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1 Introduction 

Linearity has often been used as a simplifying device in econometric modeling. If a linearity 

assumption is not tenable, even as a rough approximation, a very large class of nonlinear 

models is subsumed under the general regression model 

(1) Y = m(X) + a(X)c, 

where X = (Xl, . .. , X d) is a vector of explanatory variables, and where c is independent of 

X with E (c) = 0 and Var (c) = 1. Although in principle this model can be estimated using 

nonparametric methods, in practice the curse of dimensionality would in general render such 

a task impractical. 

A viable middle alternative in modeling complexity is to consider m as being additive, i.e. 

d 

(2) m(x) = c + L fa(xa), 
a=l 

where the functions fa are unknown. Additive models in this general form was already 

discussed in Leontief (1947). He analyzed so called separable functions, i.e. functions which 

are characterized by the independence between the marginal rate of substitution for a pair of 

inputs and the changes in the level of another input. Subsequently the additivity assumption 

has been employed in several areas of economic theory, for example in connection with the 

separability hypothesis of production theory. Today additive models are widely used in both 

theoretical economics and empirical data analysis. They have a desirable statistical structure 

allowing econometric analysis for subsets of the regressors, permitting decentralization in 

optimizing and decision making and aggregation of inputs into indices. For more discussion, 

motivation and references see e.g. Fuss, McFadden and Mundlak (1978) or Deaton and 

Muellbauer (1980) which both devote substantial portions of their books to this topic and· 

stress the importance of additive models in economics. 

For statistics, especially when starting from a general nonparametric model such as (1), the 

usefulness of additive modeling has been emphasized among others by Stone, see e.g. Stone 

(1985). He points out that additive models yield a good compromise between the somewhat 

conflicting requirements of flexibility, dimensionality and intrepretability. In particular, the 

curse of dimensionality can be treated in a satisfactory manner. 

So far, additive models have mostly been estimated using backfitting ( Hastie and Tibshirani 

1990 ) combined with splines, but recently the method of marginal integration ( Auestad 

and Tj0stheim 1991, Linton and Nielsen 1995, Newey 1994, Tj0stheim and Auestad 1994 

) has attracted a fair amount of attention, an advantage being that an explicit asymptotic 
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theory can be constructed. Combining marginal integration with a one-step backfit, Linton 

(1997) presented an efficient estimator. It should be remarked that important progress has 

also been made recently ( Mammen, Linton and Nielsen 1999, Opsomer and Ruppert 1997 

) in the asymptotic theory of backfitting. Finally, the estimation of derivatives in additive 

non parametric models is also of interest for economists, and it has been treated by Severance­

Lossin and Sperlich (1999). 

A weakness of the purely additive model is that interactions between the explanatory vari­

ables are completely ignored, and in certain econometric contexts - production function 

modeling being one of them - the absence of interaction terms has been criticized. The lack 

of interaction terms may partly be due to the absence of appropriate testing procedures for 

testing simple interactions against purely additive models. 

In this paper we allow for second order pairwise interactions resulting in a model of the form 

d 

(3) m(x) = c + L 1a(xa) + L 1a{3(xco x{3). 
a=1 1~a<{3~d 

Such a model is quite common in economics. However, parametric models have typically 

been used for the interactions, which may lead to wrong conclusions if the parametric form 

is incorrect. Examples for demand and utility functions can be found e.g. in Deaton and 

:Vluellbauer (1980). Imagine we want to model utility for household and consider the utility 

tree: 

eating drinking housing fuel television sport 

Example for utility tree for households. 

In a nonparametric approach this would lead us to a model of the form 

6 

m(x) = c + L 1a(xa) + 112(X1, X2) + 134(X3, X4) + 156(X5, X6), 
0=1 

where the Xo stand for the inputs of the bottom line in the tree (counted from the left to 

the right). The interaction functions 112 stands for interaction in foodstuffs, 134 in shelter, 

and 156 for entertainment, whereas other interactions are not included in the estimation as 

they are considered as nonexistent. 
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In the context of production function estimation alternative functional forms as well as 

including interaction into the classic Cobb-Douglas model have been considered, resulting in 

the 

Generalized Cobb-Douglas logY = C + t t co:(3ln (Xo:; X(3) 
0:=1(3=1 

d d d 

Translog logY = C + L Co: In Xo: + L L co:(3(1n Xo:)(ln X(3) 
0:=1 0:=1(3=1 

d d d 

Generalized Leontief Y = c + L co:fX;,. + L L cO:(3VX O: X (3 
0:=1 0:=1 (3=1 

d d d 

Quadratic Y = C + L Co:Xo: + L L Co:(3Xo:X(3 
0:=1 0:=1(3=1 

d d (Xo:) 
Y = L L Co:(3X(3/o:(3 X ' 

0:=1 (3=1 (3 
Generalized Concave /0:(3 known and concave, 

which, although parametric, all have a functional form that is included in our model. For 

further discussion and references see Section 7.3, where we present a detailed example for 

production function estimation. 

For model (3) we can give a closed asymptotic theory for both marginal integration and 

also a one-step efficient estimator analogous to that of Linton (1997). However, extending 

the remarkable work of Mammen, Linton and Nielsen (1999) on the asymptotic theory of 

backfitting seems difficult because of its strong dependence on projector theory, which would 

be hard to carry through for the interaction term. 

It should be pointed out that estimation in such models has already been mentioned and dis­

cussed in the context of series estimator and backfitting with splines. For example Andrews 

and Whang (1990) give theoretical results using a series estimator. Hastie and Tibshirani 

(1990) discuss possible algorithms for backfitting with splines. Stone, Hansen, Kooperberg 

and Troung (1997) developed estimation theory for interaction of any order by polynomial 

spline methods. For further general references concerning series estimators in additive in­

teraction models and concerning splines, see Newey (1995) and Wahba (1992), respectively. 

For the marginal integration method interactions have been briefly discussed in Tj0stheim 

and Auestad (1994). 

The main objective of this paper is to consider estimation and testing in additive interaction 

models using marginal integration techniques. Again, the latter make it possible to give 

closed form expressions for the estimators, also for the derivatives, and to construct an 

explicit asymptotic theory. In addition we present simulation studies and an application to 

a production model. 
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It should be mentioned that the approach of Fan, Hardle, Mammen (1998) in estimating an 

additive partially linear model 

d 

m(x, z) = ZT f3 + C + L Jo(xo) 
0=1 

can be applied relatively straightforwardly to our framework with interaction terms included. 

Such mixed models are interesting from a practical, as well as from a theoretical point of 

view, and they permit estimating f3 with the parametric .Jii -rate. Also, an extension to 

generalized additive and partially additive model should not be difficult to do. We refer to 

Linton, Hardle (1996) and Hardle, Huet, Mammen, Sperlich (1999) for a closer description 

of these models. 

Although often modelling the regression model additively or at least the neglecting of some 

interaction terms is already justified by economic theory, from a statistical point of view 

this usually should be tested. The existing testing methods focus on full additivity, as in 

the references discussed at the end of this section. However, if full additivity is rejected, the 

empirical researcher would still like to know exactly which interaction terms are relevant. 

Vie propose two basic functionals for testing of the presence of interaction between a pair of 

variables (xo, Xi3). The most obvious one is to estimate Joi3 and then use a test functional 

(4) 

where 7r is an appropriate non-negative weight function. The other functional is based on 

the fact that 82 mj 8x08xi3 is zero iff there is no interaction between Xo and Xi3. By marginal 

integration techniques this test can be carried out without estimating Joi3 itself, but it does 

require the estimation of a second order mixed partial derivative of the marginal regressor 

in the direction (xo, xi3). 

It is well known that the asymptotic distribution of test functionals of the above type does 

not give a very accurate description of the finite sample properties unless the sample size n 

is fairly large, see e.g. Hjellvik, Yao and Tj0stheim (1998). As a consequence for a moderate 

sample size we have adopted a wild bootstrap scheme for constructing the null distribution 

of the test functional. 

Our test is in effect a test of additivity with the added bonus that the alternative is formulated 

in terms of interactions between pairs of variables. Thus, as an outcome of the testing 

procedure we should be capable of indicating which pairs (if any) of variables should be 

included to describe the interaction. We refer to the example of Section 7.3. 

Other tests of additivity have been proposed. The one coming closest to ours is a test by 

Gozalo and Linton (1997), which is based on the differences in modelling m by a purely 
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additive model as in equation (2) opposed to using the general model (1). The curse of 

dimensionality may of course lead to bias - as pointed out by the authors themselves. Also, 

this test is less specific in indicating what should be done if the additivity hypothesis is 

rejected. A rather different approach to additivity testing (in a time series context) is taken 

by Chen, Liu and Tsay (1995). Still another methodology is considered by Eubank, Hart, 

Simpson and Stefanski (1995) or Derbort, Dette and Munk (1999) who both consider only 

fixed designs. 

Our paper is divided into two main parts devoted to estimation and testing, respectively. In 

Section 2 we present our model in more detail and state some identifying assumptions. In 

Section 3 are given the marginal integration estimator for additive components and inter­

actions, for derivatives, and subsequently, in Section 4 the corresponding one-step efficient 

estimators. The testing problem is introduced in Section 6 with two procedures for testing 

the significance of single interaction terms; also local power results are given. Finally, Section 

7 provides several simulation studies and an application to real data. Most of the technical 

proofs have been relegated to the Appendix. 

2 Some Simple Properties of the Model 

In this section some basic assumptions and notations are introduced. We consider the addi­

tive interactive regression model 

d 

(5) Y = C + L !,AXo) + L !o{3(Xo, X{3) + a(X)c. 
0=1 l~o<{3~d 

Here in general, X = (X 1,X2 , "',Xd) represents a sequence of independent identically dis­

tributed (i.i.d.) vectors of explanatory variables, c refers to a sequence of i.i.d. random 

variables independent of X, and such that E(E) = 0 and Var(c) = 1. We permit het­

eroskedasticity and the variance function is denoted by a2 (X). In the above expression c 

is a constant, {!O(-)}~=l and {!o{3(')}l~Q<{3~d are real-valued unknown functions, where for 

a=1,2, ... ,d, 

(6) 

and for a11 1 ~ a < j3 ~ d, 

(7) 

with {ipQ(-)} ~=l being marginal densities (assumed to exist) of the Xo's. 
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It is important to understand that equations (6) and (7) are only identifiability conditions 

and do not represent restrictions on our model. Indeed, if one thinks in a model of the form 

given in (3) or (5) but not satisfying (6) and (7), what would that mean? Just constant 

shifts of the additive components which in the end all cancel each other. For this imagine 

we take the following steps: 

1. Replace all {fa/3 (xa, X/3) L ~a</3~d by {fa/3(xa, x/3) - fa,a/3 (xa) - f/3,a/3(x/3) +Co,a/3} l~a</3~d' 

where 

fa,a/3(xa) = / fa/3(xa,u)r.p(3(u)du 

f/3,a/3(X/3) = / fa/3(u, X/3) r.pa (u)du 

Co,a/3 = / fa/3(u, v)r.pa(u)r.p/3(v)dudv 

and adjust the {f/3(X/3)}~=I'S and the constant term c accordingly so that mO remains 

unchanged; 

2. Replace all {f/3(X/3)}~=1 by {f/3(x/3) - Co,/3}~=I' where Co,/3 = J f/3(u)r.p/3(u)du, and adjust 

the constant term c accordingly so that mO remains unchanged. 

So we see that any model of the form (3) or (5) is equivalent to ours. 

Next \\'e turn to the concept of marginal integration. Let Xa be the (d - 1 )-dimensional 

random variable obtained by removing Xa from X = (Xl,"" X d), and let Xa/3 be defined 

analogously. \iVith some abuse of notation we write X = (Xa, X/3, X a/3) to highlight the 

directions in d-space represented by the a and f3 coordinates. We denote the marginal 

density of Xa , that of Xa/3 and of X by r.pa(xa), r.pa/3(xa/3), and r.p(x), respectively. 

\\Te now define by marginal integration 

(8) 

for every 1 ~ a ~ d and 

(9) 

for every pair 1 :::; a < f3 :::; d. Denote by Da the subset of {l, 2, ... , d} with a removed. 

:Y{oreover, let 

Daa = {(r,6) 11 ~ 'Y < 6 ~ d,'Y E Do,6 E Do}, 

Da/3 = {(r, 6) 11 :::; 'Y < 6 :::; d, 'Y E Da n D/3, 6 E Da n D/3} 
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and 

Cafj = I !afj(u, v)<Pafj(u, v)dudv 

for every pair 1 ~ Cl: < (3 ~ d. Then (6) and (7) entail the following lemma. 

Lemma 1 For model (5) the following equations for the marginals hold: 

1) Fa(xa) = !a(xa) + C + E('y,6)EDaa C6-y 

Fafj(xa, Xfj) = fafj(xa, xfj) + !a(xa) + !fj(Xfj) + C + E(-Y,6)EDa ,9 C6-y 

2) Fafj(xa, Xfj) - Fa (Xa) - Ffj(Xfj) + f m(x)<p(x)dx = !afj(Xa, Xfj) + Cafj 

3) Cafj = f {Fafj(u,Xfj) - Fa(u)} <Pa(u)du - Ffj(Xfj) + fm(x)<p(x)dx 

!afj(Xa, Xfj) = Fafj(xa, Xfj) - Fa(Xa) - J {Fafj(u, Xfj) - Fa(u)} <pa(u)du 

Proof. 

1) Both formulas follow from the definitions of Daa , Dafj , cafj and equations (8) and (9). 

2) Note first that the population mean is simply 

I m(x)<p(x)dx = C + L C6-y' 
(1~-y<6~d) 

U sing this and the formulas in 1), one arrives at 

!o.fj(Xa, x(j) + L C6-y + L C6-y - L C6-y - L C6-y 
l~-y<o~d ('y,o)EDa /3 ('y,O)EDaa ('y,o)ED,9/3 

3) \Ye only need to integrate both sides of the equation in 2) and note that the right hand 

side comes out as Cafj because of the identifiability condition (7). The rest follows by the 

equation in 2). Q.E.D. 

We define another auxiliary function 

which is a convenient substitute for !a(j(Xa, x(j) as shown in the following corollary. 
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Proof. 

First assume that f~{3(xa, x(3) = 0 . By the previous lemma, Fa{3(xa, x(3) - Fa (Xa) - F{3(x{3) + 
J m(x)<p(x)dx = 0 implies fa{3(xa, x(3) + ca {3 = 0, or fa{3(xa, X(3) = -ca {3, which by ( 7) gives 

o = f fa{3(x a, X(3)<Pa(xa) dxa = - f Ca{3<p{3(x{3)dx{3 = -Ca {3· 

On the other hand, by the definition of ca {3, fa{3(xa, X(3) 

fa{3(xa, X(3) + Ca {3 = o. Q.E.D. 

o gives ca {3 0, and thus 

The corollary provides a marginal integration tool for testing the presence of the interaction 

term f a{3 (xa, X (3); namely the functional 

where 7r(xa, xs) is any weight function. This observation suggests the use of the following 

statistic for testing of additivity of the a-th and fJ-th directions: 

(10) 

where 
_ ~ ~ ~ 1 n 

f~{3(xa, X(3) = Fa{3(xa, x(3) - Fa(xa) - F{3(x{3) + - L Yj. 
n j=l 

(11) 

with estimates Fa,{3, Fa and F{3 of Fa,{3, Fa and F{3 being defined in the next section, and 

where it follows from the strong law of large numbers that 

1 ~ as f - Lt Yj ~ m(x)<p(x)dx. 
n j=l 

As an alternative it is also possible to consider the mixed derivative of fa{3. We will use the 

. j(T.S) d h d· . ar+. r d I I F(r,s) c ar +. F. W notatlOn 03 to enote t e envatIve ~ Ja{3 an ana ogous Y a{3 lor ~ a{3. e 
. ~~ ~~ 

only have to check whether 

is zero, which, under the identifiability condition (7), is equivalent to fO;{3 = O. 
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3 Marginal Integration Estimation 

3.1 Estimation of the additive components and interactions using 

marginal integration 

To use the marginal integration type statistic (10), estimators of the interaction terms must 

be prescribed. Imagine the X-variables to be scaled so that we can choose the same band­

width h for the directions represented by et, (3, and 9 for et{3. Further, let K and L be kernel 

functions and define K h(·) = h-1 K(·/h) and Lg(·) = g-1 L()g). We will give more detailed 

descriptions of the kernels K and L and the bandwidths h and 9 in subsequent sections. For 

ease of notation we use the same letters K and L (and later K*) to denote kernel functions 

of varying dimensions. It will be clear from the context what the dimensions are in each 

specific case. Proofs can be found in the appendix. 

Following the ideas of Linton and Nielsen (1995) and Tj0stheim and Auestad (1994) we 

estimate the marginal influence of Xa:, x(j and (xa:, x(j) by the integration estimator as follows: 

(12) 

where X1a:(j ( XIQ. ) is the lth observation of X with Xa: and X(j ( Xa: ) removed. 

The estimator m(xm x(j, X1a:(j) will be called the pre-estimator in the following. To compute it 

we make use of a special kind of multidimensional local linear kernel estimation; see Ruppert 

and \Nand (1994) for the general case. We consider the problem of minimizing 

n 

(13) L Pi - ao - a1 (Xia: - XQ) - a2(Xi(j - X(j)}2 Kh(XiQ - XQ, Xi(j - X(j)Lg(XiQ(j - X1a:(j) 
i=] 

for each fixed l. Accordingly we define 

where 

Y=(Y1,···,Yn f, 

Wl,a:(j = diag {;Kh(XiQ - XQ, Xi(j - x(j)Lg(Xia:(j - XlQ(j)} ~=1 ' 

ZQ(j = (11: X
1Q 

- XQ X
1

(j:- xfj ) , 

X nQ - XQ Xn(j - xfj 
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and e1 = (1,0,0). It should be noted that this is a local linear estimator in the directions a, 

(3 and a local constant one for the nuisance directions a(3. 

Similarly, to obtain the pre-estimator m(xo:, X/g), with e1 = (1,0), we define 

in which 

This estimator results from minimizing 

n 

L {Yi - ao - a1 (Xio: - Xo:)}2 Kh(Xio: - xo:)Lg(Xig - X/g), 
i=1 

which gives a local linear smoother for the direction a and a local constant one for the other 

directions. 

In order to derive the asymptotics of these estimators we make use of the concept of equivalent 

kernels; see Ruppert and Wand (1994) and Fan et al. (1993). The main idea is that the 

local polynomial smoother of degree p is asymptotically equivalent to, i.e. it has the same 

leading term as, a kernel estimator with a "higher order kernel" given by 

p 

(14) K~(u) := L 8 I1tu
tK(u) 

t=o 

in the one-dimensional case, where 5 = (J ut+s K(u)du)o<t,s<p and 5-1 = (8 I1t)O$II,t$p and 

where p is chosen according to need. Estimates of derivatives of m can then be obtained by 

choosing appropriate rows of 5-1
. If for instance p = 1, we have 

S-1 _ ( 1 0 ) 
- 0 f.L21(K) , 

To estimate the functions fo:, (or m) itself (1I = 0) we use a local linear smoother and have 

simply Ko(u) = K(u). 

We can now state the first main result for estimation in our additive interactive regression 

model. For this, we need the following assumptions: 
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(AOl) The kernels K (-) and L (-) are bounded, symmetric, compactly supported and Lipschitz 

continuous while the nonnegativeK (.) satisfies J K(u)du = 1. The (d-1)- dimensional 

kernel L(·) is a product of univariate kernels L(u) of order q ~ 2, i.e. 

J urL(u)du = { ~ 
CrElR 

for r = 0 

for 0 < r < q 

for r ~ q 

(A02) B d 'dth t' ,f. nhg(d-l) ~ 0 d h h _l an wz s sa zSJY In(n) --+ 00, h2 -+ an = on 5. 

(A3) The functions fo., fo./3 have bounded Lipschitz continuous derivatives of order 

max(p + 1, q)th 

(A4) The variance function (J2 (-) is bounded and Lipschitz continuous. 

(A5) The d-dimensional density r.p has compact support A with infxEA r.p(x) > 0 and is Lips­

chitz continuous. 

Remark: Product kernels are chosen here for ease of notation, especially in the proofs. The 

theorems also work for other multivariate kernels. In the following we will use the notation 

IILII~ := J L2(X)dx for a kernel L (respectively later also K or K*) of any dimension. 

Theorem 1 Let (Xo.) be in the interior of the support of r.po.(-). Then under conditions 

(A01)-(A02), (A3)-(AS), 

(15) 

where Fo. is given by (8) and Lemma 1 , Po. by (12), The variance is 

( ) 11 11
2 J 2 ( ) r.p~ ( x ~) 

VI Xo. = K 2 (J X r.p(x) dx~ 

and the bias 

We now have almost everything at hand to estimate the interaction terms, again using local 

linear smoothers. For the two-dimensional local linear (p = 1) case the equivalent kernel is 

(16) K~(u,v):= K(u,v)sv(l,u,v)T, 
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with sv, 0 ~ v ~ 2, being the (v + 1)th row of 

( 

1 0 

8-1 = 0 1121 

o 0 

~ ). 
-1 

112 

Using a local linear smoother we have Ko(u, v) = K(u, v), but K~ becomes increasingly 

important when we estimate derivatives. We will come back to this point in Section 3.2. 

VVe are interested in the asymptotics of the estimator ~(xo;, X{3) given in (11). Since we 

have a two-dimensional problem, the assumptions have to be adjusted accordingly: 

(AI) The kernels K (.) and L (.) are positive, bounded, symmetric, compactly supported and 

Lipschitz continuous. The bivariate kernel K is a product kernel such that (with some 

abuse of notation) K(u, v) = K(u)K(v), where K(u) and K(v) are identical functions 

while the nonnegative K (.) satisfies J K(u)du = 1. The (d - 1)-, respectively (d - 2) -

dimensional kernel L(·) is also a product of univariate kernels L(u) of order q 2: 2. 

( A.2) B d ·dth .:J: nh2g(d-2) d nhg(d-l) 9! 0 d h h _1 
. an wz s satzs y In 2(n) --+ 00, an In2(n) --+ 00, h 2 ----t an = on 6. 

Theorem 2 Let (xO;,x{3) be in the interior of the support of<.pO;{3 (.). Then under conditions 

(Al)-(AS), 

(17) y'nh2{f~{3(xO;' x{3) - f~{3(xO;' x{3) - h2 El (xo;, x{3)} ~ N {O, VI (Xo;, X{3)} , 

where f~{3 is given by (11) and 

and 

Theorems 1 and 2 are concerned with the individual components. The last result of this 

sub-section states the asymptotics of the combined regression estimator m(x) of m(x) given 

by 

(18) 

and state 
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Theorem 3 Let x be in the interior of the support ofcp(·). Then under conditions (A 1), (A 3)­

(AS) and choosing bandwidths as in (A02) for the one-, (A2) for the two dimensional com­

ponent functions, it holds 

(19) 

3.2 Estimation of derivatives 

Since the estimation of derivatives for additive separable models has already been considered 

in the paper of Severance-Lossin and Sperlich (1999), in this section we concentrate on 

estimating the mixed derivatives of the function Fo.(3. Our interest in this estimator is 

motivated by testing the hypothesis of additivity without second order interaction. Since 

F~dl) = 1~dl), to test for F~dl) = 0 is equivalent to testing the hypothesis that 10.(3 is zero 

under the identifiability condition (7). 

Following the ideas of the previous section at the point (Xo., x(3, X io.(3) we implement a special 

version of the local polynomial estimator. For our purpose it is enough to use a bivariate 

local quadratic (p = 2) estimator. We want to minimize 

I:~~l {Y; - ao - al (Xio. - Xo.) - a2(Xi(3 - x(3) - a3(Xio. - Xo.)(Xi(3 - x(3) - a4(Xio. - Xo.)2 

-a5(Xi (3 - X(3)2}2 Kh(Xio. - xo.)Kh(Xi(3 - x(3)Lg(Xio.(3 - X 10.(3) , 

and accordingly define our estimator by 

(20) 

where Y, W i ,u(3 are defined as in Section 3.1 and e4 = (0,0,0,1,0,0). 

Thus in equation (20), Zo.(3 is 

Zu(3 = (1 X la ~ xa X IQ ,- IQ (Xla - Ia)(XI8 - IQ) (Xla ~ Ia)' (XIQ ~ IQ)' ) . 

1 Xnu - Xo. X n(3 - X(3 (Xnu - Xo.)(Xn(3 - x(3) (Xno. - xo.)2 (Xn(3 - X(3)2 

This estimator is bivariate locally quadratic for the directions a and f3 and locally con­

stant else. Certainly it is also possible to use polynomials of higher degree but for ease of 

presentation we restrict ourself to quadratic ones. 
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Recalling the approach of the preceding sub-section we can now put the equivalent kernel 

K* to effective use. Using a local quadratic smoother we have for the two dimensional case 

where Sv is the (1/ + 1)th, 0 ::; 1/ ::; 5, row of 

J.l4+J.I~ 
J.l4-J.l2 

0 0 0 ~ 
J.l4-J.l2 J.I~~~~ 

0 -1 
J12 0 0 0 0 

0 0 -1 
0 0 0 

5-1 = J12 
-2 

0 0 0 J12 0 0 

J.I:~~~ 0 0 0 ( 2)-1 J14 - J12 0 

~ 0 0 0 0 (J14 - ~)-1 
J.l4-J.l2 

where J1j = J1j(K) = f uj K(u)du. The relationship between 5- 1 and (Z;,BWI,a,BZa,B)-l is 

given in Lemma A2 of the appendix. 

If we want to estimate the mixed derivative, we use K;(u, v) = K(u, V)UVJ122(K) where 

! uvK;(u, v)dudv - 1 

J uiK;(u,v)dudv = J viK;(u,v)dudv - 0 

J u2 vi K;(u,v)dudv = ! UiV2K;(u,v)dudv 0 

for i = 0,1,2,3, ... , 

for i = 0, 1, 2, 3, .... 

To state the asymptotics for the joint derivative estimator we need bandwidth conditions 

that differ slightly from (A2). In fact, more smoothing is required: 

h2 (d-2) q -1 

(:\6) Bandwidths satisfy n In
9
(n) --+ 00, ~ -t 0 and h = honlo. 

Theorem 4 Under conditions (Al), (A3)-(A6), 

v'nh6{Fl1,l) (xco X,B) - Fl1'1) (xa, x,B) - h2 B2 (xa, x,B)} ~ N {O, V2 (xa, x,B)}, 

where 
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and 

f14(K)f121(K) [~{f~~/)(xa'X/3) I e/3 + !~d2)(Xa,X/3) I ea} 

1 {f(3,1)( ) j(1,3)( ) (3,0)( ) I (0,3)( ) I +3! a/3 xa,x/3 + a/3 xa,x/3 +fa/3 xa,x/3 e/3+!a/3 xa,x/3 ea 

+ !~3) (xa) I e/3 + !~3) (X/3) I ea}] 

with 

and e{3 defined analogously. 

Comparing to Theorems 1 to 3, it is seen that the rate of convergence for the derivative 

estimator is slower than for the direct estimator. 

4 A one-step "Efficient Estimator" 

It is known that for additive models of the form 

d 

(21 ) E[Y/X = xl = m(X1, .. " Xd) = C + L !a(Xa) 
a=1 

the marginal integration estimator is not efficient if the regressors are correlated. It is 

inefficient in the sense that if 12, ... ,id are known, then the function !1 could be estimated 

with a smaller variance applying a simple one dimensional smoother on the partial residual 

d 

(22) Ui1 = Yi - C - L !a(Xia)· 
a=2 

Basically, this is the idea ofthe (iterative) backfitting estimation procedure. Linton (1997,1999) 

suggested an estimator combining the backfitting with the marginal integration idea. He first 

performed the marginal integration procedure to obtain ja Vet, and then derived the esti­

mated partial residuals 
d 

(23) Ui1 = Yi - c - L ]a(Xia ), 

Finally, he applied a one-dimensional local linear smoother on the Uia . This is equivalent 

to a one-step backfit. Certainly, for this all the theory done in Section 3 is necessary before 

one can proceed as Linton (1997) suggested. 
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Assuming that we already know the true under lying model, we consider an extension of his 

approach to models of the form 

d 

(24) m(x) = c + L !o(XoJ + L !o(3(xo, X(3) . 
0=1 l$o<(3$d 

This ought to be of some interest, since in contradistinction to the case of no interaction, for 

a pure backfitting procedure, analogous to Hastie and Tibshirani (1990) or Mammen et al 

(1999), it is not even clear how a consistent estimate should look like. Hastie and Tibshirani 

discussed this topic but only for one interaction term and they can not give more than some 

intuitive motivation for their methods. 

In contrast to Linton (1997) we do not restrict ourselves to homoskedastic errors but let 

a~(xo) = Var[Y - m(x)JXo = xo], with ao(3(xo,X(3) defined analogously and assume the 

existence of finite second moments for them. Consider model (24) and the two partial 

residuals 

(25) 

(26) 

Yi - L !"((Xi-y) - L !"((3(Xi-y, X i(3) + L C"(6 

"(f:.o l$,,«(3$d (,,(,6)EDaa 

Yi - m(Xi) + Fo(Xio ) 
d 

Yi - L !"((Xi-y) -
,,(=1 l:5'"Y<o:5d 

b, (3) to (a, (3) 

For the estimation of the functional form it does not matter whether we correct for the con­

stant before or after calculating the efficient estimator. To be consistent in our presentation 

with the preceding sections we have chosen the latter option. Further discussion to this topic 

can also be found in Linton (1997,1999). 

Let now p~Pt be the local linear regressor of Uio in (25) with respect to X o , and j*;; the 

one of Uio(3 in (26) versus (Xo, X(3). From Fan (1993), Ruppert and Wand (1994) we know 

under standard regularity conditions the asymptotic properties to be 

(27) Vnhe {P~Pt(xo) - Fo(xo) - h~be(xo)} -* N {O, ve(xo)} 

(28) vnh~ {j*;;(xo, X/3) - j~/3(xo, X/3) - h~Be(xo, X/3)} -* N {O, Ve(xo, X(3)} 

with be(xo) = JL2(J)~!(2)(Xo), ve(xo) = JJJJJ~a;(xo)<p~l(xo) 

Be(xo, X/3) = JL2(J) ~ {j(2,O) (xo, X(3) + j(O,2) (xo, X/3)} , 

Ve(xo, x/3) = IjJll~a;/3(xo, X/3)<p~J(xo, x/3) 
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where J is the one or two dimensional kernel and he the corresponding bandwidth. 

Now we replace Uico Uio;/3 by Uio;, Uio;/3 by substituting the real functions F'Y' 1;6 by their 

marginal integration estimates defined in the preceding sections. 

The efficient estimator Fo;(xo;) for Fo;(xo;) is defined as being the solution for Co in 

(29) 

Similarly, for 1~/3(xo;, X/3) it is defined as being the solution for Co in 

Note that for reasons of notation we use J first as a one and later as a two dimensional 

kernel as should be obvious from the context. 

From the discussion in Linton (1997) it is clear that slightly undersmoothing the marginal 

integration estimator, i.e. h, g = op(n- 1
/

5
), leads to the desired result that asymptotically 

the 'efficient estimators' Po; and /*0;/3 inherit the properties of p~Pt, /*:;: 

Theorem 5 Suppose that conditions (Al) to (AS) hold, that the kernel J behaves like the 

kernel K, and g, h are at least op(n-1
/
5

), he = Cn- 1
/
5

, C > O. Then we have in probability 

(31 ) 

(32) 

for all 0:,/3 = 1, ... ,d. 

--t 0 

--t 0 

Notice also that the bias expression is the same for the 'efficient estimator' and the original 

marginal integration. Since the proof follows the arguments of Linton (1997,1999) we give 

only a sketch here. In the context of parametric estimation it can also be found in Cox, 

Hinkley (1974). 

Proof. 

\-Ve only discuss the statement in (27), since for (28) the reasoning is analogous. We have 

p~Pt(Xo;) - Fo;(xo;) = 

[L: {F'Y(Xi'Y) - i\(Xi'Y)} + L: {1* 'Y/3 (Xi-y , Xi/3) - F 'Y/3(Xi-y, Xi/3)}] 
'Y¥o; 'Y</3 
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with 

and l = 1,2 . 

·We consider the differences for the one and two dimensional functions separately. 

From the previous sections and the proof in the Appendix A.1 we know that the leading 

terms of f'Y(Xi-y) - J'Y(Xi-y) are 

2 1 ~ <{J'Y(Xj'Y) 
h b1(Xi-y) + - Lt Kh(Xh - Xi-y) (X. X. )a(Xj)cj 

n j=l <{J t"i' J'l 

with 

( ) _ J-L2(K) {(2)( ) ~ 1 ~ (2,0)( )} 
b1 Xi"Y - 2 f"Y Xi"'( + Lt ;; ~f"Yo Xi"'(,XjO . 

OED",{ J=l 

All these terms are additive over 'Y and the correlation between the marginal integration 

estimators is of smaller order. Multiplying h2b1 (-) with 2:;:;1 Wj and summing we still get a 

term of order h2
, which by assumption is op(n- 2

/
5

). 

Also, if we consider the stochastic part, we can see that for l = 0,1 

1. Ei~l Jh (xa - Xia)(xa - Xia)l X 1. EJ~=l Kh(Xj"Y - Xi-y) ~~(X;) )a(Xj)cj 
n e n 'P "'Y' 31 

(33) = ~ 'L,r;=l !J.n1j"Y <{J"Y(Xh ) a(Xj)Cj 

where we have 

But .0.n lj, is bounded and the whole expression (33) is of order Op(n- 1
/
2

). 

For the interaction terms it is almost the same. It is already shown that the leading terms 

of f,o(Xi-y, X io ) - !;o(Xi-y, X iO ) are 

with El (-) defined in Theorem 2. 

Again, all of these terms are additive and asymptotically independent. Further, multiplying 

h2 El (.) with E;:: Wj these terms stay of order h2 = op(n-2
/

5
). 
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For the remaining term we have (l = 0, 1) 

12:i=1 lhe (xa: - Xia:)(Xa: - Xia:)l X 1 2:J~=1 Kh(Xj-y - Xi-y, Xj5 - X i5) (;'J!~j~) ) (J(Xj)Cj, 
n n tp n, .0, )'rO 

where now 'Y is also allowed to take the value a, compare (25). Nevertheless the same 

arguments of boundedness apply as above. 

For the rest, the proof is along the lines of Linton (1997). For the interaction term all 

arguments are the same, compare (26) and (30), but the rate is slower (by one bandwidth) 

due to having one dimension more to estimate. 

Apart from these theoretical differences which will be emphasized under the performance 

point of view in Section 5, there is also another, substantial difference between backfitting, 

marginal integration and this efficient estimator. The backfitting is estimating the additive 

components after a projection of the regression problem into the space of additive models, the 

marginal integration estimator, in contrast, always estimates the marginal influence of the 

particular regressor, whatever the true model is, see e.g. Sperlich, Linton, Hardle (1999). The 

efficient estimator now is a mixture of this and thus suffers from the lack of interpretability 

if the predetermined model structure is not completely fulfilled. This can be a disadvantage 

for empirical research. Also in the context of testing model structure this leads to problems, 

especially if we use bootstrap generated with an estimated hypothetical model. 

5 Computational Performance of the Estimators 

To examine the small sample behavior of the estimators of the previous sections we did a 

simulation study for a sample size of n = 150, respectively n = 169(for 3D-presentation 

reasons) observations. Certainly, an intensive computational comparison between not only 

ours but also alternative estimation procedures for additive models would be of interest, 

but would really require a separate paper. A first detailed investigation and comparison 

between the backfitting and the marginal integration estimator can be found in Sperlich, 

Linton, Hardle (1999) but without interaction terms and not examining the robustness when 

additivity is violated. 

Here, we concentrate on a small illustration to see how reasonable these procedures behave 

in small samples. A more detailed simulation study is carried out for the testing procedures 

in Section 7. Further, an application to real data is there. The data have been generated 

from the model 
3 

m(x) = E(YIX = x) = c+ L1i(Xj) + h,2(Xl,X2) 
j=1 
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where 

(34) 

(35) 

h(u) = 1.5sin(-1.5u), 

with a = 1 for the simulations in this section. The input variables Xj, j = 1,2,3, are 

i.i.d. uniform on [-2,2]. To generate the response Y we added normally distributed error 

terms with standard deviation (lE = 0.5 to the regression function m(x). 

For all calculations we used the quartic kernel i~ (1 - U
2

)2 n {Ju J :::; I} for K (u) as well as for 

L (u), and product kernels for higher dimensions. We chose different bandwidths depending 

on the actual situat"ion and on whether the direction was of interest or not (in the previous 

sections we distinguished them by denoting them h and g). For a discussion of optimal 

choice of bandwidth, we refer to Sperlich, Linton, Hardle (1999), but it must be admitted 

that a complete and practically useful solution to this problem remains to be found. This is 

in particular true for the bandwidth he of the one-step efficient estimator. 

When we considered the the estimation of the functions fet! f~(3 we used h = 0.9, 9 = 1.1. For 

the pre-estimation with subsequent application of to apply afterwards the one-step backfit 

(efficient estimator) we used h = 0.7 and 9 = 0.9, as we have to undersmooth. For the one 

step backfit, we selected he = 0.9. 

In Figure 1 we depict the performance of the 'simple' marginal integration estimator, using 

the local linear smoother. The data generating functions ft, 12, and fa are given as dashed 

lines in a point cloud that represents the observed responses Y after the first simulation run. 

The interaction function 11,2 is given in the lower left window. For one hundred repetitions 

we estimated the functions on a grid with the above mentioned bandwidths and kernels and 

plotted for each grid point the extreme upper and extreme lower value of these estimates. 

For the one-step efficient estimator we did the same. The results are given in Figure 2. 

The results are quite good having in mind that we have used only n = 169 observations. 

Apart from this we can observe several interesting, partly expected behaviors. E.g. as in­

tended, the estimates, at least for the interaction term are smoother for the one-step efficient 

estimator. The biases can be seen clearly for both and behave the same. All in all, for a 

sample of this size the two estimators give roughly the same results. 
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·2 ·1 

X I 

C2 

.. ' 

·2 ·1 

Interaction - Function Interaction - Estimates 

Figure 1: Performance of the 'simple' marginal integration estimator. Real functions 

(dashed) and extreme points for 100 of their estimates (solid). For the first run also the 

response variable Y (points) is given. Position: h (top), 12 (upper left), !J (upper right), 

11.2 (lower left) and the extreme points of the estimates after 100 simulation runs (lower 

right ). 
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X I 

L1 

Interaction - Function Interaction - Estimates 

l.0 

Figure 2: Performance of the 'efficient' estimator. Real functions (dashed) and extreme 

points for 100 of their estimates (solid). For the first run also the response variable Y 

(points) is given. Position: h (top), h (upper left), !3 (upper right), 11,2 (lower left) and 

the extreme points of the estimates after 100 simulation runs (lower right). 
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6 Testing for Interaction 

We are now in a position to state the problem of testing for second order interaction. As 

mentioned in Sections 1 and 2 for the model (3) we consider the null hypothesis HO,a(3 : 

fo(3 == 0, i.e. there is no interaction between Xa and X(3 for a fixed pair (a, (3). Applying 

this test to any pair of different directions X"p Xc, 1 ~ 'Y < 0 ~ d this can be regarded as a 

test for separability in the regression model. 

In Section 2 we pointed out that for this purpose it is equivalent to consider f~(3 instead of 

/0(3' We propose two procedures; the first one is focused on f~(3 directly, the second one on 

the mixed derivative 12/). For reasons discussed in Section 4, we concentrate here on the 

pure marginal integration estimator. 

6.1 Considering the interaction function 

Vie will briefly sketch the idea as to how the test statistic can be analyzed and then state 

the theorem giving the asymptotics. The detailed proof is postponed to the appendix. 

-2 
We consider I f~(3 (xa, X(3)'Pa(3(xa, x(3)dxadx(3. In practice, as will be seen in (40), this func-

tional is replaced by an empirical average. To study the test functional, note first that by 

Theorem 2, equation (17) and some tedious calculations we get the following decomposition 

I f~~(xa, X(3)'Po(3(Xco x(3)dxadx(3 + 2h2 f f~(3(xa, X(3)Bl (Xa, X(3)'Pa(3(Xa, X(3)dxadX(3 + op(h
2
) 

where 

H(Xi, Ci, X j , Ej) = CiEj f ~2 (Wio(3-Wia-Wi(3) ( Wja(3-Wja-Wj(3)(J(Xi)(J(Xj )'Pa(3(xa, x(3)dxadx/3 

with weights Wia, Wi(3 and Wia(3 defined in the appendix, equation (44) and (47). 

Vie then calculate the asymptotics ofthe sums of the H(Xi' Cj, Xi, Cj)'s and the H(Xi' Ci, Xj, Cj)'s, 

put the results together and obtain (cf. A.3 of the appendix): 

Theorem 6 Under assumptions (AJ) to (AS), as h -+ 0 and nh2 -+ 00, 
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-nh f f~~(xa, X(3)'Pa{3(X a, x(3)dxadx {3 - 2nh3 f f~{3(xa, X(3)Bl(Xa, X(3)'Pa{3(Xa, x(3)dxadx{3 

£. 
~ N {O, V(K, 'P, O"n , 

in which 

where K(2) is the 2-fold convolution of the kernel K, and where Bl is defined in the formu­

lation of Theorem 2. 

Denote now by Sa{3 the support of the density 'Pa{3 and let Ba{3(M) denote the function class 

consisting of functions fa{3 satisfying 

where one denotes by Ilfa{3IIHs(Se>/3) the Sobolev seminorm 

and .11 > 0 is a constant. Consider the null hypothesis HO,a{3 : fa{3(xa, x(3) = 0 versus the 

local alternative H 1,a{3(a) : fa{3 E Fa{3(a) where, for any a > 0 

Based on Theorem 6, the test rule with asymptotic significance level 1 - T} is: 

Reject the null hypothesis Ho,o{3 in favor of the alternative H1,o{3 (a) if 

(36) Tn ~ C(T}; h, K, 'P, 0") 

where the test statistic 

(37) 

and the critical value 

(38) C(T}; h, K, 'P, 0") = 

in which <I> is the cumulative distribution function of the standard normal variable. The 

following result concerns the local power of the above test: 
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Theorem 7 Under assumptions (AJ) to (AS) and as h -+ 0, nh2 -+ 00, let for 1 :S i :S n 

d 

(39) Yin = c + L f"((Xiwr ) + in,o.{3(Xinco X in(3) + L f"(o(Xin"(, X ino ) + o-(Xin)Cin 
"(=:1 1 :<; 'Y < c :<; d 

h,c) #- (0,13) 

be the data array generated from the i.i.d. array (Xin, cin), 1 :S i :S n, for each n = 1,2, ... , 

with fixed main effects {f"(} ~=1 and interactions {f"(o} l$-y<O$d,("(,o)¥(o.,{3) and with the a{J-th 

interaction (fn,o.{3) ':=1 a sequence of functions such that fn,o.{3 E Fo.{3(an) where {an} is a 

sequences satisfying a;;-l = o(nh + h-2
) as n -+ 00. Denote by Pn the probability of rejecting 

HO,o.{3 : in,o.{3(Xo., x(3) = ° in favor of the local alternative H1,o.{3(an) : fn,o.{3 E Fo.{3(an) based 

on the data (Xin , Yin), 1 :S i :S n as defined in (39). Then limn~ooPn = 1 . 

Theorem 7 guarantees that asymptotically, the proposed test procedure (36) is able to detect 

an interaction term of the magnitude n- 1h- 1 + h2 with probability 1. 

To implement the test procedure (36), the critical value C(TJ; h, K, 'P, 0-) can be obtained as 
-2 

the wild bootstrap quantiles of the test statistic Tn = nh J f~{3 (Xo., X(3)'Po.{3(Xo., x(3)dxo.dx{3. 

Since the density 'Po.{3 is unknown, Tn is approximated by method of moment as 

(40) 

The following theorem ensures that this substitution is asymptotically allowable 

Theorem 8 Under assumptions (AJ) to (AS) and as h -+ 0, nh2 -+ 00 

-nh J f~~ (xQ' x(3)'PQ!3(xQ, X{3 ) dxo.dX{3 - 2nh3 J f~{3(xo., x{3 )Bl (Xo., x{3 )'Po.{3 (Xo., x{3 )dxo.dx{3 

4 N {a, V(K, 'P, o-)}. 

Hence, Theorem 6 and test rule (36) are not affected when replacin9 Tn with 'in. Further, 

Theorem 7 holds as well, provided the same additional assumptions are true. 

6.2 Considering the mixed derivative of the joint influence 

In contrast to the preceding method one can test for interaction without estimating the 

function of interaction f o.{3 explicitly but looking at the mixed derivative of the function Fo.{3. 
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Our test statistic is J F~~1) 2 CPo./3(Xo., X/3) dxo. dX/3 , which certainly for our purpose is the 

J i(l,l) 2 ( ) d d same as Jo./3 CPo./3 Xo.,X/3 Xo. X/3. 

As can be seen from the proofs of Theorems 1 to 6, the derivation of the asymptotics for this 

test statistic is the same as in the proof of Theorem 6 with the only difference that we now 

have to deal with Ki and end up with asymptotic formulas containing Kr instead of K; see 

the definition in Section 3.1. Thus we state the following theorem without an explicit proof. 

Again, it can be noted that the convergence rate is slower than that obtained in Theorem 

6 so it could be asked why this test statistic should be considered. In fact, as will be seen 

in the simulations, Section 7, the asymptotic properties hold for large samples, where large 

can be many thousands of observations. So, even when the test procedure proposed first 

should at some point beat the one we consider now, this is not clear for small sample which 

are typical for many real data sets. Further, it is well known that even though a certain test 

based on the estimation of a functional form is superior in detecting a general deviation from 

the hypothetical one, a single peak or bump can often be better detected by tests based on 

the derivatives. 

Theorem 9 Under assumptions (Al) and (A3)-(A6), as h -t 0 and nh6 -t 00, 

5 J A (1,1)2 2{K;(2\o)P J CPo./3(Zo., Z/3) CP;/3 (Zo./3) 2 

nh Fo./3 (Xo., X/3)CPo./3(xo., x/3) dxo.dx/3 - h cp(z) (J (z)dz 

- nh5 J Iljl)2 (Xo., x /3) CPo./3 (Xo., x /3 )dxo.dx/3 - 2nh 
7 f f~j1) (Xo., x /3) B2 (Xo., x /3 )cpo./3 (Xo., x /3) dXo.dx/3 

L { 11 *(2) 114 f CP;/3(Zlo., Zl/3)CP;/3 (Zlo./3)CP;/3 (Z20./3) 2 2 } 
-t cV 0,21 Kl ( ) ( - ) - (J (zI)(J (Zlo., Z1/3, z20./3)dz1dz20./3 , 

2 cP Z1 cP Z10., Z1/3, Z20./3 - -

where B2 is defined in the formulation of Theorem 4. 

Now let B0.8(1'v1) denote the function class consisting of functions 10./3 satisfying 

where ~M > 0 is a constant. Consider the null hypothesis Ho,o./3 : fo./3(xo., X/3) = 0 versus the 

local alternative H1,0./3(a) : 10./3 E Fo./3(a) where, for any a > 0 

Based on Theorem 9, the test rule with asymptotic significance level 1 - 'Tl is: 
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The following result concerns the local power of the above test: 

Theorem 10 Under assumptions (Al) to (AS) and as h -+ 0,nh6 -+ 00, let tin, 1 ~ i ~ n 

be the same data array as in Theorem 7 but with the a/3-th interaction fn,o.{3 E Fo.{3(an) where 

{an} is a sequences "satisfying a;:;-l = o(nh5 + h-2
) as n -+ 00. Denote by Pn the probability of 

r'ejecting Ho,o.{3 : fn,o.{3(xo.,X{3) = 0 infavor of the local alternative H1,o.{3(an): fn,o.{3 E Fo.{3(an) 

based on the data (Xin , tin), 1 ~ i ~ n as defined in (39). Then limn-tooPn = 1. 

Thus Theorem 10 guarantees that asymptotically with probability 1, the proposed test pro­

cedure (41) is able to detect an interaction term whose mixed derivative is of the magnitude 

n- 1h-5 +h2
. The proof of Theorem 10 is similar to that of Theorem 7, and therefore omitted. 

Also, Theorem 8 can be extended to test rule (41), but we have omitted its statement due 

to similarity. 

6.3 A possible F-type test 

Both Theorems 6 and 9 are used to test pairwise interactions. As remarked by one of the 

referees, methodologically speaking we propose two individual t-type statistics to check for a 

given interaction. Because of possible high multicolinearity among the explanatory variables, 

as in the classical linear regression context, it may be possible that individual test statistics 

are insignificant, but their joint effect is significant. 

To consider such a situation, in general let Go.{3 be a functional for testing fo.{3 = 0. We have 

shown that 

where g(n, h) is a normalizing factor and Vo.{3 is the asymptotic variance. 

Let G = {G o.{3, 1 ~ a < /3 ~ d} be the vector obtained by considering all pairwise interac­

tions. It has dimension P = d(d -1)/2 corresponding to the number of possible interactions. 

If it can be proved that G is jointly asymptotically normal, 

g(n, h){G - E(G)} .!:t N(O, V), 
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where V is a covariance matrix of dimension p, then one would have that 

l(n, h){G - E(G)}TV-l{(G - E(G)} 

is asymptotically x~-distributed. But studentizing and by analogy with ordinary multivariate 

analysis (cf. Johnson and Wichern (1988, p. 171) one might expect that 

should be more accurately described by an F-type statistic. Such a statistic would yield an 

F-type test for all of the pairwise interactions. It is a natural suggestion, but it is far from 

trivial to establish, -and it is a topic for further research. For example it is not clear how 

one should choose the number of degrees of freedom. Some discussion of this point is given 

in a related framework by Hastie and Tibshirani (1990, Sections 3.5, 3.9, 5.4.5 and 6.8.3). 

However, theory is lacking and Sperlich, Linton, Hardle (1997,1999) found reasons to doubt 

the generality of these methods, especially for the marginal integration estimator. This was 

partly confirmed by Muller (1997) in the context of even much simpler testing problems than 

we consider here. Further it was briefly discussed in Hardle, Mammen, Muller (1998), also 

in a different context of testing. 

7 An empirical investigation of the test procedures 

In nonparametric statistics for small and moderate sample sizes one has to be careful when 

using the asymptotic distribution in practice. We have the additional problem of having 

complicated unknown expressions in the bias and variance of the test statistics, and we are 

dealing with a type of nonparametric test functional which has been known (Hjellvik, Yao 

and Tj0stheim 1998) to possess a low degree of accuracy in its asymptotic distribution. It is 

therefore not unexpected when a simulation experiment, to be described in this Section, for 

n = 150 observations reveals a very bad approximation for the asymptotics, and we must 

look for alternative ways to proceed for low and moderate sample sizes. For an intensive 

simulation study of the performance of marginal integration estimation in finite samples see 

also Sperlich, Linton and Hardle (1999). 

7.1 The wild bootstrap 

One possible alternative is to use the bootstrap or the wild bootstrap, the latter being first 

introduced by Wu (1986) and Liu (1988). The wild bootstrap allows for a heterogeneous vari-
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ance of the residuals. Hardle and Mammen (1993) put it into the context of nonparametric 

hypothesis testing as it will be used here. 

The basic idea is to resample from residuaIs estimated under the null hypothesis by drawing 

each bootstrap residual from a two-point (a, b) distribution G(a,b),i which has mean zero, 

variance equal to the square of the residual and third moment equal to the cube of the 

residual for all i = 1,2, ... ,n. Thus, through the use of one single observation one attempts 

to reconstruct the distribution for each residual separately up to the third moment. For this 

we do not need additional assumptions on c or (J(.). 

Let Tn be the test statistic described in Theorem 6 or 9 and let n* be the number of bootstrap 

replications. The testing procedure then consists of the following steps: 

1. Estimate the regression function mo = mO,o:/3 under the hypothesis Ho,O:/3 that /0:/3 = 0 

in model ( 3) for a fixed pair (a, (3), 1 ~ a < (3 ~ d and construct the residuals 

Ui = Ui,aB = Yi - mo(Xi ), for i = 1,2, ... , n 

2. For each Xi, draw a bootstrap residual ui from the distribution G(a,b),i such that for 

U rv G(a,b),i, 

EG(a,bl,i (U) = 0, EG(a,bl,i (U
2

) = uf 
and EG(a,bl,i (U

3
) = ur . 

3. Generate a sample {(Yi*, Xi) }~1 with Yi* = mo + ui· For the estimation of mo it 

is recommended to use slightly oversmoothing bandwidths; see Hardle and Mammen 

(1993). 

4. Calculate the bootstrap test statistic T~ using the sample {(Ji*, Xi) }~1 in the same 

way as the original Tn is calculated. 

o. Repeat steps 2-4 n* times and use the n* different T~ to determine the quantiles of 

the test statistic under the null hypothesis and subsequently the critical values for the 

rejection region. 

For the two-point distribution G(a,b),i we have used the so-called golden cut construction, 

setting G(a,b),i = qOa + (1 - q)Ob where Oa, Ob denote point measures at a = ui(l - v5)/2, 

b = ui(l + v5)/2 with q = (5 + v5)/1O. 

For the marginal integration estimator Dalelane (1999) recently proved that the wild boot­

strap works for the case of i.i.d. observations. In the setting of times series some work on this 
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has been done by Achmus (1999). Dalelane showed via strong approximation that it holds 

in supremum norm whereas Achmus proved that the wild bootstrap holds at least locally 

for time series. Important general progress in this area has recently been achieved by Kreiss, 

Neumann and Yao (1999). There is still some work needed to establish a theory of the wild 

bootstrap for the test statistic we are using. 

7.2 The simulation study 

The small sample behavior of the estimators has already been investigated and discussed in 

Section 5. For testing we again use the model 

with 

3 

m(x) = E(Y)X = x) = c + L h(xj) + h,2(Xl, X2) 

h(u) = 2u 

h(u) = _u2 + E(u2
) 

j=l 

h(u) = 1.5sin(-1.5u) 

fl,2(U, v) = auv 

where a = 0 under the null hypothesis and a = 1 under the alternative. Again, Xj "" U[-2, 2] 

i.i.d. for j = 1,2,3, and normally distributed error terms with standard deviation 0.5. Sample 

size is now always n = 150. 

To calculate the test statistic we used the (product) quartic kernel for K(u) and L(u) as 

above. When we considered the test statistic based on the estimation of fi2 (direct test) 

we used h = 0.9, 9 = 1.1 and for the pre-estimation to do the wild bootstrap h = 1.0 

and 9 = 1.2. To calculate the test statistic based on the joint derivative ff 121
) (testing , 

derivatives), which generally requires more smoothing (cf. (A6)), we selected h = 1.5, 9 = 1.6 

and h = 1.4, 9 = 1.5, respectively. 

Vve consider first the null hypothesis HO,12 : ft,2 (u) = 0 and look at the asymptotics. In 

Figure 3 we have plotted kernel estimates of the standardized densities of the test procedures 

compared to the standard normal distribution. The densities of the test statistics have been 

estimated with a quartic kernel and bandwidth 0.2. To make the densities comparable we 

also smoothed the normal densities using the same kernel. We see clearly that the test 

statistics we introduced in the previous sections look more like a X2-distributed random 

variable than a normal one. Thus, even if we could estimate bias and variance of the test 

statistics well, the asymptotic distribution of them is hardly usable for testing for such a 

moderate sample of observations. 
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Figure 3: Densities of the test statistics; direct method (solid), testing derivatives (dashed) 

and normal density (thick, solid). 

This conclusion is consistent with the results of Hjellvik, Yao and Tj~stheim (1998) for 

a similar type of functional designed for testing of linearity. For that functional roughly 

100000 observations were needed to obtain a good approximation. The reason seems to be 
----2 

that for a functional of type J f~t3 (xa, xt3)7r(xa, xt3)dxadxt3 several of the leading terms of 

the Edgeworth expansion are nearly of the same magnitude, so that very many observations 

are needed for the dominance of the first order term yielding normality. We refer to Hjellvik, 

Yao and Tj~stheim (1998) for more details. 

To get the results of Table 1 and Figure 4, describing the bootstrap version of the tests, we 

did 249 bootstrap replications and, following Theorems 6, 9, 8, considered the test statistics 

1 n -2 

- I:.fi2 (XI,X2) 11{IXk l ~ 1.6 for k = 1,2} 
n i=l 

and 
1 n ----2 

- I:. Ff,~l) (Xl, X2 ) 11{IXk l ~ 1.6 for k = 1,2} 
n i=l 

respectively, i.e. we have integrated numerically over the empirical distribution function and 

using a weight function (the indicator function 11) for the test statistic to remove outliers 

and avoid boundary effects caused by the estimation (cf. Hjellvik, Yao and Tj~stheim 1998). 

Table 1 is presenting the error of the first kind for both methods and at different significance 

levels. As noted above, a detailed simulation study is beyond our paper. So it certainly 
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Figure 4: Power functions at the 1,5,10 and 20% significance levels for both procedures: 

direct method (solid) and testing derivatives (dashed), 

would be interesting to look on different power results for different bandwidth choices. By 

no means we state here to have chosen the optimal bandwidth as to find this even for the 

estimation procedure can be hard, see Sperlich, Linton, Hardle (1999). Thus, all we are 

interested in for the moment is, to see whether using an in estimation reasonably smoothing 

bandwidth (see Section 5) also leads to reasonable testing results. 

TABLE 1: Percentage of rejection under Ho 

significance level in % 1 5 10 15 20 

direct method 3.0 6.0 12.7 17.3 22.3 

testing derivatives 0.5 4.5 11.4 14.4 18.2 

For both test procedures obtaining an accurate error of the first kind with the aid of wild 

bootstrap depends on a proper choice of bandwidth although the results are fairly robust 

for a reasonable wide range of bandwidths. In the absence of an optimal procedure for 
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choosing the bandwidth, Table 1 must be interpreted with caution as far as a comparison 

of the two testing procedures is concerned. But it is seen that the wild bootstrap works 

quite well and can be used for this test problem. For a comparison of the direct method 

against the derivative approach and to be able to judge the tests more generally we have to 

look at the error of the first kind and the power for a wide range of examples. The power 

as a function of a in (42) is displayed for both methods and for different levels in Figure 4. 

Both procedures are working well. For this particular model the power function of the direct 

method is steeper. This is intuitively reasonable as the estimator and the test statistic have 

smaller asymptotic variance for this method, but for a finite sample it is quite likely that 

the comparative advantages of the two methods depend on the particular model or design. 

Obviously a much more detailed simulation study would be of interest, in particular con­

cerning the interplay between model complexity and (optimal) choice of bandwidth. At 

the moment bandwidths have been chosen somewhat arbitrarily, but we have been pleased 

to observe that the same set of bandwidths seems to lead to satisfactory results for both 

estimation and testing. 

7.3 An Application to Production Function Estimation 

In this section we apply the estimation and testing procedures to a five dimensional produc­

tion function. 

Separability and additivity of production functions have been discussed since the early paper 

by Leontief (1947). These assumptions yield many important economic results, for exam­

ple they allow the aggregation of inputs or decentralization in decision-making. But there 

has been much discussion in the past whether production functions can be taken to be ad­

ditive (strongly separable1
) for a particular data set. This discussion goes back at least 

to Denny and Fuss (1977), Fuss, McFadden and Mundlak (1978), Deaton and Muellbauer 

(1980, pp.117-165). Our test procedure is an adequate tool to investigate the hypothesis of 

additivity. 

\Ve consider the example and data of Severance-Lossin and Sperlich (1999) and look at the 

estimation of a production function for livestock in Wisconsin. In that paper strong sep­

arability (additivity) among the input factors was assumed, and the additive components 

and their derivatives were estimated using the marginal integration estimator. Whereas the 

interest there was focused mainly on the return to scale and hence on derivative estimation, 

lThe expression "strong separability" is equivalently used for "additivity" or "generalized additivity"; see 

Berndt and Christensen (1973). 
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presently we are more interested in examining the validity of the assumption of absence 

of interaction terms looking only at second order interactions as these are the only inter­

pretable ones. We use a subset of n = 250 observations of an original data set of more than 

1000 Wisconsin farms collected by the Farm Credit Service of St.Paul, Minnesota in 1987. 

Severance-Lossin and Sperlich removed outliers and incomplete records and selected farms 

which only produced animal outputs. The data consist of farm level inputs and outputs 

measured in dollars. The output Y in this analysis is livestock; the input variables are fam­

ily labor Xl, hired labor X 2 , miscellaneous inputs (e.g. repairs, rent, custom hiring, supplies, 

insurance, gas, oil, and utilities) X 3 , animal inputs (purchased feed, breeding, and veterinary 

services) X 4 , and intermediate run assets (assets with a useful life of one to ten years) X 5 • 

The underlying additive model (ignoring interaction) is of the form 

d 

(42) In (y) = c + L fo {In(xo)} . 
0=1 

This model can be viewed as a generalization of the Cobb-Douglas production technology. 

In the Cobb-Douglas model we would have fo {In(xo)} = Po In(xo). 

"V./e have extended this model by including interaction terms fo{3 to obtain 

d 

(43) In (y) = c + L fo {In(xo)} + L fo{3 {In(xo), In(x{3)} 

and the assumed strong separability (additivity) can be checked by testing the null hypothesis 

Ho,o(3 : fo{3 = 0 for all a, (3. 

First we estimated all functions fo and fo{3' The estimation results are given in Figures 5 

to 7. Again, quartic kernels were employed for K and L. The data were divided by their 

standard deviations so that we could choose the same bandwidths for each direction. We 

tried different bandwidths and h = 1.7 and 9 = 3.3 yield reasonable smooth estimates. 

However, we know by experience that the integration estimator is quite robust against a 

relatively wide range of choices of bandwidths. For a detailed discussion of the bandwidth 

choice and robustness we refer to Sperlich, Linton and Hardle (1997). 

In Figure 5 the univariate function estimates (not centered to zero) are displayed together 

with a kind of partial residuals Tio := Yi - 2:#0 jj(Xij ) = 13+ jo(Xio ) + €i· To see clearly the 

shape of the estimates we display the main part of the point clouds including the function 

estimates. As suggested already in Severance-Lossin and Sperlich, the graphs in Figure 5 

give some indication of nonlinearity in family labor, hired labor and intermediate run assets. 

They even seem to indicate that the elasticities for these inputs increase and finally could 
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Figure 6: Estimates of the first 6 interaction terms. 

lead to increasing returns to scale. An obvious inference from an economic point of view 

would be that larger farms are more productive. 

In Figures 6 and 7 we have shown the estimates of the bivariate interaction terms !0.{3. For 

their estimation and presentation we trimmed the data by removing 2% of the most extreme 

observations, and used the quartic kernel. 

The same kernel and trimming were used for the testing, and we did 249 bootstrap repli­

cations. To examine the sensitivity of the test procedures against choice of bandwidth, we 

tried a wide range of bandwidths. For the first method, which employs the estimate of the 
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interaction term directly, we used h = 1.3 to 2.1, g = 2.9 to 3.7 for the pre-estimation to get 

estimates for the bootstrap, and h = 1.6 to 2.4, g = 3.1 to 3.9 to calculate the test statistics. 

For the second method, which involves the mixed derivatives of the interaction term, we 

used h = 1. 6 to 2.4, 9 = 3.1 to 3.9 for the pre-estimation to get estimates for the bootstrap 

and h = 2.1 to 2.9, 9 = 3.1 to 3.9 to calculate the test statistics. 

To test the different interaction terms for significance, we used an iterative model selection 

procedure: First we calculated the p-values for each interaction term la{3 including all the 

other functions I" 1 ::; I ::; d and 1,0, 1 ::; I < £5 ::; d with (r, d) 'I- (a, {3) in the model 

(43). Then we removed the function la{3 with the highest p-value, and again determined the 

p-values for the remaining interaction terms as above. Stepwise eliminating the interaction 

terms with the highest p-value, we end up with the most significant ones. 

This procedure was applied for both testing methods. For large bandwidths the interactions 

are smoothed out, and we never rejected the null hypothesis of no interaction for any of the 

pairwise terms, but for small bandwidths some of the interactions terms turned out to be 

significant. For the first method, where we consider the interaction terms directly, the term 

f1,3 (family labor and miscellaneous inputs) was significant at a 5% level with a p-value of 

about 2%. Of the other terms 13,5 and il,5 came closest to being significant. 

For the second method, considering the derivatives, 11,5 (family labor and intermediate run 

assets) and 13,5 (miscellaneous inputs and intermediate run assets) had the lowest p-values, 

fl.5 having a p-value of less than 1%. 

Both procedures suggest that a weak form of interaction is present, and that the variable 

family laboT plays a significant role in the interaction. The fact that the two procedures 

are not entirely consistent in their selection of relevant interaction terms should not be too 

surprising in view of the moderate sample size and the lack of any strong interactions. There 

are fairly clear indications from Figures 6, and 7 that 11,3 and 11,5 are not multiplicative in 

their input factors. This would make it difficult for a parametric test to detect the interaction. 

A Appendix 

A.1 Proof of Theorems 1 and 2 

The proof of Theorems 1 and 2 make use of the following two lemmas, whose proofs are not 

difficult. We refer to Silverman (1986) or Fan, Hardle, Mammen (1998). 
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Lemma Al Let Dn, En and A be matrices, possibly having random variables as their en­

tries. Further, let Dn = A + En where A-I exists and En = (bijh~i,j~d where bij = Op(6n) 

with d fixed, independent of n. Then D;;1 = A-I (/ + Cn) where Cn = (Cijh~i,j~d and 

Cij = Op{6n ). Here 6n denotes a function ofn, going to zero with increasing n. 

Lemma A2 Let Wz,a, Wz,a!3, Za, Zaj3 and S be defined as in Section 3.1 and 

H = diag(h
i
-

1 
)i=I'''',P+l' Then 

and 

b) ( -1 T _1)-1 1 -1 { (2 {;Jff,nn )} 
H Zaf3 Wz,aj3 Z aj3H = ( X) S / + Op h + h2 d-2 

~ Xa ,Xj3, laj3 n g 

Define Ei [.] = E [. I XiI, ... ,Xid ] and E* [.] = E [. I X], where X is the design matrix 

{Xia}~;=l,I' The proofs can now be divided into two parts corresponding to the estima­

tors Fa and Fa(3, respectively. 

I) Vie start by considering the univariate estimator Fa. This is also a component of the 

estimator ~ of interest in Theorem 2. First we will separate the difference between the 

estimator and the true function into a bias and a variance part. 

Defining the vector 

and applying Lemma A2 a), we have 
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Computing the matrix product and inserting for Yz = a(XI)E/ + m(X/) the Taylor expansion 

of m(XI ) around (xQ' X/Q ) , we obtain 

Fa(Xa) - FQ(xQ) = 

1 nIl n { ( (!ff,nn)} - L ( X.) - L Kh (X/Q - XQ) Lg (X/g - X ig) 1 + Op h
2 + h d-l X n i=l r.p XQ, ~g n /=1 n 9 

[(X/
Q 

; XQ? {f~2)(XQ) + L f~~O) (XQ' Xl-y)} + L {f-r(Xl-y) - f-r(Xi-y)} + 
-rEDo -rEDo 

0p{(X/Q - XQ)3} + L {f-ro (Xl-y, X/a) - f-ro (Xi-y) X io )} + a(X/)EI] + Op(n- t ). 
(-r,O)EDoo 

Separating this expression into a systematic "bias" and a stochastic "variance"we have 

where, 
1 n 

ai = ;, L Kh (X/Q - XQ) Lg (X/Q - XiS!) X [ ... ] 

/=1 

and the expression in the brackets [ ... ] is as in the formula above. It remains to work with 

the first order approximations. 

Let 

For the bias part we prove that 

Tin = h2J.L2 (K) ~{f~2)(XQ) + L ~ t f~~O) (xa, Xi-y) } + op(h2) . 
-rEDo ~=1 

Consider r.p(xQ) Xig)-i Ei(ai), which is, in fact, an approximation of the (conditional) bias of 

the Nadaraya-\V"atson estimator at (xQ) Xig). This is, by assumptions (AI), (A2), (A3) and 

(..\5) 

Ei(ai) 

r.p( XQ' X iQ) 

1 [1 ~ ( ) ( ) [(X/a - Xa)2 
( X.) Ei - ~ Kh X/Q - XQ Lg XZg - X ig 2 

r.p XQ) ~g n Z=l 

{ f~2) (XQ) + L 1~~O) (XQ) Xl-y)} + L {1-r (Xl-y) - 1-r (Xi-y)} + 
-rEDo -rEDo 

L {f-ro (Xl-y) X/a) - f-ro (Xi-y, X io ) } + Op{(XzQ - XQ)3}]] 
(-Y,O)EDoo 
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1 ! [(Z - xa? 
( X.) Kh(Z - xa)Lg(w - Xig}p(z, W) x 

t.p Xa, z~ 2 

{ f~2)(xa) + L f~~O) (xa,Xz,,)} + L {f'Y (w'Y) - fy (Xi-y)} 
'YEDo 'YE Do 

+ I: {f'YO (W'Y' WO) - f'YO (Xi'Y'Xio)} + Op{(Z - Xa)3}]dWdz + op(l) 
(-Y,O)EDoo 

I! ( ) [ (uh? { (2) ( X.) K(u)L(v)t.p Xa+Uh,Xi~+vg x -- fa (Xa)+ 
t.p Xa, z~ 2 

L f~~O) (xa, Xh ) } + Op{(uh)3} + L {f'Y (Xi-y + gv'Y) - f-r (Xi-y)} 
-rEDo 'YE Do 

+' L {f-ro (Xi-y + gV'Y' X io + vog) - f'Yo (Xi-y, X iO )} ] dvdu + op(l) 
(-y,O)EDQO 

h
2 

f.l2 (K) ~ {f~2) (Xa) + L f~~O) (Xa, Xz,,)} + op(h
2
) + Op(gq) 

'YE Do 

since E* (ci) = 0, respectively Ei(cl) = 0 for all i and l. We have used here the substitutions 

u = z-':a and v = W-:if!., where v and ware (d -1) -dimensional vectors with ,th component 

v,) respectively wT 

Since the random variables t.p(xa, Xigt l Ei('ai) are bounded, we have by using (A2) 

TIn = h2
f.l2 (K) ~{f~2)(Xo) + I: ~ tf~~O) (xo,Xi-y)} + op(h2) 

'YEDo z=1 

and note that 

by (7), for any, E Do. 

For the stochastic term we use the same technique as in Fan, Hardle, Mammen (1998), 

Severance-Lossin and Sperlich (1999) to prove that with Wio given by 

(44) 

we have 
n 

(45) T2n = L Wioa(Xi)ci + op{(nhtl/2} 
i=1 

and hence 
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II) Analogous to the univariate case of Fo., we proceed for the bivariate case considering Fo.(3: 

We need the following definition 

c + fo.(xo.) + f(3(x(3) + fo.(3(xo., x(3) + ~ {- .. } 
,EDOl f3 

f~l)(Xo.) + 2: f~~O) (Xo.,Xif ) + f~~O) (XO.,X(3) 
,EDOl .{3 

f~l)(X{3) + 2: f~~O) (X(3, Xif) + f~~l) (Xo., x{3) 
,EDOl .{3 

where {- .. } is 

{
fo., (Xo., Xif) + f(3, (x(3, Xif) + f,(Xif) + L f,6 (Xif' Xi6)} 

,,6EDOl {3 

Applying Lemma A2 b) we have 

Fo(3(xo., X(3) - Fo.(3(xo., x(3) 

Inn )} 
nh2 gd- 2 

As above in I) we do the matrix calculation, replace Yz by Yz = a(Xl)cl + m(Xl) and use the 

Taylor expansion of m around (Xo., X(3, X lo.(3)' Then we obtain 

(46) Fo.{3(xo., X{3) - Fo.{3(xo., x{3) = 

1 nIl n 

~ t; y(Xo, X{3, Xi~) ~ ~ Kh (Xlo. - Xo.) Kh (Xl{3 - X{3) Lg (Xla(3 - X io.{3) x 

{
I + 0 (h2 + In n )} [(Xlo. - xo.)2 {f(2)(X ) + '" f(2,0) (x X ) 

p nh2gd-2 2 0. 0. L...J 0., a, h 
,EDOl .f3 

(2,0)( )} (XI(3 - X(3)2 { (2)() '" 1(2,0) ( ) (0,2) ( )} + fa{3 Xa, X(3 + 2 f{3 X{3 + L...J (3, X(3, Xz, + fo.(3 Xo., X(3 
,EDOl .f3 

+ L {f,(Xz,) - f,(Xif)} + L {f,6 (Xz" Xl6) - f,6 (Xif' X i6)} + 
,EDa .f3 (f,6)E DOl{3 

(Xlo. - Xo.) (Xl(3 - X(3) f~~l)(Xo., X(3) + Op{(Xlo. - Xo.)3} + Op{(Xlo. - Xo.)(XI(3 - X{3)} 

+Op{ (XI{3 - X{3)3} + a(Xl)cl] + Op(n-~). 
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We go through the same steps as for the one-dimensional case and separate this expression 

into a systematic "bias" and a stochastic "variance": 

where) 
1 n 

ai = ;;, L Kh (Xlo - xa) Kh (XI[3 - X[3) Lg (X1a[3 - XiO[3) X [ ... ] 

1=1 

and [ ... ] is the expression in the same angular brackets of equation (46). 

Again) we only have to work with the first order approximations. 

Let 

,",re first prove that 

Consider rp(XO) x[3) X io[3)-l Ei(ai), which is again an approximation of the (conditional) bias 

of the Nadaraya-Watson estimator at (xo, x{3, Xia{3). By assumptions (AI), (A2), (A3) and 

(A5) we have 

rp(XQ) x[3, X ia[3) 

( 1 X ) I Kh(zo - Xo)Kh(Z[3 - x[3)Lg(w - X io{3)rp(z, w) 
rp XO, X[3) io[3 -

[ 
(Zo - X

Q )2 {1(2) (x ) + " 1(2,0) (x X ) + 1(2,0) (x X)} + 2 0 0 L... 0, 0 ) If Q[3 0) [3 

,EDQ ,{3 

(Z{3 - X[3)2{f(2)(x ) + " f(2,0) (x X ) + 1(0,2) (x X)} + 
2 [3 {3 L... [3, {3, If 0[3 0;, {3 

,EDQ ,{3 

L {f,(w,) - f,(Xir)} + L {f,b (w" Wb) - f,b (Xir' X i6 )} + 
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+Op{ (Za - Xa)(Z/3 - X/3)}] dwdz + op(l) 

( 1 X ) f K(ua)K(u/3)L(w)<p(xa + uah, x/3 + u{3h, X ia/3 + vg) x 
<p Xa, X/3, ia/3 -

[(h~a)2 {f~2) (xa) + L f~~O) (Xa, xl-y) + f~dO) (Xa, x/3) } + (hU;)2 
'YE Da ,{3 

{fd
2
\X/3) + L f~~O) (X/3' Xl-y) + f~i2) (Xa, X/3) } + L {f'Y(Xi'Y + gV'Y) 

'YEDa ,{3 'YEDa,{3 

- f'Y(Xi"()} + L {f'YO (Xi"( + gV'Y' X io + gVO) - f'Yo (Xi"(, X iO )} + 
(-y,O)EDa {3 

(hua) (hU/3) f2/) (Xa, X/3) + Op(h3
)] dvdu + op(l) 

- h2p2 (K) ~{f~2)(Xa) + L f~~O) (Xa, Xi"() + fJ2)(X/3) + 
'YEDa ,{3 

L f~~'O) (X/3, Xi"() + f~dO) (Xa, X/3) + f~i2) (Xa, X/3) } + op(h2) + Op(gq) 
'YED",{3 

. E [1 W h d h h b" z-(x X(3)T d W-X;,,{3 h SlIlce * t:i = O. e ave use ere t e su stItutlOns u = ~' an v = 9 ,were 

v, ware (d - 2) -dimensional vectors with ,th component v'Y' w'Y' 

Since the <p(xa, x/3, Xia/3)-l Ei(ai) are independent and bounded, we have 

" 1 ~ (2,0) ( ) (2,0) ( ) (0,2) ( ) } ( 2) 
L- - L- f/3"1 X/3, Xi"( + fa/3 Xa, X/3 + fa/3 Xa, X/3 + Op h . 

"IED",{3 n i==l 

Thus, combining with the bias formulas obtained for Fa (Xa) and F/3(x/3), the bias of Fa/3(xa, x/3) 

-Fa(Xo.) -F/3(x/3) is as claimed in the theorem: 

h2Bl = h2p2 (K) ~{f~dO)(Xa'X/3) - f f~dO)(Xa,U/3)<Pg,(u)du 
+ f~i2) (xa, X/3) - f f~i2) (ua, X/3)<p/!.( u)du} + op(h2). 

'-Ne now turn to the variance part 72n. In Fan, Hardle, Mammen (1998) it is shown that for 

(47) 

n 

(48) 72n = L Wia/3a(Xi)t:i + op{(nh2tl/2} 
i==l 
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where the term 
n 

L Wia,8O"(Xi)ci = Op{ (nh2tl/2} 
i=l 

is asymptotically normal and dominates the corresponding stochastic term 

n 

L WiaO"(Xi)ci = Op{(nhtl/2} 
i=l 

from part I of the proof. This means that ~(Xa,X,8) as defined by (11) is asymptotically 

normal. 

Finally, we want to calculate the variance of the combined estimator Fa,8(xa,X,8) -Fa(xa)­

F,8(x,8). Because of the faster rate of the stochastic term in I than the one in Il, it is enough 

to consider Il, i.e. L~l wia,8O"(Xdci. It is easy to show that the variance is then 

QED. 

A.2 Proof of Theorem 4 

This proof is analogous to that of Theorem 1 and 2 for the two dimensional terms. The main 

difference is that at the beginning the kernel K(·) has to be replaced by K* (.), i.e. K*(u, v) = 

K(u, V)UVJ122(K) and the weights are 

(49) 
1 * CPa,8(Xia,8) 

Wia,8= h3K3h(Xa-Xia,X,8-Xia) ( X)' 
n ' cP Xa, x,8, ia,8 

where K;.h(·'·) = bK;(~, ~). 

QED. 

A.3 Proof of Theorem 6 

Consider the decomposition 
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f f~~(xa, x(3)CPa(3(xa, x(3)dxadx(3 + 2h2 f f~(3(xa, X(3)Bl(Xa, X(3)CPa(3(Xa, x(3)dxadx(3 + op(h
2
) 

in which 

H(Xi' ci, Xj, Cj) = CiCj f ~2 (Wia(3-Wia-Wi(3) (Wja(3-Wja- W j(3)a(Xi )a(Xj)CPa(3(Xa, x(3) dxadx (3 

(50) 

with Wia, Wi(3 and Wia(3 as in equation (44) and (47). 

We first simplify H(Xi' Ci, Xj, Cj) by substituting alternatively u = (xa - Xia)/h, V = (x(3 -

X i (3)/h 

Denoting by K(r) the r-fold convolution of the kernel K, one obtains 

l$i<j$n 

where 

x { cpa(3 (Xia , X i (3) + CPa(3(Xja , Xj(3) } 
cp(Xdcp(Xim X i(3, X ja(3) cp(Xj)cp(Xja, X j(3, X ia(3) 

H2 = _ CiCja(Xi)a(Xj) CPa(3(Xja(3) {K(2) (Xia - X ja ) CPa(Xia ) 
n2h cp(Xia , X i(3, X ja(3) h cp(Xi) 

+K(2) (Xi(3 - X j(3) CP(3(Xi(3)} (X. X.) 
h cp(X

i
) CPa(3 ta, t(3 

_ CiCja(Xi)a(Xj) CPa(3(Xia(3) {K(2) (Xja - X ia ) CPa(Xja ) 

n2h cp(Xja , X j(3, X ia(3) h cp(Xj) 

K(2) (Xj(3 - X i(3) CP(3(Xj/!)} (X· X.) 
+ h cp(Xj) CPa(3 Ja, J(3 

H3 = _ CiCja(Xi)a(Xj) CPa(3(Xia(3) {K(2) (Xia - X ja ) CPQ.(X~) 
n2h cp(Xd h cp(Xia , XjQ.) 
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All of these are symmetric and nondegenerate U-Statistics. We will derive the asymptotic variance of HI and it will be seen in the process that all the other Hi's are of higher order and thus negligible. Now we calculate 

{ 
2( {:" {:" )} _ 1 J (2) 2 (Zln - Z2n) (2) 2 (ZI/3 - Z2(3) 2 ( ) 2 ) 

E H] X],~],X2'~2 - n4h4 K h K h CPa/3 Zln/3 CPn{3(Z2n{3 

{ 
'tla{3(Zla, Zl/3) + 'Pn/3(Z2n, Z2(3) }2 2( ) 2( ) ( ) ( )d d 

x 
(J Zl (J Z2 cP Zl cP Z2 Zl Z2· 

CP(Zl)CP(Zln, Zlj3, Z2n/3) CP(Z2)CP(Z2n' Z2/3, Zlnj3) 
Introducing the change of variable 

we obtain 
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or 

E {H~(X1' cl, X 2
, C2)} = ; 2I1 K (2) 114! <P;,8(Zl~)<P;,8(Z2~)<P;,8(Zla, Zl,8) x 

n h 2 <p(Zd<P(Zla, Zl,8, Z2a/3) 

a
2(Zl)a

2
(Zla, Zl/3, z2a/3)dz1dZ2a/3 {l + o(l)} . 

To prove that L,i<j HI (Xi, ci, Xj, Cj) is asymptotically normal, one needs to show that 

where 

(51) 

see Hall (1984). 

Lemma A3 As h -+ 0 and nh2 -+ 00, 

n-
1E{H;(X1,C1,X2,C2)} = Op(n-9h-

6) = op [{EH;(X1,C1,X2,C2)}2]. 

Proof. As in the case of the second moment, the fourth moment can be calculated as 

{ 
<Po/3(Z1m Z1/3) <Po/3(Zla, Zl/3) }4 ( ) ( )d d d d {l ( )} 

,() ( )+ ( ) () <PZ1<PZ10,Zl/3,Z2a/3 Zl UVZ2a/3 +opl 

y Z1 r.p Z10, Z1/3, Z20/3 r.p Z10, Z1/3, Z20/3 <P Z1 

which implies that 

which proves the lemma as n- 1h-2 -+ o. 

Lemma A4 As h -+ 0 and nh2 -+ 00, 
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Proof. According to the definition of G1 

or 

cb 
G1(x,c,y,b) = E{H1(X1,Cl,X,c)H1(X1,cl,y,6)} = n4h4x 

E[K(2) (Xla - Xa) K(2) ( X1f3 - X(3) { 'Paf3(Xa,Xf3) + 'Paf3(X1a,X1f3) } 
h h 'P(X)'P(Xa, X{3, X a(3) 'P(Xd'P(X1a, X 1(3, Xa(3) 

X'Pa(3 (X1a{3 )'Pa(3 (Xa(3 )er(Xl)er(X) 

XK(2) (Xla - Ya) K(2) ( X1 f3 - Y(3) { 'Pa{3(Ya,Y{3) + 'Pa{3(X1a ,X1(3) } 

h h 'P(Y)'P(Ya, Y(J, Xa(J) 'P(X1)'P(X!a, X 1(3, Ya(3) 

x 'Pa(J (X1af3 )'Pa{3 (Yaf3) er (Xr)er(y )] 

G ( 
r) - cb'Paf3(Xaf3)'Pa(J(Ya(J)er(x)er(y) f 2 ( ) 2( ) 

1 X, E, y, U - n4h4 'Pa(J Zaf3 er Z 

XK(2) (Za - Xa) K(2) (Z/1 - X(J) { 'Pa/1(Xa) X(J) + 'Pa{3(Za) Z(3) } 

h h 'P(X)'P(Xa, Xf3, Za(J) 'P(Z)'P(Za, Z(J, Xa(J) 

XK(2) (Za - Ya) K(2) (Zf3 - Y(3) { 'Paf3(Ya, Y{3) + 'Pa(J(Za, Z{3) } 'P(z)dz. 
h h 'P(Y)'P(Ya, Y{3, Za(J) 'P(Z)'P(Za, Z{3, Ya(J) 

Introducing the change of variable 

Za = Xa + hu, z/1 = x(J + hv 

we obtain 

XK(2) (u) K(2) (v) { 'Pa/1(xa,x{3) + 'Paf3(xa,x{3) } K(2) (u + Xa - Ya) 
'P(x)'P(xa,X{3,zaf3) 'P(xa,X{3,za/1)'P(xa,X{3,Xaf3) h 

K(2) ( + xf3 - Y(3) { 'Pa{3(Ya, Y(3) + 'Pa{3(xa, X(3) } 

x v h 'P(Y)'P(Ya,Y{3,zaf3) 'P(xa,Xf3,zaf3)'P(xa,X{3,Ya{3) 

x 'P(xa, xf3, za(3)h
2
dudvdzaf3 {I + o(l)}. 

Using convolution notation, one has 

f 2'Pa!3(xa, X(3) { 'Pa(3(Ya, y(3) + 'Pa{3(xa, X(3) } 

'P(x)'P(xa,Xf3,Zaf3) 'P(Y)'P(Ya,Y(J,zaf3) 'P(xa,X{3,Za{3)'P(Xa,X{3,Ya(J) 

x 'P~f3 (za!3 )er
2 
(xa, x {3, za(3 )'P(xa, x {3, za(3)dza{3 {I + 0(1)} 
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or 

J { 'Po{3(Yo, Y(3) 'Po{3(Xo , X(3) } 2 ( ) 2( )d {1 (1)} 
x ( ) ( ) + ( ) ( ) 'Po{3 Zo{3 (J Xo,X{3,Zo{3 Zo{3 +0 

'P Y 'P Yo,Y{3,Zo{3 'P Xo,X{3,Zo{3 'P Xa,X{3,Yo{3 --

which is what we set out to prove. By techniques used in the two previous lemmas, it follows 

that 

Lemma A5 As h -+ 0 and nh2 -+ 00, 

Lemmas A3, A5, and the Martingale Central Limit Theorem of Hall (1984) imply: 

Proposition Al As h -+ 0 and nh2 -+ 00, 

nh L H(Xi , Ci, Xj, Cj) ~ 
l~i<j~n 

The "diagonal" term l:f=l H(Xi , Ci, Xi, ci) has the following property 

Proposition A2 As h -+ 0 and nh2 -+ 00, 

Proof. This follows by simply calculating the mean and variance of H(X l , Cl, Xl, Cl)' 

Putting these results together, Theorem 6 is proved. 

QED. 
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AA Proof of Theorem 7 

To prove Theorem 7, first note that the support 5a/3 of 'Pa/3 is compact, hence there exists a 

constant C > 0 such that 

(52) IIBIIIL2(S ) = !B12(Xa,X/3)tl1o./3(xo.,x/3)dxo.dx/3 ~ CM Q/3,CPQ/3 Y 

for any fa{3 E Ba{3(M). Here 

is the bias function of Theorem 2. Meanwhile, since 

f~{3(xa, x(3) = fo./3(xa, x/3) + ca(3, ca/3 = ! fa(3(Xo., X/3)'Po.(3(xa, x(3)dxo.dxj3 

it follows that 

J f~~(xa, x(3)'Pa/3(xa, x(3) dxadx j3 = J f~j3(xa, X/3)'Paj3(Xo., x(3)dxadx j3 

+2Ca j3! faj3(xa, X(3)'Po.j3(xa, x(3)dxadxj3 + c~/3 

= ! f~j3(xa, X(3)'Po.j3(xa, x/3)dxadxj3 + 3c~/3 ~ J !';/3(xa, X/3)'Pa/3(xa, x/3)dxadx/3. 

Hence for any fa/3 E :Faj3 (a), one has 

(53) 

Now for n = 1,2, ... , let 

./ _ ! -;- 2 2{K(2)(D)P! 'Pa/3(Za, Z/3)'P~(3(Zo.j3) 2 

Tn - nh fn,a/3 (Xa, X(3)'Pa(3(Xa, X(3) dxadX j3 - h 'P(z) a (z)dz 

-nh J f~~a/3(xa) X(3)'Pa(3(Xa, x(3)dxadXj3 - 2nh
3 J f~,o./3(xa, X(3)En1 (Xa, X(3)'Paj3(Xo., x(3)dxo:dx/3 

where (fn,a/3)r::=l is the sequence in Theorem 7, and Ent the corresponding bias coefficients. 

Note that although the function f~,aj3(xo., x(3) is different for each n, a careful review of the 

proof of Theorem 6 shows that it still holds because the second order Sobolev seminorm of 

each f~,a/3(xa, X(3) is bounded uniformly for n = 1,2, ... , and all the main effects {f'Y}~=l and 

other interactions {f'Yo}lS'Y<8Sd,b,8);i:(a,/3) are fixed. Hence 

(54) T~ ~ N {D, V(K, 'P, a)} 
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as n ..-....t 00. Now let 

in = nh f f~:o./3(xo., X/3)'Po./3(Xo., x/3)dxo.dx/3+2nh
3 f f~,o./3(xo., X/3)Bn1 (Xo., X/3)'Po./3(Xo., x/3)dxo.dx/3 

then 

in 2 nh Ilf~,o./3I1:2(sQfj''PQfj) - 2nh31If~,o./3II£2(SQfj''PQfj) IIBn1 11L2(SQfj,'PQfj) 

= nh IIf~,o./3II£2(SQfj''PQfj) {llf~,o./3IIL2(SQfj''PQfj) - 2h21IBn1I1L2(SQfj''PQfj)} 

in 2 nhan {an - 2h2CM} 

which, using the condition that a~l = o(nh + h-2), entails that tn ..-....t 00 as n ..-....t 00. By the 

definition of the test .(36) 

(55) Pn = P [T~ + tn 2 <1>-1 (1 - 1])V(K, 'P, 0-)] . 

Now (54), (55) and in ..-....t 00 yield limn-too Pn = 1. 

QED. 

A.5 Proof of Theorem 8 

In parallel to the proof of Theorem 6, one can decompose 

n n 

L f~~(Xlo., X 1/3)/n + 2h2 L f~/3(Xlo., X 1/3)B1 (Xlo.) X 1(3)/n + Op(h
2
) 

1=1 1=1 

in which 

H(Xi' ci, Xj, Cj) = CiCj f ~3 (Wio./3,l - Wio.,l - Wi/3,l) (Wjo./3,1 - Wjo.,1 - Wj{3,I)o-(Xi )o-(Xj) 

1=1 

with 

(56) 

(57) 

It is directly verified that for Wio. defined in (44) and Wio./3 defined in (47) 
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uniformly for alII $ i,j $ n. Note also the fact that E(CiIXl' ... , Xn) = 0, E(c~IXl' ... , Xn) = 
1, and using the independence of Cl, ... , cn, one obtains 

n n 

L H(Xi' ci, Xi, ci) = {I + Op (n-l/2)} L H(Xi' ci, Xi, ci) 
i=l i=l 

while 

L H(Xi' Ci, Xj,Cj) = L H(Xi)Ci)Xj)Cj) + Op (n-l/2) 
l$i~j$n l$i~j$n 

with H as defined in (50). These, plus the trivial facts that 

n 

L f~~(Xla, X1(3)/n = I f~~(xa, X(3)'Pa(3(Xa, X(3)dxadx{3 + Op (n-l/2) 
1=1 

t f~/3(Xla, Xl(3)B l (Xlv.) X I(3)/n = I f~(3(xa, X(3)Bl (Xa) X(3)'Pa{3(Xa, x(3)dxadx(3 + Op (n-l/2) 
[=1 

establish Theorem 8. 
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