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Abstract 
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1 Introduction 

In many situations the observed data are not scalar or multivariate measure­

ments, but rather curves measured on each sampling unit. Examples include 

growth curves of organisms, learning curves, measures of curvature of the 

human spine, stock market trends, and studies of uptake and retention of 

various drugs by organisms. Analysis of such data is often called growth 

curve analysis. Since the data that are recorded are discretized and include 

measurement error, an objective of such studies is often to characterize the 

population of curves in some way, or to estimate the individual curves. In 

this paper, we focus on the use of Empirical Bayes (EB) techniques (Casella 

1985, 1992; Efron and Morris 1973, 1975; Morris 1983) for improving the 

estimation of individual curves. 

A number of techniques have been devised for analyzing growth curves. 

(Some reviews may be found in Geisser, 1980; Goldstein, 1979; Marubini and 

Milani, 1986; Rao, 1987). We find most natural those that explicitly model 

the curves for each sampling unit. Ramsay and Dalzell (1991) coined the 

term "functional data analysis" for this approach. A number of functional 

approaches are in common use - these include linear or polynomial regres­

sion (Geisser, 1970; Grizzle and Allen, 1969; Lee and Geisser, 1972, 1975; 

Potthoff and Roy, 1964; Rao,1965 ), nonlinear parametric models (for ex­

ample, Bock and Thissen, 1976; Gibson, Bratchell and Roberts, 1988; Jenss 

and Bayley, 1937), semiparametric regression models (Ramsay and Dalzell, 

1991) and nonparametric regression models (Gasser et al, 1984; Hart and 

Wehrly, 1986; Stiitzle et al, 1980). 

While parametric models have some attractive features (often including 

interpretable parameters and ease of comparison of different subgroups of 

the population) the parametric form is seldom derived from known mech­

anisms, but instead is selected arbitrarily to fit the observed data. For 

this reason semiparametric and nonparametric fitting, which allow adaptive 

fits, are competitive alternatives for growth curve modelling. The methods 
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used in this paper are all linear smoothers - that is, the fitted values are 

linear combinations of the data. Linear smoothers include a large class of 

commonly used techniques, including polynomial and orthogonal series re­

gression, kernel and nearest neighbor estimators, running linear estimators 

and smoothing splines. 

When the experimental units come from a population, it is natural to 

suppose that some aspects of the growth patterns will be common to the 

growth curves. For example, growth curves for human height show rapid 

growth in the first few months of life, continued, slower growth in childhood, 

more rapid growth during the adolescent growth spurt, and then a plateau in 

adulthood. The exact timing and size of these features, of course, vary from 

individual to individual. Parametric estimation encodes these similarities in 

the parametric model. Typically, nonparametric regression is applied to the 

individual curves, and does not utilize the similarities among curves. In this 

paper we utilize population information in nonparametric curve estimation 

by applying EB techniques to the fitted values. This is in contrast to the use 

of EB estimation to improve parameter estimates (rather than fitted values) 

for parametric growth curve models, (Berkey, 1982; Hui and Berger, 1982; 

Laird and Lange, 1987; Rao, 1987; Strenio, Weisberg and Bryk, 1983) . 

Nonlinear and nonparametric regression estimators are, in general, bi­

ased for the true regression functions. When EB methods are used to com­

bine unbiased estimators, the resulting estimators are biased, and the im­

provement in estimation is due to a bias versus variance trade-off. When 

EB estimators are used to combine biased estimators, the resulting esti­

mators are recentered, which may reduce bias for some individuals. As a 

result, greater relative improvements in estimation error can result than in 

the unbiased case. 

In Section 2 we discuss the growth curve model and linear smoothers. 

In Section 3 we discuss a shrinkage paradox for biased estimators and show 

that the EB formulation leads to an estimator for the shrinkage parame­

ter. We also show heuristically that development of a Stein estimator is a 
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difficult problem in this context. In Section 4 we extend the EB ensemble es­

timator pointwise to nonparametric curve estimation and suggest a method 

of moments estimator of the shrinkage parameter. Section 5 summarizes a 

study on simulated human growth curves. Section 6 is a summary and brief 

discussion of the methodology. 

2 Functional Approach to Growth Curve Analy-. 
SIS 

Suppose that we have a sample of individuals from a population in which we 

are observing a phenomenon that changes over time (or some other dimen­

sion). This phenomenon may be some aspect of growth (if the individuals 

are organisms) or may be other time series such as acidification of lakes in 

a watershed. The important aspect is that for each individual in the pop­

ulation, the measurement of interest is a curve. For the ith individual, the 

curve 1s 

J.li(t) = J.l(t) + 1Ji(t) 

where tis time, J.l(t) is the mean curve over the whole population, and 7Ji(t) 

is the deviation of the individual's curve from the mean curve at timet. 

The population is sampled to obtain a set of N individuals, and each 

individual is observed at times it, t2, · · · , tr. The methods discussed in this 

article require that individuals have been measured at a fixed set of design 

points; however simulation results in Section 5 demonstrate that the meth­

ods can accommodate missing values. The data on the ith individual are 

Yi,t, · · · , Yi,T where 

(1) 

Nonparametric regression methods for growth curves assume that J.li(t) 

is smooth (that is, J.li(t) is continuous and differentiable), and the errors f:i,j 

have mean zero and constant variance u2 • The goal is to recover J.li(t) and 
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a number of techniques are available. In this article, we limit ourselves to 

linear smoothers. That is, the estimate, Jt.i(t) has the form: 

T 

iti(t) = L W>.(t,j)yi,j (2) 
j=l 

where the weight function, W>.(t,j) depends on the observation times, t1 · · · tT, 

the estimation time, t, and a smoothing parameter, .A, which controls the 

smoothness of the estimator. Some examples of this type of estimator in­

clude polynomial regression (.A=degree), truncated Fourier series (.A=highest 

frequency), kernel regression (.A=bandwidth), smoothing splines (.A=smoothing 

parameter) and running linear regression (A=span). A good review that 

provides some unifying ideas on these types of smoothers is Eubank (1988). 

Linear smoothers have in common the following features which are im­

portant to the use of EB estimation: 

1. The estimators are biased (except for special cases). That is: 

T 

L W>.(t,j)~-&i(tj) 
i=l 

i= 1-'i(t). 

(~-&i( •) denotes the entire function.) 

2. Var[Jt.i(tj)l~-&i(•)] < Var[Yi,jll-'i(•)]. That is, smoothing reduces the 

variance compared to the unbiased estimator Yi,j. 

3. If the data are Normally distributed, then (Yl,l · · · YN,T, f1.1 (it)··· itN(tT)) 

is jointly Nor mal. 

3 Empirical Bayes Estimation 

In this section we attempt to learn a little more about the form and proper­

ties of an EB estimator appropriate for non parametric regression estimation. 

Since linear smoothers are biased, we first address the simpler problem of 
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developing an EB estimator for a univariate problem when the individual 

estimators are biased. This estimator will be extended to a curve estimator 

in Section 4. We also look at some of the risk properties of our estimator in a 

simplified setting and find that, although risk domination of the individual 

estimators should be expected, development of a dominating estimator is 

difficult. 

3.1 Constructing an EB Estimator from Biased Estimators 

To understand how EB estimation can be used for curve estimation, it is 

useful to first look at a univariate case with a biased estimator. Suppose that 

we observe Zi,j where for each fixed i, Zi,j are independent and identically 

distributed with cumulative distribution function F( •lt.ti). Suppose that 1-'i 

is estimated by 

using data only from individual i. We evaluate the "goodness" of the 

estimates using squared error loss (SE), where the SE of the estimator 

(P1,P2, ... ,pN), as an estimate of(t.tl.t-'2, ... ,pN), is given by 

N 

SE =~)Pi- Pi?· 
i=1 

Typically, the estimators Jli are biased and can be written in the form: 

where 1/Ji is an unknown parameter with E(Pi) = 1/Ji, and Vi is an error term 

with E(vi) = 0 and Var(vi) = r 2 /T. 

Let fJ, = 1 2:~ 1 Pi and p = 1 2:~ 1 Pi. Then there is an a such that 

(3) 

has lower SE than Pi. Simple algebra shows that the optimal value is 

(4) 
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where we define Sxy = E~ 1 (X; -X)(Yi- Y)/(N -1). This is an example 

of a Stein paradox for biased estimators in that Pi uses information from the 

other populations, which may not be related in any way to the ,-th population. 

(See Green and Strawderman, 1991, for another example of Stein estimation 

with biased estimators.) 

When t/Ji = J.li, {J; is unbiased for J.'i, and 0 :$ a :$ 1. The result is well­

known for this case (James and Stein, 1961; Stein, 1956) and a is called the 

shrinkage parameter. We will continue to use this term even though, when 

{J; is biased for J.'i, a can be negative or greater than 1. 

Since the denominator is positive, a is negative only if Sp,p. < 0. The term 

a(P,i- ~) transforms the smallest {J; into the largest Pi and so on, reversing 

the ordering of the estimates so that they are positively correlated with the 

estimands. Similarly a can be greater than 1 only if Sp.'"' > Sp,p,, that is, 

only if the JJi's are more spread out than the p;'s. The term a(P,;- ~) then 

increases the spread of the estimates. In both cases, a moves the ensemble 

estimators, p;, to behave more like the collection of J.'~S. 

As with the Stein paradox for unbiased estimators, the result can be 

re-expressed in Bayesian terms using the hierarchical model: 

where, for now, we assume that the variances and covariances are known. 

Since J.'i is the parameter to be estimated, we can rewrite the model by 

integrating out tf;;. This yields 

(5) 

where o-~ = o-~ + r2 fT. The posterior mean of J.'i, a Bayes estimator, can 

be written 

Pi E(JJi IP.i) 

J.l + B(P,;- tf;) (6) 
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where 

(7) 

Note that (6) and (7) are population versions of (3) and ( 4). The estimator 

Jii in (3) is a candidate on which to base an EB estimator arising from the 

hierarchical argument. 

The relative mean squared error (RMSE) of P.i versus Pi is 

cr;- Bcr..pJ.£ 

cr..pJ.L/ B + cr~ - 2cr..pJ.£ + (J.L- ,p )2 

For the unbiased case (J.Li = 1/Ji and cr; = cr..pJ.£), the RMSE is just B. Table 

1 shows the potential gains in RMSE when J.L = ,P (which is clearly the 

case least favorable to the use of P.i). (Without loss of generality we assume 

cr~ = 1.) Shrinkage is most effective when the P~s are poorly determined or 

their conditional expectations ( ,P~s) are more spread out than the J.L~S. Even 

when the mean and variance of ,P~s and the J.L~S are the same, greater gains 

in mean squared error are possible in the biased than in the unbiased case, 

suggesting that an EB approach may lead to large savings in SE. 

[PLACE TABLE 1 ABOUT HERE) 

3.2 A Heuristic Approach to Shrinkage 

In the unbiased case, it is well-known that use of the method of moments to 

estimate the unknown parameters in the hierarchy usually improves the SE, 

but is not guaranteed to do so. Instead, a number of estimators have been 

proposed which are generally called "shrinkage" or Stein estimators. (For a 

recent review, see Brandwein and Strawderman, 1990.) 

For the biased case we have not been able to devise a shrinkage estimator. 

However, the following heuristics provide some insight into the problem. 

In model (5), take J.L = ,P = 0. (Since these are values specified a priori, 

this is not a loss of generality.) Then 
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where a= u,p1.Ju! and r*2 = u,pJ.I/B- u~J.I/u~. If we assume r*2 is known 

and equal to 1, we reduce consideration to the simpler stylized problem: 

Observe independent random variables xl' ... , XN' where 

Xi"" Normal(aJJ.i, 1). 

Find a good estimator of J.l. = (JJI. ... , JJN )'. 

If we assume a is known, then the usual estimator of JJ is X/ a, and the 

Stein estimator 

c X 
Oa(X) = (1- IXI2)-;, 

dominates X/ a if 0 < c < 2(N- 2) where IXI2 = EXf. In almost all cases 

of interest, however, we must consider a to be unknown and estimated by a 

quantity a. The natural Stein estimator to consider is then analogously 

(8) 

Our first goal is to compare the mean squared error (MSE=E(SE)) of oa(X) 

and X/a, the "usual" estimator of JJ. Calculating the difference in MSE 

yields (details are in the Appendix): 

MSE(oa)- MSE(X/a) 

E { [a12] [ 1 ~ 12 (c- 2~(N- 2)]- 2c ( 1- ~)]} (9) 

+ :c E ( a 2 1~1 2 t.xi a~i a)· 
Although (9) looks complicated, it does yield a lot of information about 

possible dominance. Firstly, if the estimator a is independent of X, the 

second expectation is zero, due to the derivative. (This situation is probably 

most likely, since we have only N observations to use in estimating the N 

means plus a. Thus an estimator of a must be based on other information 

which may be independent of the observations.) If a is not independent of 

X, then we would want the second expectation in (9) to be negative. If a is 
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a function of IXI2 ' say a = a(IXI2), then E~l Xi 8~; a = 2IXI 2 ~a(IXI 2 ) 

so a should be decreasing in IXI2 • 

If a is a consistent estimator of a, then the condition for dominance of 

the Stein estimator for known a will take over, and 6a will dominate Xja if 

c < 2(N- 2). Thus it is reasonable to assume that 6a will perform better 

than x;a as long as a is a reasonable estimator of a. 

As a last question, one can inquire whether X/a is, in fact, a better 

estimator than X. If not, domination of the latter should be the goal. 

Calculations give somewhat inconclusive results. Superiority of X/a over 

X depends on IJJ 12 • However' if a is a consistent estimator' then X/ a is 
preferred to X. 

In the growth curve problem, estimates of a are available due to the 

longitudinal component of each curve. However, as T increases, adaptive 

choice of smoothing parameter allows both the bias and variance of the curve 

estimators to diminish, reducing the need for shrinking. Clearly developing a 

Stein-type estimator for this problem, one that is guaranteed to dominate the 

individual estimators in total risk, is a difficult task. However, we have seen 

that good risk improvement is possible. Since we expect our EB estimators 

to behave similarly to their Stein-type counterparts, we expect them to yield 

good risk improvement. 

4 Linear Smoothing and Empirical Bayes Esti­

mation 

We now return to the EB approach to the problem of ensemble nonpara­

metric curve estimation. 

In the smoothing problem, the data are described by equation (1) and 

the estimator ofthe mean function by equation (2). Note that Pi(t) is biased 

for JJi(t) and Stein's paradox holds for the point estimator Pi(t). When the 

data are Normally distributed, so is Pi(t) for fixed smoothing parameter, so 

that under the assumption that tPi(t) = E[jti(t) lJJi( • )] and JJi(t) are jointly 
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Normally distributed we have, as in model (5) 

( Pi(t) ) "' Normal ( ( ,P(t) ) ( O"~(t) O".p(t)JL(t) ) ) (10) 
J.li(t) JJ(t) ' O".p(t)JL(t) o-;(t) 

where E[t/Ji(t)] = tj;(t), O"~(t) is the unconditional variance of the estimators, 

O".p(t)JL(t) is the covariance between the tPi(t)'s and the J.li(t)'s, and o-~(t) is 

the variance of the J.li(t)'s. 

Note that o-2(t) = o-~(t) + Var[fli(t)IJ.li(•)] and that typically for non­

parametric smoothers, TVar[fli(t)IJ.li(•)] is asymptotic to a function of)., 

so that o-~(t) ~ o-~(t) + r 2 /T where TVar[fli(t)IJ.li(•)]--+ r 2 . Thus for fixed 

t the model is very similar to model (5) although, for each i, the data were 

generated by a regression model rather than random sampling. 

Following the development in Section 3.1, we obtain (using Equation 6) 

E[J.li(t) I Pi(.)] 

JJ(t) + B(t) (Pi(t)- tJ;(t)) (11) 

where B(t) = O".p(t)JL(t)fo-2(t)' Allowing the Bayesian shrinkage parameter to 

depend on t allows for the fact that both the bias and variance of a linear 

smoother vary with t. 

All of the unknown parameters in (11) can be estimated at the design 

points using the method of moments. Since JJ(tj) = E(Yi,j) and tj;(tj) = 
E[fli(tj)] natural estimators of these parameters are the respective sample 

means iie,j and p(tj) defined in Table 2. A natural estimator of o-~(ti) is the 

sample variance, u2(ti) also defined in Table 2. Finally, Cov[Yi,j, Pi(tj )] = 

O".p(ti )JL(ti) + W>.(t j, j)o-2 so that a natural estimator of O".p(ti )JL(ti) is of the form 

&v[Yi,j, Pi(tj )] - W>.(tj ,j)c72 , where &v[Yi,j, Pi(tj )] is the sample covariance 

of the y's and the estimators, and fr2 is an estimator of the residual variance. 

A number of estimators of the residual variance are available (Buckley, Ea­

gleson and Silverman, 1988; Gasser, Sroka, Jennen-Steinmetz, 1986; Rice, 

1984). Once an estimator 8-2 has been selected, 8-.p(ti)JL(ti) can be defined as 

in Table 2. 

11 



[PLACE TABLE 2 ABOUT HERE] 

An initial estimate of B(tj) is computed using the method of moments: 

B(tj) = u.p~i)tt(t;). 
(T jJ,(t;) 

Since B(tj) is very noisy, we suggest the estimates be smoothed to new 

estimates b(t j). The final estimator at the design points is then 

(12) 

The only term of this equation that is not defined at general points t is Y•,j. 

However, by interpolating this term between design points, the Empirical 

Bayes estimator can be extended to general points. These computations 

have been summarized in Table 2. 

5 Simulation Results 

To determine the efficacy of the empirical Bayes estimator in a realistic 

setting, 3 small simulation studies were performed. The first study explores 

the effects of varying the number of curves and the number of design points 

per curve. The second study explores the effects of varying the within curve 

measurement error. The third study explores the effects of missing data. 

Growth curves were generated from the Bock and Thissen model (Bock 

and Thissen, 1976) for human growth (height): 

3 
A·k 

J.li(t) =I: [ '· ( ]' 
k=l 1 + exp -Ci,k t- Di,k) 

The values of Ai,k, Ci,k, Di,k were generated as multivariate normals with 

means and covariance functions computed from the Fels growth data for 

boys (Bock, personal communication, 1992). For each i, a mean curve was 

generated for ages 5 to 20. Only mean curves resulting in height at age 20 

between 157.5 and 193 em. were used (covering over 95% of the American 

adult population in 1976-1980 as reported in Freedman, Pisani, Purves and 
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Adhikari, 1991), resulting in use of about 90% of the generated curves in 

most cases. Normal errors were added to the mean curves to obtain the 

"data". 

Smoothing was done using the cubic smoothing spline estimator "bart" 

available from netlib (O'Sullivan, 1985). The smoothing parameter was cho­

sen using generalized cross-validation (Craven and Wahba, 1979) averaged 

over all the curves in the set. 

The method of moments estimator of the shrinkage parameter, described 

in Section 4 was computed at each design point, using the Gasser- Sroka 

- Jennen-Steinmetz estimator of residual variance averaged over the curves. 

The shrinkage parameters were smoothed (also using the cubic smoothing 

spline with smoothing parameter chosen by generalized cross-validation) and 

the final estimates were computed from equation (12). 

In the first study, sets of 20 or 50 different mean curves were generated 

according to the Bock and Thissen model. Normal errors with standard de­

viation 4 centimeters were added to the mean curves satisfying the inclusion 

criterion to obtain the "observed" growth data. Each simulation consisted 

of 100 replications. 

Figure 1 displays 5 results from a set of 50 curves (of which 43 were in 

the target range) with 8 design points per curve, and the smoothed curve of 

shrinkage values for the set. Plots la-1e show the difference between the true 

mean curve and the spline or EB estimate. Note that there is no evidence 

that the EB estimates are being shifted. Figure 1f shows that this is due 

to the narrow range of the shrinkage values which are very close to 1.0. 

However, it is evident in all the plots that the Empirical Bayes estimator is 

being pulled away from the spline estimator in the mid-teen years. 

For the replicate displayed in Figure 1, Figure 2 displays the errors aver­

aged over the 43 curves. The figure shows clearly that the kernel estimator 

is biased for height during mid-teen years. The errors from the Empirical 

Bayes estimator are much smaller in this region. The Empirical Bayes esti­

mator is achieving improvements in SE by recentering the estimates in the 
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mid-teen years, rather than by "shrinking" the curves. 

Figure 3 displays the ratio of SE of the spline and EB estimates for 

the 100 replications of each of the 4 simulations. The effectiveness of the 

Empirical Bayes estimator is greater when there are more curves per set, 

and when there are fewer design points per curve. With 16 points on each 

curve, and a sample size of only 20, the EB estimates improved the SE in 

54 of 100 trials. With a sample size of 50, the EB estimates improved the 

SE in 90 of 100 trials. With only 8 points on each curve and a sample size 

of 50, the EB estimates improved the SE in all but 1 trial. 

The measurement error of 4 em. is unrealistically large for human growth 

curves. Buckler (1979) reports deviations as large as 2.8 em. over the course 

of a day in adolescent boys participating in growth studies, but deviations of 

less than 1 em. are more typical. However the ratio of measurement error to 

deviation among curves is realistic for many examples. The second simula­

tion study explores the effects of measurement error on the EB adjustment. 

Sets of 50 curves with 8 points per curve were generated. Normal errors 

with standard deviations of 1, 2 or 4 em. were added to the mean curves. 

The resulting changes in relative SE are summarized in Figure 4. When the 

standard deviation of the normal errors is 4 em., the EB estimates improved 

theSE in all but 1 trial. When the standard deviation is reduced to 2 em., 

the EB estimates improved the SE in 74 of 100 trials, but when the stan­

dard deviation is reduced to 1 em., there was improvement in only 1 trial. 

Sample sizes of several hundred are required to attain improvements at this 

level of measurement error. This is not surprising. The standard deviation 

of "true" heights at age 20 is about 7.6 em. Comparing with Table 1, this 

is approximately the case r2 = .02. 

The final study explored the effects of missing values on the EB esti­

mator. A Bernoulli process was generated to remove 25% of the data at 

random, from sets of 50 curves with 8 points per curve and error standard 

deviation 4 em. Curves were not used if more than 2 points were missing. 

To adjust for this, 60 rather than 50 curves were generated per set. The 
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sample sizes for missing and non-missing data were therefore not exactly 

the same - the study with no missing data averaged 45 curves fitting the 

inclusion criteria, while those with missing data averaged 49 - 50 curves. 

The method of moments estimators were adjusted simply by using all 

available data. The estimator of error variance was adjusted by using only 

adjacent sets of 3 non-missing points. This leads to a much smaller sample 

size for error variance than for the other statistics required. 

The results are displayed in Figure 5. Missing values did lead to some 

degradation of the EB estimator, despite the somewhat larger samples. Miss­

ing values would lead to less accurate estimation of the smoothing parameter 

for the spline estimates, of the spline fits, and of the shrinkage parameters. 

For this study, in which the fraction missing was quite large, these factors 

appear to have somewhat balanced out in terms of the relative improve­

ment of SE achieved by the EB estimator. (Of course the SE increases as 

the amount of data decreases.) 

6 Conclusions 

Empirical Bayes estimation provides a means of combining evidence across 

similar populations. The classical development of the estimator is in the 

context of unbiased parametric estimators. In this context, EB methodology 

has been used to improve the estimation of growth parameters in polynomial 

growth models. 

In this article we have shown that EB methodology can be extended to 

biased estimators, and may be even more effective in this context. We have 

applied these EB techniques pointwise to the output of a linear smoother, 

using naive method of moments estimators to estimate the shrinkage pa­

rameters. Improvement is greater when the within curve error is larger, 

the number of design points per curve is smaller or the sample of curves 

is larger. Thus the methodology will be most useful for studies in which 

the data are noisy (such as microbial growth) and less useful for studies in 
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which the within curve measurement error is small compared to the between 

curve variation (such as human height) or in which the curve can be sam­

pled intensively. The method can readily be extended to studies in which all 

experimental units were measured at the same design points, but for which 

some values are missing. 

7 Appendix 

Derivation of Equation (9) relies on application of Stein's Identity (Stein, 

1981 or Stigler, 1990). If Y = (Yt, .. ·, YN) is distributed NN(TJ, I) where I 

is the N xN identity matrix then 

E[g(Y)ry] = E[g(Y)Y]- tE [ 8 ~_g(Y)] 
t=l ' 

provided all the expectations exist. The MSE of 6a, is given by 

We now apply Stein's Identity to the middle term in (13) with g(X) = 
X/(a!XI 2 ). Recalling that the mean of X is ap, we have 

E (a~~ 2 ) = ~E [~ (1- ~xj 2 2 )] +~E [a2l~l2 t,xi 8 ~ia] (14) 

Substituting (14) into (13) and rearranging then gives (9). 

8 References 

Berkey, C.S. (1982) "Bayesian Approach for a Nonlinear Growth Model," 

Biometrics, 38, 953-961. 

16 



Bock, R.D. and Thissen, D. (1976) "Fitting Multi-component Models for 

Growth in Stature," Proceedings of the 9th International Biometrics Conf, 

Biometrics Society, Boston. 

Brandwein, A.C. and Strawderman, W.E. (1990) "Stein Estimation: The 

Spherically Symmetric Case," Statistical Science, 5, 356-369. 

Buckler, J. M. H. (1979) "Variations in Height Throughout the Day," Archives 

of Disease in Childhood, 53, 762. 

Buckley, M.J., Eagleson, G.K., Silverman, B. W., 1988 "The Estimation of 

Residual Variance in Nonparametric Regression," Biometrika, 75, 189-

199. 

Casella, G. (1985) "An Introduction to Empirical Bayes Data Analysis," 

American Statistician, 39, 83-87. 

- (1992) "Illustrating Empirical Bayes Methods," Chemometrics and In­

telligent Laboratory Systems 16, 107-125. 

Craven, P. and Wahba, G. (1979) "Smoothing Noisy Data With Spline Func­

tions: Estimating the Correct Degree of Smoothing by the Method of 

Generalized Cross-Validation," Numerische Mathematika, 31, 377-403. 

Efron, B. and Morris, C. (1973) "Stein's Estimation Rule and Its Competi­

tors- An Empirical Bayes Approach," Journal of the American Statistical 

Association, 68, 117-130. 

- (1975) "Data Analysis Using Stein's Estimator and Its Generalizations," 

Journal of the American Statistical Association, 70, 311-331. 

Eubank, R. L. (1988) Spline Smoothing and Nonparametric Regression, New 

York: Marcel Dekker. 

Freedman, D., Pisani, R., Purves, R., and Adhikari, A. (1991) Statistics, 

2nd Ed., New York:W. W. Norton and Co. 

Gasser, T., Muller, H-G., Kohler, W., Molinari, L. and Prader, A. (1984) 

"Non parametric Regression Analysis of Growth Curves," Annals of Statis­

tics, 12, 210-229. 

Gasser, T., Sroka, L., and Jennen-Steinmetz, C. (1986) "Residual Variance 

and Residual Pattern in Nonlinear Regression," Biometrika, 73, 625-633. 

17 



Geisser, S. (1970) "Bayesian Analysis of Growth Curves," Sankhyii Ser. A, 

32, 53-64. 

- (1980) "Growth Curve Analysis," in Handbook of Statistics, Vol. 1 ,Kr­

ishnaiah, P.R. (ed.), Amsterdam: North-Holland, pp. 89-115. 

Gibson, A.M., Bratchell, N., and Roberts, T.A. (1988) "Predicting Micro­

bial Growth: Growth Responses of Salmonellae in a Laboratory Medium 

as Affected by pH, Sodium Chloride and Storage Temperature," Inter­

national Journal of Food Microbiology, 6, 155-178. 

Goldstein, H. (1979) The Design and Analysis of Longitudinal Studies, Lon­

don:Academic Press. 

Green, E. J. and Strawderman, W. E. (1991) "A James-Stein Type Estima­

tor for Combining Unbiased and Possibly Biased Estimators," Journal 

of the American Statistical Association, 86, 1001-1006. 

Grizzle, J. E. and Allen,D. M.(1969) "Analysis of Growth and Dose Response 

Curves," Biometrics, 25, 357-382. 

Hart, J.D. and Wehrly, T.E. (1986) "Kernel Regression Estimation Using 

Repeated Measurements Data," Journal of the American Statistical As­

sociation, 81, 1080-1088. 

Hui, S.L. and Berger, J .0. (1983) "Empirical Bayes Estimation of Rates in 

Longitudinal Studies," Journal of the American Statistical Association, 

78, 753-760. 

James, W. and Stein, C. (1961) "Estimation With Quadratic Loss," Pro­

ceedings of the Fourth Berkeley Symposium Mathematical Statistics and 

Probability, 1, 361-380, Berkeley: University of California Press. 

Jenss, R.M. and Bayley, N. (1937) "A Mathematical Method for Studying 

the Growth of a Child," Human Biology, 9, 556-563. 

Laird, N. and Lange, N. (1987) Comment on "Predictions of Future Obser­

vations in Growth Curve Models" by C. R. Rao, Statistical Science, 2, 

451-454. 

Lee, J. C. and Geisser, S. (1972) "Growth Curve Prediction," Sankhyii Ser. 

A, 34, 394-412. 

18 



- (1975) "Applications of Growth Curve Prediction," Sankhyii Ser. A, 37, 

239-256. 

Marubini, E. and Milani, S. (1986) "Approaches to the Analysis of Lon­

gitudinal Data," in Human Growth: A Comprehensive Treatise Vol. 3, 

Falkner, F., Tanner, J.M. (eds.) New York: Plenum Press, pp. 79-94. 

Morris, C. (1983) "Parametric Empirical Bayes Inference: Theory and Ap­

plications," Journal of the American Statistical Association, 78, 47-65. 

O'Sullivan, F. (1985) Comment on "Some Aspects of the Spline Smooth­

ing Approach to Non-parametric Regression Curve Fitting," by B. W. 

Silverman, Journal of the Royal Statistical Society Series B, 47, 39-40. 

Potthoff, R.F. and Roy, S.N. (1964) "A Generalized Multivariate Analy­

sis of Variance Model Useful Especially for Growth Curve Problems," 

Biometrika, 51, 313-326. 

Ramsay, J. 0. and Dalzell,C. J. (1991) "Some Tools for Functional Data 

Analysis," (with comments) Journal of the Royal Statistical Society. Ser. 

B, 53, 539-572. 

Rao, C.R. (1965) "The Theory of Least Squares When the Parameters 

are Stochastic and Its Application to the Analysis of Growth Curves," 

Biometrika, 52, 447-458. 

- (1987) "Predictions of Future Observations in Growth Curve Models.," 

(with comments) Statistical Science, 2, 434-471. 

Rice, J. (1984) "Bandwidth Choice for Non parametric Regression," Annals 

of Statistics, 12, 1215-1230. 

Stein, C. (1956) "Inadmissibility of the Usual Estimator of the Mean of 

a Multivariate Normal Distribution," Proceedings of the Third Berkeley 

Symposium Mathematical Statistics and Probability, l, 197-206. Berke­

ley: University of California Press. 

- (1981) "Estimation of the Mean of a Multivariate Normal Distribution," 

Annals of Statistics, 9, 1135-1151. 

Stigler, S. (1990) "A Galtonian Perspective on Shrinkage Estimation," Sta­

tistical Science, 5, 147-155. 

19 



Strenio, J.F., Weisberg, R.I., Bryk, A.S. (1983) "Empirical Bayes Estima­

tion of Individual Growth-Curve Parameters and Their Relationship to 

Covariates," Biometrics, 39, 71-86. 

Stiitzle, W., Gasser, Th., Molinari, L., Largo, R.H., Prader, A., and Huber, 

P.J. (1980) "Shape-invariant Modeling of Human Growth," Annals of 

Human Biology, 7, 507-528. 

20 



unbiased case biased case tf; = 0 

u'I/Je = .8u1/J 
T"l. T RMSE=B u~ B RMSE 

.25 6 .96 .25 1.37 .92 

1.0 .77 .87 

4.0 .40 .20 

30 .99 .25 1.55 .83 

1.0 .79 .89 

4.0 .40 .20 

1.0 6 .86 .25 .96 1.00 

1.0 .69 .80 

4.0 .38 .20 

30 .97 .25 1.41 .90 

1.0 .77 .88 

4.0 .40 .20 

4.0 6 .60 .25 .44 .74 

1.0 .48 .58 

4.0 .34 .18 

30 .88 .25 1.04 1.00 

1.0 .71 .82 

4.0 .20 .39 

Table 1: Relative mean squared error of jji versus fli when tf; = J.L, u; = 1 

and the Bayes parameters are known. Shrinkage is most effective when the 

flis are poorly determined or their conditional expectations ( t/Jis) are more 

spread out than the J.L~S. Even when the mean and variance of t/Jis and the 

J.Lis is the same, greater gains in MSE are possible in the biased than in the 

unbiased case. 
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Section 3.1 

Quantity 

Section 4 

Quantity 

p(tj) 

1/J(tj) 
2 

(j{L{tj) 

U,p(tj)JL(tj) 

B(tj) 

B(t) 

P,i(tj) 

Estimated by 

Table 2: Method of Moments Estimators of Empirical Bayes Parameters 
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Figure 1: Plots a-e are the differences between the simulated growth curves and the smoothing spline estimates 

(solid) and EB estimates (dashed) for 5 of a set of 43 curves with 8 design points per curve. Note that 

the EB differences are not consistently above or below the spline estimates, indicating that little shrinkage 

is taking place. Plot f) displays the estimated shrinkage values, b(t), which are close to 1. 
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Figure 2: The mean differences between estimated and simulated human growth curves with 8 design 

points per curve. Notice large differences between the spline smooth and simulated curves 

in the teen years (solid), compared to the somewhat flatter behavior of the EB estimator 

(dashed) in the same region. 
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Figure 3: Each boxplot above represents the ratio of theSE of the EB estimator to theSE of the 

smoothing spline estimator for 100 replicates of simulated human growth curves. The more 

curves available for estimating the underlying population curve, the greater the improvement 

of the EB estimators. As well, the fewer design points per curve (and thus the less precise 

the spline estimator) the greater the improvement of the EB estimator. 
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Figure 4: Each boxplot above represents the ratio of theSE of the EB estimator to theSE of the 

smoothing spline estimator for 100 replicates of simulated human growth curves with 8 

points per curve and 50 curves per sample. The greater the standard deviation of 

the measurement error, the greater the improvement of the EB estimators. For 

this set of mean curves, several hundred curves are required to obtain 

improvement when the standard deviation is 1 centimeter. 
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Figure 5: Each boxplot above represents the ratio of the SE of the EB estimator to the SE of the 

smoothing spline estimator for 100 replicates of simulated human growth curves with 8 

points per curve and 50 curves per sample. The effect of missing data is to increase the 

spread of the ratio of SE for the EB and smoothing spline estimators, most probably 

due to less precise approximation of the shrinkage parameter. 


