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Abstract: Image denoising is a very important step in cryo-transmission electron 

microscopy (cryo-TEM) and the energy filtering TEM images before the 3D tomography 

reconstruction, as it addresses the problem of high noise in these images, that leads to a 

loss of the contained information. High noise levels contribute in particular to difficulties 

in the alignment required for 3D tomography reconstruction. This paper investigates the 

denoising of TEM images that are acquired with a very low exposure time, with the 

primary objectives of enhancing the quality of these low-exposure time TEM images and 

improving the alignment process. We propose denoising structures to combine multiple 
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noisy copies of the TEM images. The structures are based on Bayesian estimation in the 

transform domains instead of the spatial domain to build a novel feature preserving image 

denoising structures; namely: wavelet domain, the contourlet transform domain and the 

contourlet transform with sharp frequency localization. Numerical image denoising 

experiments demonstrate the performance of the Bayesian approach in the contourlet 

transform domain in terms of improving the signal to noise ratio (SNR) and recovering fine 

details that may be hidden in the data. The SNR and the visual quality of the denoised 

images are considerably enhanced using these denoising structures that combine multiple 

noisy copies. The proposed methods also enable a reduction in the exposure time. 

Keywords: cryo-transmission electron microscopy; energy filtered transmission electron 

microscopy (EFTEM); contourlet; Bayesian denoiser; alpha-stable distributions 

 

1. Introduction 

Transmission electron microscopy (TEM) is used in the biological sciences to image biological 

samples and the resulting images can be used to visualize the molecular structure of proteins and large 

molecules. Cryo-electron microscopy involves viewing unaltered macromolecular assemblies by 

vitrifying them, placing them on a grid and obtaining images from the electrons transmitted through 

the specimen [1]. However, a drawback of using the TEM technique is that many biological samples are 

sensitive to radiation and the electron beam may damage the specimen. To prevent this it is necessary 

to image the specimen at very low electron doses; however, this can result in an extremely low  

signal-to-noise ratio (SNR), and hence very noisy TEM images. We note that TEM images are 

generally corrupted by both Poisson and Gaussian noise. In addition to the Gaussian energy fluctuation 

of electron emitted from source [2,3] as shown in Figure 1 [1], several environmental factors influence 

image acquisition: magnetic field variation, mechanical and acoustic vibrations, thermal instability of 

room and electromagnetic lenses. 

 

Figure 1. Basic principle of Transmission Electron Microscopy (TEM). 

Since big fluctuations are remediated by different physical devices (real-time magnetic field 

compensator, acoustic isolator, air conditioning and water-cooling systems), the noise associated with 

the remaining effects are centered around an average value, are additive and follow a Gaussian 
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distribution. In addition, noise associated with current detectors (slow-scan CCD camera) is 

approximately Poisson and readout noise is Gaussian distributed [1]. Thus, it is necessary to reduce the 

noise in its different forms. High noise levels also hinder the alignment process during the 3D 

reconstruction of TEM images. Thus, the main objective of the denoising methods proposed in the 

literature is to reduce the noise as much as possible to achieve a good 3D image quality. Some 

denoising methods, such as Gaussian filtering techniques, succeed in eliminating noise, but decrease 

the image quality by blurring the edges. In contrast, methods such as bilateral filtering, that are based 

on both spatial and intensity distances, are capable of preserving the image edges. The effectiveness of 

a method refers to distinguish information and noise, which is an important contributor to the quality 

of an image after denoising. The transform domains such as the wavelet domain allow such distinction, 

thanks to the properties of the wavelet transform. In the wavelet domain, Donoho and Johnston 

proposed the famous wavelet thresholding methods, which are widely applied in signal denoising [4,5]; 

specifically, there are soft and hard thresholding methods. These methods are based on the selection of 

a thresholding value, which is usually calculated from the detailed coefficients to maintain the 

approximation values. The threshold is then applied to separate the significant coefficients from the 

noise coefficients. However, wavelets, due to the crude directional representation (primarily vertical, 

primarily horizontal and primarily diagonal), although good at representing point discontinuities they 

are not good at representing discontinuities along edge. Besides, wavelet and related classical 

multiresolution ideas exploit a limited dictionary made up of roughly isotropic elements occurring at 

all scales and locations. These dictionaries do not exhibit highly anisotropic elements. These two 

limitations of the wavelet transform, i.e., (1) limited directional representation, and (2) isotropic 

dictionary of bases have inspired researchers to propose new transforms that improve directional 

representation and anisotropicity; such as contourlets [6]. One of the advantages of contourlet 

transforms compared to wavelet transforms is the ability to capture the smoothness of the contour of 

images with different elongated shapes and in variety of directions [6]. Therefore, the contourlet 

transform was proposed initially as a directional multiresolution transform in the discrete domain. 

There are also nonparametric methods used in image denoising, such as nonparametric Bayesian 

estimators in the wavelet domain [7,8]. In these methods, a prior statistical model based on the alpha-

stable densities is used to exploit the sparseness of the wavelet detail coefficients. 

This paper investigates the denoising of TEM catalase images that are acquired with a very low 

exposure time and corrupted by additive Gaussian noise. In our experimental TEM catalase images, 

the total noise is assumed to be Gaussian due to the addition of the contribution inelastic  

multiple-scattering [2,3]. Catalase, as we can see from the original images, has a rectangular shape, so 

it presents edges. Therefore, contourlets are more appropriate to process our TEM images. We propose 

new denoising algorithms that use the Bayesian denoiser proposed by Boubchir [7] in the contourlet 

transform domain and the contourlet with sharp frequency localization, so we take the advantages 

offered by both contourlet transform and Bayesian estimation to build a novel edge-preserving 

denoising structure. We study two different cases: (i) denoising TEM catalase images for one set of 

observations and (ii) denoising TEM catalase images for multiple noisy copies. The proposed 

algorithms provide improved denoised images in term the SNR, especially when combined with the 

averaging operator. This paper is organized as follows: Section 2 describes our proposed denoising 

methods for specific multiple noisy TEM images, namely catalase-crystals with different exposure 
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times (e.g., different values of SNR). The structures that combine the Bayesian estimation in the 

transform domain and the averaging operator are also detailed. In Section 3, we define the test image 

dataset and we define the criteria considered and computed in this study. We also compare the 

performance of the proposed denoising methods with previously published denoising methods on 

different real data sets. Numerical experiments are presented and discussed in Section 4 to confirm the 

superiority of the new proposed structures over the original method. Finally, we discuss concluding 

remarks in Section 5. 

2. Proposed Denoising Methods for Catalase TEM Images 

2.1. Bayesian Denoising Algorithm in the Wavelet Domain, for Multiple Noisy Copies 

Let 	 = 	 { 	} denote the ×  matrix of the original image to be recovered. The signal  is 

transmitted over a Gaussian additive noise channel  times, and there are  copies of noisy TEM 

observation at the receiver: ( ) = + ( ), = 1,… ,  (1)

For the k-th copy, { ( ) 	} are iid Gaussian (0, ( )( )), where ( )( ) is the noise variance of the 

k-th copy. The noise samples between different copies are assumed independent. The image is 

recovered in the orthogonal wavelet transform domain.  

Let the discrete wavelet transform (DWT) of the noisy observation ( ) = + ( ) be denoted by: 

The wavelet coefficients (or more precisely the coefficients of the DWT) are often grouped into 

subbands [9] of different scales and orientations, with one lowest frequency subband, and the rest are 
called detail subbands. Namely, the subbands ,  and , 	 = 	 , . . . , − 1 correspond to the 

detail coefficients in the diagonal, horizontal and vertical orientations, and the subband  is the 

approximation or the smooth component.  is the coarsest scale of the decomposition. The main goal, 

in a denoising problem, is to estimate  of  from  such that the expectation of the mean-squared-error 

(MSE) is minimized. In fact, this MSE measure which is the simple Euclidean distance between the 

original and denoised estimated image is also commonly proposed in the denoising community to 

quantitatively measure the achieved performance improvement of a denoising technique leading to the 

well-known SNR expressed in decibels. The optimal regularization scheme, in the minimum MSE 

sense, is closely related to the model of statistical prior distribution of the wavelet coefficients. Clearly, 

imprecise modeling of the statistical prior directly leads to deterioration in the resulting performance. It 

has been shown that the statistical behavior of wavelet coefficients is successfully modeled by families 

of heavy-tailed distributions such as the α-stable. Boubchir and Fadili [7] proposed a prior statistical 

model based on the α-stable densities. They used the finite mixture of Gaussians as a fast and 

numerically stable analytical approximation for α-stable densities in order to obtain closed-form 

expressions for their Bayesian denoiser. Our first contribution extends their results to the more general 

situation, since the Bayesian denoiser has been already successfully applied to one set of observations. 

Furthermore, the Bayes rules can be constructed to mimic the thresholding rules: to slightly shrink the 

( ) 	= 	 ( ) + ( ) = ( ) + ζ
( )

 (2)
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large coefficients and heavily shrink the small coefficients. Bayes shrinkage rules result from realistic 

statistical models on wavelet coefficients and such models allow for incorporation of prior information 

about the true data [10]. 

More precisely, we design a structure of fusion in order to obtain the most noise-free copy possible. 

In this structure, the Bayesian denoiser with the scale mixture approximation to the α-stable prior is 

first applied to each noisy copy independently. Thus, we get a partial denoised image. The final 

recovered image is then obtained by computing the average of all denoised copies. This proposed 

structure in the wavelet domain can be viewed as a parallel distributed detection fusion (DDF) radar 

system with multiple sensors and a center of fusion. Each sensor, based on the noisy observation, 

makes an individual decision about the presence or absence of the target. The global decision is made, 

based on the received individual decisions according to “AND” and “OR” fusion rules. This is done 

for each wavelet coefficient separately. We use the approximate α-stable model [7] as a prior of the 

wavelet coefficients. We note, that the mean of an α-stable random variable (RV) remains an α-stable 

RV (see [11] for more details). Then we apply the nonparametric Bayesian denoiser to estimate the 

denoised wavelet coefficients. The recovered image is obtained by applying the inverse discrete 

wavelet transform (IDWT) of the estimated coefficients. In the following section, we explain how to 

extend the Bayesian denoiser to multiple corrupted copies by using a fusion structure. 

2.1.1. Bayesian Denoising Algorithm for One Set of Observations 

As a first step in our approaches, we consider one corrupted copy of the image ( = 1 in (1)). In 

our work, the applied Bayesian denoiser in the wavelet domain is based on adapting a prior statistical 

model for ( ) in Equation (2), and then imposes it on the wavelet coefficients to describe their 

distribution [7,8]. It follows from Equation (2), that for = 1: 

where 	  is the approximation coefficient of the observed noisy image at location ( , )	 and  
are the details coefficients of the observed noisy image in the wavelet domain, mna  is the 

approximation coefficient of the true image  at location ( , ), oj

mns  are the details coefficients of the 

original image  in the wavelet domain, and  and are the scale and the orientation respectively. 

Different choices of loss function lead to different Bayesian rules and hence to different nonlinear 

wavelet shrinkage and wavelet thresholding rules. For example, it is well known that the L1-loss 

function corresponds to the maximum a posteriori (MAP) estimator [7]. However, except for some 

special cases of α-stable distributions (namely = 2), it is not easy to derive a general analytical form 

of the corresponding Bayesian shrinkage rule, even with the scale mixture approximation. 

Alternatively, the L2-based Bayes rules are used which correspond to posterior conditional means 

(PCM) estimates [7,8]. The general expression (using the approximate prior probability density 

function PDF) of the PCM estimates of the wavelet coefficients ( )  or s (conditionally on the 

hyperparameters) is [7,8]: 

= += + = ,… , − 1 , = 0,… , 2 − 1 (3)
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where  is the hyper-parameters set = { ( ), }, and Φ( ; ) is the Gaussian noise PDF with 

variance = .  
To implement the formula in Equation (4), one has to estimate heuristically [7] 	 = { ( ), }, and θ =  is estimated from the HH orientation at the finer scale using the popular robust estimator [5]: = ( ) × 1.4826. 

where MAD is the median absolute deviation. We can describe the Bayesian denoising process by the 

following steps: 

Step 1. 

Calculate the DWT of the noisy data as in (2) for one corrupted copy of the image. 

Step 2. 

Using (4), estimate the denoised wavelet coefficients 	 ; 

Step 3. 

Reconstruct the denoised image  by computing the IDWT from the estimated wavelet coefficients. 

The complete process for the Bayesian denoiser in wavelet domain is shown in Figure 2: 

 

Figure 2. Flowchart of the Bayesian denoiser. 

2.1.2. Combining Bayesian Estimator and Averaging 

The proposed structure of multiple noisy copies, based on the Bayesian denoiser in the wavelet 

domain, consists of four major modules: (i) a subband representation function that utilizes the wavelet 

transform, (ii) application of the Bayesian denoising algorithm, (iii) computation of the inverse wavelet 

transform from the estimated wavelet coefficients and (iv) application of the traditional averaging 

operation to obtain the final recovered image as shown in Figure 3. This structure can be viewed as a 

parallel DDF radar system with multiple sensors and a center of fusion. Each sensor, based on the 

noisy observation, makes an individual decision about the presence or absence of the target. The global 

decision is made based on the received individual decisions according to “AND” and “OR” fusion 

rules. For the proposed structure in this paper, our fusion rule used to obtain the final noise free image 

is the averaging operation. 

̂ ( / ) = ∑ ( ) Φ( ; + )∑ ( )Φ( ; + )  (4)
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Figure 3. Denoising of multiple noisy copies based on the Bayesian estimator and averaging. 

2.2. Bayesian Denoising Algorithm in the Contourlet Domain 

The contourlet transform (CT), as a directional multiresolution image representation is an extension 

of the wavelet transform that is used to handle the inability of the DWT to accurately capture the 

image edges [6]. Its efficient filter bank construction, as well as low redundancy makes it an attractive 

computational framework for various image processing applications [9]. In this paper, we propose a 

new denoising method that merges of the CT and the nonparametric Bayesian estimation as shown in 

Figure 4. 

 

Figure 4. Structure of the Bayesian estimator in the contourlet transforms 
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The Laplacian pyramid at each level generates a low pass output (LL) and a band pass output  

( , , and ). The band pass output is then passed into Directional Filter Bank (DFB), which 

results in contourlet coefficients [12]. The low pass output is again passed through the Laplacian 

pyramid to obtain more coefficients and this is done until the fine details of the image are obtained. 

Figure 5 shows the decomposition by CT of a noisy TEM image (catalase-crystal). We notice that only 

contourlet that match both the location and direction of image contours produce significant 

coefficients. Thus, the contourlet transform effectively exploits the fact that the image edges are 

localized in both location and direction [12]. 

 

Figure 5. Illustration of contourlet transform. 

The contourlet transform is a linear transformation, so the contourlet coefficients of the noisy 

observations are also divided into two parts: the coefficients of the original image and the coefficients 

of the noise. Hence, the contourlet transform of the noisy observation in (1) is denoted by: 

For one set of observations, ( 	 = 1 according to (2)), the output after the Laplacian pyramid (LP) 

stage is  bandpass noisy images, = 1, 2, … ,  in the fine-to-coarse order and a lowpass noisy image. 

The specific procedure for our second proposed denoising method based on the previously 

developed Bayesian denoiser in the CT domain, is as follows: 

• Perform multiscale decomposition of the noisy image in the CT domain, obtain the subbands 

coefficients of the noisy image in different directions and levels; 

• Estimate the denoised coefficients of bandpass subbands based on the Bayesian denoiser using 

Equation (3); 

• After the denoising procedure, the contourlet transform is calculated from the processed 

subband coefficients, and the recovered image is obtained. 

The complete process for the Bayesian denoiser in the CT domain is shown in Figure 3. 
  

( ) 	= 	 ( ) + ( ) = ( ) + ζ  (5)
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2.3. Bayesian Denoising Algorithm in the Contourlet Transform with Sharp Frequency Localization 

To maximize the performance of our proposed algorithm by increasing the quality of the denoised 

TEM images, we propose to use the contourlet transform with sharp frequency localization 

(contourlet-SD) developed by Lu et al. [12]. Compared with the prior version CT, contourlet-SD 

greatly alleviates the non-localization problem of the contourlet and improves the regularity in the 

spatial domain. In this transform, Lu and Do employ a new pyramid structure for multiscale 

decomposition instead of the Laplacian pyramid used in the contourlet transform. The new algorithm is 

conceptually similar to the one used in the steerable pyramid, and it can employ different sets of 

lowpass and highpass filters for the first level and all other levels [12]. Figure 6 illustrates the principle 

the contourlet-SD. 

 

Figure 6. Block diagram of the contourlet transform with sharp frequency localization. 

Only the analysis part is shown, as the synthesis part is exactly symmetric. ( )	( 	 = 0, 1), ( )	( 	 = 0, 1)  present lowpass filter and highpass filter respectively with 	 = ( 1, 2). 
The lowpass filter 0( ) in the first level is downsampled by  along each dimension. In our 

experiments, we choose = 1, so that in this case, the lowpass filter in the first level is not down 

sampled. The value of  is detailed in [12]. 

The specific procedure for our proposed denoising method, which is based on the previously 

developed Bayesian denoiser in the contouret-SD domain is shown in Figure 7. For the multicopy 

structure, we do the averaging of the outputimages for each exposure time as shown in Figure 3. 

 

Figure 7. Illustration of the denoising method based on the contourlet transform with sharp 

frequency localization. 
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3. Test Images Dataset (Catalase) 

Image filtering on electron microscopy data, which is often used to increase the contrast and the 

SNR of the EM images, can also significantly reduce the resolution. To evaluate these parameters 

(contrast, SNR, visual image quality and resolution), we used 2D catalase crystals, a well-known 

crystalline structure from which resolution measurements can be precisely computed using dedicated 

software (2 ), which is a negatively stained catalase crystals mounted on carbon-coated grids were 

ordered from EMS (reference 80014, EMS, Hatfield, PA, USA). Images were acquired on a JEOL 

2200FS field emission gun 200 kV electron microscope (JEOL Ltd®, Tokyo, Japan) at nominal 

magnification of 30,000× (pixel size: 0.33 nm/px) using a GatanUltraScan 1000 (Pleasanton, CA, 

USA). The data acquisition occurred at different exposure times (0.05 s (20 copies), 0.1 s (10 copies), 

0.2 s (five copies), 0.5 s (two copies), 1 s (one copy)), and for two zones: zone 1 and zone 2. The order 

of acquisitions, intentionally determined by the biologists, was taken in account as it has an effect on 

the images. These TEM images contain two distinct regions: noise region and object plus noise region. 

Transitional regions are not taken into account. We note that the original TEM images are of size 2048 × 2048. In our experiments, we have cropped these images to 512 × 512. 

3.1. Denoising Quality, in the Context of Computational Performance 

To accurately assess our results we calculated the	SNR. However, in contrast with synthetic images 

where noise is added to a noiseless image (original), in the case of TEM images, the original image is 

not available. Thus it was necessary to define the zone where the noise is situated and the zone where 

our object is located. To accomplish this, we created a mask for each image using the software ImageJ 

1.48 v and multiplied it by its corresponding image as shown in Figure 8. The average intensity value 

of the noise is calculated from the zone of noise whereas the average intensity value of the signal is 

calculated from the zone of our object. 

 
(a) (b) 

Figure 8. (a) The catalase image 2048 × 2048, zone 1, and exposure time 0.1 s. (b) Mask 

of the catalase image 2048 × 2048, zone 1, and exposure time 0.1 s. 

Thus, the SNR is calculated using the following formula: SNR 	= 10 log ( − )
 (6)



Entropy 2015, 17 3471 

 

 

where 	is the average intensity value of the signal,  is the average intensity value of the noise and 	  is the standard deviation of the noise. 

The mask has three values (0, 1 and 2). The noise area occurs where the mask value is equal to 0. 

Areas where the mask value is equal to 1; are between the noise and the sample; and these areas of the 

image are not taken into account in the computation. A mask value is equal to 2; corresponds to areas 

in the image where there are both the sample and noise. This allows us to perform the calculation only 

at precise locations on the images. In our experiment; we zoom in close to the catalase image  

(512 × 512); which permits us to capture the difference between the noisy image and the denoised 

image; especially the contours of our catalase as shown in Figure 9. 

 

Figure 9. Enlargement of the catalase image 512 × 512, zone 1, and exposure time 0.05 s. 

4. Experimental Results and Discussion 

In this section we present results of the one-copy structure in which each image is denoised 

separately, and then we show the results that were obtained using the multiple copy structure. In this 

latter structure, we calculated the average of the denoised images and then computed SNRout from the 

averaged image. 

In our experiments on the Bayesian denoiser in the wavelet domain (based on our previous  

works [13]),we chose “sym8” as the mother wavelet and set the level decomposition equal to three to 

achieve the best quality in this case. For the Bayesian denoiser in the contourlet transform and the 

contourlet-SD, we selected the number of levels for the DFB at each pyramidal level equal to (2, 3, 4, 5) 

pkva filters and we did not downsample the low-pass subband at the first level of decomposition, based 

on [12]. 

4.1. For One Copy 

We compare the denoising performance of the proposed Bayesian estimator in the contourlet, 

contourlet-SD domain and the one proposed by Boubchir [7] in the wavelet domain. First, we 

calculated the SNRin for all the images in zone1 before the denoising and the SNRout after we have 

denoised them. We have also calculated the average of SNRin and SNRout from each image series at 

0.05 s, 0.1 s, 0.2 s, 0.5 s and 1 s. The values of the SNR’s are reported in Table 1. 
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Table 1. SNRin and SNRout of the catalase 512 × 512 by applying the Bayesian estimator 

in the discrete wavelet transform (DWT), contourlet (CT) and the contourlet-SD (CTSD), 

respectively. 

Images SNRin 

SNRout 

Bayesian 

using DWT 

Bayesian 

using CT 

Bayesian 

using CTSD 

0.05 s_1 9.1166 13.9593 17.8131 19.6782 

0.05 s_2 8.9658 13.6485 16.7772 19.2051 

0.05 s_3 9.1184 14.0995 16.4769 19.0817 

0.05 s_4 9.0222 13.8463 17.4416 19.1799 

0.05 s_5 9.1427 14.2458 16.5566 18.6347 

0.05 s_6 9.0856 13.9043 17.5439 19.9940 

0.05 s_7 8.9427 13.7417 17.5398 20.3357 

0.05 s_8 8.7014 13.7578 17.4200 18.1818 

0.05 s_9 8.8151 13.8131 16.2238 18.5918 

0.05 s_10 9.2293 14.5171 16.6850 19.6981 

0.05 s_11 8.9786 14.0618 17.8385 19.9707 

0.05 s_12 8.8766 13.6726 18.1250 19.2492 

0.05 s_13 8.7797 13.7597 16.4788 18.4656 

0.05 s_14 9.2302 13.9938 18.1627 19.0698 

0.05 s_15 8.7073 13.9168 17.2837 18.4448 

0.05 s_16 8.9424 13.9458 16.9121 21.3077 

0.05 s_17 8.6589 13.4699 17.4719 18.5097 

0.05 s_18 9.2351 14.3087 16.4817 19.8011 

0.05 s_19 8.7326 13.4320 16.5471 18.0423 

0.05 s_20 8.9453 13.9619 15.8638 19.5211 

Average_0.05 s 8.961325 13.90282 17.08216 19.24815 

0.1 s_1 15.7499 20.0007 22.3827 23.7175 

0.1 s_2 15.5526 19.9711 21.8719 23.9655 

0.1 s_3 15.9268 20.5442 22.3254 24.4462 

0.1 s_4 15.6543 19.6158 24.3029 24.7552 

0.1 s_5 15.4476 19.4643 22.4469 23.7101 

0.1 s_6 16.2155 20.4828 24.2061 24.9250 

0.1 s_7 14.3256 18.3053 20.7924 22.0617 

0.1 s_8 14.0977 18.2095 20.6396 21.8724 

0.1 s_9 13.0810 16.6382 18.3037 20.4235 

0.1 s_10 15.2419 19.3726 22.8133 24.7107 

Average_0.1 s 15.12929 19.26045 22.00849 23.45878 

0.2 s_1 22.9465 26.8124 29.2039 30.6730 

0.2 s_2 22.7931 26.6525 28.9076 30.4631 

0.2 s_3 22.6746 26.3368 29.0428 30.7096 

0.2 s_4 22.8597 26.7064 29.4987 30.5284 

0.2 s_5 22.9655 26.9566 29.6484 30.5413 

Average_0.2 s 22.84788 26.69294 29.26028 30.58308 

0.5 s_1 28.9003 31.4976 33.1765 33.7052 

0.5 s_2 28.9398 31.6083 33.5279 33.9979 

Average_0.5 s 28.92005 31.55295 33.3522 33.85155 

1 s 33.1927 35.2226 36.0073 36.6940 
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Figure 10 shows the catalase image before and after denoising using the proposed methods. These 

images enable us to evaluate the catalase quality after they are denoised. 

 
(a) (e) 

 
(b) (f) 

 
(c) (g) 

 
(d) (h) 

Figure 10. (a) The original image 0.1 s_1. (b) The Bayesian estimator in the DWT. (c) The 

Bayesian estimator in the contourlet transform. (d) The Bayesian estimator in the contourlet-SD. 

(e) The zoom of the original image 0.1 s_1. (f) The zoom of the image 0.1 s_1 denoised by 

using the Bayesian estimator in the DWT. (g) The zoom of the image 0.1 s_1 denoised by 

using the Bayesian estimator in the contourlet transform. (h) The zoom of the image 0.1 s_1 

denoised by using the Bayesian estimator in the contourlet-SD. 
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From Table 1, we can see that we have significantly improved SNRout for all tested images in the 

contourlet transform compared with the one proposed by Boubchir [7] in the wavelet transform. Figure 9 

shows the comparative results between the Bayesian denoiser-based method and the proposed 

algorithm using the contourlet transform. From these visual quality results, we infer that the new 

proposed algorithm using the contourlet transform outperforms the Bayesian denoiser-based method in 

the wavelet transform domain. However, unfortunately we did not neglect some of the fuzzy artifacts 

which appeared in the denoised images. These artifacts (mentioned in [6]) contribute to one of the 

major drawbacks in adopting this method. For this reason, we have proposed the contourlet-SD instead 

of the contourlet, in order to ensure noise reduction as well as alleviate the artifacts. As expected, 

Table 1 shows that SNRout-after we denoised the catalase using the Bayesian denoiser in the 

contourlet-SD is higher than the one applied in the wavelet transform domain and the one applied in 

the contourlet transform domain. Also, we can see from Figure 9d that the contourlet-SD has the 

capacity to result in a better images quality. Our methods clearly improve the performance of the 

Bayesian denoiser in the wavelet transform, but this is not enough in terms of the obtained quality; 

thus, we proposed the structure of multiple noisy copies. 

4.2. For Multiple Noisy Copies 

For the multiple noisy copies, we compared the denoising performance of the proposed methods by 

calculating SNRout for different number of copies. SNRin is the averaged SNRin of each series in 

Table 1. Table 2 shows the obtained results. 

Table 2. SNRout results of the proposed denoising methods using the multiple noisy 

copies structure. 

Images 
The average 

of SNRin 

Number 

of copies 

SNRout 

Bayesian 

using DWT 

Bayesian 

using CT 

Bayesian 

using CTSD 

0.05 s 8.961325 

3 22.4353 25.6364 27.3479 

5 26.4296 29.3206 30.8367 

7 28.7677 31.5373 32.9777 

9 30.4237 33.0430 34.2913 

11 31.7434 34.1565 35.3560 

15 33.3985 35.5766 36.5513 

17 33.8908 35.9850 36.9173 

20 34.7928 36.7953 37.6634 

0.1 s 15.12929 

3 28.0105 29.7354 30.9450 

5 31.5391 33.1076 33.9182 

7 33.8048 35.1647 35.8558 

10 34.7072 35.5889 36.1114 

0.2 s 22.84788 

2 31.1815 33.2577 34.5045 

3 33.7801 35.6552 38.1932 

5 36.7699 38.5647 39.1394 

0.5 s 28.92005 2 34.4354 35.8070 36.1945 
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Figure 11a,b show the 0.05 s_1 catalase image before and after denoising using seven and twenty 

copies respectively. Knowing that, these images are very noisy as they use a very low exposure time 

during their acquisition. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

(g) 

Figure 11. (a) Original image 0.05 s_1 before denoising. (b) The averaged catalase (seven copies) 

using the Bayesian estimator in the DWT. (c) The averaged catalase (seven copies) using the 

Bayesian estimator in the CT. (d) The averaged catalase (seven copies) using the Bayesian 

estimator in the contourlet-SD. (e) The averaged catalase (20 copies) using The Bayesian 

estimator in the DWT. (f) The averaged catalase (20 copies) using the Bayesian estimator in the 

CT. (g) The averaged catalase (20 copies) using the Bayesian estimator in the contourlet-SD. 
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From Table 2, it can be seen that our methods achieve the best results-in term of SNR values and 

visual quality in all situations. We achieve these results in both contourlet and contourlet-SD 

implementations. These enhancements can be easily seen especially for low exposure time images 

(0.05 s). By combining twenty 0.05-second copies, the achieved SNRout is a higher than the SNRout 

of the catalase image at 1 s. Figure 11 shows the catalase 0.05 s before and after denoising using the 

multiple noisy copies structure. The proposed methods gave better visual quality with the noise mostly 

removed in the smooth regions and also along the edges. We attribute the superior performance of our 

algorithm to the directional multiresolution image representation of the contourlet, as it can efficiently 

capture and represent singularities along smooth object boundaries in natural images. Basing our 

proposed denoising algorithms on the contourlet transform, the estimation of the processed coefficients 

is not only done in a limited number of directions as in the DWT representation, but in multiple 

resolutions and multiple directions. These interesting results are exactly what we have been looking 

for. The algorithms solve the problem of the low SNR resulting from the very low electron doses used 

during the acquisition of the biological specimen in order to avoid damages to the specimen. In Figure 12, 

we compare the multi-copies structure results after denoising the catalase 0.05 s (very low exposure 

time) and the catalase 1 s (high exposure time). We clearly see that the catalase at 0.05 s after 

denoising outperforms the catalase at 1 s not only in term of the value of the SNR but also in term of 

the visual quality. 

(a) (b) 

(c) (d) 

Figure 12. (a) Original image 0.05 s_1 before denoising. (b) The averaged catalase (20 copies) 

using the Bayesian estimator in the contourlet-SD. (c) Original image 1 s before denoising.  

(d) The denoised image 1 s using the Bayesian denoiser in the contourlet-SD transforms. 

5. Concluding Remarks 

This paper investigates methods for denoising TEM images that are acquired with a very low 

exposure time. We proposed to merge the Bayesian estimator in the contourlet which offers 
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directionality and anisotropy to image representation that are not supported by the wavelet  

transform [14]. We also proposed to combine the Bayesain estimator and the contourlet transform with 

much better localization in the frequency domain and regularity in the spatial domain [12]. We studied 

the proposed denoisers under two main cases: one copy and multiple copy noisy images. For the one 

copy structure we denoised each image separately then calculated its SNRout. For the multiple copy 

structure we calculated the average of the denoised images (pictured with the same exposure time) then 

computed its SNRout. Experimental results on real TEM data show that the proposed methods 

succeeded in improving the Bayesian estimator by giving higher SNR and better quality which lead us 

to suggest the acquisition of multi-copies of the biological specimen at a very low exposure time 

instead of a one copy in a high exposure time. Then, we apply our multi-copy denoising structures 

using the Bayesian denoiser in the contourlet domain and the contourlet-SD. This gives better results 

and avoids the problem of biological sample sensitivity. It also improves the accuracy of the alignment 

step during 3D tomographic reconstruction. 
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