

∥

∥
∆L(fr

i , l
r)−∆L(fr′

j , lr
′

)
∥

∥

∥

)

, (1)

where the summation is over all features in the other exem-

plar images that share the same visual word, and N is the to-

tal number of votes cast by fr
i . The function Ψ(·) in Eq. (1)

quantifies the notion of “approximately the same offset.” In

our implementation we use Ψ(x) = exp
{

− x2

2σ2
g

}

. We ob-

serve in Eq. (1) that

||∆L(fr
i , l

r)−∆L(fr′

j , lr
′

)|| = ||L(lr)− V ||, (2)

where V = L(fr
j ) + ∆L(fr′

j , lr
′

). This implies that we can

evaluate Eq. (1) by first generating a single voting map for

fr
j , where each vote is cast at location V in exemplar r by

features in other exemplars; we then count the number of

votes near L(lr) and divide by N to compute P (∆L(fr
i , l

r)).
As a kind of regularization, we modulate P (∆L(fr

i , l
r))

by a spatial weight that gradually decreases with distance

from the landmark,

srj = exp

{

−
||L(lr)− L(fr

j )||
2

2σ2
s

}

. (3)



Exemplar image Landmark 3 Landmark 31 Landmark 40 Landmark 55

Figure 2. Visualization of landmark-specific feature weights on two different exemplar faces. The red dot in each image shows the ground

truth landmark location. The intensity of blue is proportional to the weight of the underlying feature. We see that higher weights naturally

correspond to more locally discriminative regions and fully visible landmarks, while lower weights occur in uniform regions. For example,

for Landmark 31, we see that features near the edges of the nose have higher weight than features on more uniform areas like the cheeks or

philtrum. For Landmark 3, which is occluded by hair in the top row and partially occluded due to head pose in the bottom row, the feature

weights are generally lower. We do not use a parametric form to model the weight; the weight values are completely derived from the data.

Regularization is important because N in Eq. (1) can be

small, especially for features far from landmarks. Thus, the

final weight is
vrj = srj · P (∆L(fr

j , l
r)). (4)

Figure 2 shows four sets of weights for two exemplar im-

ages. Several qualities emerge naturally from the data. For

example, features in uniform regions, such as the cheeks and

forehead, receive smaller weights, while features in less am-

biguous regions receive larger weights. We see that nose and

chin landmarks require wider spatial support, while very dis-

tinctive landmarks such as the eye and mouth corners require

only nearby support. Because the weights are specific to each

feature, landmark, and exemplar, they can adapt to whatever

global or local conditions exist, including different poses, il-

luminations, facial expressions, occlusions, etc.

3.8. Implementation Details
For a large database of exemplar faces, storing weights vrj

for all j and r across all types of landmarks could be mem-

ory prohibitive. Fortunately, few features have any nonzero

weights (23.7% in our implementation), which means we can

significantly reduce the size of the database by completely

removing them. Additionally, few weights from remaining

features are significantly larger than zero (20.5% in our im-

plementation), which means they can be efficiently stored

in sparse arrays. Thus, even with 68 landmarks, all of our

weights fit into a 1.1GB file after 8-bit quantization.

We use k = 200 top retrieved exemplars for landmark

localization and for training weights. We empirically set

σs = 0.1 · sizer in Eq. (3), where sizer is the size of the

r-th exemplar face, defined as the average height and width

of the tightest bounding box that encloses all 68 ground truth

landmarks. Intuitively, this setting ensures that a feature’s in-

fluence will be effectively limited to landmarks on only the

most nearby face part(s) (e.g., a left eye feature will have

negligible influence on right eye landmark estimates).

We empirically set σg = 0.03 · sizer in the Gaussian Ψ
in Eq. (1). In practice, σg controls the degree to which the

voting maps are smoothed. σg = 0.03 · sizer effectively

smoothes together votes that are within a few pixels of one

another.

For face detection, we used our implementation of Shen

et al.’s face detector [20]. We used their exemplar database

to train their algorithm; most of their exemplars come from

the AFLW dataset [11]. Please see [20] for more details.

For landmark localization, all of our exemplar images come

exclusively from the Multi-PIE Face Database [9]; please see

Section 3.2 for details.

4. Results and Discussion

In this section we evaluate the accuracy of our approach

and compare with several recent works [1, 2, 22, 26, 27, 29].

We show that our approach produces more accurate land-

mark estimates on especially challenging faces.

4.1. Experimental Datasets

We have evaluated our method on two publicly available

datasets: AFW [29] and IBUG [18]. We chose these two

datasets because they each contain a large portion of faces

with challenging head pose and/or facial expression. In con-

trast, other popular datasets such as LFPW [2], LFW [10],

and Helen [13] contain predominantly frontal, and otherwise

less widely varying test cases, which are consequently well-

addressed by current, less robust methods. For example, the

average landmark localization accuracy in [2] was shown to

be slightly better than human labelers on LFPW.

For our quantitative results, we compared our landmark



Figure 3. Selected qualitative results on two challenging evaluation datasets: AFW [29] (top two rows) and IBUG [18] (bottow two rows).

Our method can handle a wide variety of very challenging conditions, including significant image noise and blur, occlusions, and extreme

expressions and head poses. Please see our supplementary material for additional results. Best viewed electronically in color.

estimates with the ground truth annotations provided as

part of the 300 Faces In-the-Wild Challenge (300-W) [18].

Specifically, 300-W provides 68 landmarks per face accord-

ing to the Multi-PIE arrangement [9] for 337 faces in AFW

and 135 faces in IBUG. Typical AFW and IBUG faces are

shown in Figure 3 with landmarks estimated by our algo-

rithm overlaid in green.

4.2. Comparisons with Recent Works
We present cumulative error distribution (CED) curves

in Figure 4 to quantitatively compare the accuracy of our

method with six other state-of-the-art methods. For fair com-

parison in Figure 4 (b) and (c), we evaluated only a subset

of landmarks (49 out of 68: the eye, nose, and mouth land-

marks, with inside mouth corners omitted) common to all

method shown (i.e., Xiong and De la Torre’s [22] publicly

available executable outputs only 49 landmarks). Unless oth-

erwise noted, we evaluated each algorithm using the authors’

original implementation.

Comparisons with Zhu and Ramanan [29] In their orig-

inal evaluation, Zhu and Ramanan assigned an infinite local-

ization error to the entire face if their algorithm incorrectly

estimated the landmark arrangement (i.e., if a frontal face

was incorrectly labeled as a profile face with only 39 visible

landmarks). In our evaluation, if an incorrect arrangement is

given by their algorithm, we simply ignore the missing land-

marks, and measure the mean error among the given land-

marks.

Zhu and Ramanan’s landmark localization algorithm is

tied to their detection algorithm, and so we do not provide it

with any kind of initialization. For each ground truth face an-

notation, we select the output face that has the largest bound-

ing box overlap (the area of intersection divided by the area

of union), and we ignore all false positives. We set their de-

tection threshold to −∞ to avoid missing faces. Zhu and

Ramanan provide three off-the-shelf models with their im-

plementation, all trained on Multi-PIE. Although it requires

the most computation time, we used their Independent-1050

model for our experiments since it generally performed best.

Comparisons with Yu et al. [26] Yu et al. rely on a sim-

plified version of Zhu and Ramanan’s algorithm for initial-

ization, and so we do not provide a separate initialization.

However, the authors’ implementation only returns landmark

estimates for the highest scoring face in each image, which

is a problem for test images with multiple faces. To obtain

results for all annotated faces, we isolated each face from

the rest of the image. Specifically, we cropped each anno-

tated face using a box centered on the true face location with

it’s height and width set to be approximately twice the face

height and width.

Comparisons with Belhumeur et al. [2] We used our own

implementation of Belhumeur et al.’s algorithm, which we

trained on our Multi-PIE exemplar dataset. We endeavored

to reproduce their algorithm as faithfully as possible, al-

though some subtle differences are inevitable. As suggested

in [2], we placed a mean face shape over each face detec-

tion to initialize the location of each landmark detector win-
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Figure 4. Three sets of cumulative error distribution (CED) curves. In all cases, the average localization error is normalized by the face

size, defined as the average height and width of the tightest bounding box that encloses all 68 ground truth landmarks [29]. (a) shows the

impact of different parts of our pipeline. For fair comparison with other works in (b) and (c), we evaluate on a subset of 49 landmarks

(eye, nose, and mouth contour points, minus the inner mouth corners) common to all methods above (i.e., Xiong and De la Torre output 49
landmarks). We see that our method performs significantly better than Zhu and Ramanan [29] and Yu et al. [26] despite the fact that these

methods are designed to handle faces with non-frontal pose. Our method performs significantly better than Belhumeur et al. [2] and Xiong

and De la Torre [22], although most of the errors in [22] are due to the initialization. When we initialize [22] using our landmark estimates,

the accuracy is better than either approach in isolation, which suggests that our method is complementary to methods like [22].

dow. Belhumeur et al. set the size of each landmark de-

tector window to approximately 33% of the height/width of

the tight face bounding box in their original work. Unfortu-

nately, we found that this size did not always cover the true

landmark locations in our experimental datasets, especially

for non-frontal faces. As a compromise, we initialized the

height and width of each detector window to the larger of:

(1) 33% of the size of the tight face bounding box, or (2)

large enough to cover the true landmark location plus 5% of

the face size. To evaluate [2] on more challenging datasets

(i.e., AFW and IBUG), we had to use a more robust face

detector, e.g. [20], for initialization. The Viola-Jones [21]

detector used in [2] works well for near-frontal faces typi-

cal in datasets like LFPW and LFW, but misses many faces

in AFW and IBUG (e.g., Viola-Jones missed 62 out of 135

faces in IBUG, whereas [20] missed only 4).

Comparisons with Xiong et al. [22] Because the training

code for [22] is not publicly available, we used their off-

the-shelf model. According to [22], their model is trained

on Multi-PIE and LFW. Therefore, comparing their model

to ours is reasonable. By default, Xiong and De la Torre’s

executable uses the Viola-Jones face detector for initializa-

tion. Because Viola-Jones misses so many faces in AFW and

IBUG, we instead initialized [22] using the same procedure

described above for Belhumeur et al.’s algorithm. We used

this initialization because it is more realistic than simply us-

ing the ground truth face bounding box.

It is possible that the additional faces detected by [20]

negatively impacted the performance of [22]. We observe

that most of the localization errors from [22] arise when the

initialization is far from the true landmark locations (e.g., on

faces with extreme head pose and/or expression), which sug-

gests that [22] is sensitive to initialization. In such cases,

[22] fails to converge to the correct solution. However, in

cases where the initialization is relatively close to the true

landmark locations, their algorithm performs slightly better

than ours. We demonstrate this in Figure 4 (b) and (c), where

we also show that the accuracy of their algorithm initialized

using our estimates (labeled “Ours + Xiong & De la Torre”

in each plot), is higher than either approach in isolation. In

this way our approach is complementary to [22].

Comparisons with Asthana et al. [1] Asthana et al.’s im-

plementation provides three modes for initialization: (1) the

localization results from [29], (2) MATLAB’s Viola-Jones

face detector, or (3) a face bounding box. For fair compari-

son, we elected to use (3) with each bounding box computed

by [20] (i.e., the same face detector used in our pipeline).

Comparisons with Zhou et al. [27] Zhou et al.’s imple-

mentation relies on eye center locations (e.g., provided by an

eye detector) to initialize the face shape. We note that, like

other AAM-based approaches, their algorithm is sensitive to

initialization. Therefore, we provided their algorithm with

ground truth eye centers. Rather than using a single AAM

model, Zhou et al. compute a separate AAM for each test

image at runtime. For training, we provided their algorithm

with our Multi-PIE exemplar dataset.

4.3. Runtime

On a 900 × 600-pixel image with one face, the overall

runtime of our MATLAB implementation of Shen et al.’s

face detector [20] is 42.8 seconds on an Intel Xeon E5-

2670 workstation; our landmark localization algorithm, also



implemented in MATLAB, requires an additional 25.5 sec-

onds. This is similar to the runtime of [29] (using their

Independent-1050 model) and our MATLAB implementa-

tion of [2], but is much slower than several recent meth-

ods (e.g., [1, 22, 26]) that are designed to run in real time.

However, we note that many strategies exist to speed up

our implementation. For example, although the stages of

our pipeline must run sequentially, each stage represents an

embarrassingly parallel workload (in the parlance of paral-

lel computing), and the size of each landmark voting map,

which currently span the entire face, could be reduced sig-

nificantly by emplying a multi-resolution image pyramid.

5. Conclusions and Future Work

In this paper, we have proposed a novel landmark local-

ization pipeline that combines a feature voting approach to

landmark detection with nonparametric shape regularization.

Figure 4 (a) demonstrates that shape regularization notice-

ably boosts our accuracy. Our feature weights are key to the

success of our method. We see in Figure 4 (a) that perfor-

mance drops dramatically without these weights. We also

see in Figure 4 (a) that our voting-based approach is sensitive

to rotation misalignment between the test face and the exem-

plar faces, thus necessitating a rotation search. We showed

that, despite using exemplars from Multi-PIE, which include

limited pitch head rotation, and a limited variety of facial ex-

pressions, we can effectively locate landmarks in very chal-

lenging images, as shown qualitatively in Figure 3 and quan-

titatively in Figure 4.

In the future, we will investigate how to combine multiple

datasets together as exemplars. To achieve this in practice we

must address the problem that each dataset has its own defi-

nition of landmarks. In a way, each dataset serves as partially

labeled training data relative to one another. An intereting re-

search problem to pursue is how to exploit partially labeled

datasets for exemplar based landmark localization.
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