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Nonparametric entropy-based tests of

independence between stochastic processes

Abstract. This paper develops nonparametric tests of independence between

two stationary stochastic processes. The testing strategy boils down to gauging

the closeness between the joint and the product of the marginal stationary

densities. For that purpose, I take advantage of a generalized entropic measure

so as to build a class of nonparametric tests of independence. Asymptotic

normality and local power are derived using the functional delta method for

kernels, whereas finite sample properties are investigated through Monte Carlo

simulations.

JEL classification numbers. C12, C14.

Keywords. independence, nonparametric testing, Tsallis entropy.
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1 Introduction

Independence is one of the most valuable concepts in econometrics as virtually

all tests boil down to checking some sort of independence assumption. Ac-

cordingly, there is an extensive literature on how to test independence, e.g.

Hoeffding (1948), Baek and Brock (1992), Johnson and McClelland (1998), and

Pinkse (1999). Tjøstheim (1996) offers an excellent survey of the literature.

The fact that stochastic processes are potentially path-dependent compli-

cates the task of developing a suitable test. Consider two stochastic processes

{Xt, t ≥ 0} and {Yt, t ≥ 0}. The null hypothesis of interest then reads

H∗
0 : fXY (X1, X2, . . . , Y1, Y2, . . .) = fX(X1, X2, . . .)fY (Y1, Y2, . . .) a.s.

It is infeasible to develop a test without imposing additional structure. For

instance, if Xt and Yt are independent and identically distributed (iid) univariate

processes,1 it then suffices to consider

H0 : fXY (Xt, Yt) = fX(Xt)fY (Yt) a.s. (1)

Yet, even in the more general setting where {Xt, t ≥ 0} and {Yt, t ≥ 0}

are stationary stochastic processes, the null hypothesis in (1) has an inter-

esting interpretation. As singled out by Phillips (1991), the stationary joint-

density fXY corresponds to the stochastic equilibrium of the bivariate processes

{(Xt, Yt), t ≥ 0}, hence (1) corresponds to the property of long-run indepen-

dence (Gregory and Sampson, 1991).

Serial independence is a particular case in which Yt consists of lagged val-

ues of Xt. Robinson (1991) proposes a test based on the closeness of the joint

density of (Xt, Xt−i) and the product of the marginals of Xt and Xt−i as mea-

sured by the Kullback-Leibler information. Skaug and Tjøstheim (1993 and

1995) extend Robinson’s framework to other measures of discrepancy between

densities such as the Hellinger distance. Somewhat related are tests which exam-

ine restrictions on the correlation integral (e.g. Baek and Brock, 1992; Brock,
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Dechert, Scheinkman and LeBaron, 1996; Mizrach, 1995) and on the charac-

teristic functions (Pinkse, 1998). These tests are particularly interesting for

diagnostic checking purposes since they are nuisance parameter free (de Lima,

1996; Pinkse, 1998). Rank tests stand as another valuable alternative (Hallin

and Puri, 1992; Hallin, Jurečková, Picek and Zahaf, 1997).

This paper proposes tests for independence between two stationary stochas-

tic processes based on (1). The strategy relies on measuring the closeness be-

tween kernel estimates of the joint density and the product of the marginal den-

sities. Instead of the conventional Euclidean distance, I employ a generalized

entropic measure ρq as suggested by Tsallis (1998). This generalized statistic

permits to construct a class of nonparametric tests of independence by vary-

ing the entropic index q. The motivation is twofold. First, entropy-based tests

are quite appealing for having an information-theoretic interpretation. Second,

tests based on the Kullback-Leibler information and Hellinger distance, which

are particular cases of the Tsallis generalized entropy, seem to compete well in

terms of power to tests using quadratic distances (Skaug and Tjøstheim, 1996).

The remainder of this paper is organized as follows. Section 2 describes some

useful properties of the generalized Tsallis entropy. Section 3 proposes the class

of nonparametric tests of independence I have in mind and provides asymptotic

justification. Asymptotic normality is derived using the Aı̈t-Sahalia’s (1994)

functional delta method both under the null and under a sequence of local al-

ternatives. Further, I demonstrate that the tests are nuisance parameter free,

and so suitable to specification testing. Section 4 investigates the finite sample

properties of these tests through Monte Carlo simulations. Section 5 discusses

briefly how to obtain more accurate critical values (and p-values) through re-

sampling techniques. Section 6 summarizes the main results and offers some

concluding remarks. For ease of exposition, an appendix collects technical lem-

mas and proofs.
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2 Generalized entropic measure

In a multifractal framework, Tsallis (1988) generalizes the Boltzmann-Gibbs-

Shannon statistics to address non-extensive systems by introducing an entropy

which encompasses the standard Kullback-Leibler measure. This generalized

entropy reads

ρq(f, g) ≡ 1

1 − q

{

1 −
∫

[

g(u)/f(u)
]1−q

f(u)du

}

, (2)

where q stands for the entropic index that characterizes the degree of non-

extensivity of the system. In the limiting case q → 1, the Tsallis entropy

recovers the Kullback-Leibler information

ρ1(f, g) =

∫

log
[

f(u)/g(u)
]

f(u)du, (3)

whereas, for q = 1/2, it boils down to

ρ1/2(f, g) =

∫

[

√

f(u) −
√

g(u)
]2

du = 2H2(f, g), (4)

where H(f, g) denotes the Hellinger distance between f and g. The latter is

known to entail more robustness with respect to contaminated data (e.g. inliers

and outliers) than the usual quadratic metric (Pitman, 1979; Hart, 1997).

Varying the entropic index in the Tsallis statistic results in a class of tests

for comparing density functionals. Therefore, it is interesting to derive the

properties of ρq according to the support on which q lies. Tsallis (1998) shows

that, if the entropic index is positive, ρq(f, g) is non-negative with equality

holding if and only if f coincides with g almost everywhere. Moreover,

ρq(f, g)

q
=

ρ1−q(g, f)

1 − q
,

thus it is enough to consider q ≥ 1/2. In this range, the Tsallis entropy satisfies

three properties that are desirable in a statistic for testing independence, namely,

invariance under suitable transformation, i.e. ρq

[

f(u), g(u)
]

= ρq

[

fℓ(v), gℓ(v)
]

for v = ℓ(u); ρq(f, g) ≥ 0 (non-negativeness); and ρq(f, g) = 0 if and only if

f = g (consistency). Though it is not a symmetric measure of discrepancy for
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q 6= 1/2, symmetry is easily achieved by considering the quantity ρS
q (f, g) =

1
2

[

ρq(f, g) + ρq(g, f)
]

.

3 Asymptotic tests of independence

For ease of exposition, I consider univariate processes {Xt, t ≥ 0} and {Yt, t ≥

0} with discretely recorded observations (X1, . . . , XT ) and (Y1, . . . , YT ). Al-

though it is straightforward to extend these techniques to consider multivariate

processes, it may be not empirically recommendable in view of the ‘curse of

dimensionality’ that plagues nonparametric estimation. I impose the following

regularity conditions.

A1 {(Xt, Yt), t ∈ N} is strictly stationary and β-mixing with βj = O(j−δ)

where δ > 1. In addition, the density fXY is such that E‖(Xt, Yt)‖k < ∞

for some constant k > 2δ/(δ − 1).

A2 The density function fXY is continuously differentiable up to the order s

and their successive derivatives are bounded and belong to L2
(

R
2
)

.

A3 The kernel function K is of order s (even integer), and is continuously

differentiable up to order s on R with derivatives in L2(R).

A4 The bandwidths bx,T and by,T used in the estimation of fXY are such that

T 1/2bs
·,T + T−1/2b−m

·,T → 0 for every non-negative integer m < s/2.

Assumption A1 restricts the amount of dependence allowed in the observed

data sequence to ensure that the central limit theorem holds. As usual, it turns

out that there is a trade-off between the degree of dependence and the number

of finite moments. Assumptions A2 and A3 determine that, in order to use

effectively a kernel of order s for bias reduction, the joint density fXY must

have at least that many derivatives. Assumption A4 restricts the rate at which

the smoothing parameters in the kernel estimation of the joint density fXY must

converge to zero.
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To test the null hypothesis H0, I evaluate the generalized entropy ρq at the

kernel density estimates f̂ = f̂XY and ĝ = f̂X f̂Y , namely

ρ̂q =
1

1 − q







1 − 1

T

T
∑

t=1

[

f̂X(Xt)f̂Y (Yt)

f̂XY (Xt, Yt)

]1−q






. (5)

The corresponding functional reads

Λf =
1

1 − q

∫

{

1 −
[

gXY (x, y)

fXY (x, y)

]1−q
}

fXY (x, y) d(x, y), (6)

and it follows from the functional delta method that the asymptotic distribution

of ρ̂q is driven by the first non-degenerate functional derivative of Λf . It turns

out, however, that the first derivative is singular and the limiting distribution

implied by the second derivative is well defined only if the stochastic process

(Xt, Yt) takes value in a bounded support, say SXY .

Proposition 1. Suppose that the bandwidths are of order o
(

T−1/(2s+1)
)

. Under

assumptions A1 to A3, the normalized statistic

r̂q =
T b

1/2
x,T b

1/2
y,T ρ̂q − b

1/2
x,T b

1/2
y,T δ̂

σ̂

d−→ N(0, 1),

where δ̂ and σ̂2 are consistent estimators of δ =
[∫

|K(u)|2 du
]2 ∫

SXY
d(x, y)

and σ2 =
{

∫ [∫

K(u)K(u + v) du
]2

dv
}2

∫

SXY
d(x, y), respectively.

As is apparent, the asymptotic mean and variance exist only if the support

SXY is bounded.2 To avoid such a restrictive assumption, it is necessary to

contrive some sort of weighting scheme. Consider next the following functional

Λw
f =

1

1 − q

∫

wf (x, y)

{

1 −
[

gXY (x, y)

fXY (x, y)

]1−q
}

fXY (x, y) d(x, y), (7)

where wf (x, y) is a general weighting function that may depend on the density

fXY (x, y) as in Fan and Li (1996). To establish the limiting distribution of the

sample analog of (7), i.e.

ρ̂w
q =

1

T (1 − q)

T
∑

t=1

wf (Xt, Yt)







1 −
[

f̂X(Xt)f̂Y (Yt)

f̂XY (Xt, Yt)

]1−q






, (8)

one additional assumption is necessary.
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A5 Consider f∗
XY and f+

XY in a neighborhood Nf of the true density fXY .

The weighting function wf (x, y) is separable, i.e. wf (x, y) = wf (x)wf (y),

and such that

(i)

∫

wf (x, y)
(

f̂XY − fXY

)

d(x, y) 6= 0,

(ii) E |wf (x, y)|3+r
< ∞, for r > (3 + ǫ)(3 + ǫ/2)/ǫ, ∀ǫ > 0,

(iii) E sup
f∗

XY
∈Nf

|wf∗(x, y)|2 < ∞,

(iv) E
∣

∣wf∗(x, y) − wf+(x, y)
∣

∣

2 ≤ c||f∗
XY − f+

XY ||2L(∞,m∗),

where c is a constant and m∗ is an integer such that 0 < m∗ < s/2 + 1/4.

The first condition of A5 ensures that first functional derivative of Λw
f is not

degenerate. It excludes, for instance, the trivial case wf (x, y) = 1 considered

in Proposition 1. In turn, the other three conditions guarantee that one may

truncate the infinite sum that appears in the asymptotic variance of the test

statistics. In particular, the trimming function w(x, y) = 11S(x, y), where S =

SX × SY is a compact subset of the density support, satisfies A5. Lastly, the

next result assumes implicitly that Λw
f is Fréchet differentiable with respect to

the Sobolev norm of order (2,m) at the true joint density.

Before stating the next result, it is useful to establish some notation. Let

µu = E
[

wf (ut)
]

, τu(k) = E
[

wf (ut)wf (ut+k)
]

, and γu(k) = τu(k) − µ2
u. Notice

that, under the null of independence, µXY = µXµY and τXY (k) = τX(k)τY (k).

Theorem 1. Under assumptions A1 to A5, the normalized statistic

r̂w
q =

√
T ρ̂w

q

σ̂w

d−→ N(0, 1),

where σ̂2
w is a consistent estimator of the long-run variance-covariance matrix

σ2
w =

∑∞
k=−∞

{

γXY (k) + γX(k)µ2
X + γY (k)µ2

Y − 2
[

γX(k) + γY (k)
]

µXY

}

.

Ergo, a test which rejects the null hypothesis at the level α when r̂w
q is greater

than or equal to the (1 − α)-quantile z1−α of a standard normal distribution is

9



locally strictly unbiased. To assess the asymptotic local power, consider a local

alternative of the form3

H1,T : sup
(x,y)∈S

∣

∣

∣f
[T ]
XY (x, y) − g

[T ]
XY (x, y)[1 + (q − 1)ǫT λXY (x, y)]1/(q−1)

∣

∣

∣ , (9)

where ǫT = T−1/2 and λXY is such that δλ = E
[

wf (x, y)λXY (x, y)
]

exists.

Proposition 2. Under assumptions A1 to A5, the asymptotic local power is

given by Pr
(

r̂w
q ≥ z1−α

∣

∣H1,T

)

−→ 1 − Φ(z1−α − δλ/σw).

Unfortunately, the asymptotic local powers obtained by tests based on differ-

ent entropic indexes q cannot be directly compared since the local alternatives

become closer to the null as q increases.

How to select the weighting scheme is an arbitrary task. Previous works

which deal with entropy-based tests of serial independence use simple weight-

ing schemes to preserve the information-theoretic interpretation. For instance,

Skaug and Tjøstheim (1996) show that tests based on the Hellinger distance

and the Kullback-Leibler information compete well in power against tests based

on quadratic measures even for a simple trimming function that bounds the ob-

servations to some compact set S = SX × SY strictly contained in the support

of the density. In turn, Robinson (1991) and Pinkse (1994) adopt the following

sample-splitting weighting scheme

wt(x, y) =







11S(x, y)(1 + γ) if t is odd

11S(x, y)(1 − γ) if t is even.
(10)

As the latter design seems to produce tests with low power against both fixed

(Drost and Werker, 1993) and local alternatives (Hong and White, 2000), I follow

Skaug and Tjøstheim’s simpler approach that relies on a separable trimming

function.

3.1 Serial independence

Testing for serial independence stands for an interesting application of tests

of independence. Consider, for instance, a process {Xt; t ∈ N}. Serial inde-
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pendence implies that the joint distribution of the realizations of the process

coincides almost everywhere with the product of the marginal distributions, i.e.

Pr(X0, . . . , Xt) = Pr(X0) . . .Pr(Xt) a.s. (11)

For the sake of feasibility, it is convenient to work with a pairwise approach,

i.e. to test independence between pairs, say (Xt, Xt−i). Thus, the resulting null

hypothesis is only a necessary condition for serial independence, namely

Hi
0 : f(Xt, Xt−i) = f(Xt)f(Xt−i) a.s., (12)

where f(Xt, Xt−i), f(Xt) and f(Xt−i) denote the joint density of (Xt, Xt−i),

and the marginal densities of Xt and Xt−i, respectively.

It follows immediately from Theorem 1 that a test which rejects the null

hypothesis Hi
0 at the level α when

√
T ρ̂w

q,i ≥ z1−α γ̂X(0), where γ̂X(0) is a

consistent estimator of γX(0) = Var
[

wf (Xt)
]

and

ρ̂i
q,w =

1

(1 − q)(T − i)

T
∑

t=i+1

wf (Xt, Xt−i)







1 −
[

f̂(Xt)f̂(Xt−i)

f̂(Xt, Xt−i)

]1−q






(13)

is locally strictly unbiased.

Corollary. Under assumptions A1 to A5, the normalized statistic

r̂w
q,i =

√
T ρ̂w

q,i

γ̂X(0)

d−→ N(0, 1),

where γ̂X(0) is a consistent estimator of γX(0) = Var
[

wf (Xt)
]

.

Failing to reject H1
0 indicates that Xt does not depend significantly on Xt−1,

but it could well depend on another past realization, say Xt−4. The simplicity of

the pairwise approach comes at the expense of an uncomfortable dependence on

lags. Yet, one can mitigate this dependence by considering a null hypothesis such

as Hs
0 : ∩N

n=1H
in

0 (i1 < . . . < iN ) as in Skaug and Tjøstheim (1996). In partic-

ular, it is possible to demonstrate that the sum statistic ρ̂s
q,w =

√
T

∑N
n=1 ρ̂w

q,in

is asymptotically normal with mean zero and variance Nγ2
X(0).
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3.2 Specification testing and nuisance parameters

It is often the case that the process of interest is unobservable. In specifica-

tion testing, for instance, one usually examines whether the residuals are iid.

Serial dependence may indicate that a lagged dependent variable was omitted,

whereas if homoskedasticity does not hold, one may wish to model the form

of heteroskedasticity to increase the efficiency of the estimation. Suppose that

there exists an observable vector series (X1, . . . , XT ) and a function ξ known

up to a parameter vector θ such that Yt = Yt(θ) = ξ(Xt, θ), t = 1, . . . , T . In

this setting, the interest is in testing model specification by checking whether

the error term Yt = Yt(θ) is serially independent. Of course, feasible testing

procedures rely on a consistent estimate θ̂ of the parameter vector θ so as to

form the series of residuals Ŷt = Yt

(

θ̂
)

, t = 1, . . . , T .

The next result establishes the conditions in which the entropy-based tests

of independence are nuisance parameter free and hence there is no asymptotic

cost in substituting residuals for errors. It turns out that the requirements are

very mild.

Theorem 2. Under assumptions A1 to A5, the normalized statistic

r̂w
q,i

(

θ̂
)

=

√
T ρ̂w

q,i

(

θ̂
)

γ̂Ŷ (0)

d−→ N(0, 1),

where θ̂ is a T d-consistent estimator of θ with d ≥ max
{

2
s+1 − 1

2 , 3
2(s+1) − 1

4

}

.

The condition on the rate of convergence gets more stringent as the order

s of the kernel decreases, conforming with the fact that higher-order kernels

converge at a faster rate. Accordingly, it suffices to verify that the condition

reduces to d ≥ 1/4 for second-order kernels to conclude that little is required

in Theorem 2. Indeed, it is difficult to think of any reasonable estimator that

does not satisfy such condition.
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4 Finite sample properties

There are two prime reasons to believe that the asymptotic theory of entropy-

based tests performs poorly in finite samples. First, the error of neglecting

higher-order terms may be substantial in the event that these terms are close

in order to the dominant term (Fan and Linton, 1997; Skaug and Tjøstheim,

1993). Second, for the particular case in which the weighting function simply

trims data out of a compact set, boundary effects may disrupt the asymptotic

approximation. As the support grows, the variance of the limiting distribution

increases, whereas the estimate of the test statistic remains unaltered once all of

the observations are included. Therefore, it will be not surprising if asymptotic

tests turn out to work unsatisfactorily in small samples.

In what follows, I perform a limited Monte Carlo exercise to assess the

performance of entropy-based tests in finite samples. All results are based on

2000 replications and consider two sample sizes. To avoid initialization prob-

lems, I simulate 1500 realizations of each data generating process and take the

last 500 and 1000 observations to compute the test statistics with entropic index

q ∈ {1/2, 1, 2, 4}. For simplicity, I utilize a trimming function w(x, y) = 11S(x, y)

that allocates weight zero to observations out of the compact set S = SX ×SY ,

where Su =
{

u :
∣

∣u − ū
∣

∣ < 2ŝu

}

with ū and ŝ2
u denoting the sample mean and

variance, respectively. Further, all kernel density estimations are carried out us-

ing a Gaussian kernel and the bandwidth recommended by Silverman’s (1986)

rule of thumb.

To examine the size properties of the entropy-based tests, I rely on a simple

specification where Xt and Yt are independent Gaussian autoregressive processes

of order one, AR(1). More precisely, the data generating mechanism reads

Yt = 0.8 Yt−1 + υt, υt ∼ iid N(0, 1)

Xt = 0.8 Xt−1 + ǫt, ǫt ∼ iid N(0, 1),

where ǫt and υs are independent for every t and s. The results in Table 1
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indicates that the critical values given by the asymptotic approximation are

of little value. The reasons are twofold. First, since ρq is non-negative, it

turns out that it is seldom the case that the normalized test statistics take

negative values. In fact, the degree of non-normality seems to increase with

the entropic index q, suggesting that lower entropic indexes entail more robust

test statistics. Second, the variances of the test statistics, which are computed

using the Newey and West’s (1987) estimator with Andrews’s (1991) automatic

bandwidth, are systematically overestimated. Further simulations point out

that this pattern is quite robust to variations in the bandwidth as opposed to

variations in the autoregressive coefficient. As expected, the performance of the

asymptotic approximation improves as one reduces the data persistence.

Table 2 and 3 document the finite sample power of the entropy-based tests

against alternatives characterized by dependence in mean and in variance, re-

spectively. The former is represented by letting Yt follow an autoregressive

distributed lag ADL(1,0) process, namely

Yt = 0.8 Yt−1 + Xt + υt, υt ∼ iid N(0, 1)

Xt = 0.8 Xt−1 + ǫt, ǫt ∼ iid N(0, 1).

For the alternative that imposes dependence in variance, I utilize an autoregres-

sive process with heteroskedastic error, viz.

Yt = 0.8 Yt−1 + Xt υt, υt ∼ iid N(0, 1)

Xt = 0.8 Xt−1 + ǫt, ǫt ∼ iid N(0, 1).

The figures concerning the (size-corrected) power are quite rosy, confirming the

competitiveness of the entropy-based tests of independence. The snag is that one

does not know the proper critical values in finite samples and the asymptotic

approximation performs very poorly. It is therefore paramount to contrive a

procedure that engenders more accurate critical values for the tests. I defer this

issue to Section 5, where I discuss suitable resampling techniques.
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4.1 Serial independence

Next I move to investigating whether the asymptotic tests of serial independence

(with lag i = 1) have the correct size. I generate random variables coming

from a standard normal, a chi-squared distribution with one degree of freedom,

and a t-student with 5 degrees of freedom. The second distribution exhibits

highly positive skewness whereas the third is known to display thick tails, i.e.

leptokurtosis. To inspect how powerful these tests are in finite samples, I rely on

two simple data generating mechanisms, namely an AR(1) and an autoregressive

conditional heteroskedastic model of order one, ARCH(1). The former deals

with serial dependence in the mean and evolves according to Xt = 0.8 Xt−1 +ǫt.

In contrast, the ARCH(1) explores the case in which there is no serial correlation,

though the process exhibits serial dependence in the second moment. More

precisely, it follows Xt =
(

0.2 + 0.8 X2
t−1

)1/2
ǫt, where the error ǫt has a standard

normal distribution given the past realizations of Xt. The size-corrected power

of the entropy-based tests against AR(1) and ARCH(1) processes are easily

computed using the critical values in Table 5.

Tables 4 to 6 report some descriptive statistics concerning the distribution

of the normalized test statistics when the null hypothesis is true. For the stan-

dard normal iid case in Table 4, the distributions are roughly normal, for all

entropic indexes, i.e. skewness and kurtosis are not far from zero and three,

respectively. However, there is a poor correspondence between the asymptotic

mean and variance of the test statistics and their simulated counterparts. Sim-

ilar patterns also emerge in non-normal iid random variables (see Tables 5 and

6). If, on the one hand, it conforms with the results of Skaug and Tjøstheim

(1996); on the other hand, the Gaussian character of the finite sample distribu-

tions is sort of surprising for, in general, smoothing-based tests resemble more

closely parametric chi-squared tests. Indeed, Staniswalis and Severini (1991)

and Hjellvik and Tjøstheim (1996b), among others, propose the use of chi-
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squared and gamma approximations to cope with the large bias and skewness

that are typically revealed by Monte Carlo experiments (Fan, 1995; Hjellvik and

Tjøstheim, 1996a).

Tables 7 and 8 documents the size-corrected power of the nonparametric

entropy-based tests in finite samples. For the autoregressive process, the dis-

tributions are fairly normal for all entropic indexes, whereas the distributions

are farther from normality in the ARCH(1) case. Close inspection reveals how-

ever that there are two outliers in the latter that makes the even moments take

extremely high values. At any rate, the size-corrected power of the tests are

excellent for both alternatives irrespective of the entropic index.

5 Resampling methods

The finite sample analysis in the previous section singles out that the asymptotic

critical values of the entropy-based tests are not reliable. Moreover, additional

simulations reveal that the finite sample distributions of the test statistics de-

pend heavily on the bandwidth of the kernel density estimation as in Skaug and

Tjøstheim (1993). Therefore, in what follows, I discuss some refinements in the

testing procedures in order to ameliorate the accuracy of the critical values.

Under the independence between X and Y , it seems natural to apply boot-

strap techniques to compute appropriate critical values. In principle, one simply

needs to resample from the empirical marginal distributions of X and Y thereby

imposing independence. However, X and Y are weakly dependent stationary

time series, and thus one must employ a resampling scheme suitable to depen-

dent data. As the testing procedure relies on kernel density estimation, it seems

convenient to use Politis and Romano’s (1994) stationary bootstrap to ensure

the stationarity of the bootstrap samples. Politis and Romano establish its

asymptotic validity under the assumption that the original statistic is asymp-

totically normal under the null and the absence of nuisance parameters, whereas

White (1999) extends the result to statistics with nuisance parameters.
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The usual block bootstrap procedure (Hall, 1985; Künsch, 1989; Liu and

Singh, 1992) provides artificial time series which are not stationary due to the

difference in the joint distribution of resampled observations close to a join be-

tween blocks and observations in the centre of a block. Similar to block resam-

pling schemes, the stationary bootstrap resamples by blocks the original data in

order to form pseudo-time series from which the test statistic may be recalcu-

lated. However, instead of fixing the size of the blocks, the stationary bootstrap

takes blocks of random length m. More specifically, Politis and Romano suggest

the use of a geometric distribution

Pr(m = j) = (1 − p)j−1p, j = 1, 2, . . .

in order to produce artificial time series which are stationary with mean block

length ℓ = 1/p.4

The choice of p is a smoothing issue which has not been theoretically solved.

On the one hand, the blocks should be long enough to capture as faithfully

as possible the original time dependence of the series. On the other hand, the

number of bootstrap samples should be large enough to provide a good estimate

of the test statistic distribution, and this points towards short blocks. The few

theoretical results available in the literature indicates that a good compromise is

achieved by taking pT of order T−ζ for some ζ in the interval (0, 1). In addition,

restricting ζ to the interval (0, 1/2) suffices to ensure tightness of the bootstrap

empirical process (Politis and Romano, 1994).

To assess the performance of the stationary bootstrap, I revisit the first

experiment of the previous section where Xt and Yt follow independent Gaus-

sian AR(1) processes. The processes are equally persistent with autoregressive

coefficient φ varying from 0.4 to 0.95. To conserve on computation time, the

number of replications and bootstrap samples are set to 500 and 99, respec-

tively. The mean block length ℓ of the stationary bootstrap is chosen according
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to Carlstein’s (1986) rule of thumb, namely

ℓ =

( √
6 φ̂

1 − φ̂2

)−2/3

T−1/3,

where φ̂ denotes the first-order sample autocorrelation. As before, I consider

two sample sizes, namely 500 and 1000 observations.

Table 9 displays quite encouraging results. Despite the reduced number of

artificial samples (B = 99), the stationary bootstrap mitigates significantly the

size distortions especially when data are not very persistent. More precisely,

at the 5% level, bootstrap-based tests with low entropic indexes have an em-

pirical size varying from 6% to 16% according to the degree of persistence. As

expected, the ability of the stationary bootstrap to mimic the data dependence

deteriorates as the persistence increases.

Under the null hypothesis of serial independence, one can also rely on the fact

that the order statistic X(·) =
(

X(1), . . . , X(T )
)

is a sufficient statistic to justify

the use of permutation tests. It is well known that the conditional distribution

of (X1, . . . , XT ) given x(·) =
(

x(1), . . . , x(T )
)

is discretely uniform over the T

permutations of x(1), . . . , x(T ). Then, the conditional distribution of the test

statistic ρ̂q is constructed by evaluating ρ̂q at each of these T permutations.

The critical value

cX(·)

α = inf
c

{

c : Pr
(

ρ̂q ≥ c
∣

∣

∣
X(·)

)

≤ α
}

(14)

provides a permutation test with exact level α. In practice, however, it is

impossible to compute exact critical values unless the sample size T is very

small. Notwithstanding, an approximation can be obtained by Monte Carlo

simulations without any effect on the level of the test — of course, the same

cannot be said about the power of the test, which unfortunately decreases.

6 Summary and conclusions

This paper develops a family of nonparametric entropy-based tests of indepen-

dence in a strictly stationary time-series context. The tests hinge on a class of
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discrepancy measures implied by the Tsallis generalized entropy to gauge the

distance between density functionals. In particular, the asymptotic theory I

derive in Section 3 extends in a number of ways Robinson’s (1991) and Skaug

and Tjøstheim’s (1996) results for entropy-based tests of serial independence.

In discussing the advantages and drawbacks of these testing procedures,

three remarks are in place. First, the fact that these tests are nuisance parame-

ter free indicates that they might be useful to check model specification. Second,

the numerical results reported in Section 4 suggest that the asymptotic approx-

imation performs very poorly in finite samples, which points towards the use of

resampling techniques as to mitigate size distortions. Albeit the stationary boot-

strap seems to perform reasonably well when both stochastic processes follow

a simple autoregressive process, further research is necessary to verify whether

that remains valid for more complex data generating mechanism. Third, it is

not clear how to select the entropic index q so as to maximize the power of the

tests, though statistics with lower entropic indexes appear to engender more

powerful and robust tests. Notwithstanding, Tsallis’s (1998) conjecture that

the optimal entropic index varies in function of the data complexity still needs

to be confirmed.
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Appendix

Lemma 1. Suppose that the functional

Λf =
1

1 − q

∫

[

1 − (gXY (x, y)/fXY (x, y))1−q
]

fXY (x, y) d(x, y)

is twice Fréchet-differentiable relative to the Sobolev norm of order (2,m) at

the true density function f . Then, under the null hypothesis, the following

expansion holds

Λf̂ =
q

2

∫

(

h2
x,y

fx,y
− h2

x

fx
−

h2
y

fy

)

d(x, y) + O
(

‖hx,y‖3
(2,m)

)

,

where fx,y = fXY (x, y), fx = fX(x), fy = fY (y), hx,y = f̂XY (x, y)− fXY (x, y),

hx =
∫

hx,y dy = f̂X(x) − fX(x), and hy =
∫

hx,y dx = f̂Y (y) − fY (y).

Proof. Let fx,y = fXY (x, y), fx = fX(x) and fy = fY (y). By assumption, the

functional

Λf =
1

1 − q

∫

[

1 − (gx,y/fx,y)1−q
]

fx,y d(x, y)

admits a second order Taylor expansion, i.e.

Λf+h = 7Λf + DΛf (h) +
1

2
D2Λf (h, h) + O

(

‖h‖3
(2,m)

)

,

where ‖ · ‖(2,m) denotes the Sobolev norm of order (2,m). Under the null, it

turns out that both Λf and its first derivative equal zero. To appreciate the

latter, recall that Fréchet differentials can be computed as Gâteaux differentials,

i.e. DΛf (h) = ∂
∂λΛf,h(0), where

Λf,h(λ) =
1

1 − q

∫

[

1 −
(

gx,y(λ)

fx,y + λhx,y

)1−q
]

(fx,y + λhx,y) d(x, y)

and

gx,y(λ) =

∫

(

fx,y + λhx,y

)

dy

∫

(

fx,y + λhx,y

)

dx =
(

fx + λhx

)(

fy + λhy

)

.

Taking the Gâteaux derivative of gx,y(λ) yields

∂gx,y(λ)

∂λ
= hx

∫

(fx,y + λhx,y) dx + hy

∫

(fx,y + λhx,y) dy

∂gx,y(0)

∂λ
= fxhy + fyhx,
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which means that the Fréchet derivative of gx,y evaluated at fx,y is simply

Dgx,y = fxhy + fyhx. Similarly,

∂Λf,h(λ)

∂λ
=

q

q − 1

∫ [

gx,y(λ)

fx,y + λhx,y

]1−q

hx,y d(x, y)

−
∫

∂gx,y(λ)

∂λ

[

fx,y + λhx,y

gx,y(λ)

]q

d(x, y),

∂Λf,h(0)

∂λ
=

q

q − 1

∫ (

fx,y

gx,y

)q−1

hx,y d(x, y) −
∫

Dgx,y

(

fx,y

gx,y

)q

d(x, y).

Under the null, the first functional derivative reads

DΛf (h) =
q

q − 1

∫

hx,y d(x, y) −
∫

Dgx,y d(x, y)

= −
∫

(fxhy + fyhx) d(x, y)

= −
∫

fxhy d(x, y) −
∫

fyhx d(x, y)

= −
∫

fx dx

∫

hy dy −
∫

fy dy

∫

hx dx = 0,

as
∫

hx,y d(x, y) =
∫

hx dx =
∫

hy dy = 0. It remains to compute the second

functional derivative. Note that

∂2gx,y(λ)

∂λ2
= 2hxhy,

which implies that D2gx,y = 2hxhy. Accordingly,

∂2Λf,h(λ)

∂λ2
= q

∫

g1−q
x,y (λ)(fx,y + λhx,y)q−2h2

x,y d(x, y)

− q

∫

g−q
x,y(λ)

∂gx,y(λ)

∂λ
(fx,y + λhx,y)q−1hx,y d(x, y)

−
∫

D2gx,y

[

fx,y + λhx,y

gx,y(λ)

]q

d(x, y)

− q

∫

g−q
x,y(λ)

∂gx,y(λ)

∂λ
(fx,y + λhx,y)q−1hx,y d(x, y)

+ q

∫

g−q−1
x,y (λ)

[

∂gx,y(λ)

∂λ

]2

(fx,y + λhx,y)q d(x, y),

∂2Λf,h(0)

∂λ2
=

∫ (

gx,y

fx,y

)1−q h2
x,y

fx,y
d(x, y)

− 2q

∫

Dgx,y

(

fx,y

gx,y

)q
hx,y

fx,y
d(x, y)

−
∫

D2gx,y

(

fx,y

gx,y

)q

d(x, y)
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+ q

∫

[

Dgx,y

]2

fx,y

(

fx,y

gx,y

)1+q

d(x, y).

Under the null hypothesis, it yields

D2Λf (h, h) = q

∫

h2
x,y

fx,y
d(x, y) − 2q

∫

Dgx,y
hx,y

fx,y
d(x, y)

−
∫

D2gx,y d(x, y) + q

∫

[

Dgx,y

]2

fx,y
d(x, y)

= q

∫

h2
x,y

fx,y
d(x, y) − 2q

∫

(fxhy + fyhx)hx,y

fx,y
d(x, y)

− 2

∫

hxhy d(x, y) + q

∫

x,y

(

fxhy + fyhx

)2

fx,y
d(x, y)

= q

∫

h2
x,y

fx,y
d(x, y) − 2q

∫

fxhyhx,y

fx,y
d(x, y)

− 2q

∫

fyhxhx,y

fx,y
d(x, y) − 2

∫

hx dx

∫

hy dy

+ q

∫

f2
xh2

y + 2fxfyhxhy + f2
y h2

x

fx,y
d(x, y)

= q

∫

h2
x,y

fx,y
d(x, y) − 2q

∫

hx,yhy

fy
d(x, y)

− 2q

∫

hx,yhx

fx
d(x, y) + q

∫

fxh2
y

fx,y
d(x, y)

+ 2q

∫

fxfyhxhy

fx,y
d(x, y) + q

∫

f2
y h2

x

fx,y
d(x, y)

= q

∫

h2
x,y

fx,y
d(x, y) − 2q

∫

h2
y

fy
dy − 2q

∫

h2
x

fx
dx

+ q

∫

h2
y

fy
dy + 2q

∫

hx dx

∫

hy dy + q

∫

fyh2
x

fx
d(x, y)

= q

∫

(

h2
x,y

fx,y
− h2

x

fx
−

h2
y

fy

)

d(x, y),

which completes the proof.

Proof of Proposition 1. It follows from Aı̈t-Sahalia’s functional delta method

that, as long as the remainder term in Lemma 1 is bounded after proper normal-

ization, the asymptotic distribution of T b
1/2
x,T b

1/2
y,T Λf̂ is driven by the second-

order functional derivative. For simplicity, suppose that bT = bx,T = by,T . It is

straightforward to show that

∥

∥

∥
f̂x,y − fx,y

∥

∥

∥
= Op

(

bs
T + T−1/2b−1

T log T
)
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under assumptions A1 to A3 given the order of the bandwidth (Bosq, 1996).

Further, the bandwidth condition ensures the boundness of the remainder term,

viz.

TbT

∥

∥

∥
f̂x,y − fx,y

∥

∥

∥

3

= Op

(

Tb3s+1
T + T−1/2b−2

T log3 T
)

= op(1).

Due to the different rates of convergence, it is clear that
∫

h2
x,y/fx,y d(x, y)

is the leading term in the second functional derivative. To derive the limit-

ing distribution, one may apply the second-order asymptotic theory provided

by Aı̈t-Sahalia (1994), which considers Khashimov’s (1992) generalization of

Hall’s (1984) central limit theorem for degenerate U-statistics to weak depen-

dent processes. More precisely, under assumptions A1 to A3 and the bandwidth

condition, it follows that

T bT

(

UT − 1

bT

[∫

K2(u) du

]2 ∫

ϕ(x, y)fXY (x, y) d(x, y)

)

d−→ N
(

0, VU

)

,

where UT =
∫

ϕ(x, y)
[

f̂XY (x, y) − fXY (x, y)
]2

d(x, y) and

VU = 2

{

∫ [∫

K(u)K(u + v)du

]2

dv

}2
∫

[

ϕ(x, y)fXY (x, y)
]2

d(x, y).

As ϕ(x, y) = f−1
XY (x, y) in the case under study, a well-defined limiting distri-

bution exists only if the support of fXY is bounded.

Lemma 2. Under the null and assumption A5(i), the following expansion holds

Λf̂ =

∫

wf (x, y)
(

hx,y − fxhy − fyhx

)

d(x, y) + O
(

‖hx,y‖2
(2,m)

)

.

Proof: Expanding the functional Λw
f yields

Λw
f,h(λ) =

1

1 − q

∫

wf+λh

[

(f + λh)1−q − g1−q
λ

]

(f + λh)q d(x, y)

=
1

1 − q

∫

wf+λh

[

f + λh − g1−q
λ (f + λh)q

]

d(x, y),

where gλ = gx,y(λ). It then follows that

∂Λw
f,h(λ)

∂λ
=

1

1 − q

∫

∂wf+λh

∂λ

[

f + λh − g1−q
λ (f + λh)q

]

d(x, y)
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+
1

1 − q

∫

wf+λh hx,y d(x, y)

−
∫

wf+λh
∂gλ

∂λ

(

f + λh

gλ

)q

d(x, y)

− q

1 − q

∫

wf+λh

(

gλ

f + λh

)1−q

hx,y d(x, y),

∂Λw
f,h(0)

∂λ
=

1

1 − q

∫

Dwf (x, y)
[

fx,y − g1−q
x,y fq

x,y

]

d(x, y)

+
1

1 − q

∫

wf (x, y)hx,y d(x, y)

−
∫

wf (x, y)Dgx,y

(

fx,y

gx,y

)q

d(x, y)

− q

1 − q

∫

wf (x, y)

(

gx,y

fx,y

)1−q

hx,y d(x, y),

where Dwf denotes the functional derivative of wf (x, y) evaluated at fx,y. As

the first term is zero under the null hypothesis, the first functional derivative

reads

DΛw
f (h) =

∫

wf (x, y)
(

hx,y − Dgx,y

)

d(x, y).

The result then ensues from assumption A5(i) and the fact that Dgx,y = fxhy +

fyhx.

Proof of Theorem 1. Define the vector process {At, t ≥ 0}, where

A′
t = {wf (Xt, Yt) − µXY , wf (Xt) − µX , wf (Yt) − µY }.

By assumption A1, {At} is also β-mixing and therefore it follows from the cen-

tral limit theorem for β-mixing processes (Aı̈t-Sahalia, 1994, Lemma 1) that

T−1/2
∑T

t=1 At
d−→ N(0,Ω), where Ω =

∑∞
k=−∞ E

[

AtA
′
t+k

]

. It is straightfor-

ward to verify that, under the null of independence,

E
[

AtA
′
t+k

]

=





γXY (k) γX(k)µY γY (k)µX

γX(k)µY γX(k) 0
γY (k)µX 0 γY (k)



 .

Using the expansion in Lemma 2 and the fact that the weighting function is

separable yields

Λf̂ =

∫

wf (x, y) d
[

F̂ (x, y) − F (x, y)
]

− µX

∫

wf (y) d
[

F̂ (y) − F (y)
]
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− µY

∫

wf (x) d
[

F̂ (x) − F (x)
]

+ O
(

∥

∥f̂(x, y) − f(x, y)
∥

∥

2

(2,m)

)

=
1

T

T
∑

t=1

a′At + op

(

T−1/2
)

,

where a′ = (1,−µX ,−µY ). This means that
√

T Λf̂

d−→ N(0, a′Ωa) with

a′E
[

AtA
′
t+k

]

a = γXY (k) + γX(k)µ2
X + γY (k)µ2

Y − 2
[

γX(k) + γY (k)
]

µXY .

Lastly, assumption A5 ensures that one may estimate consistently the above

asymptotic variance using the tools provided by Newey and West (1987).

Proof of Proposition 2. The conditions imposed are such that the functional

Taylor expansion holds even when both xtT and ytT are double arrays. Thus,

it ensues that, under H1,T and assumptions A1 to A4,

r̂w
q − T−1/2σ̂−1

w

1 − q

T
∑

t=1

wf (xtT , ytT )

{

1 −
[

fX(xtT )fY (ytT )

fXY (xtT , ytT )

]1−q
}

d[T ]

−→ N(0, 1),

where the superscript [T ] denotes dependence on f
[T ]
XY . The result then follows

by noting that σ̂w
p[T ]

−→ σw and

Λf [T ] =
1

1 − q
E







wf (xtT , ytT )



1 −
(

f
[T ]
X (xtT )f

[T ]
Y (ytT )

f
[T ]
XY (xtT , ytT )

)1−q










= E
[

wf (xtT , ytT )ǫT λXY (xtT , ytT )
]

= ǫT δλ.

Proof of Corollary. It suffices to apply Theorem 1 and show that the asymp-

totic variance σ2
w reduces to the variance of the process implied by the weight-

ing function. To appreciate this, notice that if Yt = Xt−i, then µY = µX ,

γY (k) = γX(k), and γXY (k) = τ2
X(k) − µ4

X . Further, serial independence im-

plies that γX(k) = 0 for all k 6= 0, hence

σ2
w = γXY (0) + 2γX(0)µ2

X − 4γX(0)µ2
X = γXY (0) − 2γX(0)µ2

X

= τ2
X(0) − µ4

X − 2
[

τX(0) − µ2
X

]

µ2
X =

[

τX(0) − µ2
X

]2
= γ2

X(0).

Proof of Theorem 2. Consider a model given by Yt = Yt(θ0) and a T d-

consistent estimator θ̂ of θ0. The interest lies on testing model specification
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by checking whether Yt is serially independent, but Yt is unobservable and the

testing procedure must be carried out using Ŷt = Yt

(

θ̂
)

. The test is nuisance

parameter free if the statistic evaluated at θ̂, i.e.

Λf̂ (θ̂) =
1

(1 − q)(T − i)

T
∑

t=i+1

w(θ̂)











1 −





f̂
(

Yt(θ̂)
)

f̂
(

Yt−i(θ̂)
)

f̂
(

Yt(θ̂), Yt−i(θ̂)
)





1−q










,

where w(θ) = w
(

Yt(θ), Yt−i(θ)
)

, converges to the same distribution of the statis-

tic evaluated at the true parameter vector θ0, i.e. Λf̂ (θ0). The limiting distri-

bution derived in Theorem 1 applies to Λf̂ (θ0), hence it is natural to pursue a

second-order Taylor expansion with Lagrange remainder of Λf̂ (θ̂) about Λf̂ (θ0),

i.e.

Λf̂ (θ̂) = Λf̂ (θ0) + Λ′
f̂
(θ0)

(

θ̂ − θ0

)

+
1

2
Λ′′

f̂
(θ∗)

(

θ̂ − θ0, θ̂ − θ0

)

= Λf̂ (θ0) + ∆1T + ∆2T ,

where θ∗ ∈
[

θ0, θ̂
]

and Λ′
f̂

and Λ′′
f̂

denote the first and second order dif-

ferentials with respect to θ, respectively. Let Zt(θ) =
(

Yt(θ), Yt−1(θ)
)

and

Zt =
(

Yt(θ0), Yt−1(θ0)
)

. The first differential reads

Λ′
f (θ0) =

1

1 − q

∫

( w′
zfz + wzf

′
z )

[

1 − (gz/fz)
1−q

]

dz

+

∫

wz (fz/gz)
q ( gzf

′
z/fz − g′z ) dz

=
1

1 − q

∫

( w′
zfz + wzf

′
z )

[

1 − (gz/fz)
1−q

]

dz

+

∫

wz (fz/gz)
q gz log(fz/gz)

′ dz,

where all differentials are with respect to θ evaluated at θ0. Since the kernel

estimates of the density function and its derivative are such that
(

f̂z − fz

)2
=

Op

(

T−1b−1
z,T

)

and
(

f̂ ′
z −f ′

z

)2
= Op

(

T−1b−3
z,T

)

, Λ′
f̂
(θ0) = Op

(

T−1b−2
z,T

)

. There-

fore, ∆1T is of order Op

(

T−(1+d)b−2
z,T

)

. The second term requires more caution

for it is not evaluated at the true parameter θ0. It is not difficult to show,

however, that

sup
|θ∗−θ0|<ǫ

∣

∣

∣
Λ′′

f̂
(θ∗)

∣

∣

∣
= Op

(

T−1b−3
z,T

)

,
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which implies that ∆2T is of order Op

(

T−(1+2d)b−3
z,T

)

. The limiting distributions

of Λf̂

(

θ̂
)

and Λf̂ (θ0) then coincide if and only if T 1/2(∆1T + ∆2T ) = op(1). As

assumption A4 imposes that bz,T = b2
y,T = o

(

T−1/(s+1)
)

, it ensues that

T 1/2(∆1T + ∆2T ) = T 1/2
[

Op

(

T−(1+d)b−2
z,T

)

+ Op

(

T−(1+2d)b−3
z,T

)]

,

which is op(1) for d ≥ max{2/(s + 1) − 1/2, 3/(2s + 2) − 1/4}.
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Notes

1. Alternatively, one may assume normality to check independence through

the cross-correlation function. For instance, Hong’s (1996) develops a

coherency-based test to check whether two covariance-stationary processes

are uncorrelated by first prewhitening the time series and then gauging

the sum of finitely many squares of residual cross-correlations.

2. Robinson (1991), Hong and White (2000) and Zheng (2000) assume that

the densities are bounded to derive their asymptotic tests of serial inde-

pendence based on the Kullback-Leibler entropy. The former further relies

on a sample-splitting device to work out the asymptotic theory, whereas

the latter two Taylor-expand the Kullback-Leibler measure to find the

limiting distribution of their respective test statistics. Unfortunately, the

solution by Taylor expansion given by Hong and White (2000) and Zheng

(2000) does not seem applicable to entropic indexes different than q → 1.

3. For the limit case (q → 1) where the Tsallis entropy recovers the Kullback-

Leibler information criterion, the local alternative of interest is simply

H1,T : sup(x,y)∈S

∣

∣

∣
f

[T ]
XY (x, y) − g

[T ]
XY (x, y) exp

[

ǫT λXY (x, y)
]

∣

∣

∣
.

4. Actually, randomizing the length of the blocks is not enough to guarantee

the stationarity of the resampled time series. As the blocks overlap, the

first and last original observations appear in fewer blocks than the rest.

Therefore, to deal with these end effects, the stationary bootstrap wraps

the data around a circle, so that X1 follows XT .
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Table 1

Finite sample properties of tests of independence

H0 : Xt ⊥⊥ Yt, where

Yt = 0.8 Yt−1 + υt, υt ∼ iid N(0, 1)

Xt = 0.8 Xt−1 + ǫt, ǫt ∼ iid N(0, 1)

T = 500 q = 1/2 q → 1 q = 2 q = 4

mean 0.2765 0.3257 0.4315 0.7027

median 0.2669 0.3128 0.4110 0.6414

standard deviation 0.0753 0.0933 0.1376 0.2912

skewness 0.6980 0.8333 1.0731 2.0082

kurtosis 3.8873 4.3290 5.2054 12.1181

quantiles: 0.01 0.1364 0.1600 0.2052 0.2880

0.05 0.1696 0.1953 0.2476 0.3636

0.10 0.1871 0.2168 0.2765 0.4108

0.25 0.2234 0.2599 0.3350 0.5054

0.75 0.3210 0.3795 0.5046 0.8336

0.90 0.3747 0.4467 0.6084 1.0626

0.95 0.4106 0.4962 0.6844 1.2160

0.99 0.5004 0.6030 0.8608 1.6428

T = 1000 q = 1/2 q → 1 q = 2 q = 4

mean 0.2481 0.2942 0.3910 0.6202

median 0.2438 0.2891 0.3764 0.5846

standard deviation 0.0598 0.0738 0.1080 0.2104

skewness 0.5357 0.6551 0.8623 1.2923

kurtosis 3.5074 3.7805 4.3087 5.9011

quantiles: 0.01 0.1326 0.1588 0.2075 0.3014

0.05 0.1582 0.1866 0.2383 0.3576

0.10 0.1730 0.2034 0.2635 0.3867

0.25 0.2042 0.2412 0.3153 0.4707

0.75 0.2839 0.3372 0.4507 0.7255

0.90 0.3268 0.3896 0.5305 0.8924

0.95 0.3540 0.4285 0.5854 1.0076

0.99 0.4101 0.5025 0.7219 1.3353

Number of replications: 2000
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Table 2

Finite sample properties of tests of independence

H0 : Xt ⊥⊥ Yt, where

Yt = 0.8 Yt−1 + Xt + υt, υt ∼ iid N(0, 1)

Xt = 0.8 Xt−1 + ǫt, ǫt ∼ iid N(0, 1)

T = 500 q = 1/2 q → 1 q = 2 q = 4

mean 2.8381 3.5284 5.4891 17.9120

median 2.8237 3.5065 5.4449 17.3345

standard deviation 0.3883 0.4759 0.8123 4.5945

skewness 0.1915 0.2054 0.2961 0.8941

kurtosis 3.0447 3.0766 3.2478 4.5746

quantiles: 0.01 1.9826 2.5021 3.7589 9.7432

0.05 2.2259 2.7758 4.2120 11.3520

0.10 2.3538 2.9303 4.4793 12.6164

0.25 2.5765 3.2043 4.9389 14.7580

0.75 3.0888 3.8309 6.0071 20.5612

0.90 3.3433 4.1546 6.5306 23.8118

0.95 3.4921 4.3356 6.8889 26.2527

0.99 3.8255 4.7731 7.6214 32.2606

power: 0.01 1.0000 1.0000 1.0000 1.0000

0.05 1.0000 1.0000 1.0000 1.0000

T = 1000 q = 1/2 q → 1 q = 2 q = 4

mean 3.9931 5.0824 8.1342 28.2330

median 3.9954 5.0806 8.1246 27.6460

standard deviation 0.4038 0.4977 0.8728 5.4770

skewness 0.1670 0.1443 0.1856 0.6636

kurtosis 2.9775 2.9512 3.0076 3.7629

quantiles: 0.01 3.1084 3.9642 6.2140 17.7252

0.05 3.3283 4.2607 6.7126 20.4246

0.10 3.4797 4.4521 7.0343 21.6816

0.25 3.7183 4.7314 7.5121 24.4286

0.75 4.2508 5.3935 8.6991 31.3367

0.90 4.5157 5.7321 9.2671 35.4781

0.95 4.6950 5.9428 9.6344 38.3175

0.99 4.9663 6.2710 10.1615 43.7365

power: 0.01 1.0000 1.0000 1.0000 1.0000

0.05 1.0000 1.0000 1.0000 1.0000

Number of replications: 2000
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Table 3

Finite sample properties of tests of independence

H0 : Xt ⊥⊥ Yt, where

Yt = 0.8 Yt−1 + Xt υt, υt ∼ iid N(0, 1)

Xt = 0.8 Xt−1 + ǫt, ǫt ∼ iid N(0, 1)

T = 500 q = 1/2 q → 1 q = 2 q = 4

mean 0.7250 0.8556 1.1534 2.1738

median 0.7147 0.8400 1.1254 2.0164

standard deviation 0.1517 0.1844 0.2750 0.8263

skewness 0.5081 0.5365 0.6820 1.8125

kurtosis 3.6293 3.6525 3.9930 9.4436

quantiles: 0.01 0.4112 0.4868 0.6306 0.9765

0.05 0.4973 0.5790 0.7516 1.1752

0.10 0.5431 0.6323 0.8264 1.3351

0.25 0.6230 0.7321 0.9663 1.6343

0.75 0.8133 0.9650 1.3099 2.5071

0.90 0.9219 1.0942 1.5125 3.1814

0.95 0.9898 1.1840 1.6462 3.7918

0.99 1.1596 1.3843 1.9716 5.0647

power: 0.01 0.9465 0.9290 0.8660 0.7445

0.05 0.9905 0.9890 0.9775 0.9405

T = 1000 q = 1/2 q → 1 q = 2 q = 4

mean 0.8878 1.0726 1.4792 2.7467

median 0.8766 1.0587 1.4547 2.6223

standard deviation 0.1470 0.1832 0.2762 0.7463

skewness 0.4102 0.4185 0.4966 1.1205

kurtosis 3.6429 3.5428 3.5235 3.8653

quantiles: 0.01 3.4113 3.3555 3.4329 5.2334

0.05 0.5781 0.6894 0.9222 1.5111

0.10 0.6621 0.7916 1.0601 1.7475

0.25 0.7081 0.8520 1.1530 1.9400

0.75 0.7879 0.9490 1.2898 2.2354

0.90 0.9833 1.1862 1.6423 3.1260

0.95 1.0725 1.3075 1.8350 3.6923

0.99 1.2708 1.5604 2.2388 5.0715

power: 0.01 1.0000 1.0000 1.0000 0.9950

0.05 1.0000 1.0000 1.0000 1.0000

Number of replications: 2000
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Table 4

Finite sample properties of tests of serial independence

H0 : Xt ⊥⊥ Xt−1, where Xt ∼ iid N(0, 1)

T = 500 q = 1/2 q → 1 q = 2 q = 4

mean 0.8421 0.9696 1.2321 1.8056

median 0.8186 0.9445 1.1933 1.7248

standard deviation 0.3089 0.3414 0.4201 0.6318

skewness 0.4857 0.5363 0.6425 0.8602

kurtosis 3.5603 3.6516 3.8489 4.4166

quantiles: 0.01 0.2230 0.2959 0.4383 0.6786

0.05 0.3828 0.4644 0.6209 0.9419

0.10 0.4578 0.5496 0.7225 1.0675

0.25 0.6246 0.7306 0.9299 1.3452

0.75 1.0398 1.1818 1.4809 2.1846

0.90 1.2439 1.4079 1.7814 2.6250

0.95 1.3621 1.5506 1.9689 2.9410

0.99 1.6562 1.8972 2.4158 3.7039

T = 1000 q = 1/2 q → 1 q = 2 q = 4

mean 0.8046 0.9293 1.1833 1.7227

median 0.7960 0.9151 1.1520 1.6581

standard deviation 0.2866 0.3129 0.3773 0.5470

skewness 0.3347 0.4172 0.5698 0.8027

kurtosis 3.3471 3.4971 3.7892 4.2802

quantiles: 0.01 0.2157 0.3085 0.4507 0.7256

0.05 0.3672 0.4592 0.6252 0.9539

0.10 0.4486 0.5416 0.7232 1.0879

0.25 0.6082 0.7138 0.9184 1.3379

0.75 0.9860 1.1252 1.4152 2.0400

0.90 1.1734 1.3260 1.6691 2.4108

0.95 1.3013 1.4711 1.8463 2.7358

0.99 1.5581 1.7533 2.2326 3.3968

Number of replications: 2000
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Table 5

Finite sample properties of tests of serial independence

H0 : Xt ⊥⊥ Xt−1, where Xt ∼ iid χ2
1

T = 500 q = 1/2 q → 1 q = 2 q = 4

mean 0.8134 0.9289 1.1683 1.7016

median 0.7911 0.9034 1.1257 1.6119

standard deviation 0.2934 0.3217 0.3909 0.5825

skewness 0.3726 0.4295 0.5611 0.8443

kurtosis 3.1594 3.2716 3.5724 4.4582

quantiles: 0.01 0.2132 0.2823 0.4054 0.6662

0.05 0.3694 0.4405 0.5891 0.8715

0.10 0.4568 0.5456 0.7035 1.0297

0.25 0.6075 0.7029 0.9023 1.3047

0.75 0.9985 1.1264 1.4017 2.0342

0.90 1.2106 1.3586 1.6982 2.4673

0.95 1.3306 1.5066 1.8971 2.7622

0.99 1.5933 1.7919 2.2291 3.3342

T = 1000 q = 1/2 q → 1 q = 2 q = 4

mean 0.7943 0.9106 1.1490 1.6640

median 0.7724 0.8831 1.1066 1.5997

standard deviation 0.2687 0.2929 0.3522 0.5113

skewness 0.3984 0.4544 0.5688 0.7708

kurtosis 3.2680 3.3877 3.6237 4.0467

quantiles: 0.01 0.2450 0.3195 0.4852 0.7174

0.05 0.3823 0.4677 0.6227 0.9290

0.10 0.4617 0.5493 0.7303 1.0777

0.25 0.6071 0.7095 0.9046 1.3114

0.75 0.9671 1.0932 1.3626 1.9577

0.90 1.1482 1.2867 1.6057 2.3352

0.95 1.2586 1.4191 1.7686 2.5916

0.99 1.4989 1.6957 2.1435 3.1778

Number of replications: 2000
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Table 6

Finite sample properties of tests of serial independence

H0 : Xt ⊥⊥ Xt−1, where Xt ∼ iid t(5)

T = 500 q = 1/2 q → 1 q = 2 q = 4

mean 0.3796 0.4463 0.5894 0.9434

median 0.3606 0.4199 0.5437 0.8341

standard deviation 0.2490 0.2708 0.3320 0.5825

skewness 0.3935 0.4965 0.8289 2.4623

kurtosis 3.1368 3.3648 4.5172 17.8770

quantiles: 0.01 -0.1262 -0.0867 -0.0059 0.1186

0.05 0.0058 0.0494 0.1243 0.2648

0.10 0.0765 0.1209 0.2082 0.3672

0.25 0.2011 0.2520 0.3520 0.5625

0.75 0.5435 0.6202 0.7871 1.1817

0.90 0.6995 0.7972 1.0267 1.6259

0.95 0.8256 0.9303 1.1674 1.9770

0.99 1.0542 1.1992 1.5680 2.8352

T = 1000 q = 1/2 q → 1 q = 2 q = 4

mean 0.3887 0.4554 0.5953 0.9203

median 0.3817 0.4486 0.5747 0.8571

standard deviation 0.2346 0.2503 0.2945 0.4577

skewness 0.3465 0.4044 0.5934 1.3428

kurtosis 3.4678 3.5769 3.9700 6.7642

quantiles: 0.01 -0.1025 -0.0461 0.0268 0.1481

0.05 0.0288 0.0698 0.1568 0.3243

0.10 0.1031 0.1504 0.2463 0.4305

0.25 0.2180 0.2745 0.3830 0.5973

0.75 0.5450 0.6219 0.7742 1.1530

0.90 0.6829 0.7728 0.9709 1.4675

0.95 0.7832 0.8818 1.1037 1.7141

0.99 0.9843 1.1199 1.4355 2.4583

Number of replications: 2000
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Table 7

Finite sample properties of tests of serial independence

H0 : Xt ⊥⊥ Xt−1, where

Xt = 0.8 Xt−1 + ǫt, ǫt ∼ iid N(0, 1)

T = 500 q = 1/2 q → 1 q = 2 q = 4

mean 14.2611 17.2157 24.7041 55.9007

median 14.1964 17.0838 24.4742 54.9792

standard deviation 2.1253 2.5272 3.8565 11.5334

skewness 0.2046 0.2221 0.2635 0.4105

kurtosis 3.0806 3.1183 3.1547 3.2676

quantiles: 0.01 9.7655 11.8736 16.7538 33.0857

0.05 10.8803 13.2214 18.7740 38.5277

0.10 11.6189 14.1145 19.9015 41.5589

0.25 12.7653 15.4414 22.0183 47.6305

0.75 15.6961 18.9402 27.2574 63.2438

0.90 17.0534 20.5151 29.6456 70.9626

0.95 17.6734 21.3669 31.2170 75.7506

0.99 19.6283 23.5696 34.3304 86.4352

power: 0.01 1.0000 1.0000 1.0000 1.0000

0.05 1.0000 1.0000 1.0000 1.0000

T = 1000 q = 1/2 q → 1 q = 2 q = 4

mean 20.2433 25.0056 36.8842 87.5425

median 20.1335 24.8565 36.6769 86.6119

standard deviation 2.2474 2.6648 4.1397 13.2489

skewness 0.1820 0.1657 0.1851 0.3440

kurtosis 3.1585 3.1966 3.2280 3.3074

quantiles: 0.01 15.1429 18.7529 27.3509 58.2691

0.05 16.6620 20.7925 30.3899 67.2600

0.10 17.4835 21.7495 31.8896 71.5537

0.25 18.7291 23.2329 34.1124 78.3341

0.75 21.6578 26.7252 39.5757 95.7403

0.90 23.1294 28.4485 42.1843 105.0111

0.95 24.1828 29.5713 43.9969 110.3170

0.99 25.9606 31.6917 47.0980 122.4792

power: 0.01 1.0000 1.0000 1.0000 1.0000

0.05 1.0000 1.0000 1.0000 1.0000

Number of replications: 2000
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Table 8

Finite sample properties of tests of serial independence

H0 : Xt ⊥⊥ Xt−1, where

Xt =
(

0.2 + 0.8 X2
t−1

)1/2
ǫt, ǫt ∼ iid N(0, 1)

T = 500 q = 1/2 q → 1 q = 2 q = 4

mean 4.5610 5.0445 6.0841 10.1137

median 4.3250 4.7841 5.7470 8.0739

standard deviation 1.4612 1.5736 1.9430 31.0409

skewness 0.9331 0.9394 1.1886 31.9183

kurtosis 4.1423 4.1949 5.3785 1102.2963

quantiles: 0.01 2.0836 2.4089 2.9617 3.9785

0.05 2.6373 2.9601 3.6068 4.8539

0.10 2.9344 3.2770 3.9412 5.4057

0.25 3.4912 3.9040 4.7053 6.4620

0.75 5.3927 5.9316 7.0654 10.1638

0.90 6.4889 7.0909 8.5217 13.0296

0.95 7.3188 8.0296 9.6822 15.8050

0.99 8.9919 9.8889 12.4928 29.6317

power: 0.01 0.9995 1.0000 0.9995 0.9995

0.05 1.0000 1.0000 1.0000 1.0000

T = 1000 q = 1/2 q → 1 q = 2 q = 4

mean 6.3411 7.1534 8.9172 43.5420

median 5.9606 6.7358 8.3140 12.0287

standard deviation 2.0393 2.2444 3.4130 1213.1804

skewness 1.8281 1.9451 6.7246 44.4974

kurtosis 9.6112 10.9394 108.3416 1986.4580

quantiles: 0.01 3.3221 3.8195 4.8308 6.8104

0.05 3.8941 4.5079 5.5838 7.7427

0.10 4.3075 4.9136 6.0967 8.5682

0.25 4.9787 5.6572 6.9925 9.9362

0.75 7.2011 8.0838 9.9846 14.9448

0.90 8.8265 9.8599 12.1904 19.2823

0.95 10.0072 11.1850 13.7697 23.1523

0.99 13.3811 14.8042 18.9399 62.0778

power: 0.01 1.0000 1.0000 1.0000 1.0000

0.05 1.0000 1.0000 1.0000 1.0000

Number of replications: 2000
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Table 9

Empirical size of bootstrap-based tests at the 5% level of significance

H0 : Xt ⊥⊥ Yt, where

Yt = φYt−1 + υt, υt ∼ iid N(0, 1)

Xt = φXt−1 + ǫt, ǫt ∼ iid N(0, 1)

autoregressive coefficient φ
sample size index

0.4 0.5 0.6 0.7 0.8 0.9 0.95

T = 500 q = 1/2 0.074 0.086 0.084 0.088 0.092 0.108 0.136

q → 1 0.080 0.084 0.090 0.094 0.106 0.118 0.164

q = 2 0.110 0.122 0.142 0.164 0.168 0.184 0.256

q = 4 0.146 0.168 0.188 0.232 0.256 0.288 0.368

T = 1000 q = 1/2 0.064 0.076 0.084 0.088 0.088 0.096 0.126

q → 1 0.072 0.074 0.084 0.088 0.100 0.108 0.142

q = 2 0.116 0.122 0.140 0.162 0.178 0.186 0.234

q = 4 0.128 0.150 0.168 0.194 0.226 0.262 0.326

Number of replications: 500 Number of bootstrap samples: 99
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