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1 Introduction

Linearity has often been used as a simplifying device in econometric modeling. If a linearity
assumption is not tenable, even as a rough approximation, a very large class of nonlinear
models is subsumed under the general regression model

(1) Y =m(X) + o(X)e,

where X = (X1,...,Xg) is a vector of explanatory variables, and where ¢ is independent of
X with E(e) = 0 and Var(e) = 1. Although in principle this model can be estimated using
nonparametric methods, in practice the curse of dimensionality would in general render such
a task irnpractical.'

A viable middle alternative in modeling complexity is to consider m as being additive, i.e.

d
(2) m(z) = c+ Z_:l fa(za),

where the functions f, are unknown. Additive models in this general form was already
discussed in Leontief (1947). He analyzed so called separable functions, i.e. functions which
are characterized by the independence between the marginal rate of substitution for a pair of
inputs and the changes in the level of another input. Subsequently the additivity assumption
has been employed in several areas of economic theory, for example in connection with the
separability hypothesis of production theory. Today additive models are widely used in both
theoretical economics and empirical data analysis. They have a desirable statistical structure
allowing econometric analysis for subsets of the regressors, permitting decentralization in
optimizing and decision making and aggregation of inputs into indices. For more discussion,
motivation and references see e.g. Fuss, McFadden and Mundlak (1978) or Deaton and
Muellbauer (1980) which both devote substantial portions of their books to this topic and -
stress the importance of additive models in economics.

For statistics, especially when starting from a general nonparametric model such as (1), the
usefulness of additive modeling has been emphasized among others by Stone, see e.g. Stone
(1983). He points out that additive models yield a good compromise between the somewhat
conflicting requirements of flexibility, dimensionality and intrepretability. In particular, the
curse of dimensionality can be treated in a satisfactory manner.

So far, additive models have mostly been estimated using backfitting ( Hastie and Tibshirani
1990 ) combined with splines, but recently the method of marginal integration ( Auestad
and Tjgstheim 1991, Linton and Nielsen 1995, Newey 1994, Tjgstheim and Auestad 1994
) has attracted a fair amount of attention, an advantage being that an explicit asymptotic
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theory can be constructed. Combining marginal integration with a one-step backfit, Linton
(1997) presented an efficient estimator. It should be remarked that important progress has
also been made recently ( Mammen, Linton and Nielsen 1999, Opsomer and Ruppert 1997
) in the asymptotic theory of backfitting. Finally, the estimation of derivatives in additive
nonparametric models is also of interest for economists, and it has been treated by Severance-
Lossin and Sperlich (1999).

A weakness of the purely additive model is that interactions between the explanatory vari-
ables are completely ignored, and in certain econometric contexts - production function
modeling being one of them - the absence of interaction terms has been criticized. The lack
of interaction terms may partly be due to the absence of appropriate testing procedures for
testing simple interactions against purely additive models.

In this paper we allow for second order pairwise interactions resulting in a model of the form

d
(3) m(z) =c+ Z:Ifa(za) + Z fap(Tar Tp)-

1<a<fB<d

Such a model is quite common in economics. However, parametric models have typically
been used for the interactions, which may lead to wrong conclusions if the parametric form
is incorrect. Examples for demand and utility functions can be found e.g. in Deaton and
Muellbauer (1980). Imagine we want to model utility for household and consider the utility
tree:

foodstuffs entertainment

eating drinking housing fuel television sport

Example for utility tree for households.

In a nonparametric approach this would lead us to a model of the form

6
m(z) =c+ Z fa(Za) + fr2(z1, T2) + faa(z3, T4) + fs6(zs5, Te),

a=1

where the z, stand for the inputs of the bottom line in the tree (counted from the left to
the right). The interaction functions f, stands for interaction in foodstuffs, fs4 in shelter,
and fs¢ for entertainment, whereas other interactions are not included in the estimation as
they are considered as nonexistent.



In the context of production function estimation alternative functional forms as well as
including interaction into the classic Cobb-Douglas model have been considered, resulting in
the

) d 4 A&,+—X%
Generalized Cobb-Douglas  logY =c+ > Y cosln (——2—)

a=1 =1

d 4 d
Translog  logY =c+ Y calnXo+ Y ¥ cap(ln X,)(In X5)
a=1 a=1 f=1
d d d
Generalized Leontief Y =c+ Y coy/Xa+ D Y. Capy/XaXp
a=1 a=1g=1

, d d d
Quadratic Y =c+ ) caXat D D capXaXp

a=1 a=1#=1
d d X
Generalized Concave Y = 21 ﬂz:l CapXpfap (X_;) ,  fap known and concave,
a=14=
which, although parametric, all have a functional form that is included in our model. For
further discussion and references see Section 7.3, where we present a detailed example for
production function estimation.

For model (3) we can give a closed asymptotic theory for both marginal integration and
also a one-step efficient estimator analogous to that of Linton (1997). However, extending
the remarkable work of Mammen, Linton and Nielsen (1999) on the asymptotic theory of
backfitting seems difficult because of its strong dependence on projector theory, which would
be hard to carry through for the interaction term.

It should be pointed out that estimation in such models has already been mentioned and dis-
cussed in the context of series estimator and backfitting with splines. For example Andrews
and Whang (1990) give theoretical results using a series estimator. Hastie and Tibshirani
(1990) discuss possible algorithms for backfitting with splines. Stone, Hansen, Kooperberg
and Troung (1997) developed estimation theory for interaction of any order by polynomial
spline methods. For further general references concerning series estimators in additive in-
teraction models and concerning splines, see Newey (1995) and Wahba (1992), respectively.
For the marginal integration method interactions have been briefly discussed in Tjgstheim
and Auestad (1994).

The main objective of this paper is to consider estimation and testing in additive interaction
models using marginal integration techniques. Again, the latter make it possible to give
closed form expressions for the estimators, also for the derivatives, and to construct an
explicit asymptotic theory. In addition we present simulation studies and an application to
a production model.



It should be mentioned that the approach of Fan, Hirdle, Mammen (1998) in estimating an
additive partially linear model

m(:r:, z) = zT:B+ c+ Xd: fa(xa)
a=1

can be applied relatively straightforwardly to our framework with interaction terms included.
Such mixed models are interesting from a practical, as well as from a theoretical point of
view, and they permit estimating § with the parametric \/n -rate. Also, an extension to
generalized additive and partially additive model should not be difficult to do. We refer to
Linton, Hardle (1996) and Hérdle, Huet, Mammen, Sperlich (1999) for a closer description
of these models.

Although often modelling the regression model additively or at least the neglecting of some
interaction terms is already justified by economic theory, from a statistical point of view
this usually should be tested. The existing testing methods focus on full additivity, as in
the references discussed at the end of this section. However, if full additivity is rejected, the
empirical researcher would still like to know exactly which interaction terms are relevant.
We propose two basic functionals for testing of the presence of interaction between a pair of
variables (zq,z3). The most obvious one is to estimate fos and then use a test functional

(4) /fzﬂ(xa, 28)7(Tq, Tg)dzadzg,

where 7 is an appropriate non-negative weight function. The other functional is based on
the fact that 8*m/0z,0zp is zero iff there is no interaction between z, and z5. By marginal
integration techniques this test can be carried out without estimating f,s itself, but it does
require the estimation of a second order mixed partial derivative of the marginal regressor
in the direction (zq,Zg).

It is well known that the asymptotic distribution of test functionals of the above type does
not give a very accurate description of the finite sample properties unless the sample size n
is fairly large, see e.g. Hjellvik, Yao and Tjgstheim (1998). As a consequence for a moderate
sample size we have adopted a wild bootstrap scheme for constructing the null distribution
of the test functional.

QOur test is in effect a test of additivity with the added bonus that the alternative is formulated
in terms of interactions between pairs of variables. Thus, as an outcome of the testing
procedure we should be capable of indicating which pairs (if any) of variables should be
included to describe the interaction. We refer to the example of Section 7.3.

Other tests of additivity have been proposed. The one coming closest to ours is a test by
Gozalo and Linton (1997), which is based on the differences in modelling m by a purely
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additive model as in equation (2) opposed to using the general model (1). The curse of
dimensionality may of course lead to bias - as pointed out by the authors themselves. Also,
this test is less specific in indicating what should be done if the additivity hypothesis is
rejected. A rather different approach to additivity testing (in a time series context) is taken
by Chen, Liu and Tsay (1995). Still another methodology is considered by Eubank, Hart,
Simpson and Stefanski (1995) or Derbort, Dette and Munk (1999) who both consider only
fixed designs.

Our paper is divided into two main parts devoted to estimation and testing, respectively. In
Section 2 we present our model in more detail and state some identifying assumptions. In
Section 3 are given.the marginal integration estimator for additive components and inter-
actions, for derivatives, and subsequently, in Section 4 the corresponding one-step efficient
estimators. The testing problem is introduced in Section 6 with two procedures for testing
the significance of single interaction terms; also local power results are given. Finally, Section
7 provides several simulation studies and an application to real data. Most of the technical
proofs have been relegated to the Appendix.

2 Some Simple Properties of the Model

In this section some basic assumptions and notations are introduced. We consider the addi-
tive interactive regression model

d
(5) Y=c+ ) falXe)+ D, fas(Xa,Xs)+0(X)e
o=l 1<a<f<d

Here in general, X = (X, X, ..., Xq) represents a sequence of independent identically dis-
tributed (i.i.d.) vectors of explanatory variables, ¢ refers to a sequence of i.i.d. random
variables independent of X, and such that E(e) = 0 and Var(e) = 1. We permit het-
eroskedasticity and the variance function is denoted by ¢?(X). In the above expression ¢
is a constant, {fa(-)}i=1
a=12,..,d,

(6) Efa(Xa) = /fa(ma)Wa(xa)dxa =0,

and forall 1 < a < f <d,

and {fas(*)},<qcpcq are real-valued unknown functions, where for

(7) /faﬂ(xmzﬂ)@a(xa)dma = /faﬂ(za’xﬂ)ﬂoﬁ(xﬂ)dxﬂ =0,

with {<,0a(-)}g‘:1 being marginal densities (assumed to exist) of the X,’s.



It is important to understand that equations (6) and (7) are only identifiability conditions
and do not represent restrictions on our model. Indeed, if one thinks in a model of the form
given in (3) or (5) but not satisfying (6) and (7), what would that mean? Just constant
shifts of the additive components which in the end all cancel each other. For this imagine
we take the following steps:

1. Replace all {faﬁ(xaa mﬂ)}l§a<ﬁ_<_d by {faﬂ(xmxﬂ) —fa,aﬂ(xa) '—fﬁ,aﬁ(xﬁ) +CO,aﬂ}1§a<ﬂ§d7
where

fa,aﬂ(xa) = /faﬁ(xa)u)goﬂ(u)du
fa.aa(z3) = [ Jaglu,35)a(u)du

0,08 = /faﬂ(u’ ”)‘Pa(u)ip,a(v)dudv

and adjust the { fg(mg)}‘;zl’s and the constant term ¢ accordingly so that m() remains
unchanged;

2. Replace all {fﬁ(l‘ﬁ)}gzl by {fs(zs) — Co,ﬂ}z___l, where ¢p g = [ fp(u)pp(u)du, and adjust
the constant term c accordingly so that m() remains unchanged.

So we see that any model of the form (3) or (5) is equivalent to ours.

Next we turn to the concept of marginal integration. Let X, be the (d — 1)-dimensional
random variable obtained by removing X, from X = (Xj,..., Xy), and let Xop be defined
analogously. With some abuse of notation we write X = (X,, Xg, Xag) to highlight the

directions in d—space represented by the o and S coordinates. We denote the marginal
density of X,, that of X5 and of X by ¢u(%a), Pas(Tas), and ¢(z), respectively.

We now define by marginal integration

(8) Fy(za) = /m(za,mg)goa_(:ca_)dxg,

for every 1 < a < d and

(9) Fop(Ta,28) = /m(%, Z6,%af)Pap(Tap)dTap;

for every pair 1 < a < # < d. Denote by D, the subset of {1,2,...,d} with a removed .
Moreover, let

Doa = {(7,6) |1 <7< 6 <d,7y € Do,6 € Da},
Daﬁz{(fy,d)‘1S’y(dﬁd,’YEDaﬂDﬂ,(sEDaﬂDg}



and
Cap = / fap(u, v)@as(u, v)dudv
for every pair 1 < a < f < d. Then (6) and (7) entail the following lemma.

Lemma 1 For model (5) the following equations for the marginals hold:

1) Fa (xa) = fu(xa) +c+ Z(7,5)€Daa C&Y
Fop(Tas 28) = fap(Ta, Tp) + fo(za) + fo(zs) +c+ Z(7,5)€Daﬁ Cé

2)  Fap(Ta,28) — Fal2a) — Fs(zp) + [ m(z)p(z)dr = fop(ZTa,Ts) + Cap
3)  cap = [ {Fap(u,25) — Fo(u)} pa(u)du — Fs(zs) + [ m(z)p(z)dz
fop(Za, 25) = Fop(Za,2s) — Folza) — [ {Faﬁ(ua zg) — Fa(u)} ‘Pa(“)du
Proof.

1) Both formulas follow from the definitions of Dy, Dag, cap and equations (8) and (9).

2) Note first that the population mean is simply

/m(z)go(z)d:c =c+ Y, Co

(1<y<é<d)

Using this and the formulas in 1), one arrives at
Fas(2a,5) = Fa(3a) = Fa(wp) + [ m(a)p(a)ds =

fop(ZTay2g) + Z Coy + Z Coy — Z Coy — Z Cory

1<y<é<d (7:0)€Dap (1,8)€Daa (1,0)€Dgg

= fap(Za, ) + Cap.

3) We only need to integrate both sides of the equation in 2) and note that the right hand
side comes out as c,p because of the identifiability condition (7). The rest follows by the
equation in 2). Q.E.D.

We define another auxiliary function
f&ﬁ(zav Iﬁ) = Faﬂ(l'a,l'ﬁ) - Fa(.’L'a) - Fﬂ(xﬁ) + /m(z)go(x)d:c = faﬂ(mmxﬂ) + Caf

which is a convenient substitute for fos(z4,2s) as shown in the following corollary.

Corollary 1 Let fi5(a,28) and fos(2a,zs) be as defined above. Then

f;ﬁ (:Ea, .’Eg) =0 fag(:ra,xg) =0.



Proof.

First assume that f};(z4,7g) = 0. By the previous lemma, Fy3(Za,Zg) — Fo(Zo) — Fp(zs) +
I m(z)p(z)dz = 0 implies fog(za,Zs) + Cap =0, or fop(Za, ) = —Cop, Which by ( 7) gives

0= /faﬁ(ivmxﬁ)%(xa)d% = - f Cappp(Tp)dTs = —Cap.
and therefore fog(zq,2s) = 0.

On the other hand, by the definition of cup, fap(Za,2zs) = 0 gives copg = 0, and thus
fop(ZTar2p) + cop = 0. Q.E.D.

The corollary provides a marginal integration tool for testing the presence of the interaction
term fo3(Zq, z3); namely the functional

/ fap(Ta, 26)T (20, 5)dzadzs,

where 7(z,,75) is any weight function. This observation suggests the use of the following
statistic for testing of additivity of the a-th and -th directions:

(10) / fab(Tar 28)Pap(Ta, T5)dTadzs

where 1.

(11) f;a(xm 336) = Faﬁ(xaaxﬂ) - Fa(xa) - Fﬂ(xﬂ) + n Z Y;.
j=1

with estimates F, 5, F, and Fj of F, 4, F, and Fs being defined in the next section, and
where it follows from the strong law of large numbers that

Y; a5 /m(x)go(x)dx.

1

n
_’I:

As an alternative it is also possible to consider the mixed derivative of f,3. We will use the

(s O Fs. We

. \ (rys
notation f,; 525,675

) to denote the derivative 52:—;;-,{; fop and analogously F 4 ) for

only have to check whether

2
/ {Fégl) (Zq, mg)} T(Za, Tg)dTodTg

is zero, which, under the identifiability condition (7), is equivalent to fog = 0.
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3 Marginal Integration Estimation

3.1 Estimation of the additive components and interactions using

marginal integration

To use the marginal integration type statistic (10), estimators of the interaction terms must
be prescribed. Imagine the X-variables to be scaled so that we can choose the same band-
width A for the directions represented by «, 3, and g for o. Further, let K and L be kernel
functions and define Kj,(-) = h='K(-/h) and L,(-) = g7 L(-/g). We will give more detailed
descriptions of the kernels K and L and the bandwidths / and g in subsequent sections. For
ease of notation we use the same letters K and L (and later K*) to denote kernel functions
of varying dimensions. It will be clear from the context what the dimensions are in each
specific case. Proofs can be found in the appendix.

Following the ideas of Linton and Nielsen (1995) and Tjgstheim and Auestad (1994) we
estimate the marginal influence of z,, 25 and (z,, zg) by the integration estimator as follows:

1

n
(12) Fag Ta,Tg) EZm xa,xg,XI%) , a:(,) = Zm (Ta), Xia),
=1

where Xjas ( Xiq ) is the I*" observation of X with X, and X3 ( X, ) removed.

The estimator m(z4, x4, Xl%) will be called the pre-estimator in the following. To compute it
we make use of a special kind of multidimensional local linear kernel estimation; see Ruppert
and Wand (1994) for the general case. We consider the problem of minimizing

(13) > {Yi — a0 — 01(Xia — 2a) = 02(Xis — 26)} Kn(Xia — Za, Xis — ) Ly(Xias ~ Xiag)
for each fixed [. Accordingly we define
ﬁ(may Z8, Xla_[j) =€ (ZZﬂm,aﬂZaﬁ)—IZZﬁm,aﬂK

where
Y = (Yly"'7Yn)T7

. 1 "
Wiap = diag {T—LKh(Xia — Za, Xip xﬂ)L (X af — Xlaﬂ)} 1’

1 Xla — Ty -XI,@ — g
Zaﬁ = )
1 Xpa—%a Xng—2p
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and e; = (1,0,0). It should be noted that this is a local linear estimator in the directions ¢,
3 and a local constant one for the nuisance directions ag.

Similarly, to obtain the pre-estimator m(zq, Xi4), With e; = (1,0), we define
ﬁ(-'L'o” Xlg_) = el(ZEWl,aZa)—lzzm,aK

in which
n

. 1
Wi = diag { = Kp(Xia = 7a)Ly(Xia = ng)}. g
1=
1 Xla — Ty
Zo =
1 Xpe— Zao
This estimator results from minimizing
n
Z{Yz —Qy— 4y (Xia - ma)}th(Xia - xa)Lg(Xig - Xlg_),
i=1
which gives a local linear smoother for the direction o and a local constant one for the other
directions.

In order to derive the asymptotics of these estimators we make use of the concept of equivalent
kernels; see Ruppert and Wand (1994) and Fan et al. (1993). The main idea is that the
local polynomial smoother of degree p is asymptotically equivalent to, i.e. it has the same
leading term as, a kernel estimator with a "higher order kernel” given by

(14) KX (u) := i UK (u)

in the one-dimensional case, where S = (f u'**K (u)du)yc,,, and S7F = (sur)ocwicp and
where p is chosen according to need. Estimates of derivatives of m can then be obtained by
choosing appropriate rows of S~!. If for instance p = 1, we have

L (1 o
> —(0 NEI(K))’

To estimate the functions f,, (or m) itself (¥ = 0) we use a local linear smoother and have
simply Kj(u) = K(u).

with py(K) = [u?K (u)du.

We can now state the first main result for estimation in our additive interactive regression
model. For this, we need the following assumptions:
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(AO1) The kernels K () and L (-) are bounded, symmetric, compactly supported and Lipschitz
continuous while the nonnegative K (-) satisfies [ K (u)du = 1. The (d—1)- dimensional
kernel L(-) is a product of univariate kernels L(u) of order ¢ > 2, i.e.

1 for r=0
/u’L(u)du: 0 for 0<r<gq
¢ €R for r>¢q

(A02) Bandwidths satisfy % — 00, }’;% ~ 0 and h = hon™%.

(A3) The functions f,, fap have bounded Lipschitz continuous derivatives of order
max(p + 1, ¢)"

(A4) The variance function o () is bounded and Lipschitz continuous.
(A3) The d-dimensional density @ has compact support A with infzc4 o(z) > 0 and is Lips-

chitz continuous.

Remark: Product kernels are chosen here for ease of notation, especially in the proofs. The
theorems also work for other multivariate kernels. In the following we will use the notation
|L||3 := [ L?(z)dz for a kernel L (respectively later also K or K*) of any dimension.

Theorem 1 Let (z,) be in the interior of the support of wo(-). Then under conditions

(15) Vih{ Fy(za) = Fol(za) = h2b1(z0)} = N{0,v1(za)},

where Fy is given by (8) and Lemma 1 , F, by (12). The variance is

2 2 ng(xg)
v1(Zq) = !|K||2/0 (x)mdxg
and the bias 1o (K)
bi(za) = 22 10 (ze)

We now have almost everything at hand to estimate the interaction terms, again using local
linear smoothers. For the two-dimensional local linear (p = 1) case the equivalent kernel is

(16) K*(u,v) := K(u,v)s,(1,u,v)7,

13



with s,, 0 < v <2, being the (v + 1)** row of

1 0 0
S'=[0 gt 0
0 0 u3'

Using a local linear smoother we have Kj(u,v) = K(u,v), but K becomes increasingly
important when we estimate derivatives. We will come back to this point in Section 3.2.

We are interested in the asymptotics of the estimator f* ﬁ(a:a,:zzg) given in (11). Since we
have a two-dimensional problem, the assumptions have to be adjusted accordingly:

(A1) The kernels K (-) and L (-) are positive, bounded, symmetric, compactly supported and
Lipschitz continuous. The bivariate kernel K is a product kernel such that (with some
abuse of notation) K (u,v) = K(u)K (v), where K(u) and K (v) are identical functions
while the nonnegative K () satisfies [ K(u)du = 1. The (d — 1)-, respectively (d — 2) -
dimensional kernel L(-) is also a product of univariate kernels L(u) of order ¢ > 2.

(A2) Bandwidths satisfy %91)2—) — oc, and ”—ﬁfg%;—)ﬂ — 00, ﬁ% — 0 and h = hon™s.

Theorem 2 Let (z4,%5) be in the interior of the support of @up (-). Then under conditions

(17) v nhQ{m(:Ea, ) — fc:ﬂ(xm ) — hZBI(xaaxﬂ)} =5 N{0,Vi(za, z5)}
where F*, g s given by (11) and

Vi@a,zs) = 1K1 [ 02(@%

OfIL‘aﬂ

and
B\ (2a,25) = p12 (K) 5 { " (2a,25) + 35" (%ar 25) } -

Theorems 1 and 2 are concerned with the individual components. The last result of this
sub-section states the asymptotics of the combined regression estimator m(z) of m(z) given
by

d o n
(18) =3 Rzt ¥ Talswss) - (@-1 2%

a=1 1<a<f<d

and state
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Theorem 3 Let = be in the interior of the support of p(+). Then under conditions (A1),(A3)-
(A5) and choosing bandwidths as in (A02) for the one-, (A2) for the two dimensional com-
ponent functions, it holds

(19) Vah? {fii(z) = m(z) — K Bn(z)} == N{0,Vin(2)},

where h is as in (A2), Bu(z) = Yi<acp<d Bi(Za, T5) and Vi (z) = Ticacpca V1 (Zas 25).

3.2 Estimation of derivatives

Since the estimation of derivatives for additive separable models has already been considered
in the paper of Severance-Lossin and Sperlich (1999), in this section we concentrate on
estimating the mixed derivatives of the function F,s. Our interest in this estimator is
motivated by testing the hypothesis of additivity without second order interaction. Since
F(g’l) =f (13’1), to test for Félﬁ’l) = 0 is equivalent to testing the hypothesis that f,s is zero

[ a

under the identifiability condition (7).

Following the ideas of the previous section at the point (z,, zs, Xiap) we implement a special
version of the local polynomial estimator. For our purpose it is enough to use a bivariate
local quadratic (p = 2) estimator. We want to minimize

?:1{Yz — g — 01(Xia — o) — aZ(XiB - xﬂ) — a3(Xiq — xa)(Xiﬂ - :E,g) — a4(Xia ~ ma)Q
~a5(Xig — 25)* Y Kn(Xia = Ta) Bn(Xip — 25) Ly (Xiap = Xiap),

and accordingly define our estimator by

- 1 ~1
(20) chlﬂ’l)(:pa,zg) = _77j Z €4 (Zfﬂm,aﬂzaﬁ) Zgﬁmﬂﬂy

i=]

where Y, W, o3 are defined as in Section 3.1 and e4 = (0,0,0,1,0,0).
Thus in equation (20), Z,s is

1 Xia—Za Xig=25 (Xia=2a)(X1s—25) (X1a—%a)® (Xip —25)°
Zag=1| : : : : :
1 Xno—%a Xng =28 (Xna—%a)(Xng—28) (Xna —2a)? (Xng — 25)°

This estimator is bivariate locally quadratic for the directions « and 3 and locally con-

stant else. Certainly it is also possible to use polynomials of higher degree but for ease of
presentation we restrict ourself to quadratic ones.
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Recalling the approach of the preceding sub-section we can now put the equivalent kernel
K* to effective use. Using a local quadratic smoother we have for the two dimensional case

K} (u,v) := K(u,v)s,(1,u,v, uv, u?,v*)T

where s, is the (v + 1) 0 < v < 5, row of

2
(L% 0 0 0 e, prer
0 pt 0 0 0 0
ga_| 0 0 pst 0 0 0
0 0 0 u3° 0 0
0 00 0 (u-pd7 0
SE o0 0 0 (-

where p; = p;(K) = [w K(u)du. The relationship between S~ and (ZI;Wi,apZ05)7" is
given in Lemma A2 of the appendix.

If we want to estimate the mixed derivative, we use K3(u,v) = K(u,v)uvyy *(K) where
/uvKg(u, v)dudv = 1
/uiKg(u,v)dudv= /viK;(u,v)dudv =0 for 1=0,1,2,3,...,
/u%iK;(u,v)dudu=/uiv2K;(u,u)dudu =0 fori=0,1,23,....
To state the asymptotics for the joint derivative estimator we need bandwidth conditions

that differ slightly from (A2). In fact, more smoothing is required:

(A6) Bandwidths satisfy Z’—’frﬁ;):z—) — 0oC, ﬁ% ~ 0 and h = hgnT.

Then we have:

Theorem 4 Under conditions (A1), (A8)-(A6),
v ”h6{ﬁ¢§,13,1)($a717ﬁ) - é}a’l)(xa,mﬂ) — h?By(z4, 25)} - N {0, Va(zq, 7p) } ,

where

. ‘Pgﬁ(xaﬂ)
Viras3) = K1 [ 0(0) =2 5= dras
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and

B?($arxﬁ) = (K) ( )[ {f(2 ) za’xﬁ)/gﬁ+ (,)(:meﬁ)/ga}
1

g;{ (3 ) (Za, T +fa (zayzﬁ)""ffzé (xaaxﬁ)/gﬁ'f'féoﬁ’s)(zmmﬂ)/ga

+19(za) [ ea+ 1 (23) [ ea)]|

+

with
_ Pas(%ap) Dp(z)
= "ok oz

dxa_g_

and oz defined analogously.

Comparing to Theorems 1 to 3, it is seen that the rate of convergence for the derivative
estimator is slower than for the direct estimator.

4 A one-step ”Efficient Estimator”

It 1s known that for additive models of the form

(21) EY|X =z]=m(z1,...,74) = c+ }: fa(za)

a=1
the marginal integration estimator is not efficient if the regressors are correlated. It is
inefficient in the sense that if fs,..., f; are known, then the function f; could be estimated
with a smaller variance applying a simple one dimensional smoother on the partial residual

(22) U'z'l = Yz —C— zd: fa(Xia)-

Basically, this is the idea of the (iterative) backfitting estimation procedure. Linton (1997,1999)
suggested an estimator combining the backfitting with the marginal integration idea. He first
performed the marginal integration procedure to obtain fa Vo, and then derived the esti-
mated partial residuals ,
(23) Up=Yi-c~ Y falXia)-

a=2
Finally, he applied a one-dimensional local linear smoother on the Ui,. This is equivalent
to a one-step backfit. Certainly, for this all the theory done in Section 3 is necessary before
one can proceed as Linton (1997) suggested.

17



Assuming that we already know the true underlying model, we consider an extension of his
approach to models of the form

d
(24) m(z) =c+ Zlfa(:va) + Z fop(Za, zp)

1<a<f<d

This ought to be of some interest, since in contradistinction to the case of no interaction, for
a pure backfitting procedure, analogous to Hastie and Tibshirani (1990) or Mammen et al
(1999), it is not even clear how a consistent estimate should look like. Hastie and Tibshirani
discussed this topic but only for one interaction term and they can not give more than some
intuitive motivation for their methods.

In contrast to Linton (1997) we do not restrict ourselves to homoskedastic errors but let
02(z4) = VarlY — m(z)|Xoq = z,), with 04(Z4,z5) defined analogously and assume the
existence of finite second moments for them. Consider model (24) and the two partial

residuals
U = Yi— Z f'y(Xh) - Z fvﬁ(Xi'nXiﬁ) + Z Cyé

v#a 1<y<B<d (7,0)€Daa

(25) - Y; - m(X,) -+ Fa(Xia)
d
Uieg = Yi= D H(Xi) = Y fr(Xiy, Xis) + cap
r=1 1<y<d<d
(. B) # (a, B)

(26) = Y, = m(X;) + fos(Xia, Xip)

For the estimation of the functional form it does not matter whether we correct for the con-
stant before or after calculating the efficient estimator. To be consistent in our presentation
with the preceding sections we have chosen the latter option. Further discussion to this topic
can also be found in Linton (1997,1999).

Let now F%* be the local linear regressor of Uy, in (25) with respect to X,, and f*:’g the
one of Uiap in (26) versus (Xa, Xs). From Fan (1993), Ruppert and Wand (1994) we know
under standard regularity conditions the asymptotic properties to be

(27) Vnhe {EPH(z) = Fa(za) — 2be(za)} — N {0, ve(za)}
(28) nh2 { f*o (Tar 25) = f25(Tar 26) = WeBe(Ta,T)} —> N {0, Ve(Ta, )}

with be(a:a)=,u2(J)%f(2)($a), ve(za) = || T||202 (2a) 05 (a)
Be(te,25) = ia(J) {19 (2 28) + O (20 79)} |
Ve(Ta,28) = 17112055(Ta; 26) 25 (Tas 25)
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where J is the one or two dimensional kernel and A, the corresponding bandwidth.

Now we replace Uj,, Uiqg by Uias (7,—ag by substituting the real functions F,, f}5 by their
marginal integration estimates defined in the preceding sections.

The efficient estimator Fy,(z,) for F,(z,) is defined as being the solution for ¢y in

(29) min Xn: {f/ia — ¢y — 1 Xia — ma)}2J (_)&"‘___x.&) .

€0,C1 . h'e

Similarly, for f35(zq,zs) it is defined as being the solution for ¢y in

Xia —Zo Xig — Z'ﬂ)

. L "7 2
(30) min ; {Uia'g —¢g — ¢1(Xiq ~ Zo) — c2(Xip — xﬁ)} J ( b ' h,

€0,C1,C2 =

Note that for reasons of notation we use J first as a one and later as a two dimensional
kernel as should be obvious from the context.

From the discussion in Linton (1997) it is clear that slightly undersmoothing the marginal

integration estimator, i.e. h,g = 0,(n~1/%), leads to the desired result that asymptotically

the ’efficient estimators’ F}, and f*aﬂ inherit the properties of Fo, f *:’g :

Theorem 5 Suppose that conditions (A1) to (A5) hold, that the kernel J behaves like the
kernel K, and g,h are at least 0,(n~'/%), h, = Cn~'/5,C > 0. Then we have in probability

(31) Vnhe {Fa(@a) = F7(za)} — 0
(32) k2 {fap(@a28) = 15 (€arz5)} — O

foralla,3=1,...,d.

Notice also that the bias expression is the same for the ’efficient estimator’ and the original
marginal integration. Since the proof follows the arguments of Linton (1997,1999) we give
only a sketch here. In the context of parametric estimation it can also be found in Cox,
Hinkley (1974).

Proof.
We only discuss the statement in (27), since for (28) the reasoning is analogous. We have
ngt(xa) - Fa(ma) =

= Z Zn’lj): w; ; {F’Y(Xh) - F’Y(Xi’)')} + Zﬁ {f*'yﬂ(Xi')';Xiﬂ) - F!yﬁ(Xi'y;Xiﬂ)}

19



+0,(n"'7?)
. - Xia
with w; =J (——-h———> {8n2 = (za — Xia)Sn1}

and sy = Z J (ma Xka) (Ta — Xka)' 1=1,2.

We consider the differences for the one and two dimensional functions separately.

From the previous sections and the proof in the Appendix A.1 we know that the leading
terms of f,(Xiy) — f5(Xiy) are

90'7( ﬂ)

2
W (Xe) 5 ZK” = X)X X5)

o(X;)e;

with

bl(Xz'r) #2(K>{f(2) w + Z Z (20) %’Y)X.'i5)}'

5Dy T j=1
All these terms are additive over v and the correlation between the marginal integration
estimators is of smaller order. Multiplying A%b;(-) with E——‘— and summing we still get a

term of order h2, which by assumption is o0,(n~%/%).

Also, if we consider the stochastic part, we can see that for [ = 0,1

n n 7(X
2 21 I (Ta = Xia)(Ta — Xia)l x %ijl Kn(Xjy — X))ot %0 - (Xj)sj =

n ‘p(xry:

(33) = %Z?:l Anijy wl(le) o(X;)e;

where we have

1
Apijy = Z Ihe (T o) (Ta = Xia) Kn(Xia — Xﬂ)m

But A, is bounded and the whole expression (33) is of order O,(n=*/2).

For the interaction terms it is almost the same. It is already shown that the leading terms
of f16(Xiy, Xis) — fo5(Xiy, Xis) are

8 (Xjne)

h2B 1Yy 43 + — K Xi ’X. —Xi
1 (X, Xis) Z a(X v 256 J)CP(XimXi&anﬁ)

o(X;)e;

with B;(-) defined in Theorem 2.

Again, all of these terms are additive and asymptotically independent. Further, multiplying
h2B(+) with —2— these terms stay of order h? = 0,(n~%/%).

J‘J
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For the remaining term we have (I =0,1)
LTt n(Ta = Xia) (@2 = Xia)' X & Tpy KnlXjy = Xins Xjo = Xis) gz ey 0 (X5)es,

where now 7 is also allowed to take the value o, compare (25). Nevertheless the same
arguments of boundedness apply as above.

For the rest, the proof is along the lines of Linton (1997). For the interaction term all
arguments are the same, compare (26) and (30), but the rate is slower (by one bandwidth)
due to having one dimension more to estimate.

Apart from these theoretical differences which will be emphasized under the performance
point of view in Section 5, there is also another, substantial difference between backfitting,
marginal integration and this efficient estimator. The backfitting is estimating the additive
components after a projection of the regression problem into the space of additive models, the
marginal integration estimator, in contrast, always estimates the marginal influence of the
particular regressor, whatever the true model is, see e.g. Sperlich, Linton, Hardle (1999). The
efficient estimator now is a mixture of this and thus suffers from the lack of interpretability
if the predetermined model structure is not completely fulfilled. This can be a disadvantage
for empirical research. Also in the context of testing model structure this leads to problems,
especially if we use bootstrap generated with an estimated hypothetical model.

5 Computational Performance of the Estimators

To examine the small sample behavior of the estimators of the previous sections we did a
simulation study for a sample size of n = 150, respectively n = 169(for 3D-presentation
reasons) observations. Certainly, an intensive computational comparison between not only
ours but also alternative estimation procedures for additive models would be of interest,
but would really require a separate paper. A first detailed investigation and comparison
between the backfitting and the marginal integration estimator can be found in Sperlich,
Linton, Hardle (1999) but without interaction terms and not examining the robustness when
additivity is violated.

Here, we concentrate on a small illustration to see how reasonable these procedures behave
in small samples. A more detailed simulation study is carried out for the testing procedures
in Section 7. Further, an application to real data is there. The data have been generated
from the model

3
m(z)=E{Y|X =z)=c+ ) fi(zj) + fi2(z1,22)

j=1
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(34) filu) = 2u ,  fo(u) = L5sin(-1.5u),
(35) fas(w) = —v* +E(@?) and fio(u,v) = auv

with @ = 1 for the simulations in this section. The input variables X;, j = 1,2,3, are
i.i.d. uniform on [-2,2]. To generate the response ¥ we added normally distributed error
terms with standard deviation o, = 0.5 to the regression function m(z).

For all calculations we used the quartic kernel $2(1 — u?)?1{ju| < 1} for K (u) as well as for
L(u), and product kernels for higher dimensions. We chose different bandwidths depending
on the actual situation and on whether the direction was of interest or not (in the previous
sections we distinguished them by denoting them h and g). For a discussion of optimal
choice of bandwidth, we refer to Sperlich, Linton, Hérdle (1999), but it must be admitted
that a complete and practically useful solution to this problem remains to be found. This is
in particular true for the bandwidth k. of the one-step efficient estimator.

When we considered the the estimation of the functions fo, f35 we used h = 0.9, g = 1.1. For
the pre-estimation with subsequent application of to apply afterwards the one-step backfit
(efficient estimator) we used h = 0.7 and g = 0.9, as we have to undersmooth. For the one
step backfit, we selected h, = 0.9.

In Figure 1 we depict the performance of the 'simple’ marginal integration estimator, using
the local linear smoother. The data generating functions f, fo, and f; are given as dashed
lines in a point cloud that represents the observed responses Y after the first simulation run.
The interaction function f; 2 is given in the lower left window. For one hundred repetitions
we estimated the functions on a grid with the above mentioned bandwidths and kernels and
plotted for each grid point the extreme upper and extreme lower value of these estimates.
For the one-step efficient estimator we did the same. The results are given in Figure 2.

The results are quite good having in mind that we have used only n = 169 observations.
Apart from this we can observe several interesting, partly expected behaviors. E.g. as in-
tended, the estimates, at least for the interaction term are smoother for the one-step efficient
estimator. The biases can be seen clearly for both and behave the same. All in all, for a
sample of this size the two estimators give roughly the same results.
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Figure 1: Performance of the ’simple’ marginal integration estimator. Real functions
(dashed) and extreme points for 100 of their estimates (solid). For the first run also the
response variable Y (points) is given. Position: fi (top), fo (upper left), f3 (upper right),
f12 (lower left) and the extreme points of the estimates after 100 simulation runs (lower

right).
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Figure 2: Performance of the 'efficient’ estimator. Real functions (dashed) and extreme
points for 100 of their estimates (solid). For the first run also the response variable Y
(points) is given. Position: f; (top), f2 (upper left), f3 (upper right), fi, (lower left) and
the extreme points of the estimates after 100 simulation runs (lower right).
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6 Testing for Interaction

We are now in a position to state the problem of testing for second order interaction. As
mentioned in Sections 1 and 2 for the model (3) we consider the null hypothesis Hyqs :
fas =0, i.e. there is no interaction between X, and Xz for a fixed pair (e, §). Applying
this test to any pair of different directions X,,, X5, 1 < < < d this can be regarded as a
test for separability in the regression model.

In Section 2 we pointed out that for this purpose it is equivalent to consider f; instead of
Jop. We propose two procedures; the first one is focused on f, directly, the second one on
the mixed derivative f,; FL)  For reasons discussed in Section 4, we concentrate here on the
pure marginal integration estimator.

6.1 Considering the interaction function
We will briefly sketch the idea as to how the test statistic can be analyzed and then state
the theorem giving the asymptotics. The detailed proof is postponed to the appendix.

We consider [ f*, o8 (:ca,xg)@aﬁ(xa,xﬂ)dxadzﬂ In practice, as will be seen in (40), this func-
tional is replaced by an empirical average. To study the test functional, note first that by
Theorem 2, equation (17) and some tedious calculations we get the following decomposition

n

/fa,a $Q,$5)(pa5($a,$5)d$ad$5—2 Z HX,,&",,X;,{S}) ZH(X,‘,&?,‘,X,‘,E,‘)-F

1<i<ji<n =1

/ja@ T, 25)Pas(Ta, Tg)dTodzs +2h2/f;[,(xa,xﬂ)Bl (Zas T8)Pap(Tas T5)dTadzs + 0p(R?)
where

H(Xi,e1,Xj,€5) = €€ / 55(wiaﬂ“wia‘wiﬂ)(wjaﬂ‘wja_wjﬂ)a (X:)o(X;)Pap(Tas 25)dTadzs
with weights w;q, wis and w;ep defined in the appendix, equation (44) and (47).

We then calculate the asymptotics of the sums of the H(X;, €;, X, €;)’s and the H(Xj, €, Xj, €;)’s,

put the results together and obtain (cf. A.3 of the appendix):

Theorem 6 Under assumptions (A1) to (A5), as h = 0 and nh? — oo,

2 2{K®(0)}2 [ Pas(2a; 26)955(2a8) |,
nh / fas (a,28)Pap(Ta, Ts)dTadzs — - / =0 0(2)dz
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—nh / [35(Zar T5)Pap(Zas Tp)dTadzp — 2nh° / fap(Za,28) By (Tar Tp)Pop(Ta; Tp)dTadzs
5 N{0,V(K,p,0)},
wn which
%5 Z1as Zlﬂ)‘Paﬂ(zlaﬂ)<Pa,@(22aﬁ)

21)(,0(3104, 218, z29£)

cha)-?”K jl /

2(z1)0'2(2:1a, 218, Zzﬁ)dzldzza_ﬁ-.

where K is the 2-fold convolution of the kernel K, and where B, is defined in the formu-
lation of Theorem 2.

Denote now by S,g the support of the density gop and let Bog(M) denote the function class
consisting of functions f,4 satisfying

Hfaﬂ“[ﬂ(saﬁ) <M

where one denotes by || fagllgs(s,,) the Sobolev seminorm

; asfaﬂ(xmmﬁ) 2 _
\l';)/ { ONz,05~ Tzg dxad$ﬂ>3-‘2,3,...,

and M > 0 is a constant. Consider the null hypothesis Hgop @ fap(Za,Zs) = 0 versus the

local alternative Hi o5(a) : fop € Fap(a) where, for any a > 0

}Taﬁ(a) = {faﬁ € BaB(M) : Hfo‘ﬁHLz(SaKBW&ﬂ) - \/-/S

afB

f25(2a, ) Pap(Ta; 2p)dTadzp > a} .
Based on Theorem 6, the test rule with asymptotic significance level 1 — 7 is:

Reject the null hypothesis Hy o5 in favor of the alternative Hy op(a) if

(36) T, > C(n;h, K, p,0)

where the test statistic

(37) T, = nh/f:*ﬁz(a:a,:vﬁ)cpag(xa,xp)dzadxﬂ

and the critical value

(38) C(n h,K,p,0) =

_ @02 . Pas(2a28)025(2a8)
11— n)VV2(K, p,0)+ K h(Oll I v(Z)_ﬁ 2 02(2)dz

in which ® is the cumulative distribution function of the standard normal variable. The
following result concerns the local power of the above test:
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Theorem 7 Under assumptions (A1) to (A5) and as h = 0,nh? = oo, let for 1 <i<n

d
(39) Ym =c+ Z f'y(Xin'y) + fn,aﬁ(XinayXinB) + Z f'rJ(Xin’y: XinJ) + J(Xin)sin
=1 1<y<é<d

(1,6) # (a,8)

be the data array generated from the i.1.d. array (Xin,€in),1 <1 < n, for eachn =1,2,...,
with fized main effects {f, :zl and interactions {fy6} i<\ csca v p)ap ond with the af-th
interaction (fnap)., a sequence of functions such that f, .5 € Foplan) where {a,} is a
sequences satisfying a;! = o(nh + h™2) as n — oo. Denote by p, the probability of rejecting
Hoos : fnep(Ta,zs) = 0 in favor of the local alternative Hy 45(an) : fras € Fas(an) based
on the data (Xin, Yin),1 < i < n as defined in (89). Then limy_,oopp =1 .

Theorem 7 guarantees that asymptotically, the proposed test procedure (36) is able to detect
an interaction term of the magnitude n~'A~! + h? with probability 1.

To implement the test procedure (36), the critical value C(n; h, K, p,0) can be obtained as
—_2

the wild bootstrap quantiles of the test statistic 7, = nh [ f3s (%q,75)P0s(Za; T5)dTodzs.

Since the density ¢,4 is unknown, T, is approximated by method of moment as

~ noo~2 B2
(40) To=nh)Y_ fig Xia, Xig)/n=h)_ f2s (Xia, Xig)-
=1 =1

The following theorem ensures that this substitution is asymptotically allowable

Theorem 8 Under assumptions (A1) to (A5) and as h = 0,nh? — oo

- 2{K®(0)}2 [ ¥ap(2ar 28)Pas(2a8) |,
T, — : / ) o(2)dz

_nh/f(:%(xa:xﬁ)‘foa.@(za:xﬁ)dl‘ad‘rﬁ _2nh3/f;ﬁ(xaaxﬂ)Bl(zmxﬂ)(Paﬂ(zmzﬂ)d‘radzﬂ

5 N{0,V(K,¢,0)}.
Hence, Theorem 6 and test rule (36) are not affected when replacing T, with T.. Further,

Theorem 7 holds as well, provided the same additional assumptions are true.

6.2 Considering the mixed derivative of the joint influence

In contrast to the preceding method one can test for interaction without estimating the
function of interaction fqg explicitly but looking at the mixed derivative of the function Fygs.
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1,1) 2

Our test statistic is [ F‘éﬁ ©ap(Za, L) dTs dzg , which certainly for our purpose is the

same as ffé};l) ?0ap(Ta, Tg) dTodzg.

As can be seen from the proofs of Theorems 1 to 6, the derivation of the asymptotics for this
test statistic is the same as in the proof of Theorem 6 with the only difference that we now
have to deal with K3 and end up with asymptotic formulas containing K} instead of K; see
the definition in Section 3.1. Thus we state the following theorem without an explicit proof.
Again, it can be noted that the convergence rate is slower than that obtained in Theorem
6 so it could be asked why this test statistic should be considered. In fact, as will be seen
in the simulations, Section 7, the asymptotic properties hold for large samples, where large
can be many thousands of observations. So, even when the test procedure proposed first
should at some point beat the one we consider now, this is not clear for small sample which
are typical for many real data sets. Further, it is well known that even though a certain test
based on the estimation of a functional form is superior in detecting a general deviation from
the hypothetical one, a single peak or bump can often be better detected by tests based on
the derivatives.

Theorem 9 Under assumptions (A1) and (A8)-(A6), as h — 0 and nh® — oo,

(K2 2 af\%a; 2 i(za
2{K1h(0)} /90 a( (pzziS)O_g _3)0_2(2)(12

—nh‘r’/f((x,ls’l)Q(-"Ea,wﬂ)%ﬂ(%,w)d%dma-2nh7/f(11)(%,335)32(%, 26)Paf(Tas Tp)dTadzs

nh® / FSB’I)Q(Ia) 26)¢ap(Ta, 25)dTadzs —

{0 2}|K Il /%‘5 zla’zlﬁ ‘Paﬁ(zlaﬁ)ipaﬁ( 22ap)

2 2
21)0° (2105 218, 220p) dz1d22
zla,zm,zzaﬁ) ( ) ( oy #1183, %) 1 gg} ,

where By is defined in the formulatwn of Theorem 4.

Now let B,s(M) denote the function class consisting of functions f,s satisfying

“faﬁHH“(SQB) + ”faﬁ“Ha(Saﬁ) sM

where M > 0 is a constant. Consider the null hypothesis Hoop : fos(Za, 3) = 0 versus the
local alternative H, 43(a) : fap € Fop(a) where, for any a > 0

1,1
L2 e \/] ( ) (Zas Z8)Pap(Ta, Tg)dTodzs > a} .

Based on Theorem 9, the test rule with asymptotic significance level 1 — 7 is:

Fasla) = {faﬁ € Bag(M “falﬂl
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Reject the null hypothesis Hy o4 in favor of the alternative H; 45(a) if

Z{K;r(z)(O)}2 Waﬂ(za7zﬁ)§0§_g(zgﬁ) 2
h / e 0°(2)dz

P 9 ”K*(z) “4 / Wﬁﬂ(zlmzlﬂ)@éﬂ‘(zlﬂ)@?ﬁg(ZZQE)
(1-n) bz p(21)¢(21a;s 216, Z20p)

The following result concerns the local power of the above test:

(1) 0h® [ EG (20, 25) 008 (Tas T6)dTadzs —

2

0%(21)0% (214, 218, 2208)d21d2208-

Theorem 10 Under assumptions (A1) to (A5) and as b — 0,nh® — o0, let Vip,1 < i< n
be the same data array as in Theorem 7 but with the a3-th interaction fnop € Fap(an) where
{a,} is a sequences satisfying a;' = o(nh®+h=2) as n = oco. Denote by p, the probability of
rejecting Hoop * fras(Za,Zg) =0 in favor of the local alternative Hy a5(as) : fnos € Foplan)
based on the data (Xin,Yin),1 < i< n as defined in ( 89). Then lim,_,opn, = 1.

Thus Theorem 10 guarantees that asymptotically with probability 1, the proposed test pro-
cedure (41) is able to detect an interaction term whose mixed derivative is of the magnitude
n~'h=%+h?. The proof of Theorem 10 is similar to that of Theorem 7, and therefore omitted.
Also, Theorem 8 can be extended to test rule (41), but we have omitted its statement due

to similarity.

6.3 A possible F-type test

Both Theorems 6 and 9 are used to test pairwise interactions. As remarked by one of the
referees, methodologically speaking we propose two individual ¢-type statistics to check for a
given interaction. Because of possible high multicolinearity among the explanatory variables,
as in the classical linear regression context, it may be possible that individual test statistics
are insignificant, but their joint effect is significant.

To consider such a situation, in general let G4 be a functional for testing f,s = 0. We have
shown that

g(n: h){Gaﬂ - E(Gaﬂ)} 'g N(O,Vaﬂ),
where g(n, h) is a normalizing factor and V4 is the asymptotic variance.

Let G = {Gap,1 < a < § < d} be the vector obtained by considering all pairwise interac-
tions. It has dimension p = d{(d — 1)/2 corresponding to the number of possible interactions.
If it can be proved that G is jointly asymptotically normal,

9(n, h){G - E(G)} 5 N(0, V),
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where V is a covariance matrix of dimension p, then one would have that
g*(n, W){G - E(G)}"V~Y{(G - E(G)}

is asymptotically xf,—distributed. But studentizing and by analogy with ordinary multivariate
analysis (cf. Johnson and Wichern (1988, p. 171) one might expect that

g*(n, ){G — E(G)}TV~{(G - E(G)}

should be more accurately described by an F-type statistic. Such a statistic would yield an
F-type test for all of the pairwise interactions. It is a natural suggestion, but it is far from
trivial to establish, and it is a topic for further research. For example it is not clear how
one should choose the number of degrees of freedom. Some discussion of this point is given
in a related framework by Hastie and Tibshirani (1990, Sections 3.5, 3.9, 5.4.5 and 6.8.3).
However, theory is lacking and Sperlich, Linton, Hirdle (1997,1999) found reasons to doubt
the generality of these methods, especially for the marginal integration estimator. This was
partly confirmed by Miiller (1997) in the context of even much simpler testing problems than
we consider here. Further it was briefly discussed in Hérdle, Mammen, Miiller (1998), also
in a different context of testing.

7 An empirical investigation of the test procedures

In nonparametric statistics for small and moderate sample sizes one has to be careful when
using the asymptotic distribution in practice. We have the additional problem of having
complicated unknown expressions in the bias and variance of the test statistics, and we are
dealing with a type of nonparametric test functional which has been known (Hjellvik, Yao
and Tjgstheim 1998) to possess a low degree of accuracy in its asymptotic distribution. It is
therefore not unexpected when a simulation experiment, to be described in this Section, for
n = 150 observations reveals a very bad approximation for the asymptotics, and we must
look for alternative ways to proceed for low and moderate sample sizes. For an intensive
simulation study of the performance of marginal integration estimation in finite samples see
also Sperlich, Linton and Hérdle (1999).

7.1 The wild bootstrap

One possible alternative is to use the bootstrap or the wild bootstrap, the latter being first
introduced by Wu (1986) and Liu (1988). The wild bootstrap allows for a heterogeneous vari-
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ance of the residuals. Hirdle and Mammen (1993) put it into the context of nonparametric
hypothesis testing as it will be used here.

The basic idea is to resample from residuals estimated under the null hypothesis by drawing
each bootstrap residual from a two-point (a,b) distribution G(.); which has mean zero,
variance equal to the square of the residual and third moment equal to the cube of the
residual for all 2 = 1,2,...,n. Thus, through the use of one single observation one attempts
to reconstruct the distribution for each residual separately up to the third moment. For this
we do not need additional assumptions on € or o(+).

Let T}, be the test statistic described in Theorem 6 or 9 and let n* be the number of bootstrap
replications. The testing procedure then consists of the following steps:

1. Estimate the regression function mg = myg.p under the hypothesis Hy o5 that fos =0
in model ( 3) for a fixed pair (o, ), 1 < a < f < d and construct the residuals
ai = ﬁz’,a,@ = Y, —ﬁo(Xi), fOI‘ 1= 1,2,...,n

2. For each X;, draw a bootstrap residual u} from the distribution G'(a,),i such that for
U~ Glap,ir

EG(a,b),i(U) =0, Egq,,; (Uz) = ’&f
and EG(a,a),e(Us) = ’EL? .

3. Generate a sample {(¥;*,X;)}, with ¥;* = mg + u}. For the estimation of my it
is recommended to use slightly oversmoothing bandwidths; see Hardle and Mammen
(1993).

4. Calculate the bootstrap test statistic 7,; using the sample {(¥;*, X;)}1, in the same
way as the original T, is calculated.

5. Repeat steps 2-4 n* times and use the n* different T, to determine the quantiles of
the test statistic under the null hypothesis and subsequently the critical values for the
rejection region.

For the two-point distribution G(,4); we have used the so-called golden cut construction,
setting Gap),: = g0 + (1 — )0 where d,,8, denote point measures at a = @;(1 - v5)/2,
b= (1 +/5)/2 with ¢ = (5 + V/5)/10.

For the marginal integration estimator Dalelane (1999) recently proved that the wild boot-
strap works for the case of i.i.d. observations. In the setting of times series some work on this
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has been done by Achmus (1999). Dalelane showed via strong approximation that it holds
in supremum norm whereas Achmus proved that the wild bootstrap holds at least locally
for time series. Important general progress in this area has recently been achieved by Kreiss,
Neumann and Yao (1999). There is still some work needed to establish a theory of the wild
bootstrap for the test statistic we are using.

7.2 The simulation study

The small sample behavior of the estimators has already been investigated and discussed in
Section 5. For testing we again use the model

m(z) = E(Y|X = z) = c+)_ fi(z;) + fr2(z1,2)

j=1

with

filu)=2u , folu) = 1.5sin(—1.5u)
fa(u)=-u’+E(?®) , fia(u,v) = aw

where a = 0 under the null hypothesis and a = 1 under the alternative. Again, X; ~ U[-2,2]
ii.d. for j = 1,2, 3, and normally distributed error terms with standard deviation 0.5. Sample
size is now always n = 150.

To calculate the test statistic we used the (product) quartic kernel for K(u) and L(u) as
above. When we considered the test statistic based on the estimation of f}, (direct test)
we used h = 0.9,¢9 = 1.1 and for the pre-estimation to do the wild bootstrap h = 1.0
and ¢ = 1.2. To calculate the test statistic based on the joint derivative fl(}g’l) (testing
derivatives), which generally requires more smoothing (cf. (A6)), we selected h =1.5,9 = 1.6
and h = 1.4, g = 1.5, respectively.

We consider first the null hypothesis Hp12 : fi2(u) = 0 and look at the asymptotics. In
Figure 3 we have plotted kernel estimates of the standardized densities of the test procedures
compared to the standard normal distribution. The densities of the test statistics have been
estimated with a quartic kernel and bandwidth 0.2. To make the densities comparable we
also smoothed the normal densities using the same kernel. We see clearly that the test
statistics we introduced in the previous sections look more like a x2-distributed random
variable than a normal one. Thus, even if we could estimate bias and variance of the test
statistics well, the asymptotic distribution of them is hardly usable for testing for such a
moderate sample of observations.
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Figure 3: Densities of the test statistics; direct method (solid), testing derivatives (dashed)
and normal density (thick, solid).

This conclusion is consistent with the results of Hjellvik, Yao and Tjgstheim (1998) for
a similar type of functional designed for testing of linearity. For that functional roughly
100000 observations were needed to obtain a good approximation. The reason seems to be
that for a functional of type [ Ez(.Ta,.’Bg)?T(.'EQ,IEﬁ)dEadIEﬁ several of the leading terms of
the Edgeworth expansion are nearly of the same magnitude, so that very many observations
are needed for the dominance of the first order term yielding normality. We refer to Hjellvik,
Yao and Tjgstheim (1998) for more details.

To get the results of Table 1 and Figure 4, describing the bootstrap version of the tests, we
did 249 bootstrap replications and, following Theorems 6, 9, 8, considered the test statistics

1
Hfozz(Xl,Xﬂ 1{|Xx| <16 for k=1,2}
i=1
and [ n a2
~ >R (X0, X) T{{Xe| S 16 for k =1,2)
i=1

respectively, i.e. we have integrated numerically over the empirical distribution function and
using a weight function (the indicator function 1) for the test statistic to remove outliers
and avoid boundary effects caused by the estimation (cf. Hjellvik, Yao and Tjgstheim 1998).

Table 1 is presenting the error of the first kind for both methods and at different significance
levels. As noted above, a detailed simulation study is beyond our paper. So it certainly
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Figure 4: Power functions at the 1,5,10 and 20% significance levels for both procedures:
direct method (solid) and testing derivatives (dashed).

would be interesting to look on different power results for different bandwidth choices. By
no means we state here to have chosen the optimal bandwidth as to find this even for the
estimation procedure can be hard, see Sperlich, Linton, Hérdle (1999). Thus, all we are
interested in for the moment is, to see whether using an in estimation reasonably smoothing
bandwidth (see Section 5) also leads to reasonable testing results.

TABLE 1: Percentage of rejection under H

significance levelin% {1 5 10 15 20
direct method 3.0 6.0 12.7 173 223
testing derivatives 0.5 45 114 144 18.2

For both test procedures obtaining an accurate error of the first kind with the aid of wild
bootstrap depends on a proper choice of bandwidth although the results are fairly robust
for a reasonable wide range of bandwidths. In the absence of an optimal procedure for
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choosing the bandwidth, Table 1 must be interpreted with caution as far as a comparison
of the two testing procedures is concerned. But it is seen that the wild bootstrap works
quite well and can be used for this test problem. For a comparison of the direct method
against the derivative approach and to be able to judge the tests more generally we have to
look at the error of the first kind and the power for a wide range of examples. The power
as a function of a in (42) is displayed for both methods and for different levels in Figure 4.
Both procedures are working well. For this particular model the power function of the direct
method is steeper. This is intuitively reasonable as the estimator and the test statistic have
smaller asymptotic variance for this method, but for a finite sample it is quite likely that
the comparative advantages of the two methods depend on the particular model or design.

Obviously a much more detailed simulation study would be of interest, in particular con-
cerning the interplay between model complexity and (optimal) choice of bandwidth. At
the moment bandwidths have been chosen somewhat arbitrarily, but we have been pleased
to observe that the same set of bandwidths seems to lead to satisfactory results for both
estimation and testing.

7.3 An Application to Production Function Estimation

In this section we apply the estimation and testing procedures to a five dimensional produc-
tion function.

Separability and additivity of production functions have been discussed since the early paper
by Leontief (1947). These assumptions yield many important economic results, for exam-
ple they allow the aggregation of inputs or decentralization in decision-making. But there
has been much discussion in the past whether production functions can be taken to be ad-
ditive (strongly separable!) for a particular data set. This discussion goes back at least
to Denny and Fuss (1977), Fuss, McFadden and Mundlak (1978), Deaton and Muellbauer
(1980, pp.117-163). Our test procedure is an adequate tool to investigate the hypothesis of
additivity.

We consider the example and data of Severance-Lossin and Sperlich (1999) and look at the
estimation of a production function for livestock in Wisconsin. In that paper strong sep-
arability (additivity) among the input factors was assumed, and the additive components
and their derivatives were estimated using the marginal integration estimator. Whereas the
interest there was focused mainly on the return to scale and hence on derivative estimation,

1The expression ”strong separability” is equivalently used for ”additivity” or "generalized additivity”; see
Berndt and Christensen (1973).
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presently we are more interested in examining the validity of the assumption of absence
of interaction terms looking only at second order interactions as these are the only inter-
pretable ones. We use a subset of n = 250 observations of an original data set of more than
1000 Wisconsin farms collected by the Farm Credit Service of St.Paul, Minnesota in 1987.
Severance-Lossin and Sperlich removed outliers and incomplete records and selected farms
which only produced animal outputs. The data consist of farm level inputs and outputs
measured in dollars. The output Y in this analysis is livestock; the input variables are fam-
ily labor X, hired labor X5, miscellaneous inputs (e.g. repairs, rent, custom hiring, supplies,
insurance, gas, oil, and utilities) X3, animal inputs (purchased feed, breeding, and veterinary
services) X4, and intermediate run assets (assets with a useful life of one to ten years) X;.

The underlying additive model (ignoring interaction) is of the form

d
(42) In(y) =c+ ; fa{ln(za)} .

This model can be viewed as a generalization of the Cobb-Douglas production technology.
In the Cobb-Douglas model we would have f, {In(zs)} = Baln(z,).

We have extended this model by including interaction terms f,s to obtain

d
(43) In(y) =c+ z fa {ln(ma)} + Z fos {In(za), ln(l‘g)}
a=1 1<a<f<d
and the assumed strong separability (additivity) can be checked by testing the null hypothesis
Hyos: fop = 0 for all o, 8.

First we estimated all functions f, and fo3. The estimation results are given in Figures 5
to 7. Again, quartic kernels were employed for K and L. The data were divided by their
standard deviations so that we could choose the same bandwidths for each direction. We
tried different bandwidths and h = 1.7 and g = 3.3 yield reasonable smooth estimates.
However, we know by experience that the integration estimator is quite robust against a
relatively wide range of choices of bandwidths. For a detailed discussion of the bandwidth
choice and robustness we refer to Sperlich, Linton and Hérdle (1997).

In Figure 5 the univariate function estimates (not centered to zero) are displayed together
with a kind of partial residuals o 1= y; — 324 fj(X,-j) =c¢+ fa(X,-a) +&;. To see clearly the
shape of the estimates we display the main part of the point clouds including the function
estimates. As suggested already in Severance-Lossin and Sperlich, the graphs in Figure 5
give some indication of nonlinearity in family labor, hired labor and intermediate run assets.
They even seem to indicate that the elasticities for these inputs increase and finally could
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Figure 5: Function estimates for the univariate additive components and partial residuals.
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Family Labor and Hired Labor Family Labor and Miscellaneous lnputs

Figure 6: Estimates of the first 6 interaction terms.

lead to increasing returns to scale. An obvious inference from an economic point of view
would be that larger farms are more productive.

In Figures 6 and 7 we have shown the estimates of the bivariate interaction terms f,3. For
their estimation and presentation we trimmed the data by removing 2% of the most extreme
observations, and used the quartic kernel.

The same kernel and trimming were used for the testing, and we did 249 bootstrap repli-
cations. To examine the sensitivity of the test procedures against choice of bandwidth, we
tried a wide range of bandwidths. For the first method, which employs the estimate of the
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Figure 7: Estimates of the last 4 interaction terms.
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interaction term directly, we used h = 1.3 to 2.1, g = 2.9 to 3.7 for the pre-estimation to get
estimates for the bootstrap, and h = 1.6 to 2.4, g = 3.1 to 3.9 to calculate the test statistics.
For the second method, which involves the mixed derivatives of the interaction term, we
used h = 1.6 to 2.4, g = 3.1 to 3.9 for the pre-estimation to get estimates for the bootstrap
and h =2.1t0 2.9, g =3.1 to 3.9 to calculate the test statistics.

To test the different interaction terms for significance, we used an iterative model selection
procedure: First we calculated the p-values for each interaction term f,s including all the
other functions f,, 1 <y < dand f, 1 < v<§ <d with (7,d) # (a,3) in the model
(43). Then we removed the function f,s with the highest p-value, and again determined the
p-values for the remaining interaction terms as above. Stepwise eliminating the interaction
terms with the highest p-value, we end up with the most significant ones.

This procedure was applied for both testing methods. For large bandwidths the interactions
are smoothed out, and we never rejected the null hypothesis of no interaction for any of the
pairwise terms, but for small bandwidths some of the interactions terms turned out to be
significant. For the first method, where we consider the interaction terms directly, the term
fi3 (family labor and miscellaneous inputs) was significant at a 5% level with a p-value of
about 2%. Of the other terms f35 and f; 5 came closest to being significant.

For the second method, considering the derivatives, f) 5 (family labor and intermediate run
assets) and f35 (miscellaneous inputs and intermediate run assets) had the lowest p-values,
f1.5 having a p-value of less than 1%.

Both procedures suggest that a weak form of interaction is present, and that the variable
family labor plays a significant role in the interaction. The fact that the two procedures
are not entirely consistent in their selection of relevant interaction terms should not be too
surprising in view of the moderate sample size and the lack of any strong interactions. There
are fairly clear indications from Figures 6, and 7 that fi3 and fi5 are not multiplicative in
their input factors. This would make it difficult for a parametric test to detect the interaction.

A Appendix

A.1 Proof of Theorems 1 and 2

The proof of Theorems 1 and 2 make use of the following two lemmas, whose proofs are not
difficult. We refer to Silverman (1986) or Fan, Hardle, Mammen (1998).

40



Lemma A1l Let D,, B, and A be matrices, possibly having random variables as their en-
tries. Further, let D, = A + By, where A™! ezists and By, = (bij)1<i,j<a where b = Op(0n)
with d fired, independent of n. Then D;' = A™' (I +C,) where C, = (cij)1<ij<a and
cij = Oy(0,). Here 6, denotes a function of n, going to zero with increasing n.

Lemma A2 Let Wy, Wi as, Za, Zag and S be defined as in Section 8.1 and
H = diag(h*™1)iz1..p11. Then

- 1 Inn
H—lzT ~1 1 — -1 2
a)  (H'ZIWaZ.H™) xS {1+o,, <h + ——-——nhgd_l)}

and

- 1 Inn
H ' ZT W0 ZapH™Y) ' = s 24 /== b
b) ( aB vl 8Zap ) @(xaazﬂ,Xlgg) { +Op (h + nh2gé-2

Define E; -] = E[ | Xu,...,Xi) and E,[] = E[ | X], where X is the design matrix
{Xia}in,le,l- The proofs can now be divided into two parts corresponding to the estima-

tors F, and Fag, respectively.

I) We start by considering the univariate estimator F,. This is also a component of the

estimator fr5 of interest in Theorem 2. First we will separate the difference between the
estimator and the true function into a bias and a variance part.

Defining the vector

c+ fa(xa) + E fa'y (ma:Xi'y) + 2 f'y (Xz"y) + E f—7¢$ (Xi'y;XiJ)
Y€Dqa Y€EDqo

F= (7,4)€Daa
fc(zl) (xa) + 7621:7 fé}y’o) (mei'y)

and applying Lemma A2 a), we have

ﬁa _Fa(xa)

s
Q

er (ZIWiaZa) ZIWiaY — Fal(za)

WE

.
I
—

il

Si= 3= 3

€ (ng,QZa)_l ZZ;I/Vi,a (Y - ZaFi) + Op(n_l/z)

-

i
L

1
30(3:0” Xig)

I

>}H“Z§"Wi,a (¥ ~ ZoF) + Oyfn3).

NE

hgd—l

e, S {1 +0, (h2 + nln”

-
Il
—
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Computing the matrix product and inserting for Y; = o(X;)e; + m(X;) the Taylor expansion
of m(X;) around (z,, Xjs), We obtain

Fa(xa) — Fo(zo) =

1 & 1 1 i

T3 Sy K (e =) L (g = Xia) {140, (1 4+ i) }
_ 2

[(Xla . Tq) {(FfO@a)+ 3 29 (30, Xi) Y+ 2 {fv(Xiy) — F4(Xin)} +

v€Dqo Y€Da

Op{(Xia =2} + 3 {fzs (X Xis) = s (Xins Xia)} + o(Xi)er| + Opln™h).

(7,0)€Daa

Separating this expression into a systematic "bias” and a stochastic ”variance” we have

Fu(za)—Fa(xa)zliﬁ@)_+%iai—-5i(§i)+op( h? +\/TI1—’fL_)

n = ¢(Za, Xia) hgd-1 nhgt-!

where,
ai = — ZKh (Xla - IL'Q) Lg (Xlg - Xig) x [ ]

and the expression in the brackets [...] is as in the formula above. It remains to work with
the first order approximations.

Let
1 & E,-(a,-) 1 & @; — Ei(a;)
T, = — . T il
" ; P(Ta) Xig) " n ; P(Za, Xig)
For the bias part we prove that
Tin = sz (K) {f + 3 Z F (@a, Xin) } + 0p(h?) .

'yeDa i=1

Consider ¢(zq, Xia) ' F;(@;), which is, in fact, an approximation of the (conditional) bias of
the Nadaraya-Watson estimator at (z4, X;,). This is, by assumptions (A1), (A2), (A3) and
(A3)

E(az) B 1
(-’an m) B QO(ZmXiQ)

{f@) Z (20 xavxl'v)} + Z {f'y (Xl'y) - f'v (Xi'y)} +

Y€Dq YE€D,

(Xla - xa)2

1 n
Ei |:— Z Kh(Xla - xa)Lg(Xlg_ - Xig) [
n =1 2

Z {f'yJ (le’ Xl&) - f'vé (Xi'n Xz'G) } + Op{(Xla - za)s}u
(7,8)€ Daa
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- za)i?

= _G:];—*XTig—)/Kh(Z—xa)LQ(w_XiQ){p(z,w) X [(z 2

14
{ Dz + 3 729 xa,xm}* S (£ (wy) = £y (X))

Y€Dq YE€Dq

+ Y {f Wy ws) = fas (Xiy, Xis)} + Op{(2 - xa)a}] dwdz + 0p(1)
(7.6)€Daa

= —————/Ku)Lv)go(xa-f-uth-%-vg) [( ){f(2(a)+

(p(:t?a,
S 780 (0 Xi) h+ Op{(uh)*} + 3 {fy iy + 900) = fy (X))
'YeDa Y€Da
+ Z {f’yﬁ (Xz'y + gv'wXuf + ’UJQ) f'y& ( iy i&)}]dvdu + Op(l)
(7,9)€Daa
= R (K ) 5 {f@) To) + Z (2 & mel'y)} +0p(h2) + Op(9%)
Y€EDa

since E, (g;) = 0, respectively E;(e;) = 0 for all i and [. We have used here the substitutions

_ —X; . . .
u= %2 gnd v = 2=, (d—1) -dimensional vectors with 7** component

., Tespectively w,.

Since the random variables ¢(zq, Xia) ' E;(@;) are bounded, we have by using (A2)
Tn = hz,u (K) = {fa 'Ta + Z Z (2 0) szi’r)} + Op(h2)
v€Da " i=1

and note that

10 62
Zfa xa; Ef (-TmX'y) = -6—23—2‘ /fa’y (xa;u'y) @7(“7)du7 =0

by (7), for any v € D,.

For the stochastic term we use the same technique as in Fan, Hirdle, Mammen (1998),
Severance-Lossin and Sperlich (1999) to prove that with w;, given by

1 Pa ( za)
44 Wia = —Kp(Za — Xia
( ) n h( ) ( Za, za)
we have .
(45) Top = Zwiaa(Xi)ei + op{(nh)"l/z}
i=1
and hence

(za) Fo(za) = p{(nh)_l/z} + Op(hz)-
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I1) Analogous to the univariate case of F,,, we proceed for the bivariate case considering Fagl
We need the following definition
¢+ fa(Za) + fo(z5) + fap(2a, Tp) + Py {' -}
F=| 106+ 3 150 (@ Xa) + ] “ by (0 25)

f ( )+ 2 fa (:I:p, Xiy) + . (’)(xaazﬂ)

where {---} is

{fa'v (33047 Xi’r) + [y (:1:5, Xi“/) + fv(Xiv) + Z fré (Xi'ya Xi5)} .

71561)03

Applying Lemma A2 b) we have

~

Faﬂ(zav 555) Fop(Tas zp)
= - Z €y ( aﬁWZ aﬁZaﬂ) ZZ[,Wi,aﬂY - Faﬁ(a:a,'zg)

= - 61( aﬁWtaﬁZaﬂ) ZIWiap (Y = ZagFy) + Op(n~?)

=1

s 1 -1 2 Inn
-~ n I+0,|h ——
n ; (P(-Ta,xﬂ, Xiaﬁ)els { T ( + nh2gd—2)}

xH™ ZT Wi a5 (Y — ZagF;) + Op(n” 1) .

ﬁ

As above in I) we do the matrix calculation, replace ¥} by ¥; = o(X;)e; +m(X;) and use the
Taylor expansion of m around (Zq, Zs, Xiag). Then we obtain

(46) Faa(%,m) Faﬁ(mmxﬁ) =

n
nz(m oo K] ZK (Xia — 7o) Kn (X1 — 76) Ly (X1ag — Xiap) %
1=1 O O =1

Inn X o ma)
{10, (W + [ ) } [T 2R (0 + S 789 (o o)
Y a,B

+ fE (20, 25)} + (Xig — 29)" 5 %) {féz)(l'g) + %: 29 (24, Xiy) + 157 (za,xﬂ)}
Y€Dq g
+ Z {f’Y(Xl’Y) - f7(Xi7)} + Z {f'75 (Xl'th&) - f75 (Xi'aniJ) } +
Y€Dq 5 (1,6)€Dap

(Xia — Za) (Xig — 76) £5" (Ta, 28) + Op{(Xta — 7a)®} + 0p{(Xia — Ta)(Xis — z6)}
+0,{(Xi5 — 26)°} + U(Xt)é‘z] + Op(n~7).
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We go through the same steps as for the one-dimensional case and separate this expression
into a systematic “bias” and a stochastic ”variance”:

1 & (@ 1™ G - Eia: h2 Tnn
i Z ) + _Z a; z(az) + Op " n
i (/7 Lo, 23, ia_ﬁ) ni (P(.'Iia,atg,Xm_ﬂ_) nh2g“—2 nh g

where,

- 1
a; = 7—1‘ Z Kh (Xla - xa) Kh (Xlﬁ - .’L'ﬁ) Lg (Xla_ﬂ_ - Xiﬂ) X [ . ]
=1

and [...] is the expression in the same angular brackets of equation (46).

Again, we only have to work with the first order approximations.

Let
12 E,'(ai) 1 ai - Ei(ai)
Tn = - ; T = - )
" ; ¢(a, 75, Xiap) " n 2 ¢(Za) 25, Xiag)
We first prove that
T = h*u(K) {f UCHEEDY n):f‘“” or Xe) + 17 (25) +
YE€Dq, 77 i=1

Z Zfﬁio (2, Xiy +faﬁ ($a>$,8)+ )($a7xﬂ)}+op(h2)-

€D, 3 7 1=1

Consider ¢(%q, %5, Xiop) ™' E;(@:), which is again an approximation of the (conditional) bias
of the Nadaraya-Watson estimator at (Za, Zs, Xiag)- By assumptions (A1), (A2), (A3) and
(A5) we have

E;(a;)
@(Ta, 285 Xiap)
1

= K a — ZTq K - L —Xi ,
<,9(:ca,:z:5,Xigé)/ (20 = 2a)Kn(2g — 7)) Lo(w ag) (2, w)

[(za"xa)Q @) (2,0) (2,0)
U wa) + 3 o (%as Xi) + fag (TarTs) } +

7€Du,ﬂ

(25 = 28)°; ;(2) (2,0) 72
Co =20 (10 + T 189 (0 X0) + 157 @)} +

7€Da,ﬂ

Z {fy(wq) = fr(Xin)} + Z {fr6 (wy, we) = fas (Xiy, Xis)} +

Y€Dqy g 7,6€Dgp
(20 = Ta) (25 — 25) fu5” (Ta Tp) + Op{(2a = Ta)*} + Op{ (25 — 5)*}
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+0p{(2a — Ta)(28 — zg)}] dwdz + 0,(1)

1
= K (uo)K (ug) L{(w)(zq + ugh, zg + ugh, Xiag + vg) X
R ERETS ) [ K(ua) K (ua) L(w)e( 5+ gh, Xigg + 1)

{@%9)_2{]0(&2)(33&) + E f(2 ,0) (Ia,Xh) + f(%,t)) (za,z )}+ (h'uﬁ)?

Y€Dqy 8 2

{f[§2) (zg) + Z f(2 0 (zg, Xiy) + f ( 2) (T, T8) } + Z {fy(Xiy + gvy)

¥€Dg 5 7€Da 5
f'y(Xi'y)} + Z {f’y& (Xi'y + g'U'y,Xié + gv&) - f'y& (Xi'ya Xi&)} +
(7,0)€Dag

(1) (hss) 135" (20, 25) + Op(h*) v + (1)

= W () S0+ L 120 (3a, Xn) + S5 (29) +

Y€Da 8
2,0) 0 0,2
> 157 (36, Xey) + a5 (@, 26) + Jag” (30 76) } + 0p(h%) + Opl”)
v€Dq 8
- ~Xig
since E, [g;] = 0. We have used here the substitutions u = 1_(5«;_%@1{ and v = —— 2 where
v,w are (d — 2) -dimensional vectors with v component v,, w,.
Since the ¢(2q, 5, Xiag) ™ Ei(@;) are independent and bounded, we have
2
Tin = ) {f ( Z Z (20) $0>Xi'y)+f[(i)($ﬂ)+

Y€Dq,8 l—l

> Zf(m (2, Xi) + [5G (20, 25) + £S5 (Tay 2) } + 0p(h?).

Y€Du 8 i=

Thus, combining with the bias formulas obtained for F, (z,) and F3(zs), the bias of Fog(za, z5)
—F,(zs) —Fs(zp) is as claimed in the theorem:

W2B, = hlup(K)= {f( 9 (24, 24) — / £ (24, ug) pa(u) du

+r5 )(Ia’zﬁ - /fc(:%’2)(ua,$ﬁ)‘ﬂg(u)du} + 0p(h?).

We now turn to the variance part 75,. In Fan, Hirdle, Mammen (1998) it is shown that for

1 (Paﬁ(Xiaﬁ)
' 08 = = Ki(tia = Xiay 3 — Xig) e,
(47) w I¢] n h(ma H xﬂ Lﬁ) (p(.'L’a,:L‘g,X,'gﬁ)
(48) szaﬁa )i + 0p{(nh?) 7%}

46



where the term

XH: Wiago (Xi)es = Op{(nh?) ™/}

i=1

is asymptotically normal and dominates the corresponding stochastic term

Xn: Wwia0 (X;)e; = Op{(nh)‘l/z}

———

from part I of the proof. This means that f;5(za,2s) as defined by (11) is asymptotically
normal.

Finally, we want to calculate the variance of the combined estimator ﬁ‘aﬂ (Tq,28) - Fo(z) -
F3(z5). Because of the faster rate of the stochastic term in I than the one in I, it is enough
to consider II, i.e. 30 ; wiago(X;)e;. It is easy to show that the variance is then

1518 | a?(z)%%’-—ﬁ—)dxa_@.

QED.

A.2 Proof of Theorem 4

This proof is analogous to that of Theorem 1 and 2 for the two dimensional terms. The main
difference is that at the beginning the kernel K (-) has to be replaced by K*(-),i.e. K*(u,v) =
K (u,v)uvpy; *(K) and the weights are

1 ‘Paﬁ(Xiaﬁ)
—K3 a Xi ) - Xi = ~ )
nh3 3,h(z as g a) Qo(xmzﬂ;Xiﬂ)

(49) Wiap =

where K3, () = &£K;5(5, 5)-
QED.

A.3 Proof of Theorem 6

Consider the decomposition

/mz(za,xg)goag(xa,xg)dzadxg = Y H(Xiei,Xj65) + Y H(X;, e, Xiy )+

1<i#j<n i=1
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/Lﬁi(mm 28)Pap(Ta) Tg)dTadzs + 2h? / f;ﬂ(zaa xﬂ)Bl(zmxﬁ)‘Paﬂ(wm 15)dzodzg + op(hz)

in which

1
H(X; €, Xj,€5) = €i€; / EE(wiaﬁ_wia"wiﬁ)(wjaﬂ—wja—wjﬁ)o(xi)a (X;)¥ap(Ta; Tp)dTadzs
(50)
with w;a, wig and w;ep as in equation (44) and (47).

We first simplify H(X;, £, X;,€;) by substituting alternatively u = (2o — Xia)/h, v = (25 —
Xig)/h

€iE; Pa(Xia
J <P(Xz‘)) ~K®)
Xig— X5, Pap(Xjap)
h @(Xia, Xip, Xjap)h
Xig — X; ) ‘Paﬂ(Xjé }

h o(Xig, Xjp)

Q Xia
/{K(U)K(v)%ﬁé) — K(u)

X. —X.
ia - Ja)K(U +
Xia — Xja) Pa(Xja) 3
h (P(Xia,ng_)
XU(X,)O'(XJ)QOaﬂ(X,,a, Xzﬁ)d'U:d'U {1 + Op(l)}

H(X,', Ei, Xj, Ej) =

Pap(Xip) }
p(Xi)

n2

x{K(u+

—K(u+ K(v+

Denoting by K™ the r-fold convolution of the kernel K, one obtains

Z H(Xi,ﬁi,Xj,Ej)z Z (H1+H2+H3+H4+H5) {1+Op(1)}

1<i#j<n 1<i<j<n
where
g.c:0(X;)o(X; Xio — X; Xig — X,
H =2 (TLQ;32 ( J)Km < = R Ja) K(z)( L4 h 4 )‘Pa_li(xigé)‘foeﬁ(xjﬂ)

« { ap(Xia, Xig) . Pap(Xja, Xjs) }
P(Xi)o(Xiar Xigs Xjas)  0(X5)0(Xjar Xjg: Xiap)

__SiEjJ(Xi)(T(Xj) @gg(Xjﬂ) @) Xia — Xjo ‘P_q(Xig)
= ) {K (Z=52) 2%

n2h (p(Xia,Xiﬁ,Xj

X5 — X5\ v5(Xip)
@ (2 I8 £ X,
+K ( 5 ) CP(Xi) @aﬂ(Xwn Xzﬂ)

_e,-eja(X,-)a(Xj) Pap(Xiap) ) {K(2) (Xja — Xia) Pa(Xja)

n2h P(Xjar Xjg, Xiap h o(X;)

X5 — Xig\ v8(X;p)
(2) (238 zﬂ) i8 e
+K ( h c)0()(':’) (Paﬂ(XJa, X.‘Iﬂ)

_£:£;0(Xi)0(X;) Pap(Xiap) {K(z) (Xia—Xj ) Pa(Xja)
n’h p(Xi) h O Xiay Xjo)

H3=
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Xi - X; X;
+K(2) ( B ]/3) (Pﬂ( Jé) }(paﬂ(XiarXiﬂ)

h v(Xig, X;5)
_£i€j0(Xi)o(X;) Pap(Xjas) { K@ (Xja - X0 ) o (Xia)
n2h o(X;) h P(Xjar Xig)

Xis = Xig\  05(Xip)
+K(2)( JB 1 ) 8 X. ’X.
h SO(Xjﬂ,Xig) %es(Xja, Xjp)
H, = S€0(X)o (X)) {K(g) (Xm —Xja) ba(Xia) PalXja)
n h QO(X,) <p()(iaax'jg)
Xig — Xjp\ v8(Xig) 05(X,5)
+K@) (u) 8 s X X,
: h o(X;) ‘P(Xi,@,ng) Pap(Xiq 5)
1859 (Xi)o(X;) { K® ( M) Ca(Xja) @a(Xig)
n h S0(")(.‘1) (p(Xj(!aXig)
LK@ ( Xjp = Xz'ﬂ) ©5(Xig) ps(Xip)
h W(Xj) W(Xjﬁ,Xig)

} Pap(Xja, X;5)

H — €i5j0(Xi)0(Xj){90g(Xig) SOﬁ(ng) ‘Paﬂ(Xig) ‘Pg(Xj_a)
> P(X:) o(Xig, Xj5) T 0(X;) ¢(Xia, Xja)
L &iE0(Xi)o(X;) { Pa(Xja) 95(Xig)  ©ap(X;p) Pa(Xia)

oXig X T ooy e b Xja, X
‘P(Xj) W(Xjﬁ,Xil_g) ga(Xj) (p(Xja’Xig)} aﬂ( J Jﬂ)

}‘Paﬁ(XimXiﬁ)

1 2y — 2 21p— Z
FUN e X)) = g [ (B ) e (H52) Ciaere) o)

« { ¥ap(21a, 218) 4 Pap(z20, 239)
o(21)¢ (214, 218, Zza_ﬁ) ©(22)(224, 228, Zl@)
Introducing the change of variable

} 02(21)02(22)<p(z1)<p(22)dzldzg.

%a = 21q — hu, 295 = z13 — hv

we obtain

1
E {Hf(Xl,El,Xz,Ez)} = TLTfL?/K(2) *(u) K@ 2(v)wi_ﬂ(zla_p)gog_ﬂ(zw)ﬁ(21)02(z1a, 218, 2205)

{ <Pa[i (Zlay Zlﬂ) + (Paﬂ(zlon zlﬁ)
oz

2
21)P\21a; 218, 220)dz; dudvdz 1+0(1)},
)#(21a, 215, 2205) w(zm,zm,zzg)so(zl)} #ler)ez1a, 21 2ag)dzn e {1+ 0(1)}
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or

“ K® u / (Paﬁ zlaﬂ)‘Paﬁ 2aﬂ)90aﬂ(z1a,z1ﬂ)
(Zl)CP(zla, 218, Zzaﬂ)

0'2(21)0'2(2‘10,, 218, Zzgg)d;hdz‘o_ﬁ {1 + 0(1)} .

E{Hf(Xh&,Xz,Ez)} 4h2
To prove that 3°;<; H1(Xi, €i, X;,€5) is asymptotically normal, one needs to show that

E{G}(X1,e1, Xz,82)} + ' E {Hi(X1,61,X3,62)} = 0p [{EHf(Xl,al,Xg,eg)r}

where
(51) .Gl(.'L',E,y,(S) = E{Hl(Xl,61,$,E)H1(X1,61,y,5)} 3

see Hall (1984).

Lemma A3 As h — 0 and nh? = oo,

™ E{HA(Xy,61, Xa,80)} = Op(n°h7°) = 0 [{Eﬂf(xl,el,xz,@)ﬂ .

Proof. As in the case of the second moment, the fourth moment can be calculated as

B {H! (X0, X0 20} = 25 [ KO {@)K® 4(0)phs(108) s (20)0" (2)0* (1029 200)

4

(Paﬁ(zlou zlﬁ) Pap (zlaa zlﬁ) }

+ 21)0(21a, 218, 2208)dz1dudvdz 14 0,(1
{VQ(Zl)w(zla,Zw,Zzg_q) <P(21a>315,z29g)90(21) pla1)p(ore 218 29&) ' 2a_g{ (1))

which implies that
2
n'E {Hf(xl,el,XQ,sg)} =0,(n°h%) = {EHf(Xl,sl,Xg,eg)} Op(n~h™2)

which proves the lemma as n~th=2 = 0.

Lemma A4 As h — 0 and nh? = oo,

26600s(Ta: ) Pas (Zap) Pas (Ves) o (2)0(Y) (4 y g -

. ) (Ta= Yo\ ) _ﬂ__yﬁ)

Gi(z,¢,y,0) = nth2y(z) K ( h )K ( h

X/{ @aﬁ(ya;yﬁ) -+ waﬂ(xa,xﬂ) }(Piﬁ(ZQﬁ)UQ(l'a7mﬁ,zaﬁ)dZaﬂ {1+0(1)}
2(0) 0 (Yar s 7a8) | P(Tar T6s 208)P(Tar To:Ya8) ) T T ==
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Proof. According to the definition of G,

€d
Gl(xyeagbd) = E{Hl(XI)Ebx78)H1(X1:517y76)} = WX

(2) Xia — T (2) X3 — Zp Pap(Ta, $ﬂ) Vap(Xia, Xlﬂ)
EiK ——— K +
h h (p(x)(P(xaaz(?’Xg_ﬁ_) QO(XI)CP(XIQ)XU% zﬁ[i)
XPap(X1ap)Pap(Tap)o(X1)o(2)

% K2 (_X_ la = y“) K® (Xlﬂ - yﬁ) Pap(Ya, Ys) + Yap(Xia, X15) }
h h P(¥)0(Yar Y8, Xag)  P(X1)(X1as X1, Yas)

Xaa (X1a8)Pas(tes) o (X:)0 )]

or
€09as(Tap)Pas(Yos)o(T)0(y)
niht “‘8 aﬁ

K@ (Za - xa) K@ (Zﬁ ~ ’m) { ap(ZasZg) _ Pap(2as 29) }
h h c,o(z)cp(a:a,xﬂ, Zﬂ) QD(Z)QO(ZQ, Zﬂ,I_a_é)

< K@ (Za - ya) K® (zﬂ ~ yﬁ) { Pap (Yo Ys) + Pap(2a; 28) } 2\dz.
h h )¢ (Ya, Ys: 2a8)  ©(2)9(20s 28, Yap) #l2)

Introducing the change of variable

Gi(z,e,y,6) =

Zoq = To + hu,zs =25+ hv

we obtaln
£6Pags(ZTap)Pas(Yas)o(z)o(y)
G (l' 6 y’ 5) ;:4h4 /(pi—ﬁ(z?ﬁ)0'2(za7xﬂ7zgﬁ)

¥ K@ () K® (v) { Yap(Za, Tp) + %ﬁ(%,xﬂ) }K(Q) (u + Lo — ?/a)
0(2)9(Ta; Tg; 208)  (Ta; Ths 2ap) P(Tas Tg: Tap) h

XK(Q) (’U + Iﬂ _ yﬂ) { (paﬂ(ythyﬁ) + Soaﬁ(xa:xﬁ) }
h oY) P(Yar Ys> 2a8)  ¥(Tar T6, 2a8)P(Tar Tp, Yaus)

X P(Za; Tg, 2ap)h’ dudvdzag {1 + o(1)} .

Using convolution notation, one has

55‘Paﬁ(xaﬂ)90aﬁ(yaﬂ) (z)a(y) Ta ~ Ya Tz —
Gi(z,e,9,6) = = Cg (T ) K0 (22) x

/ 20404 (Zar Tp) { Cap (Yas Ys) + Pap(Za, Tp) }
0(2)p(Ta, 28, 2a8) | P(¥)0(YarYs: 2a8)  P(Tar Tp, 2ap) O(Tar Tp, Yas)

xwgﬁ(zgﬁ)az(za, 8, 208)P(ZTa> g5 20p)d2ag {1 + 0(1)}
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or

268¢p0p(Za xﬂ)‘Paﬂ(xaﬁ)‘Paﬂ(yaﬂ)a(x)o(y) K -y -y
’ ) o) g@ ﬂ)
Gil@,e,y,9) = n*h2p(z) ( h ) K ( h
(Paﬂ(ya,yﬂ) (Paﬁ(xa,xﬂ) } 2 2
X + 28(2a8)0°(Za, T8, Zag)dzap {1 + 01
[ e 28) | 9505, 208) 0G0 T, ag) | P22 7e2) (Fr T8, 2e0) o {1+ 1)}

which is what we set out to prove. By techniques used in the two previous lemmas, it follows
that

Lemma A5 As h — 0 and nh? = oo,

E {Gl(Xl, e1, Xo, 52)2} =0(n 8 ?) =0 [{EH1(X1,51,X2,62)2}2] .
Lemmas A3, A5, and the Martingale Central Limit Theorem of Hall (1984) imply:
Proposition A1 As h — 0 and nh? — oo,

nh Z H(Xi,Ei,Xj,Ej)—L')

1<i<j<n

03 8 Zlmzlﬁ ¥ p(Zlaﬁ)W 5(220,@)
0 2“K Il / : 2 < 0'2(21)0'2(21a,215,Zzag)dzleQQﬁ .
Zlmzlﬁ,z?,a[i) - -

The “diagonal” term 31, H(Xj, €4, Xj,€;) has the following property

Proposition A2 As h — 0 and nh? = oo,

n _ 2{KD(0)}2 [ PasZa; 26)Pop(2ap)
ZH(Xi,Ei,Xi,fii) = nh2 / (p(Z)

1=l

o?(2)dz + O, (-\/—ﬁ%ﬁ)

Proof. This follows by simply calculating the mean and variance of H(X, €, X, €1).

Putting these results together, Theorem 6 is proved.
QED.
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A.4 Proof of Theorem 7

To prove Theorem 7, first note that the support S,s of .4 is compact, hence there exists a
constant C > 0 such that

(52) “BluLz(Sag,wag) = \// B%(.’ra,.’E;;)(paﬂ($a,$3)d$ad$ﬂ <CM
for any f.s € Bag(M). Here
1
B1(za, 55) = 2 (K) 5 { £35” (20, 25) + fog” (s Z5)}
is the bias function of Theorem 2. Meanwhile, since

f;ﬁ(zavzﬂ) = fap(TarZg) + Caps Cap = /faﬁ(xa:zﬂ)‘Paﬁ(zav‘Tﬂ)dzadzﬁ

it follows that

/féz(zmxﬂ)waﬂ(zmzﬂ)dzadxﬂ = /fcfﬂ(warwﬂ)‘f)aﬂ(mmmﬂ)dxadmﬂ

+20aﬂ/faﬂ(xaamﬁ)‘ﬂaﬁ(xa:xﬁ)dxadxﬂ + Ciﬂ

= /fgﬂ(xaa$ﬁ)¢aﬁ($m$ﬂ)dxadwﬂ+3C¢21[3 2 /fgﬂ(xmxﬁ)‘Paﬂ(xa:xﬁ)dxadmﬁ'
Hence for any fo5 € Fog(a), one has

2

*

(53> aof

L2(Sagstag) /f;%(xmmﬁ)%ﬂ(l”a,mﬁ)dxadxﬁ > a2

Now forn=1,2,..., let

, —~ 2 2H{KD(0)}2 [ Pas(2a; 28)Pap(2a8) |,
T =t [ fiap (50, 23)pas (20, 23)dradas = St [ T2t 62 )

"nh/fr:,QaB(xmxﬂ)ﬁpaﬂ(zmxﬁ)dxadzﬁ - 277’}7“3/f;,aﬁ(zmxﬁ)Bnl(xmxﬂ)waﬂ(xm zﬂ)d$ad$ﬁ

where (fn05)5% , is the sequence in Theorem 7, and By the corresponding bias coefficients.
Note that although the function f} ,5(zq,Zg) is different for each n, a careful review of the
proof of Theorem 6 shows that it still holds because the second order Sobolev seminorm of
each f ,5(2a, ) is bounded uniformly for n = 1,2, ..., and all the main effects { f.,}:’l/:1 and
other interactions {fys} <y<scd r5)#(a,s 2r€ fixed. Hence

(54) T! 5 N{0,V(K,¢p,0)}
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as n — oo. Now let

=nh/f:;?aﬁ(maaxﬂ)¢a5($a’$ﬁ)d$ad$ﬂ+2nh3/f;,aﬁ(xavzﬁ)Bnl(ma)zﬁ)waﬁ(mavxﬂ)dxadmﬁ

then

tn 2 MR \\f n.a8 \2Lz(5a5a‘PaB) - 2nk’ Hf n.ap HL?(saa,waa) 1Brtllze(sis e

= nh nf’::"‘ﬂan(Saa,%a) { f;’aﬁ“LQ(san‘Paﬁ) —2W ”BMHLQ(S“"""“")}

t, > nhap {an - ZhQCM}

which, using the condition that a,, I = o(nh 4 h™?%), entails that tn — 00 387 — oo. By the
definition of the test.(36)

(53) po=P[T,+ta 287 (1 - V(K o).
Now (54), (55) and tp — yield limp—00 Pn = 1.

QED.

A.5 Proof of Theorem 8

In parallel to the proof of Theorem 6, one can decompose

E@%szXw)/”: > ﬁ(Xi,Ei,Xj,ﬁj)+Z§(Xi,€i,xi,€i)+
=1 i=1

1<ij<n

S £22(Xia, Xig) [+ 2173 fap(Kies Xu15) By (Xia Xi) /1 + 0p(h?)
=1

=1
in which

H(Xi e, Xj,€5) = Ezﬁaz (wuxﬁl wia,z—@iﬂ,z)(@jaﬁ,z—ﬁja,z—@jﬁ,z)U(Xi)G(Xj)

with

i Soa(Xm)
- ial = —K X a za
(‘)6) Wiat = h ! )‘,O(Xla, m)
1 Pop(Xias)
r7 wza _'—_-—K Xa—Xi(!?X 7
(57) s = ~En(Xi 16 = Xi8) X, Xips Xiat)

It is directly verified that for wia defined in (44) and wiqp defined in (47)

> = (Wiapy — Wiy — Wip1)(Wjas — Wja,) — Wjg,1)
=1

/ (Wiap — Wia — Wig) (Wjap — Wia ~ Wjp)¥Pas (%a, T5)dZadzs {1+ Oy (n—l/z)}

3
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uniformly for all 1 < 4, j < n. Note also the fact that E(g;] Xy, ..., X;,) = 0, E(e?| X, ..., X,) =
1, and using the independence of €, ..., €,, one obtains

En: ﬁ(Xi, €i, Xi, Ei) = {1 + Op (n-—l/Z)} Xn: H(Xi? €4y Xi7 Ei)
i=1 i=1
while

Z E(Xi,Ei,Xj,Sj)= Z H(Xi,ei,Xj,sj)-f-Op(n'W)

1<i#j<n 1<i#j<n

with H as defined in (50). These, plus the trivial facts that

> fab(Xias Xig) /0 = / fa5(%a, 26)Pap(Tas T6)dTadzs + Op (n'12)
=1

3 Fi5(Xias X1) By(Xia, Xig) /1 = / f25(%as 76) B1 (%o, T6)Pap(Ta» Z6)dTadzs + Op (n™'1?)
=1

establish Theorem 8.
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