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Abstract

The Dirichlet process prior allows flexible nonparametric mixture modeling. The number of mixture components

is not specified in advance and can grow as new data come in. However, the behavior of the model is sensitive to the

choice of the parameters, including an infinite-dimensional distributional parameter G0. Most previous applications

have either fixed G0 as a member of a parametric family or treated G0 in a Bayesian fashion, using parametric prior

specifications. In contrast, we have developed an adaptive nonparametric method for constructing smooth estimates

of G0. We combine this method with a technique for estimating α, the other Dirichlet process parameter, that is

inspired by an existing characterization of its maximum-likelihood estimator. Together, these estimation procedures

yield a flexible empirical Bayes treatment of Dirichlet process mixtures. Such a treatment is useful in situations where

smooth point estimates of G0 are of intrinsic interest, or where the structure of G0 cannot be conveniently modeled

with the usual parametric prior families. Analysis of simulated and real-world datasets illustrates the robustness of

this approach.

1 INTRODUCTION

Mixture modeling is an effective and widely practiced density estimation method, capable of representing the phe-

nomena that underlie many real-world datasets. However, a long-standing difficulty in mixture analysis is choosing

the number of mixture components. Model selection methods, such as cross-validation or methods based on Bayes

factors, treat the number of components as an unknown constant and set its value based on the observed data. Such

an approach can be too rigid, particularly if we wish to model the possibility that new observations come from as yet

unseen components.

The Dirichlet process (DP) mixture model, studied in Bayesian nonparametrics (Ferguson 1973, Blackwell and

MacQueen 1973, Berry and Christensen 1979, Escobar and West 1995, Liu 1996, MacEachern and Müller 1998, Neal

2000, Rasmussen 2000, Ishwaran and James 2002), allows for exactly this possibility. When a new data point arrives,

it either shares the component of some previously drawn value, or it uses a newly generated component realized from

a distribution G0. The frequency with which new components are generated is controlled by a parameter α > 0. The

DP mixture model has found widespread application in recent statistical research (Rasmussen and Ghahramani 2002,

Carota and Parmigiani 2002, Gelfand and Kottas 2002, Ishwaran and James 2002, Brown and Ibrahim 2003, Iorio

et al. 2004, Müller et al. 2004).

Analyses based on DP mixtures are sensitive to the choice of the Dirichlet process parameters G0 and α; the need to

treat these parameters carefully is discussed by Escobar and West (1995). In applications, some previous authors have

chosen a fixed G0, such as a normal with large variance relative to the data (Ishwaran and James 2002) or a Beta(a, b),
where a and b are stipulated without further discussion (Liu 1996). Other authors have used a parametric family of

priors for G0, such as uniform-inverse Wishart (MacEachern and Müller 1998) or normal-inverse gamma (MacEachern

and Müller 1998, Rasmussen 2000), with fixed hyperprior distributions on the parameters of the prior family. The

hyperprior distributions are usually chosen by sensitivity analysis, or else they are chosen to be diffuse with respect to

the observed data.

Such approaches can succeed in circumstances where the true G0 has a form that is well approximated by a simple

fixed choice or by some member of a typical parametric prior model. On the other hand, the parametric approach can

have adverse consequences when the true G0 exhibits complicated structure. For example, G0 could be multimodal,

skewed, heavy-tailed, or all of these in combination. Furthermore, there is sometimes scientific interest in the structure
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of G0 itself, not just in inferences using a DP mixture based on G0. In such cases, parametric families can create

obstacles. For example, a Bayes point estimate inside a normal family for G0 will necessarily be symmetric and

unimodal.

In this work we present a procedure for smooth, adaptive estimation of an arbitrary continuous G0. This poses

some difficulties, because G0 is an infinite-dimensional distributional parameter whose realizations are never directly

observed. We address this problem using approximate posterior inference over flexible, model-free nonparametric

density estimators. We also employ an approximate maximum-likelihood estimator (MLE) for α, based closely on a

characterization of the MLE due to Liu (1996). When combined in parallel, these two estimation procedures yield a

nonparametric empirical Bayes approach to handling the parameters (G0, α) of the DP mixture model. As we will see

in Section 4, this approach is robust to a variety of choices for the true G0, and works especially well when the true α
and the number of observations are not too small.

There have been studies of related ideas. Berry and Christensen (1979) used an empirical Bayes approach in

the context of binomial DP mixtures. But they assume that G0 and α are known, in order to focus on posterior point

estimates of G, the realization of the Dirichlet process in the mixture model. By contrast, our method treats G as a fully

random quantity to be marginalized for purposes of inference, and so incorporates more of the structured uncertainty

from the DP mixture. The same comment applies to Yu et al. (2004) and Ishwaran and James (2002), which both

describe methods for constructing point estimates of G. Yu et al. (2004) also assume a fixed G0. Teh et al. (2004)

put a further Dirichlet process prior on G0, and so still face the issue of a hyperprior distributional parameter G00.

This is also true of Tomlinson and Escobar (1999), though these authors use a Dirichlet process mixture, rather than a

Dirichlet process, in order to obtain smooth realizations of G0. In both cases, the focus is on specifying hierarchical

nonparametric models for grouped data. To our knowledge, smooth nonparametric point estimates of G0 in the DP

mixture model have not been studied.

Note moreover that several authors (Escobar and West 1995, Rasmussen 2000, Ishwaran and James 2002) fix a

G0 from a parametric family, or choose fixed hyperprior distributions for a parametric family of G0’s, based on the

observed data. When this strategy is not accompanied by sensitivity analysis, it is in effect a form of parametric

empirical Bayes in the DP mixture model, to which our method is a nonparametric counterpart.

2 DIRICHLET PROCESS MIXTURE MODELS

Recall that in the finite mixture model, each data point is drawn from one of k fixed, unknown distributions. For

example, the simplest Gaussian mixture assumes that each observation has been drawn from one of k Gaussians,

parameterized by k different means.

To allow the number of mixture components to grow with the data, we move to the general mixture model setting.

This is best understood as the hierarchical graphical model of Figure 1(A); the conditional hierarchical relationships

are summarized as follows:

Xn | θn ∼ p(· | θn) , n = 1, . . . , N , (1)

θn |G ∼ G(·) , n = 1, . . . , N . (2)

If the unknown G is a discrete distribution on a finite set of values, this setup reduces to the finite mixture model.

Of course, estimation and inference in the general mixture model must somehow account for G. Bayesian nonpara-

metric methods view G as an (infinite-dimensional) parameter, requiring a prior distribution in the usual way. Since

G itself is a probability distribution on the θ parameter space, this prior is a distribution on probability distributions,

making G (viewed as a random variable) a random distribution. In other words, the fully Bayesian framework treats

the probability distribution G as a random quantity whose realizations are members of G, the family of all probability

distributions on the θ parameter space.

One class of Bayesian nonparametric techniques uses a distribution on distributions called the Dirichlet pro-

cess (Ferguson 1973). A Dirichlet process (DP) is parameterized by a scaling parameter α > 0 and a base measure

G0, which, like realizations of G, is a probability distribution on the θ parameter space. Using this prior on G leads

to the Dirichlet process mixture model (DP mixture) of Figure 1(B), corresponding to the following extension of the
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Figure 1: (A) The general mixture model and (B) the Dirichlet process mixture model, as graphical models. Panel (B)

adds to Panel (A) a nonparametric Dirichlet process prior on G, with parameters G0 and α.

hierarchical specification in Equations (1) and (2):

Xn | θn ∼ p(· | θn) , n = 1, . . . , N , (3)

θn |G ∼ G(·) , n = 1, . . . , N , (4)

G |G0, α ∼ DP (· |G0, α) . (5)

For example, a real-valued dataset may be modeled by a Gaussian DP mixture: θn is the mean parameter to the

Gaussian from which Xn was drawn, the Gaussian variance is fixed, and G0 is an arbitrary distribution on ℜ.

Blackwell and MacQueen (1973) show that the joint distribution induced on θ1:N by the DP mixture model corre-

sponds to a generalized Pólya urn scheme. Thus, the θn’s are exchangeable and exhibit a so-called clustering effect:

given θ1:(n−1), θn is either equal to one of θ1:(n−1), or it is an independent draw from G0:

p(θn | θ1:n−1) ∝ αG0(θn) +
n−1
∑

i=1

δ(θi, θn) . (6)

This means the θ1:N are randomly partitioned into subsets, or classes, within which all parameters take on the same

value. The distribution over partitions is given by the Pólya urn scheme. Letting θ∗1:k denote the k distinct values in

θ1:(n−1), the next draw from the DP follows the urn distribution

θn | θ1:n−1 =

{

θ∗
i

with prob. ni

n−1+α

θ, θ ∼ G0 with prob. α

n−1+α
,

(7)

where ni is the number of times the value θ∗
i

occurs in θ1:(n−1). We can uniquely specify θ1:N using the θ∗1:k and class

assignments z1:N , such that θn = θ∗zn
for all n.

From the clustering properties of the DP described above, the data x1:N can also be partitioned into classes, each

of whose members share the same distinct parameter value θ∗
i
. Thus, as with a finite mixture model, the data are

drawn from k unique distributions p(· | θ∗
i
). However, in a DP mixture, the number k of such distributions is randomly

determined by the urn model. Furthermore, a new observation xN+1 might be drawn using a parameter value which

did not appear during the generation of x1:N , i.e., xN+1 might come from a new, previously unseen class.

Given data x1:N and parameters (G0, α), the DP mixture yields a posterior distribution on θ1:N , the parameters

associated with each data point. This posterior is analytically intractable, but Markov chain Monte Carlo (MCMC)

methods such as Gibbs sampling are used in practice to construct approximations (Neal 2000).

The parameters G0 and α play important roles in the distribution of θ1:N . The probability that θn differs from

all previously drawn parameter values is proportional to α; thus, larger values of this parameter lead to a higher

probability of many unique values of θn (i.e., a larger k). More importantly, the θ∗
i

are iid draws from G0, which is

also the distribution of the next unique parameter value. While estimating α has been previously addressed in several

ways, a smooth nonparametric point estimate of G0 has not been studied. Such a treatment is the primary focus of this

work.
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3 EMPIRICAL BAYES AND DIRICHLET PROCESS MIXTURES

The empirical Bayes (EB) method synthesizes inferential calculations common in Bayesian analysis with point esti-

mation of the frequentist type. The terminology and ideas originate with Robbins (1955) and have been developed

extensively in the statistical literature; a readable reference is Maritz and Lwin (1989). Typical applications treat

various specializations of the general mixture model given in Equations (1) and (2) and Figure 1(A).

In the classical EB approach to the general mixture model, we first construct a point estimate Ĝ of G (construed

for the moment as a fixed, unknown distribution rather than a random measure), using realizations x1:N from the

model. For example, if G is assumed to lie in a parametric class {G(· |λ) : λ ∈ ℜd}, we may obtain a point

estimate Ĝ(·) = G(· | λ̂) by computing the maximum-likelihood estimate (MLE) λ̂ under the marginal likelihood

ℓ(λ) = p(x1:N |λ) =
∫

p(x1:N |θ1:N )G(θ1 |λ) . . . G(θN |λ)dθ1:N . Then, probabilistic quantities of interest, such as

the predictive density p(xnew |x1:N ) or the marginal posteriors p(θn |x1:N ), are computed after replacing G with Ĝ.

Subjecting the DP mixture model of Figure 1(B) to the EB method is conceptually straightforward. Though the

DP mixture hierarchy has one more level than the general mixture model of Figure 1(A), the empirical Bayes rationale

nonetheless continues to apply at the top. Point estimates Ĝ0 and α̂ result from an appropriate procedure; then some

form of approximate inference proceeds with Ĝ0 and α̂ supplied in place of G0 and α.

The empirical Bayes paradigm can make probabilistic inferences in the DP mixture more robust by avoiding

the need to pre-specify top-level parameters when there is little prior knowledge available. An alternative means of

achieving robustness in this situation is a fully Bayesian specification of vague priors for G0 and α. Since vague

priors on infinite-dimensional parameters like G0 can be difficult to formulate, a choice is usually made to put prior

probability one on a parametric subfamily for G0. A hierarchy of hyperpriors can then be employed to increase

robustness, but the corresponding marginal prior for G0 will still put no mass on a large class of smooth distributions.

This is undesirable when we don’t have strong prior beliefs about G0 beyond smoothness. Furthermore, while a

misspecified prior for G0 may not greatly affect inferential quantities like the predictive density, its impact on a

posterior point estimate of G0 can be considerable.

We now describe our nonparametric empirical Bayes procedure for the DP mixture model. The approach alternates

between an estimation phase and an inference phase. In the inference phase, fixed point estimates (Ĝ0, α̂) from the

previous estimation phase are used to sample from the posterior distribution p(θ1:N |x1:N ), with G marginalized out.

In general, Ĝ0 will not be conjugate to the mixture kernel p(x | θ), which creates additional difficulties in sampling.

To handle this, we use the nonconjugate Gibbs sampler called Algorithm 8 in (Neal 2000). The estimation phase uses

the newly sampled values of θ1:N to construct updated point estimates (Ĝ0, α̂), as we now describe. Initialization of

our procedure is discussed in Section 4.1.

To motivate our estimate of G0, consider how we might proceed if the true θ∗1:k, which generated the observed

data, were revealed. Since these variables are independent and identically distributed according to G0, ideas from

frequentist nonparametric density estimation can be applied (Silverman 1986). Specifically, one could construct a

kernel density estimate (KDE) of the form Ĝ∗

0(·) = (1/k)
∑k

i=1 κh(θ∗
i
, ·). Here, κh(θ∗

i
, ·) is a smooth, positive,

integrable function, one copy centered at each θ∗
i
, with dispersion controlled by the bandwidth parameter h. The KDE

spreads the concentrated mass of the empirical distribution on θ∗1:k smoothly over the θ domain.

The difficulty with this idea, of course, is that we do not observe θ∗1:k. However, the inference phase supplies a set

of B approximate realizations from the posterior distribution on θ∗1:k. Thus it is natural first to replace the KDE Ĝ∗

0(·)
with its posterior mean, then substitute a Monte Carlo approximation thereto. Let the random variable K(θ1:N ) be

the true, unknown number of θ∗
i
’s, and let Kb equal the number of constituents in the bth draw θb∗

1:Kb
from the Gibbs

sampler. Then we have

E(Ĝ∗

0(·) |X1:N ) = E





1

K(θ1:N )

K(θ1:N )
∑

i=1

κh(θ∗i , ·) |X1:N





≈
1

B

B
∑

b=1

(

1

Kb

Kb
∑

i=1

κhb
(θb∗

i , ·)

)

=: Ĝ0(·) .
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In words, our estimate Ĝ0 of G0 is obtained by constructing B KDEs, one for each of the Gibbs sampler draws θb∗

1:Kb
,

then combining them in an average. In this definition, we need to select a kernel κh. There is optimality theory based

on asymptotics for this issue (Silverman 1986), but a Gaussian density function with variance h is a convenient choice,

and that same theory suggests it comes with little loss in efficiency. We also need to choose an appropriate bandwidth

hb for each KDE in the average. Numerous methods exist to accomplish this automatically based on each draw’s θ∗
i

values. For the work reported in this paper, we used the “direct plug-in” method ĥ2P of Sheather and Jones (1991),

which is known to have superior theoretical and empirical properties. However, when we repeated our analyses with

other bandwidth-selection protocols, including the simple formula given by (3.31) in (Silverman 1986), the results

remained qualitatively the same.

One may ask why the kernel density estimation method was not applied directly to the observed data x1:N at the

outset. One reason is that the DP mixture model imposes concrete probabilistic structure which may correspond to our

understanding of the stochastic mechanism underlying the data: in particular, there could be a rationale for repeatedly

using the same conditional data density to generate a subset of the observations, in which case the partition of the

dataset given by the class assignments has intrinsic content.

We turn now to our estimate α̂. Point estimates of α have been studied previously. In particular, Liu (1996) proves

that the marginal maximum likelihood estimate of α in the DP mixture model must satisfy the stationarity condition

N
∑

n=1

α

α + n − 1
= E(K(θ1:N ) |X1:N , α) , (8)

with K(θ1:N ) as defined above. Here the dependence of the posterior mean on α has been made explicit in the

notation. This condition does not have a closed-form solution in α; indeed, exact evaluation of the posterior mean in

(8) is generally not feasible. Liu notes that the posterior mean can be approximated using a Gibbs sampling estimate,

but instead he goes on to employ a sequential imputation method. Here we pursue the Gibbs sampling approximation,

given by

E(K(θ1:N ) |X1:N , α) ≈
1

B

B
∑

b=1

Kb , (9)

with Kb as previously defined. In the estimation phase, given the previous inference phase’s Gibbs draws, we solve

numerically the approximation to (8) based on (9). This yields our estimate α̂.

4 RESULTS

4.1 SIMULATIONS

We applied our nonparametric empirical Bayes procedure to simulated data from DP mixture models under several

settings of (G0, α). In all simulations, we drew 500 observations; the conditional data density is Gaussian with

mean θn and standard deviation fixed to 0.1 · SD(G0). Because our interest in these simulations lies foremost with

estimating G0 and α, we treat the class-conditional SD as known to the procedure. In order to include examples where

G0 has properties not easily modelled by the parametric priors of previous authors, we consider the following four G0

distributions: (i) a standard normal; (ii) a t3 distribution, which exhibits heavy tails; (iii) the distribution of − log Z,

Z ∼ χ2
1, which has strong positive skew; and (iv) an equal mixture of two well-separated t5 distributions, having both

heavy tails and pronounced bimodality. We choose α ∈ {1, 5, 10}, corresponding to a small, moderate, and large

typical number of classes in the data.

To obtain an initial estimate Ĝ0 for our procedure, we fit a KDE to the observed data, resulting in a peaky,

multimodal distribution. In order to understand the initialization of α̂, note that for a moderate observation count n,

the prior expected number of classes in the data (i.e., the number of θ∗
i
) is approximately α log n. Thus, a plausible

range of candidate initial values for α̂ is from 1/ log n, corresponding to a single class, to n/ log n, corresponding to

one class per observation. We tried initializing α̂ at the bottom, middle, and top of this range; the final converged value

was nearly the same in all cases.
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Figure 2: Each column depicts the evolution of Ĝ0 in a simulation using some true G0 (top label) and α = 5. The

density plots in rows 1–3 show the true G0 (dashed), Ĝ0 (solid), and Ĝ∗

0 (dotted), a KDE built from the true θ∗
i
’s. Grey

lines give the individual component KDE’s of Ĝ0, one constructed from each Gibbs sample of θ∗1:k. Each plot in the

bottom row gives the progression of TVD(G0, Ĝ0), with TVD(G0, Ĝ
∗

0) as a grey reference line.
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Round 175

Figure 3: Flow plots of Gibbs sampler output at early rounds (left, middle) and after convergence (right) of the DP EB

procedure. At bottom, a rug plot of the observed data (black vertical ticks). Each grey circle is centered at a true θ∗
i
,

with radius proportional to the number of observations it generated. Each row of black circles gives the same depiction

for one draw of θ1:N from the Gibbs sampler. From a simulation with α = 5 and G0 = N(0, 1).

Each column of Figure 2 plots the estimate Ĝ0 as a solid line after 0, 5, and 200 rounds of alternation between

the estimation phase and inference phase, with a true α of 5. The true G0 for a given simulation is named above the

column and plotted with dashes in the column’s top three panels. In addition, the KDE Ĝ∗

0 constructed from the true

θ∗
i
’s in the simulation is given as a dashed line in those panels. We see that, as the rounds progress, Ĝ0 changes from

a rapidly fluctuating function to a smooth curve which closely approximates Ĝ∗

0. Given that Ĝ∗

0 is the ideal kernel

density estimate we would construct if the θ∗
i
’s were revealed to us, this behavior is striking. The bottom row of

Figure 2 demonstrates this property more clearly, using the total variation distance (TVD) metric. The TVD between

two probability distributions P and Q is defined as supA |P (A) − Q(A)|, with the supremum taken over measurable

sets A. Each panel plots with a solid line the TVD between Ĝ0 and G0 as the rounds progress, and gives the TVD

between Ĝ∗

0 and G0 as a horizontal dotted line for reference. As can be seen, after no more than 15 rounds Ĝ0 begins

to fluctuate around a density which is almost as good an estimate as Ĝ∗

0. The fluctuation arises due to sampling

variability in the Gibbs draws from the inference phase. This stabilization occurs despite the kurtosis of G0 in column

2, its skewness in column 3, and its multimodality in column 4, all of which are captured by Ĝ0. The behavior of α̂ is

very similar: after a small number of rounds, α̂ settles down to fluctuate around a value near the true α.

Figure 3 shows how the Gibbs sampler in the inference phase also stabilizes as the rounds progress. Each panel

depicts multiple draws (after the diagnosed convergence of the sampler) from the posterior distribution on θ1:N , at

rounds 1 (left), 5 (middle), and 175 (right). Within a panel, each draw is represented as a row of black circles, with

rows arranged from earlier (bottom row) to later (top row) in the Gibbs run. Within a row, each circle corresponds to a

distinct θ∗
i
. The value of θ∗

i
is indicated by the circle’s location on the x-axis, and the number of observations assigned

to θ∗
i

is proportional to the radius of the circle. The true θ’s in this simulation are shown as the bottommost row of

grey circles, and the observed data appear as a rug plot underneath. Notice that the Gibbs samples from round 1 reflect

much uncertainty about the number and location of the θ∗1:k underlying the data. As Ĝ0 and α̂ improve in later rounds,

the posterior distribution becomes sharply peaked around the true values of θ.

We also carried out a comparison between our nonparametric EB procedure and a simpler parametric approach

to adaptive point estimation of G0, called the data-dependent Gaussian method. The latter takes Ĝ0 to be a fixed
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Table 4.1: Total Variation Distances (%) in Simulation

G0 α G0:DG G0:NP PD:DG PD:NP

1 41.63(5.54) 50.15(12.61) 2.93(0.47) 4.42(0.84)

N(0, 1) 5 46.94(1.72) 13.56( 1.29) 2.84(0.39) 3.15(0.42)

10 52.77(4.26) 13.24( 1.40) 3.63(0.26) 2.81(0.43)

1 33.59(5.20) 41.09( 8.71) 2.45(0.45) 3.35(0.48)

t3 5 58.17(6.68) 19.84( 3.41) 3.92(0.49) 2.85(0.30)

10 60.57(2.24) 17.91( 1.56) 4.43(0.14) 2.79(0.22)

1 47.67(2.73) 33.92(10.08) 2.37(0.38) 3.76(0.97)

− log Z, Z ∼ χ2
1 5 44.14(5.22) 18.75( 2.17) 3.39(0.29) 3.12(0.46)

10 59.02(3.08) 17.11( 1.54) 4.02(0.30) 2.55(0.12)

1 56.73(5.91) 53.23(10.87) 2.46(0.38) 2.91(0.34)

t5 mixture 5 64.21(2.10) 28.64( 1.88) 3.08(0.51) 3.30(0.58)

10 65.66(0.52) 20.20( 3.69) 4.07(0.11) 2.18(0.25)

Each entry contains a mean %TVD and its standard error (parenthesized) between a pair of densities (column label)

in one of 12 simulation scenarios (row label). The density pairs are (1) G0 vs. the Ĝ0 of the data-dependent Gaussian

method (G0:DG); (2) G0 vs. our nonparametric Ĝ0 (G0:NP); (3) the predictive density using G0 vs. the one inferred

using the data-dependent Gaussian method (PD:DG); (4) the predictive density using G0 vs. the one based on our

nonparametric EB procedure (PD:NP). Mean and SE are over 5 repetitions of each simulation.

Gaussian distribution, with mean set to the sample mean of the data and SD set to four times the sample SD. In

addition, rather than utilizing a point estimate of α, we place a Gamma(2,2) prior on it. Both approaches then estimate

the predictive distribution using Ĝ0 whenever G0 is required. The data-dependent Gaussian method is similar to a

procedure described by Ishwaran and James (2002), in which the SD of G0 is set to four times the sample SD and a

highly diffuse zero-mean normal prior is put on G0’s mean. This prior has the effect of centering the posterior mean

of G0 with respect to the θ∗
i
’s, much like our method centers G0 on the data. These authors use a Gamma(2,2) prior

for α.

Table 4.1 shows the average percent TVD between the true G0 and the Ĝ0 from the data-dependent Gaussian

method in column 3; column 4 gives the TVD between G0 and the nonparametric Ĝ0. Each row corresponds to one

particular combination of true G0 and α from our simulations; the TVD average and its standard error (SE) are over

five independent replications of the relevant simulation. We see that the quality of the Ĝ0 estimate can depend strongly

on the choice of estimation procedure. When α = 1, the two approaches to constructing Ĝ0 perform comparably (after

accounting for simulation variability). However, at higher values of α the nonparametric Ĝ0 improves substantially

on the parametric Ĝ0. The data-dependent Gaussian method also has difficulties because its prior puts more mass on

small values of α, as is conventional in other treatments of the Dirichlet process mixture model.

Table 4.1 also reports the average percent TVD between the predictive density based on G0 and the one based on

either the data-dependent Gaussian method (column 5) or the nonparametric EB procedure (column 6). Notice that,

in all simulations, both procedures produce rather close approximations to the ideal predictive density estimate based

on G0—the predictive density is not too sensitive to the choice of Ĝ0. At α = 1, the smallest value, the predictive

density resulting from the nonparametric EB procedure is worse than its counterpart based on the Gaussian Ĝ0. This

can be understood by recalling that the expected number of distinct θi’s is about α log n ≈ 6 for α = 1 and n = 500.

Thus, even the KDE Ĝ∗

0 built from the true θ∗
i
’s, which our nonparametric procedure approximates, is based on only

about six values. This is an example of a well-known phenomenon: nonparametric estimates on small samples are

often outperformed by simpler parametric estimates, even when the parametric model is misspecified. On the other

hand, at α = 5 the two procedures for Ĝ0 perform about the same (up to simulation variability), and at α = 10 the

nonparametric method is significantly better in every simulation, even when the Gaussian family for the parametric

Ĝ0 is correctly specified.
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Figure 4: Graphs of Ĝ0 (left-hand) and the estimated predictive density (right-hand) for the galaxy and stamp datasets.

Grey lines give the individual component curves, one from each Gibbs sample, which are averaged to produce the

relevant estimate.
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4.2 REAL-WORLD DATA ANALYSIS

To study the behavior of our nonparametric empirical Bayes procedure on real data, we re-analyzed two well-known

datasets. The galaxies data (Roeder 1990) consist of velocity measurements for 82 galaxies from diverse sections of

the Corona Borealis region. The stamp data (Wilson 1983) are the thicknesses of 485 Hidalgo postage stamps issued

in Mexico from 1872–1874. In both datasets, there are empirical reasons to expect subpopulation structure in the

observations. Ishwaran and James (2002) used DP mixture modeling as described in the discussion of Table 4.1 to

account for the uncertainty in the number of such subpopulations.

We ran 200 rounds of the DP EB procedure on each dataset, though stabilization of Ĝ0 and α̂ occurred much

sooner. We used the same Gibbs sampler configuration as in Section 4.1. To address the unknown variance of the

conditional data density, we introduced a shared parameter σ2. Then, draws from the Gibbs sampler were used to

effect a straightforward Monte Carlo EM procedure (Wei and Tanner 1990) for its estimation. The MC-EM algorithm

operates in parallel with the nonparametric empirical Bayes algorithm for (G0, α).
Figure 4 presents the converged estimates Ĝ0 as well as the predictive densities p(xnew |x1:N , α̂, Ĝ0) we obtained.

It is interesting that both Ĝ0’s differ noticeably from the Gaussian family used in Ishwaran and James (2002). The

galaxy data’s Ĝ0 exhibits a small mode in each tail in addition to a main central mode, raising the possibility of

additional higher-level clustering structure beyond that reflected in the sharing of θ values by the observations. The

high-probability, slightly bimodal region in the Ĝ0 of the stamp data suggests a more disperse relationship among the

θ∗
i
’s than a normality assumption would imply. As we noted in Section 4.1, the differences between our predictive

densities and those of Ishwaran and James (2002) are small, though some of the modes in our predictive densities are

more pronounced.

5 DISCUSSION

We have treated the problem of Dirichlet process mixture modeling in the context of nonparametric estimation for the

distributional parameter G0. After motivating a nonparametric point estimate Ĝ0 based on a posterior mean kernel

density estimator, we studied the effectiveness of the resulting empirical Bayes procedure in a suite of simulations.

Analyses of two real-world datasets suggested previously undiscovered structure in the DP mixture setting. We em-

phasize that application of this nonparametric empirical Bayes method to real data required no specification of the

Dirichlet process parameters α and G0.
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