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Abstract

While the dynamic theory of production provides little insight towards identifying a specific
functional form for the firm’s technology, dynamic production analysis has been explored
traditionally in a parametric framework. A nonparametric dynamic dual cost approach to
production analysis is developed in this article. Recovering technological information from
intertemporal cost minimizing behavior is possible without imposing a parametric functional
form on the firm’s technology. Nonparametric tests to analyze the structure of a dynamic
technology are presented from a dynamic cost minimizing perspective. The empirical im-
plementation of these tests is illustrated for a balanced panel data set of Pennsylvania dairy
operators during the time period 1986–1992.
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1. Introduction

While the dynamic theory of production provides little insight towards identifying a specific
functional form for the firm’s technology, dynamic production analysis has been explored
traditionally in a parametric framework. The parametric approach analyzes the production
structure by explicitly or implicitly specifying a functional form for the technology of the
firm. Consequently, some production structure characteristics are imposed a priori on the
data rather than formulated as empirical hypotheses.

The evolution towards flexible functional forms for the production, cost or profit functions
reflects the analyst’s perceived ignorance of the production process and the need to impose
as few restrictions as possible on the data. Characterization of the production structure may
be different across functional forms and, consequently, policy implications derived from
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empirical studies on the production structure can vary. The vulnerability of the empirical
results to the ad hoc specification of the technology motivates investigation into a free-
functional form methodology.

Considerable effort has been devoted to the theoretical development of the nonparametric
approach to the static theory of production leading to a proliferation of empirical work using
this approach. While Farrell (1957) is the forerunner of the nonparametric revealed pref-
erence approach to production analysis, Afriat (1972) and Hanoch and Rothschild (1972)
lay the foundation for the more complete primal/dual nonparametric characterizations of
production behavior by developing a set of inequalities that must be satisfied by observed
prices, input decisions and output realizations that would be generated by optimizing (cost
minimizing and profit maximizing) behavior. Computationally convenient tests developed
by Diewert and Parkan (1983) and Varian (1984) broadened the power of the revealed
preference approach to production analysis.

The static models of production are based on the firm’s ability to adjust instantaneously
and ignore the intertemporal linkage of production decisions. Sluggish adjustment in some
factors of production is present in many industries. The weakness underlying the static
theory of production in explaining how some inputs are gradually adjusted has led to the
development of the dynamic models of production where the impact of current production
decisions constrain or enhance future production possibilities.

The adjustment-cost model of the firm provides a consistent dynamic theoretical frame-
work to analyze the firm’s behavior and the underlying production technology. The
adjustment-cost approach is developed initially by Eisner and Strotz (1963) and further
elaborated, among others, by Lucas (1967), and Treadway (1969, 1970). Important theo-
retical contributions to the deterministic analysis of the dynamics of economic adjustment
include the presentation of the dynamic dual approach (McLaren and Cooper, 1980), the dis-
cussion of the aggregation of quasi-fixed factors (Epstein, 1983; Blackorby and Schworm,
1983) and the aggregation of technologies across firms to model an aggregate technology
(Blackorby and Schworm, 1982).

Two observed directions in the production literature contribute to this research. First,
the theoretical and empirical relevance of the dynamic models of production provide a
more complete description of decision making. However, the empirical implementation
of dynamic models of production decision making exploit parametric methods, almost
exclusively. Second, the free-functional form feature of nonparametric methods and the
application of these methods in the context of the static theory of production provide a
useful starting point for the dynamic generalization of production analysis. These directions
motivate the construction of a unified nonparametric approach to the dynamic theory of
production from a cost perspective.

A nonparametric dynamic dual cost framework to production analysis is developed based
on a generalization of the nonparametric static dual cost approach proposed by Varian
(1984). Recovering technological information from intertemporal cost minimizing behavior
is possible without imposing implicitly a parametric functional form on the firm’s production
technology. Nonparametric tests to check for consistency of a data series with dynamic cost
minimizing behavior and to analyze the structure of a dynamic technology are developed.
The empirical implementation of these nonparametric tests is illustrated for a balanced
panel data set of Pennsylvania dairy operators during the time period 1986–1992.
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2. Dynamic Cost Minimization and Recovery of Technological Information

The dynamic cost function reflects the properties of the underlying technology. A well-
behaved technology can be described by a family of input requirement sets or by a production
function satisfying some regularity conditions.

Let y(t) denote the maximum amount of output a firm can produce at time t , given the
m dimensional vector of variable inputs x(t), the o-vector of gross investments I (t), and
the o-vector of initial capital stocks k(t) at time t . Let V (y(t) : k(t)) represent the input
requirement set for y(t) given the initial capital stock vector k(t).

A well-behaved technology can be described by a family of input requirement sets,
{V (y(t) : k(t))}, satisfying the following properties

A.1 Closeness: Any sequence of points in V (y(t) : k(t)) converges to a point in this set.

A.2 Nestedness in y(t): If (x(t), I (t)) ∈ V (y(t) : k(t)) and y(t) ≥ y′(t), then (x(t),
I (t)) ∈ V (y′(t) : k(t)).

A.3 Positive monotonicity in x(t): If (x(t), I (t)) ∈ V (y(t) : k(t)) and x ′(t) ≥ x(t), then
(x ′(t), I (t)) ∈ V (y(t) : k(t)).

A.4 Negative monotonicity in I (t): If (x(t), I (t)) ∈ V (y(t) : k(t)) and I (t) ≥ I ′(t), then
(x(t), I ′(t)) ∈ V (y(t) : k(t)).

A.5 Convexity in (x(t), I (t)): ∀(x(t), I (t)), (x ′(t), I ′(t)) ∈ V (y(t) : k(t)), and ∀µ ∈
[0, 1](µx(t)+ (1−µ)x ′(t), µI (t)+ (1−µ)I ′(t)) ∈ V (y(t) : k(t)).

A.6 Reverse Nestedness in k(t): If (x(t), I (t)) ∈ V (y(t) : k(t)) and k ′(t) ≥ k(t), then
(x(t), I (t)) ∈ V (y(t) : k ′(t)).

Alternatively, a production function can be used to describe the technology. The usual
regularity conditions assumed for the production function, F(x(t), I (t), k(t)), are: (B.1)
Fx , Fk > 0, (B.2) FI < 0, (B.3) F(x(t), I (t), k(t)) is concave in (x(t), I (t), k(t)), and (B.4)
its domain is bounded and open.

Assumption A.4 and convexity of V (y(t) : k(t)) in I (t), or, alternatively assumption B.2
and concavity of F(x(t), I (t), k(t)) in I (t) reflect the existence of internal adjustment costs
as a reduction in physical output. The adjustment cost hypothesis states current additions
to the capital stock are output decreasing (assumption A.4 or B.2) and the more rapidly the
quasi-fixed factors are adjusted the greater the cost (convexity of V (y(t) : k(t)), or concavity
of F(x(t), I (t), k(t)) in I (t)). Convexity of V (y(t) : k(t)) in I (t) (or, concavity of F(.) in
I (t)) leads to sluggish adjustment in the quasi-fixed factors since it implies an increasing
marginal cost of adjustment. However, current additions to the capital stock increase output
in the future by increasing the future stock of capital (assumption A.6, or Fk > 0).

Theorems 1, 12 and 13 in Varian (1984, pp. 581 and 591) are generalized to a dynamic
framework. Generalization of these theorems establishes a nonparametric dynamic dual
cost framework to production analysis. In particular, generalization of theorem 1 provides
a testable necessary and sufficient condition that can be used to test the consistency of a
particular data set with intertemporal cost minimizing behavior. If the data available are
consistent with intertemporal cost minimization, the dynamic version of theorems 12 and 13
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provides a means to recover technological information from intertemporal cost minimizing
behavior.

2.1. Nonparametric Test for Dynamic Cost Minimization

Consider the following data set

Sc = {(yi (t), xi (t), I i (t), ki (t), wi (t), ci (t)); i = 1, . . . , n; t = 1, . . . , T }
representing the observed behavior. The data series, Sc, provides nT observations on the
output level yi (t) and the associated m-vectors of perfectly variable inputs xi (t), the
o-vectors of gross investments I i (t) and the o-vectors of the initial capital stocks ki (t).
wi (t) and ci (t) represent the perfectly variable input price vector and the quasi-fixed factor
price vector, respectively for observation i at time t .

Definition 1. A family of input requirement sets cost-rationalizes the data set Sc if (xi , I i ),

i = 1, . . . , n, solves the following problem (the Hamilton-Jacobi-Bellman equation or dy-
namic programming equation (DPE))1

r W (wi , ci , yi , ki ) = min
x,I

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) : (x, I ) ∈ V (yi : ki )
}

or, equivalently, if

wi ′
x + W i ′

k I ≥ wi ′
xi + W i ′

k I i ; for all (x, I ) ∈ V (yi : ki ), i = 1, . . . , n

where r W (wi , ci , yi , ki ) is a flow version of the intertemporal cost, W i
k = Wk(wi , ci , yi , ki )

is the vector of the shadow-value of capital, and

W (wi , ci , yi , ki ) = min
x,I

{∫ ∞

0
e−r t [wi ′

x + ci ′
K i ] dt : K̇ i = I − δK i ; K i (0) = ki ;

(x, I ) ∈ V (yi : K i )

}

with r being the discount rate, K̇ = d K/dt the vector of net investment and δ the depreci-
ation rate.2

THEOREM 1 The following conditions are equivalent: (1) There exists a family of nested
and reverse nested input requirement sets, {V (y : k)}, cost-rationalizing the data set Sc.
(2) If y j ≥ yi , ki ≥ k j , then wi ′

x j + W i ′
k I j ≥ wi ′

xi + W i ′
k I i for all i and j . (3) There exists

a family of nontrivial, closed, convex input requirement sets, positive monotonic in x and
negative monotonic in I , cost-rationalizing the data set Sc.3

Theorem 1 states condition (2) is necessary and sufficient for the data set Sc to be consistent
with intertemporal cost minimizing behavior. Thus, if condition (2) holds at all data points,
Sc is said to be consistent with intertemporal cost minimizing behavior. Condition (2) is
denoted hereafter as the Weak Axiom of Dynamic Cost Minimization (WADCM).
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The WADCM is checked under two hypotheses: (1) observations are perfect measure-
ments and (2) presence of measurement errors in the data. In case (1), the nonparametric
test is deterministic. A stochastic test of the type proposed by Varian (1995) is conducted
assuming (2).

2.1.1. Deterministic Test for Intertemporal Cost Minimizing Behavior Assuming ob-
servations are perfect measurements, the WADCM depends on directly observed variables,
(wi , xi , I i , yi , ki ), and on the unobservable shadow value of capital, W i

k . The shadow value
of capital underlying the observed production and investment decisions of the firm, denoted
as the behavioral shadow value of capital, can be estimated using a nonparametric regression
method (e.g., the kernel estimation method).4 Given the behavioral shadow value of capital,
W bi

k , for each observation, the WADCM can be checked for the data series Sc as follows

If y j ≥ yi , ki ≥ k j , then wi ′
x j + W bi ′

k I j ≥ wi ′
xi + W bi ′

k I i ; for all i and j.

By theorem 1, Sc is said to be consistent with intertemporal cost minimizing behavior if and
only if the WADCM holds at all data points. This test is deterministic since no probability
assessments are implied and is a diagnostic checking whether the data are fully consistent
with the intertemporal cost minimization hypothesis.

2.1.2. Stochastic Test for Intertemporal Cost Minimizing Behavior For the data series
Sc, define the null hypothesis as the “true” data that is consistent with intertemporal cost
minimizing behavior. Assuming only input demand data is measured with error, the observed
quantity variables xi and I i can be related to the “true” variables as follows

xi
l = ξ i

l + εi
vl , l = 1, . . . , m;

I i
h = ηi

h + εi
qh, h = 1, . . . , o;

(1)

i = 1, . . . , n. ξ i
l is the “true” input demand of the variable input l at observation i, ηi

h is
the “true” gross investment of the quasi-fixed factor h at observation i and εi

vl and εi
qh are

random errors assumed to be independently and identically distributed as N (0, σ 2).
Given the assumptions in (1), the WADCM depends on observed variables (wi , yi , ki )

and a set of unobservable variables, (ξ i , ηi , W i
k ). The WADCM can be checked by running

the following quadratic programming problem

S = min
ζ i

l ,ηi
h ,W i

kh

{
n∑

i=1

[
m∑

l=1

(
ζ i

l − xi
l

)2 +
o∑

h=1

(
ηi

h − I i
h

)2

]
: ζ i ≥ 0; ηi ≥ 0;

wi ′
ζ j + W i ′

k η j ≥ wi ′
ζ i + W i ′

k ηi , y j ≥ yi , ki ≥ k j

}
. (2)

Note that in problem (2), the shadow value of capital is one of the variables to be determined
while testing for dynamic cost minimizing behavior. Rejection of the null hypothesis occurs
when S/σ 2 > Cα , or σ 2 < S/Cα , where Cα is the α% critical value from the χ2 table for
n(m +o) degrees of freedom. Define σ 2 = S/Cα as the critical value of σ 2, whose value
is obtained after solving (2). If the error variance of the input demand data is known and
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less than σ 2, the null hypothesis is rejected. Thus, the stochastic test in (2) provides a
range for the error variance over which the data set Sc is consistent with intertemporal cost
minimizing behavior.

2.2. Inner and Outer Bounds on the Technology

Consider the data set Sc and assume consistency with intertemporal cost minimizing be-
havior. Let {V (y : k)} be the “true” family of input requirement sets that cost-rationalizes
Sc. By theorem 1, {V (y : k)} represents a well-behaved technology and satisfies properties
A.1–A.6.

A family of input requirement sets can be constructed from the data set Sc, without
assuming a parametric functional form on the production technology. However, a family
of input requirement sets satisfying properties A.1–A.6 and constructed from observed
data is not unique. In fact, there are many families of input requirement sets satisfying the
aforementioned properties that can be derived from a finite number of data points (Varian,
1984). Nevertheless, outer and inner bounds can be derived on the technological possibilities
underlying the data set Sc. Two families of input requirement sets, {VI (y : k)} and {VO(y :
k)}, provide the tightest inner and outer bounds on the “true” technology underlying the
data set Sc, respectively; i.e., VI (y : k) ⊂ V (y : k) ⊂ VO(y : k) for all y and k.

VI (y : k) can be constructed as the convex monotonic hull of (xi , I i ) such that yi ≥ y and
k ≥ ki ; i.e.,

VI (y : k) = com
{

zi + ei : yi ≥ y; ki ≤ k; zi = (xi , I i ); ei = (
ei

x , −ei
I

) ≥ 0
}

(3)

if such yi and ki exist and VI (y : k) = ∅, otherwise. In the proof of theorem 1, VI (y : k) is
shown to cost-rationalize the data and theorem 2 establishes that {VI (y : k)} is the tightest
inner bound to {V (y : k)}.

THEOREM 2 The following statements are true: (1) {VI (y : k)} cost-rationalizes the data
set Sc. (2) Let {V (y : k)} be a family of closed, convex input requirement sets, positive
monotonic in x and negative monotonic in I , cost-rationalizing the data set Sc. Then,
V (y : k) ⊃ VI (y : k) for all y ≤ ym and k ≤ km; where ym and km are the largest observed
output level and initial capital stock vector, respectively. (3) Let V ′(y : k) be a closed, convex
input requirement set, positive monotonic in x and negative monotonic in I , which is strictly
contained in VI (y : k); i.e., V ′(y : k) ⊂ VI (y : k). Then, V ′(y : k) cannot cost-rationalize
the data set Sc.

Proceeding in a similar way as Afriat (1972) and Diewert and Parkan (1983) in the static
framework, the tightest inner bound in (3) can be constructed as5

VI (y : k) =
{

(x, I ) : x ≥
n∑

j=1

λ j x j ; I ≤
n∑

j=1

λ j I j ; y j ≥ y; k j ≤ k;

n∑
j=1

λ j = 1; λ j ∈ R
+, ∀ j

}
. (4)
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Generalization to the dynamic framework of the outer bound proposed by Varian (1984)
in the static context leads to

VO(y : k) = {
(x, I ) : wi ′

x + W i ′
k I ≥ wi ′

xi + W i ′
k I i ; y ≥ yi ; k ≤ ki

}
. (5)

Theorem 3 establishes that {VO(y : k)} is the tightest outer bound to {V (y : k)}.

THEOREM 3 The following statements are true: (1) {VO(y : k)} cost-rationalizes the data set
Sc. (2) If {V (y : k)} is a family of input requirement sets that cost-rationalizes the data set Sc,
then VO(y : k) ⊃ V (y : k) for y ≤ ym and k ≤ km. (3) If V ′(y : k) is an input requirement set
strictly containing VO(y : k) (i.e., V ′(y : k) ⊃ VO(y : k)) then V ′(y : k) cannot rationalize
the data set Sc.

Figure 1 illustrates the case of one variable input and one quasi-fixed factor. The inner
and outer bounds on the “true” production technology are constructed from two observed
data points z∗ and z′. The inner bound, VI (y : k), is determined by (4) as the intersection
of closed upper half-spaces. The hyperplane determining the half-spaces are generated by
convex combinations of observed input data points with an output level at least as great
as y and an initial capital stock vector less than or equal to k. Assuming the output level
associated with the two observed data points is at least as great as y and the underlying
initial capital stock vector is less than or equal to k, the inner bound is the area on and
above the line segments [a, z′, z∗, b]. Similarly, the outer bound is determined by (5) as
the intersection of closed upper half-spaces. The hyperplane determining the half-spaces
is an isocost plane (or isocost line for the case of only two inputs) with slope equal to
(−W i

k/wi ). In Figure 1, the outer bound is defined as the area on and above the line
segments [c, d, e].

Figure 1. Inner and outer bounds.
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2.3. Dynamic Undercost and Overcost Functions

The dynamic cost function reflects the properties of the underlying production technology
by the duality theory. Given the inner and outer bounds on the technological possibilities
underlying the data series Sc, lower and upper bounds on the dynamic cost function can be
established.

Define the flow version of the intertemporal cost minimization problem in VI (y : k) as

r W (wi , ci , yi , ki , VI ) = min
x,I

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) : (x, I ) ∈ VI (yi : ki )
}

or equivalently,

r W (wi , ci , yi , ki , VI ) = min
x,I,λ

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) : x ≥
n∑

j=1

λ j x j ;

I ≤
n∑

j=1

t j I j ; y j ≥ yi ; k j ≤ ki ;
n∑

j=1

λ j = 1; λ j ∈ R
+, ∀ j

}
.

(6)

Similarly, the flow version of the dynamic cost minimization problem in VO(y : k) is defined
as

r W (wi , ci , yi , ki , VO) = min
x,I

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) : (x, I ) ∈ VO(yi : ki )
}

or, equivalently,

r W (wi , ci , yi , ki , VO) = min
x,I

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) :

wi ′
x + W i ′

k I ≥ wi ′
xi + W i ′

k I i ; y ≥ yi ; k ≤ ki
}
. (7)

The dynamic cost functions in (6) and (7), respectively, are the upper and lower bounds
on the “true” intertemporal cost function; i.e.,

r W (wi , ci , yi , ki , VO) ≤ r W (wi , ci , yi , ki , V ) ≤ r W (wi , ci , yi , ki , VI ) (8)

for all i ∈ Sc. These weak inequalities are derived from the relation between the three
input requirement sets; i.e., VI (y : k) ⊂ V (y : k) ⊂ VO(y : k) for all y and k. The dynamic
cost functions in (6) and (7) are called the dynamic overcost and undercost functions,
respectively.

3. Dynamic Cost Minimization and a Constant Returns to Scale Technology

The regularity conditions on the firm’s production technology discussed previously (A.1–
A.6 for a family of input requirement sets, or B.1–B.4 for the production function) are
general properties common to any well-behaved technology. The structure of a well-behaved
production technology can be described by more restrictive properties such as constant
returns to scale (CRS).
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A nonparametric test for CRS is presented from a dynamic dual cost approach and im-
plementation of this nonparametric test in empirical work is discussed. If the data series
is consistent with a CRS technology and intertemporal cost minimizing behavior, a CRS
production function can be derived from the observed data without assuming implicitly a
parametric functional form for the firm’s production technology.

3.1. Nonparametric Test for Constant Returns to Scale

Theorem 5 in Varian (1984, p. 585) is generalized to a dynamic framework. The dynamic
version of this theorem provides a testable necessary and sufficient condition that can be
used to check whether the data set Sc is consistent with a CRS technology and intertemporal
cost minimizing behavior.

Definition 2. A production function F(x, I, k) is said to cost-rationalize the data set Sc if

yi = F(xi , I i , ki ), F(x, I, k) ≥ yi , ki ≥ k ⇒ wi ′
x + W i ′

k I ≥ wi ′
xi + W i ′

k I i ; i = 1, . . . , n.

THEOREM 4 The following conditions are equivalent: (1) There exists a linearly homoge-

neous production function cost-rationalizing the data set Sc. (2)
w j ′ xi +W j ′

k I i

w j ′ x j +W j ′
k I j

≥ yi

y j , k j ≥ ki ;
for all j = 1, . . . , n. (3) There exists a linearly homogeneous, continuous, concave produc-
tion function, positive monotonic in x and negative monotonic in I , cost-rationalizing the
data set Sc.

Theorem 4 states condition (2) is necessary and sufficient for the data set Sc to be consistent
with a CRS technology. In addition, a production function satisfying properties B.1–B.4 and
the linear homogeneity property can be generated nonparametrically from the data set Sc.

3.1.1. Deterministic Test for Constant Returns to Scale Assuming no measurement er-
rors in the data, condition (2) depends on directly observed variables (wi , xi , I i , yi , ki ) and
on the unobservable variable, W i

k . Given the behavioral shadow value of capital, condition
(2) can be checked for all observations in Sc.6 Since this test is deterministic, failure of
this condition to hold for all i ∈ Sc implies inconsistency with CRS and intertemporal cost
minimization.

If the data set did not include market input prices, the existence of a valid CRS tech-
nology could also be tested using only quantity data. In this case, run the following linear
programming problem

min
pi

v,pi
k ,W

i
k

{
γ : �1ϕ1 +v1k1 = y1, y1 = min

i∈Sc
yi ; �iϕ j ≥ �iϕi , y j ≥ yi , ki ≥ k j ;

�l(ϕi/yi )+vl ki − �i (ϕi/yi )−vi ki +γ ≥ 0, i �= l; pi
v ≥ 0; pi

k ≥ 0; γ ≥ 0

}
(9)

where �i = (pi
v, W i

k ), ϕ
i = (xi , I i ), vi = (pi

k − δW i
k ), and pi

v and pi
k are the variable input

price vector and the quasi-fixed input price vector, respectively, i = 1, . . . , n. The first
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constraint is a normalization that does not bias the result of the test. The data set Sc is said
to be consistent with a valid CRS technology if and only if γ = 0. If γ > 0, γ is an index
of the violation of CRS.

3.1.2. Stochastic Test for Constant Returns to Scale A stochastic test can be conducted
to account for the possibility of measurement errors in the data. Consider the data series
Sc and define the null hypothesis as the “true” data is consistent with intertemporal cost
minimizing behavior and a CRS technology. Assuming only input demand data is measured
with error, define the observed demand for each input as in (1). Run the following quadratic
programming problem for the set Sc

S = min
ζ i

l ,ηi
h ,W i

kh

{
n∑

i=1

[
m∑

l=1

(
ζ i

l − xi
l

)2 +
o∑

h=1

(
ηi

h − I i
h

)2

]
: �1ψ1 +υ1k1 = y1, y1 = min

i∈Sc
yi ;

�iψ j ≥ �iψ i , y j ≥ yi , ki ≥ k j ; �i (ψ l/yl)+υ i kl ≥ �l(ψ l/yl) + υl kl , i �= l; ψ i ≥ 0

}

(10)

where �i = (wi , W i
k ), υ

i = (ci − δW i
k ), and ψ i = (ζ i , ηi ), i = 1, . . . , n. The first constraint

is a normalization that does not bias the result of the test. This test is conducted in a similar
way as the stochastic test in (2). The stochastic test in (10) provides a range for the error
variance over which the set Sc is consistent with intertemporal cost minimization and a
CRS technology.

3.2. Inner and Outer Bounds on the CRS Technology

Consider the set Sc and assume consistency with a CRS technology and intertemporal cost
minimizing behavior. A linearly homogeneous production function satisfying properties
B.1–B.4 can be generated from the observed data without imposing a parametric functional
form on the technology. Similarly, a family of input requirement sets satisfying properties
A.1–A.6 and the linear homogeneity property can also be derived, in a nonparametric
fashion, from Sc.

Let {Vc(y : k)} be the “true” family of CRS input requirement sets underlying the data
series Sc. By theorems 2 and 3, inner and outer bounds can be established on Vc(y : k). The
tightest inner bound on the CRS production technology underlying the set Sc, VcI (y : k), is
generated in a similar way as VI (y : k) in (4) by deleting the constraint that the sum of the
λ’s is equal to one. The tightest outer bound, VcO(y : k), is generated as follows

VcO(y : k) = {
(x, I ) : wi ′

x(yi/y)+ W i ′
k I (yi/y) ≥ wi ′

xi + W i ′
k I i ; k ≤ ki

}
. (11)

Bounds on the “true” CRS production function can then be constructed. Define the CRS
overproduction and underproduction functions, respectively, as

F+(x, I, k) = max{y : (x, I ) ∈ VcI (y : k)},
F−(x, I, k) = max{y : (x, I ) ∈ VcO(y : k)}. (12)
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Using the relation between the input requirement sets, one can bound the “true” CRS
production function as follows

F−(x, I, k) ≤ F(x, I, k) ≤ F+(x, I, k). (13)

3.3. Dynamic Undercost and Overcost Functions for a CRS Technology

The “true” dynamic cost function is related with the “true” technology by the duality
relations. Given the inner and outer bounds on the “true” CRS technology, upper and lower
bounds can be established on the “true” dynamic cost function.

Define the flow version of the intertemporal cost minimization problem in VcI (y : k) as
follows

r W (wi , ci , yi , ki , VcI ) = min
x,I

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) : (x, I ) ∈ VcI (yi : ki )
}
.

This minimization problem can be expressed as the one in (6) by deleting the constraint
that the sum of the λ’s is equal to one.

Proceeding in a similar fashion, the flow version of the intertemporal cost minimization
problem in VcO(y : k) is defined as

r W (wi , ci , yi , ki , VcO) = min
x,I

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) : (x, I ) ∈ VcO(yi : ki )
}

which is equivalent to the following problem

r W (wi , ci , yi , ki , VcO) = min
x,I

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) : wi ′
x(yi/y)

+ W i ′
k I (yi/y) ≥ wi ′

xi + W i ′
k I i ; k ≤ ki

}
. (14)

Upper and lower bounds on the “true” dynamic cost function under CRS are established
using the relation between the input requirement sets; i.e.,

r W (wi , ci , yi , ki , VcO) ≤ r W (wi , ci , yi , ki , Vc) ≤ r W (wi , ci , yi , ki , VcI ) (15)

for all i ∈ Sc. The upper and lower bounds are called the dynamic overcost and undercost
functions, respectively, under CRS.

4. Dynamic Cost Minimization and a Homothetic Technology

A nonparametric test for homotheticity and intertemporal cost minimizing behavior is pre-
sented followed by the discussion of its implementation in empirical work. If the data series
is consistent with the homotheticity property and dynamic cost minimizing behavior, a ho-
mothetic technology can be derived from the observed data without assuming implicitly a
parametric functional form on the firm’s technology.
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4.1. Nonparametric Test for Homotheticity

Theorem 7 in Varian (1984, p. 586) is generalized to a dynamic framework. The dynamic
version of this theorem provides a necessary and sufficient condition that can be used to
check the consistency of a particular data set with a homothetic production function and
intertemporal cost minimizing behavior.

Definition 3. A production function F(x, I, k) is homothetic if there exists a monotonic
function M(·) such that F(x, I, k) = M(h(x, I, k)), where h(·) is a homogeneous function
of degree 1 in (x, I ).

THEOREM 5 The following conditions are equivalent: (1) There exists a homothetic produc-
tion function cost-rationalizing the data set Sc. (2) There exist numbers hi which are increas-

ing in yi (i.e., yi > y j implies hi > h j ) such that
w j ′ xi +W j ′

k I i

w j ′ x j +W j ′
k I j

≥ hi

h j , k j ≥ ki , j = 1, . . . , n.
(3) There exists a continuous, quasi-concave, homothetic production function, positive
monotonic in x and negative monotonic in I, M(h(x, I, k)), cost-rationalizing the data
set Sc, with h(x, I, k) being a concave function.

Theorem 5 generates a testable necessary and sufficient condition (condition (2)) for
consistency of the data set with a homothetic production function and intertemporal cost
minimizing behavior. If the data set can be generated by a homothetic production function
cost-rationalizing the data, it can be generated by a well-behaved homothetic production
function. By the same theorem, a well-behaved homothetic production function can be
constructed from the observed data in a nonparametric fashion.

4.1.1. Deterministic Test for Homotheticity Assuming no measurement errors in the
data, condition (2) in theorem 5 depends on observed variables, (wi , xi , I i , ki ), and on the
unobserved variables, (W i

k , hi ). Construction of a mathematical programming problem is
necessary to check whether condition (2) holds for all i ∈ Sc. Given the behavioral shadow
value of capital, run the following linear mathematical programming problem for the data
set Sc7

min
hi

{β : ϑ1�1 = h1; ϑ i� j −hi ≥ 0, y j ≥ yi , ki ≥ k j ;
ϑ j�i −hi +β ≥ 0, i �= j; β ≥ 0; hi ≥ 0} (16)

where �i = (xi , I i ), ϑ i = (wi , W bi
k ), with W bi

k being the behavioral shadow-value of cap-
ital, �1 is the input vector associated with y1 = min yi , i = 1, . . . , n, and all the other
variables are defined as before.

The data set Sc is consistent with intertemporal cost minimizing behavior and a homothetic
technology if and only ifβ = 0 for each data point. A strictly positiveβ implies inconsistency
of Sc with homotheticity, assuming consistency with intertemporal cost minimization.

If the data set did not include market input prices, the existence of a valid homothetic tech-
nology could also be tested using only quantity data. Run the following linear programming
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problem

min
pi

v,pi
k ,W

i
k

{
α : �1ϕ1 = ey1; �iϕ j ≥ �iϕi , y j ≥ yi , ki ≥ k j ;

�iϕ j +vi k j −� jϕ j −v j k j +α ≥ 0, i �= j; pi
v ≥ 0, pi

k ≥ 0, α ≥ 0
}

(17)

where eyi = hi , i = 1, . . . , n, and all the other variables are defined as in (9). The first
constraint is a normalization that does not bias the result of the test. A valid homothetic
technology exists if and only if α = 0. If α > 0, α is an index of violation of homotheticity.

4.1.2. Stochastic Test for Homotheticity Define the null hypothesis as the “true” data is
consistent with intertemporal cost minimizing behavior and the homotheticity property of
the production function. Assuming only input demand data is measured with error, define
the observed demand for each input as in (1). Run the following quadratic programming
problem for the data set Sc

S = min
ζ i

l ,ηi
h ,W i

kh

{
n∑

i=1

[
m∑

l=1

(
ζ i

l − xi
l

)2 +
o∑

h=1

(
ηi

h − I i
h

)2

]
: �1ψ1 = ey1;

�iψ j ≥ �iψ i , y j ≥ yi , ki ≥ k j ; �iψ l +υ i kl ≥ �lψ l +υl kl , i �= l; ψ i ≥ 0

}
(18)

where all variables are defined as in (10) and (17). Again, the first constraint is a normal-
ization that does not bias the result of the test.

The stochastic test (18) provides a range for the error variance over which the Sc is
consistent with intertemporal cost minimizing behavior and a homothetic technology. If the
error variance of the input quantity data is known and falls in this interval, Sc is said to be
consistent with intertemporal cost minimizing behavior and the homotheticity property of
the production function.

4.2. Inner and Outer Bounds on the Homothetic Technology

Assume Sc is consistent with intertemporal cost minimization and homotheticity. A well-
behaved homothetic production function can be constructed in a nonparametric fashion
from the observed data.

Using definition 3, let F(x, I, k) = M(h(x, I, k)) be the “true” homothetic production
function underlying Sc, where h(x, I, k) is a homogeneous function of degree 1 in (x, I ).
Using theorems 2 and 3, inner and outer bounds on the “true” homogeneous technology
can be constructed. Construct the tightest inner and outer bounds, respectively, as follows8

VhI (h : k) =
{

(x, I ) : x ≥
n∑

j=1

λ j x j ; I ≤
n∑

j=1

λ j I j ; h j ≥ h; k j ≤ k; λ j ∈ R
+, ∀ j

}
(19)

and

VhO(h : k) = {
(x, I ) : wi ′

x(hi/h)+ W i ′
k I (hi/h) ≥ wi ′

xi + W i ′
k I i ; ki ≥ k

}
. (20)
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Define the upper and lower bounds on h(x, I, k) as follows

h+(x, I, k) = max{h : (x, I ) ∈ VhI (h : k)};
h−(x, I, k) = max{h : (x, I ) ∈ VhO(h : k)}. (21)

Since VhI (h : k) ⊂ Vh(h : k) ⊂ VhO(h : k), then h−(x, I, k) ≤ h(x, I, k) ≤ h+(x, I, k).
Consider a monotonic transform M(·)mapping h(x, I, k) into output. The upper and lower

bounds on h(x, I, k) can be used to construct bounds on the “true” homothetic production
function F(x, I, k). Define the overproduction and underproduction functions, respectively,
as follows

F+(x, I, k) = M(h+(x, I, k));
F−(x, I, k) = M(h−(x, I, k)).

(22)

where F−(x, I, k) ≤ F(x, I, k) ≤ F+(x, I, k).

4.3. Dynamic Undercost and Overcost Functions for a Homothetic Technology

By construction, the “true” dynamic cost function is related to the “true” technology. Bounds
on the “true” dynamic cost function are obtained by using the homothetic underproduction
and overproduction functions in (22).

The upper and lower bounds on the “true” dynamic cost function are, respectively

r W (wi , ci , yi , ki , F+) = max
x,I

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) : yi ≤ F+(x, I, ki )
}

(23)

and

r W (wi , ci , yi , ki , F−) = min
x,I

{
wi ′

x + ci ′
ki + W i ′

k (I − δki ) : yi ≤ F−(x, I, ki )
}
. (24)

The dynamic cost functions in (23) and (24) are called the dynamic overcost and undercost
functions for a homothetic technology, respectively, and possess the following relation

r W (wi , ci , yi , ki , F−) ≤ r W (wi , ci , yi , ki , F) ≤ r W (wi , ci , yi , ki , F+) (25)

for all i ∈ Sc.

5. Data

A panel data set of 60 Pennsylvania dairy operators is available for the time period 1986–
1992 from the Pennsylvania Farm Bureau (PFB). Information on each farm and for each
year is available on the following variables: (1) total pounds of milk sold, (2) the price
of milk sold, (3) milk revenue, (4) other farm income, (5) total revenue, (6) herd size
of milking cows, (7) hired labor hours/year, (8) hired labor expenses, (9) miscellaneous
variable expenses, (10) family labor hours/year, (11) value of land, (12) value of buildings,
(13) value of machinery and equipment, (14) value of livestock, (15) value of total assets,
(16) total debts, and (17) total interest.
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This panel of dairy farms used consists of dairy operators with herd size ranging between
40 and 100 cows with positive profit in all seven years. In addition, these farms derive at
least 80 percent of total revenue from dairy operations to ensure that milk output is the
dominant or the single output of the farm.

Output is measured by total pounds of milk sold. Herd size in each year is defined as
the average number of milking cows in the herd during the year. Miscellaneous variable
expenses incorporates several components such as feed purchased, custom work hired,
utilities, gas and oil, fertilizer and lime, veterinary and medicine, machinery repair, and
crop and seed supplies. The miscellaneous expenses category is taken as a measure of the
farm’s variable costs other than hired labor. No information is available on the quantities
used for the variable inputs other than hired labor. The implicit farm-specific hourly wage
rate is determined as the ratio of annual hired labor expenses to hired labor hours per year.

The total farm assets item involves land, buildings, machinery and equipment, livestock,
and cash. Land, buildings, machinery and equipment and livestock are reported as stock
variables where the reported values are book values. No market value of the farm’s assets is
available. These assets can be categorized according to their average useful life. Machinery
and equipment can be classified as an intermediate-run asset with an average life ranging
between 1 and 10 years, where land and buildings can be considered a long-run asset with
an average useful life of more than 10 years.

Several quasi-fixed factors are present in the dairy production. The quasi-fixed factors
are land, buildings, machinery and equipment, livestock and family labor. The depreciation
rates used for buildings, machinery and equipment and livestock are 3%, 10% and 20%,
respectively.9

Total debt consists of debt for farm operation. No information is provided on the allocation
of the farm debts among different uses as well as on the possible different rates of interest
associated with specific debts. The implicit farm-specific interest rate is determined as the
ratio of total interest payments over total farm debts. The implicit farm-specific rate of
interest is used as the rental cost price of capital and assumed to be the same for all quasi-
fixed factors except family labor. The farm-specific wage rate is used as the rental cost price
of family labor.

6. Empirical Implementation of the Nonparametric Tests

Three types of nonparametric tests are used to investigate the consistency of the data series
with the behavioral hypothesis of dynamic cost minimization: the deterministic, goodness-
of-fit and stochastic tests (Varian, 1984, 1990, 1985). The deterministic test consists in
an exhaustive pairwise comparison of observations to determine whether the data satisfy
fully the WADCM, indicating the percentage of observed violations (Varian, 1984). The
goodness-of-fit test assesses the economic significance of the hypothesis violations (Varian,
1990). A measure of the magnitude of the violation of dynamic cost minimizing behavior
is given as

100 ·
(

1− wi ′
x j + W bi ′

k I j

wi ′ xi + W bi ′
k I i

)
, y j ≥ yi , ki ≥ k j .
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Average values of the cost savings in percentages terms are calculated by summing the vio-
lation magnitudes and divided by the total number of possible violations. The deterministic
and goodness-of-fit tests are conducted using quantity and observed input price data and
both tests require information on the behavioral shadow value of capital.

The stochastic test for dynamic cost minimizing behavior investigates the statistical sig-
nificance of the hypothesis violations, yielding a measure of what the standard error of
the quantity data would have to be in order to reject the hypothesis (Varian, 1985). The
stochastic test is performed by running problem (2) and the shadow value of capital is one
of the variables to be determined within this problem.

The technological hypothesis of CRS and homotheticity are investigated using three
types of nonparametric tests: deterministic test using quantity data, deterministic test using
quantity and observed input price data and the stochastic test. The deterministic test for
CRS and homotheticity using quantity data is conducted by running, respectively problems
(9) and (17). The stochastic test for CRS and homotheticity is performed by running the
quadratic programming problems in (10) and (18), respectively. In both cases, the shadow
value of the quasi-fixed factors is one of the choice variables to be determined within each
problem.

Condition (2) in theorem 4 and the programming problem in (16), respectively, are used
to implement the deterministic test for CRS and homotheticity using quantity and observed
input price data. Performing this test requires information on the behavioral shadow value
of the quasi-fixed factors.

The behavioral shadow value of the quasi-fixed factors is estimated using the kernel
estimation method and the negative of the marginal cost of adjustment evaluated at the
observed level of the gross investment vector.10 The kernel estimation procedure generates
point estimates of the marginal cost of adjustment for each quasi-fixed factor and for each
farm in each year.11 The value of these estimates are nearly zero for all quasi-fixed factors and
for all farms in all years, implying small changes in the initial stock of the quasi-fixed factors
has no impact on the value function. The standard errors associated with these estimates
are approximately zero implying there is little variability in these estimated values.12

The value of these estimates might be biased for several reasons. First, the reported values
of the stock of the quasi-fixed factors as well as of the gross investment are book values rather
than market values. Second, due to the absence of information on the quantity and price of
the variable inputs other than hired labor, the component miscellaneous cost incorporates all
other possible variable inputs and it is a significant component of the short-run variable cost.
Finally, the kernel estimators are sensitive to the choice of the window-width.13 The bias
of the kernel estimators is an increasing function of the window-width where the standard
error is a decreasing function of this parameter.

7. Empirical Results

The nonparametric test results for the WADCM are presented in Table 1. Violations of the
WADCM are detected in all years. The deterministic test indicates that more than 60% of the
observation comparisons violate the WADCM in each year. The average percentage error
ranges between 79.9% and 564.6%, implying the observed departures from the behavioral
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Table 1. Nonparametric tests for dynamic cost minimization.

Deterministic Test Goodness-of-Fit Test Stochastic Test

Percentage of Average Percent Critical Value of
Year Violations Error Standard Error (%)a

1987 69.0 79.9 25.87
1988 70.5 564.6 27.04
1989 61.8 266.2 39.05
1990 65.3 301.3 29.84
1991 60.9 128.6 29.35
1992 68.0 129.8 37.23

aCritical value of the standard error of the input quantity data is calculated at the 1% significance level.

hypothesis of dynamic cost minimization are economically significant. The results of the
deterministic and goodness-of-fit tests show a high percentage of violations of the WADCM
with some violations being relatively high as indicated by the average percentage error. The
stochastic test for WADCM identifies the lower bound for the standard error in the input
quantity data due to measurement error which ranges between 25.87% and 39.05% across
years. Using the rejection criterion of 10% measurement error, it can be inferred from the
stochastic test that violations of WADCM are statistically significant.14

The test results for WADCM indicate inconsistency of the data series with the dynamic
cost minimization hypothesis.15 This inconsistency may be due to several reasons. First,
the dynamic technology may not be well-behaved. Nonconvexities in the dynamic technol-
ogy may be the sources of the observed violations. There is a growing body of empirical
studies offering empirical evidence on the lumpiness of investments and production in a
variety of industries (e.g., Ramey, 1991; Bresnahan and Ramey, 1994; Caballero, Engel
and Haltiwanger, 1995).16 Second, a significant percentage of the dairy operators may be
economically inefficient in the use of variable or/and quasi-fixed factors. Failure of the
WADCM can be caused by a poor efficiency performance of some dairy operators.

Third, excluded variables may be important in explaining the dairy operator’s behavior.
Factors such as the stock of human capital (e.g., number of years of education), the flow
of human capital (e.g., new knowledge acquired by attending extension programs), risk
and unexpected weather conditions may affect the variable input and investment decision
making process, and, consequently affect the economic performance of dairy operators.

Fourth, the nonparametric test may be biased toward rejection since necessary as well
as sufficient conditions are being checked. The nonparametric approach to the dynamic
theory of production is paradoxically both a less and a higher structured approach relative
to the parametric approach. On one hand, the nonparametric approach is a free-functional
form approach permitting the analysis and measurement of the production structure with-
out imposing explicitly or implicitly a functional form on the production technology. On
the other hand, first- and second-order conditions are incorporated simultaneously in the
production analysis. As a result, the weakness of the data is more easily and fully revealed
in a nonparametric approach than in the parametric approach which embodies first-order
conditions only.17
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Fifth, the quality (accuracy) of the data may be another source for the rejection of the
WADCM. Accuracy of the physical factor use data can be questioned. One can expect some
input levels used such as energy consumption, custom work hired, crop and seed supplies,
veterinary expenses to be reliably recorded and reported. However, reporting of quasi-fixed
factor levels can be subject to considerable error. It is difficult to obtain an accurate reporting
of the value of a farm’s barn buildings, specialized durable equipment such as a milking
parlor, and acreage. In addition, one may also suspect of the price data. The presence of
unobservable variables (the shadow value of the quasi-fixed factors) leads to employment of
two techniques that are of a different nature: mathematical programming and nonparametric
regression methods.

The nonparametric tests for CRS (homotheticity) are performed as a joint hypothesis of
dynamic cost minimization and CRS (homotheticity). Given the data series is not consis-
tent with the behavioral hypothesis of dynamic cost minimization, rejection of the joint
hypothesis is expected. Nevertheless, the deterministic and stochastic tests for CRS and ho-
motheticity are conducted in order to check whether the results of the three nonparametric
tests (deterministic test using quantity data, deterministic test using quantity and observed
input price data and the stochastic test) are consistent. The results of the stochastic test and
the deterministic test using quantity and observed input price data are expected to indicate
rejection of each of the joint hypotheses, since similar tests conducted for the behavioral hy-
pothesis of dynamic cost minimization indicate rejection of the WADCM. The deterministic
test using quantity data is checking whether there exist input prices (including the shadow
value of the quasi-fixed factors) cost-racionalizing the data series and simultaneously mak-
ing it consistent with a particular technological hypothesis (CRS or homotheticity). If the
deterministic test using quantity data fails to reject the joint hypothesis and the results of
the other two tests indicate rejection of the hypothesis, a poor quality of the input price data
may be the source of this rejection or the behavioral hypothesis underlying these tests is
not valid (Hanoch and Rothschild, 1972).

Table 2 reports the nonparametric test results for CRS and dynamic cost minimization.
The deterministic test using quantity data reveals a strictly positive γ , implying the data do
not satisfy fully the joint hypothesis of CRS and dynamic cost minimization in all years.

Table 2. Nonparametric test for constant returns to scale and dynamic cost minimization.

Deterministic Test Deterministic Test
(Quantity Data) (Quantity and Price Data) Stochastic Test

Percentage of Critical Value of
Year γ Violations Standard Error (%)a

1987 0.834 4.7 79.98
1988 0.695 5.1 77.51
1989 1.453 4.8 84.80
1990 6.243 5.6 75.09
1991 0.035 5.8 62.69
1992 0.544 6.9 48.64

aCritical value of the standard error of the input quantity data is calculated at the 1% significance level.
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Similar results are inferred from the deterministic test using quantity and observed input
price data. The percentage of violations of the joint hypothesis ranges between 4.7% in
1987 and 6.9% in 1992, implying the data are not fully consistent with this hypothesis in
all years. The lower bound of the standard error in the input quantity data identified by
the stochastic test for CRS ranges between 48.64% in 1992 and 84.80% in 1989. Given
the rejection criterion of 10% measurement error, the joint hypothesis is rejected in all
years.18

The results of the deterministic test using quantity data are consistent with the results of
the stochastic test and the deterministic test using quantity and observed input price data,
reinforcing the rejection of the joint hypothesis of CRS and dynamic cost minimization.
However, the nonparametric test for CRS and dynamic cost minimization is inconclusive as
far as CRS is concerned. The technological hypothesis of CRS is tested in conjunction with
the behavioral hypothesis of dynamic cost minimization and the WADCM is rejected for
this data series. Thus, one does not know whether CRS is satisfied or not by the data series.
Nevertheless, one may suspect the data are not consistent with the technological hypothesis
of CRS, given the results of the deterministic test using only quantity data.

The nonparametric test results for homotheticity and dynamic cost minimization are
presented in Table 3. The deterministic test using quantity and observed input price data
generates a positive value for β in all years, implying the data series is not fully consistent
with the joint hypothesis. The lower bound for the standard error of the input quantity
data ranges between 78.69% and 120.02% across years. Employing the rejection criterion
of 10% measurement error, the observed departures from dynamic cost minimization and
homotheticity are statistically significant in all years. However, the deterministic test for
homotheticity using quantity data indicates the data are fully consistent with homotheticity
in all years.19

The joint hypothesis of homotheticity and dynamic cost minimization is not rejected by
the deterministic test using quantity data, implying that there exists input prices (including
the shadow value of the quasi-fixed factors) cost-rationalizing the data series and making
it consistent with a homothetic technology. However, the joint hypothesis is rejected by
the stochastic test and the deterministic test using quantity and observed input price data.

Table 3. Nonparametric tests for homotheticity and dynamic cost minimization.

Deterministic Test Deterministic Test
(Quantity Data) (Quantity and Price Data) Stochastic Test

Critical Value of
Year α β Standard Error (%)a

1987 0 1.54 79.85
1988 0 5.89 78.69
1989 0 3.82 80.71
1990 0 0.47 120.02
1991 0 1.59 86.43
1992 0 2.51 89.42

aCritical value of the standard error of the input quantity data is calculated at the 1% significance level.
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A poor quality of the input price data may be the source of the rejection of the joint hypothesis
by the two nonparametric tests and, as argued before, it may be also one of the reasons to
reject the behavioral hypothesis of dynamic cost minimization.

8. Concluding Comments

The theoretical formulation proposed allows the recovery of information concerning the
dynamic production structure in a nonparametric fashion. Building on the foundation of
dynamic production analysis in the context of intertemporal cost minimization, the charac-
terization of the dynamic production structure is developed leading to nonparametric tests
for constant returns to scale and homotheticity.

A nonparametric dynamic dual cost approach to production analysis requires consistency
of the data series with intertemporal cost minimizing behavior. Nonparametric tests to
analyze the structure of a dynamic technology and to check for consistency from a dynamic
cost minimizing perspective are developed.

The empirical implementation of these nonparametric tests is presented for a panel data
set of Pennsylvania dairy operators during the time period 1986–1992. The empirical results
indicate the weak axiom of dynamic cost minimization is violated by this data series. The
results of the nonparametric tests indicate also rejection of the joint hypothesis of CRS
and dynamic cost minimization. However, the results of the nonparametric tests conducted
for homotheticity and dynamic cost minimization are inconclusive. The joint hypothesis of
homotheticity and dynamic cost minimizing behavior is rejected by the stochastic test and
the deterministic test using quantity and observed input price data. The deterministic test
using quantity data fails to reject that hypothesis. These inconsistencies revealed between
the results of the deterministic test using only quantity data and the other types of tests rise
some concerns about the quality of the input price data.

This theoretical framework can provide analysts with a useful pre-test methodology be-
fore resorting to more precise parametric methodologies. Implementation of nonparametric
dynamic analysis is best suited to panel data.

Extensions and modifications of the theoretical framework proposed in this study are
necessary. There are several factors relevant to the production analysis that are not explicitly
considered in this framework. Learning and technical change are not considered in the
nonparametric approach to the dynamic theory of production. Learning can play a significant
role both in the decision-making process and as a source of intertemporal shifts in the
production technology and the production structure can change with technical change.
Relaxing the convexity property of the dynamic technology is another important factor to
be considered, requiring the development of another type of nonparametric approach to the
dynamic theory of production.

Nonparametric dynamic production analysis has the potential to be the foundation for
efficiency measurement where one can distinguish between the efficiency of variable inputs
and quasi-fixed factors (such as land, durable equipment). The efficient management of
production operations is addressed at how the variable factors of production (such as hired
labor, fuel, materials) are utilized in comparison to the challenges of managing the assets
of the operation.
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Appendix

Proof of Theorem 1. (1) ⇒ (2) Suppose that {V (y : k)} is a family of nested and “re-
verse nested” input requirement sets that cost-rationalizes the data set Sc. If y j ≥ yi and
k j ≤ ki , by the nestedness and “reverse nestedness” properties of V (y : k), it must be the
case that (x j , I j ) ∈ V (yi : ki ). Since {V (yi : ki )} cost-rationalizes the data set Sc, then, by
definition 1, the following statement is true

wi ′
x j + W i ′

k I j ≥ wi ′
xi + W i ′

k I i ; ∀i = 1, . . . , n, and j such that y j ≥ yi , and k j ≤ ki .

(2) ⇒ (3) Assume condition (2) holds at all data points of Sc. Let V (y : k) be the convex
monotonic hull of (xi , I i ) such that yi ≥ y and ki ≤ k; i.e.,

V (y : k) = com{zi + ei : yi ≥ y; ki ≤ k; ei ≥ 0} (A.1)

where zi = (xi , I i ), ei = (ei
x , −ei

I ) and com denotes convex monotonic hull. If � ∃(yi , ki )

such that yi ≥ y and ki ≤ k, then let V (y : k) = ∅. By construction, the set V (y : k) defined
in (A.1) is closed, convex in (x, I ), nested in y, “reverse nested” in k, positive monotonic
in x and negative monotonic in I for each y, given k.

It is left to be shown that {V (y : k)}, where V (y : k) is defined in (A.1), cost-rationalizes
the data set Sc. More specifically, one needs to show that

∀(x, I ) ∈ V (yi : ki ), wi ′
xi + W i ′

k I i ≤ wi ′
x + W i ′

k I ; (A.2)

for all i, i = 1, . . . , n. Using (A.1), V (yi : ki ) can be written as

V (yi : ki ) = com{z j + e j : y j ≥ yi ; k j ≤ ki ; e j ≥ 0}
for all i . Given that V (yi : ki ) is a convex polytype (i.e., the intersection of a finite number
of closed half-spaces), one only needs to check (A.2) at the vertices of this set. The vertices
of V (yi : ki ) is a subset of the following set {(x j , I j ) : y j ≥ yi ; k j ≤ ki }. However, by
condition (2) in the theorem one can state that wi ′

xi + W i ′
k I i ≤ wi ′

x j + W i ′
k I j ; for all i =

1, . . . , n, and j such that y j ≥ yi and k j ≤ ki . (3) ⇒ (1) (3) is a special case of (1).

Proof of Theorem 2. (1) Let VI (y : k) be the convex monotonic hull of (xi , I i ) as defined
in (A.1). By theorem 1, VI (y : k) cost-rationalizes the data set Sc.

(2) Since V (y : k) is nested in y and “reverse nested” in k, yi ≥ y and k ≥ ki imply that
(xi , I i ) ∈ V (y : k). Given that V (y : k) is convex in (x, I ), positive monotonic in x and
negative monotonic in I , one can establish that V (y : k) ⊃ VI (y : k).

(3) If V ′(y : k) is a input requirement set that cost-rationalizes the data, then it must be the
case that V ′(y : k) ⊃ {(xi , I i ) : yi ≥ y; k ≥ ki }. But VI (y : k) is the smallest closed, convex
input requirement set, positive monotonic in x and negative monotonic in I , that contains
all these points.

Proof of Theorem 3. (1) Let VO(y : k) = {(x, I ) : wi ′
x + W i ′

k I ≥ wi ′
xi + W i ′

k I i ; y ≥ yi ;
k ≤ ki }.

(x j , I j ) ∈ VO(y j : k j ) for all j . If (x j , I j ) �∈ VO(y j : k j ), then there is some yi ≤ y j

and ki ≥ k j such that wi ′
x j + W i ′

k I j < wi ′
xi + W i ′

k I i . But this contradicts the WADCM. In
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addition, let (x, I ) ∈ VO(yi : ki ). Then, by construction, wi ′
x + W i ′

k I ≥ wi ′
xi + W i ′

k I i ; y ≥
yi , k ≤ ki . Hence, VO(yi : ki ) cost-rationalizes the data set Sc.

(2) Let {V (y : k)} be any family of input requirement sets that cost-rationalizes the ob-
served data. Assume (x, I ) ∈ V (y j : k j ), but (x, I ) �∈ VO(y j : k j ). Then, wi ′

x + W i ′
k I <

wi ′
xi + W i ′

k I i for some y j ≥ yi and k j ≤ ki . Since y j ≥ yi , k j ≤ ki and (x, I ) ∈ V (y j : k j ),
the nestedness and “reverse nestedness” properties of V (y : k) imply that (x, I ) ∈ V (yi : ki ).
Given that V (y : k) cost-rationalizes the data set Sc, then wi ′

x + W i ′
k I ≥ wi ′

xi + W i ′
k I i . One

reaches a contradiction thus establishing the desired result.
(3) Let (x, I ) ∈ V ′(y : k), but (x, I ) �∈ VO(y : k). Then, by construction, wi ′

x + W i ′
k I <

wi ′
xi + W i ′

k I i for y ≥ yi and k ≤ ki . Thus, V ′(y : k) cannot cost-rationalize the data set Sc.

Proof of Theorem 4. (1) ⇒ (2) Let F(x, I, k) be a homogeneous function of degree 1 in
(x, I ) that cost-rationalizes the data set Sc. Then, by definition 2, the following statement
is true

yi = F(xi , I i , ki ), F(x, I, k) ≥ yi , k ≤ ki ⇒ wi ′
xi + W i ′

k I i ≤ wi ′
x + W i ′

k I ; (A.3)

i = 1, . . . , n.
By (A.3), one can state that yi = F(xi , I i , ki ), for all i , and by the linear homogeneity

property of this function, the following statements are true

1 = F

(
xi

yi
,

I i

yi
, ki

)
, ∀ i and y j = F

(
xi

(
y j

yi

)
, I i

(
y j

yi

)
, ki

)
, ∀ i �= j;

where y j = F(x j , I j , k j ). Since F(x, I, k) cost-rationalizes the data set Sc, then

w j ′
x j + W j ′

k I j ≤ w j ′
xi (y j/yi ) + W j ′

k I i (y j/yi ), for ki ≤ k j ;
or, equivalently

w j ′
xi + W j ′

k I i

w j ′ x j + W j ′
k I j

≥ yi

y j
, ki ≤ k j .

(2) ⇒ (3) Assume condition (2) holds; i.e.,

w j ′
x + W j ′

k I

w j ′ x j + W j ′
k I j

≥ y

y j
, k ≤ k j , j = 1, . . . , n.

Then,

y ≤ y j w j ′
x + W j ′

k I

w j ′ x j + W j ′
k I j

, k ≤ k j .

Let

F(x, I, k) = min
j

{
y j w j ′

x + W j ′
k I

w j ′ x j + W j ′
k I j

, k ≤ k j

}
.
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By construction, F(x, I, k) is continuous, linearly homogeneous, concave in (x, I, k), pos-
itive monotonic in (x, k), and negative monotonic in I .

One needs to prove that F(x, I, k) cost-rationalizes the data set Sc; or equivalently that
condition (A.3) holds at all data points. The first step is to prove yi = F(xi , I i , ki ) for all
i = 1, . . . , n. By construction,

F(xi , I i , ki ) = min
j

{
y j w j ′

xi W j ′
k I i

w j ′ x j + W j ′
k I j

; ki ≤ k j

}

and, thus, the following statement is true

F(xi , I i , ki ) = ym wm ′
xi + W m ′

k I i

wm ′ xm + W m ′
k I m

≤ yi wi ′
xi W i ′

k I i

wi ′ xi + W i ′
k I i

= yi .

Therefore, F(xi , I i , ki ) ≤ yi . From condition (2) in the theorem, one can also state that

ym wm ′
xi + W m ′

k I i

wm ′ xm + W m ′
k I m

≥ yi

or equivalently F(xi , I i , ki ) ≥ yi . F(xi , I i , ki ) ≤ yi and F(xi , I i , ki ) ≥ yi implies that
F(xi , I i , ki ) = yi , for all i = 1, . . . , n. To show that the second part of condition (A.3) is
satisfied at all data points, suppose yi = F(xi , I i , ki ) ≤ F(x, I, k), k ≤ ki . Then, by con-
struction of the production function,

yi ≤ F(x, I, k) = min
j

{
y j w j ′

x + W j ′
k I

w j ′ x j + W j ′
k I j

, k ≤ ki

}

which is equivalent to stating that

yi ≤ F(x, I, k) ≤ yi wi ′
x + W i ′

k I

wi ′ xi + W i ′
k I i

, k ≤ ki .

Hence,

yi ≤ yi wi ′
x + W i ′

k I

wi ′ xi + W i ′
k I i

, k ≤ ki ,

or equivalently

wi ′
x + W i ′

k I

wi ′ xi + W i ′
k I i

≥ 1; k ≤ ki .

(3) ⇒ (1) (3) is a special case of (1).

Proof of Theorem 5. (1) ⇒ (2) Let F(x, I, k) = M(h(x, I, k)) be a homothetic production
function that cost-rationalizes the data set Sc. Since M(·) is a monotonic function, M−1(·)
is well-defined. Let hi = M−1(yi ) = h(xi , I i , ki ), for all i, i = 1, . . . , n. Then, the data set
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Sc = {(hi , xi , I i , ki , wi , ci , W i
k ); i = 1, . . . , n} is consistent with cost minimization and a

homogeneous production function of degree 1; i.e.,

hi = h(xi , I i , ki ), h(x, I, k) ≥ hi , k ≤ ki ⇒ wi ′
xi + W i ′

k I i ≤ wi ′
x + W i ′

k I. (A.4)

By the homogeneity property of h(x, I, k), the following statements are true

1 = h

(
xi

(hi )
,

I i

(hi )
, ki

)
; and h j = h

(
xi

(
h j

hi

)
, I i

(
h j

hi

)
, ki

)
;

where h j = h(x j , I j , k j ).
By the cost minimization assumption, it must be the case that

w j ′
x j + W j ′

k I j ≤ w j ′
xi

(
h j

hi

)
+ W j ′

k I i

(
h j

hi

)
,

where ki ≤ k j . Rearranging the previous expression yields

w j ′
xi + W j ′

k I i

w j ′ x j + W j ′
k I j

≥
(

hi

h j

)
; ki ≤ k j .

(2) ⇒ (3) Assume condition (2) holds at all data points. Then, the following statement is
true for all j, j = 1, . . . , n,

w j ′
x + W j ′

k I

w j ′ x j + W j ′
k I j

≥
(

h

h j

)
; k ≤ k j ,

or, equivalently

h ≤ h j

(
w j ′

x + W j ′
k I

w j ′ x j + W j ′
k I j

)
; k ≤ k j .

Let

h(x, I, k) = min
j

{
h j

(
w j ′

x + W j ′
k I

w j ′ x j + W j ′
k I j

)
; k ≤ k j

}
.

By construction, h(x, I, k) is a continuous, concave and homogeneous function of degree
1 in (x, I ), positive monotonic in (x, k), and negative monotonic in I . Thus, it is left to be
shown that h(x, I, k) cost-rationalizes the data set S̄c

h(xi , I i , ki ) = min
j

{
h j

(
w j ′

xi + W j ′
k I i

w j ′ x j + W j ′
k I j

)
; ki ≤ k j

}
.

h(xi , I i , ki ) = hm

(
wm ′

xi + W m ′
k I i

wm ′ xm + W m ′
k I m

)
≤ hi

(
wi ′

xi + W i ′
k I i

wi ′ xi + W i ′
k I i

)
= hi . (A.5)

From condition (2) in the theorem, the following statement is true

hm

(
wm ′

xi + W i ′
k I i

wm ′ xm + W m ′
k I m

)
≥ hi . (A.6)
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(A.5) and (A.6) lead to h(xi , I i , ki ) ≤ hi , h(xi , I i , ki ) ≥ hi ⇒ h(xi , I i , ki ) = hi for all
i, i = 1, . . . , n.

To prove the second part of (A.4), using hi ≤ h(x, I, k) leads to

hi = h(xi , I i , ki ) ≤ h(x, I, k) = min
j

{
h j

(
w j ′

x + W j ′
k I

w j ′ x j + W j ′
k I j

)}
≤ hi

(
wi ′

x + W i ′
k I

wi ′ xi + W i ′
k I i

)
.

Hence,

hi ≤ hi

(
wi ′

x + W i ′
k I

wi ′ xi + W i ′
k I i

)
or, equivalently

(
wi ′

x + W i ′
k I

wi ′ xi + W i ′
k I i

)
≥ 1; k ≤ ki .

Rearranging the previous expression, yields wi ′
x + W i ′

k I ≥ wi ′
xi + W i ′

k I i ; k ≤ ki where
hi ≤ h(x, I, k).

Since hi = h(xi , I i , ki ) and hi is increasing in yi for all i , one can construct a monotonic
transform mapping h(x, I, k) into output. The resulting production function is continuous,
quasi-concave, homothetic, positive monotonic in (x, k) and negative monotonic in I . Given
h(x, I, k) cost-rationalizes the data set S̄c, a monotonic transform of this function cost-
rationalizes Sc.

(3) ⇒ (1) (3) is a special case of (1).

Notes

1. All the variables are time dependent. The time index, t , is dropped for the sake of clearer exposition.
2. By definition, the shadow value of capital, W i

k , measures the impact on the value function due to a small change
in the initial capital stock. Therefore, the shadow value of capital is an endogenous price of capital and influenced
by the market input prices (wi , ci ), the production target and the initial capital stocks. Consequently, W i

k is
not an element of Sc . The empirical implementation of the nonparametric tests for cost minimizing behavior,
later in the paper, is accompanied by a discussion on the procedures adopted to generate the shadow value of
capital.

3. Proof of this theorem and other theorems that follow are found in the appendix. More extensive discussion is
found in Silva (1996).

4. The DPE in definition 1 can be rewritten as

r W (wi , ci , yi , ki ) = min
I

{
C(wi , I, yi , ki )+ ci ′ ki + W i ′

k (I − δki )
}

where C(.) is the short-run variable cost function. If the short-run variable cost function satisfies the usual regu-
larity conditions, a sufficient condition for the intertemporal cost minimization problem is CI (wi , I ∗, yi , ki ) =
−W i

k , implying the marginal cost of adjustment must be equal to minus the shadow value of capital at each
time period. The optimality condition implies perfect cost efficiency. Optimal and observed gross investment
differ necessarily for a cost inefficient firm. In this case, the shadow value of capital, called the behavioral
shadow value, can be approximated as the negative of the marginal cost of adjustment evaluated at the observed
level of gross investment as CI (wi , I i , yi , ki ) = −W bi

k . This condition and the kernel estimation method can
be used to estimate the behavioral shadow value of capital, W bi

k , for each observation.
5. As noted by Banker and Maindiratta (1988, p. 1321), the construction of the inner bound proposed by Varian

(1984) in this way is equivalent to the Data Envelopment Analysis (DEA) construction of the technological
possibilities of the firm and this equivalence provides an interesting link between DEA and nonparametric
production analysis in economics.

6. See the discussion on the behavioral shadow value of capital in footnote 4.
7. See the discussion on the behavioral shadow value of capital in footnote 4.



30 SILVA AND STEFANOU

8. The values of hi can be obtained from the nonparametric test in (16) when the data series is consistent with a
well-behaved homothetic technology.

9. The annual gross investment in land and family labor are zero for many farms during the period 1987–1992
with 90–95 percent and 72–90 percent of the farms reporting zero gross investment in land and family labor,
respectively. Gross investment in buildings is strictly negative for approximately 75 percent of the farms during
the time period 1987–1989 where all the farms have a nonnegative gross investment during the years of 1990–
1992. Gross investment in machinery and equipment is strictly negative for 42–48 percent of the farms in
the time period 1987–1989 and becomes nonnegative for 95–100 percent of the farms in the last three years.
Gross investment in livestock is strictly positive for 80–100 percent of the farms during 1987–1990 with 60
percent and 65 percent of the farms realizing a strictly positive gross investment in livestock in 1991 and 1992,
respectively.

10. See footnote 4 for a discussion on the behavioral shadow value of capital. The kernel estimation method is a
nonparametric regression method that does not impose a functional form for the regression equation. Hence, no
parametric representation for the short-run variable cost function is assumed. The linear homogeneity property
of the short-run variable cost function in the variable input prices is the only condition explicitly imposed on
this function. The farm-specific wage rate is used as the numeraire.

11. The estimates of the negative of the marginal cost of adjustment evaluated at the observed gross investment
vector are not reported due to space restrictions. In total, there are 1800 estimates. The results are available
from the authors upon request.

12. Point estimates of the quasi-fixed shadow values close to zero do not necessarily imply the absence of adjustment
costs and, thus, instantaneous adjustment. Instantaneous adjustment arises when the shadow value of the quasi-
fixed factors is constant.

13. For each exogenous variable z j , the window-width is defined as

h j = s j (n)
− 1

4+m+2o ; s2
j =

n∑
i=1

(
zi

j − z j

)2

n

j = 1, . . . , m +2o. h j is the estimator of the window-width minimizing the integrated mean square error
(Ullah, 1988a and 1988b; Bierens, 1987).

14. No measurement error information is available for the specific data series used in this study. National income
data are usually measured with a standard error higher than 10% (Morgenstern, 1963). The Department of
Commerce reported that standard errors of state-level quantity data for the two-digit SIC category, Food and
Kindred Products, are on average 8% (Lim and Shumway, 1992). Based on the evidence of measurement error
in other data series, the 10% measurement error is adopted as the rejection criterion.

15. The nonparametric tests for WADCM are also conducted by splitting dairy operators among the following
herd size classes: hs1 = [40, 60], hs2 = [61, 80] and hs3 = [81, 100]. The idea underlying this division is that
behavioral differences (e.g., differences in managerial practices) may be present across dairy operators with
different herd sizes. The empirical results are, in general, similar to the ones presented in Table 1. However,
they reveal some differences in the pattern of violations among the three herd size classes. The deterministic
and the goodness-of-fit tests indicate that herd size class 3 has the highest percentage of violations but the least
degree of seriousness as indicated by the relative magnitude of the average percentage error. The stochastic
test results indicate observed departures from WADCM are not statistically significant for herd size class 1 in
1991. The results are available from the authors upon request.

16. One possible way to investigate the axioms proposed in this study allowing for lumpy investments and lumpy
production is using a nonparametric approach called the Free-Disposal-Hull (FDH). FDH is a nonparametric
approach relaxing the convexity assumption of the production possibilities set. FDH is suggested by Deprins,
Simar and Tulkens (1984).

17. The parametric approach embodies first- and second-order conditions when the set of first-order conditions
from a primal specification, or the system of equations from a dual specification plus the concavity (convexity)
of the cost (profit) function are imposed in the estimation.

18. The test results for each of herd size class (see footnote 14) are, in general, similar to the results presented in
Table 2. The results from the stochastic test and the deterministic test using quantity and observed input price
data are consistent and indicate rejection of the joint hypothesis. However, the deterministic test using quantity
data indicates, in general, failure of the joint hypothesis for all herd size classes in all years, except for herd
size class 3 in three years. In 1987, 1988 and 1990, herd size class 3 is fully consistent with the technological
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hypothesis of CRS and dynamic cost minimization. These results are inconsistent with the results generated
by the stochastic test and the deterministic test using quantity and observed input price data. The results are
available from the authors upon request.

19. The nonparametric tests for homotheticity and dynamic cost minimization considering the three herd size
classes are, in general, similar to the results presented in Table 3. The deterministic test using quantity data
indicates all three herd size classes satisfy fully the joint hypothesis in all years. The deterministic test using
quantity and observed input price data indicates that herd size class 2 is fully consistent with the joint hypothesis
in 1987 and 1992; and herd size class 3 is fully consistent with the hypothesis in 1989, 1990 and 1992. The
stochastic test results indicate the observed violations for herd size class 1 in 1991 are not statistically significant.
The results are available from the authors upon request.
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