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NONPARAMETRIC ESTIMATION IN RANDOM COEFFICIENTS BINARY
CHOICE MODELS

ERIC GAUTIER AND YUICHI KITAMURA

Abstract. This paper considers nonparametric estimation of the joint density of the random coeffi-

cients in binary choice models. Nonparametric inference allows to be flexible about the treatment of

unobserved heterogeneity. This is an ill-posed inverse problem characterized by an integral transform,

namely the hemispherical transform. The kernel is boxcar and the operator is a convolution operator

on the sphere. Utilizing Fourier-Laplace expansions offers a clear insight on the identification problem.

We present a new class of density estimators for the random coefficients relying on estimates for the

choice probability. Characterizing the degree of ill-posedness we are able to relate the rate of conver-

gence of the estimation of the density of the random coefficient with the rate of convergence of the

estimation of the choice probability. We present a particular estimate for the choice probability and its

asymptotic properties. The corresponding estimate of the density of the random coefficient takes a sim-

ple closed form. It is easy to implement in empirical applications. We obtain rates of consistency in all

Lp spaces and prove asymptotic normality. Extensions including estimation of marginals, treatments

of non-random coefficients, models with endogeneity and multiple alternatives are discussed.

Résumé. Ce manuscrit traite de l’estimation nonparamétrique de la densité de la loi jointe de co-

efficients aléatoires dans un modèle à choix discrets. Une inférence nonparamétrique permet d’être

flexible sur le traitement de l’hétérogénéité inobservée. Il s’agit d’un problème inverse mal posé car-

actérisé par une transformation intégrale appelée transformation hémisphérique. Le noyau est boxcar

et l’opérateur est un opérateur de convolution sur la sphère. Les développements en séries de Fourier-

Laplace permettent de mieux comprendre le problème d’identification. Nous proposons une nouvelle

classe d’estimateurs de la densité des coefficients aléatoires, fonction de l’estimateur de la probabilité du

choix. La caractérisation du degré de caractère mal posé nous permet de relier la vitesse d’estimation

de la densité des coefficients aléatoires avec celle de la probabilité du choix. Nous présentons un esti-

mateur particulier de la probabilité et ses propriétés asymptotiques. L’estimateur associé de la densité

des coefficients aléatoires admet une formule fermée. Il est facil à implémenter pour des applications

empiriques. Nous obtenons des vitesse de convergence dans tous les espaces Lp et montrons la nor-

malité asymptotique. Nous fournissons des extensions telles l’estimation des marginales, le traitement

de coefficients non-aléatoires, le traitement de l’endogénéité et le cas d’alternatives multiples.
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1. Introduction

Consider a binary choice model

(1.1) Y = I
{
X ′β ≥ 0

}

where I denotes the indicator function and X is a d-vector of covariates. We assume that the first

element of X is 1, the vector X is thus of the form X = (1, X̃ ′)′. The vector β is random. The random

vector (Y, X̃, β) is defined on some probability space (Ω,F ,P), and (yi, x̃i, βi), i = 1, ..., N denote its

realizations. The econometrician observes (yi, x̃i), i = 1, ..., N , but βi, i = 1, ..., N remain unobserved.

Therefore X̃ and β correspond to observed and unobserved heterogeneity across agents, respectively.

Note that the first element of β in this formulation absorbs the usual scalar stochastic shock term as

well as a constant in standard binary choice with non-random coefficients. This formulation is used

in Ichimura and Thompson (1998), and is convenient for the subsequent development in the paper.

Throughout the article we assume exogeneity

Assumption 1.1. β is independent of X̃,

Section 6.3 considers ways to relax this assumption.

The choice probability is given by

r(x) = P(Y = 1|X = x)(1.2)

= Eβ[I {x′β > 0}].

Discrete choice models with random coefficients variation are useful in applied research since it is often

crucial to incorporate unobserved heterogeneity in the choice behavior of individuals. There is a vast

and active literature on this topic. Recent contributions include Briesch, Chintagunta and Matzkin

(1996), Brownstone and Train (1999), Chesher and Santos Silva (2002), Hess, Bolduc and Polak

(2005), Harding and Hausman (2006), Athey and Imbens (2007), Bajari, Fox and Ryan (2007) and

Train (2003). A common approach in estimating random coefficient discrete choice models is to assume

parametric specifications. A leading example is the mixed Logit model, which is discussed in details

by Train (2003). If one does not impose a parametric distributional assumption, the distribution of β

itself is the structural parameter of interest. The goal for the econometrician is then to back out the

distribution of β from the information about r(x) obtained from the data.
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Nonparametric treatments for unobserved heterogeneity distributions is an important issue

in econometrics. Heckman and Singer (1984) study the issue of unobserved heterogeneity distribu-

tions in duration models and propose a treatment by a nonparametric maximum likelihood estimator

(NPMLE). Elbers and Ridder (1982) also develop some identification results in such models. Beran

and Hall (1992) and Hoderlein et al. (2007) discuss nonparametric estimation of random coefficients

linear regression models. Despite the tremendous importance of random coefficient discrete choice

models, as exemplified in the above references, nonparametrics in this area is relatively underdevel-

oped. An important paper by Ichimura and Thompson (1998) proposes a NPMLE estimator for

the CDF of β. They present sufficient conditions for identification and prove the consistency of the

NPMLE. The NPMLE requires high dimensional numerical maximization and can be computationally

intensive even for a moderate sample size.

Here we develop a different approach that shares many similarities with standard deconvolution

methods in the Euclidean space. This allows us to revisit the identification issue. Moreover, once

sufficient constraints are imposed on the parameter, we obtain a general estimator of the density

to be used in conjunction with an estimate of the choice probability. When a particular estimate

of the choice probability is used, the estimate of the density can be expressed with a closed form

formula. This is a simple plug-in procedure that requires no numerical optimization or integration.

This estimator is easy to implement in empirical applications, while being flexible about the treatment

of unobserved heterogeneity.

Since the scale of β is not identified in the binary choice model, we normalize the scale so that β

is a vector of Euclidean norm 1 in Rd. The vector β then belongs to the d−1 dimensional sphere Sd−1.

This is not a restriction as long as the probability that β is equal to 0 is 0. Also, since only the angle

between X and β matters, we replace X by X/‖X‖ and assume X is on the sphere. Discrete choice

models with random coefficients thus naturally fit the directional data literature, see for example

Fisher et al. (1987). We aim to recover the joint probability density function fβ of the preferences β

with respect to the spherical measure dσ over Sd−1 from the N observations (y1, x1), . . . , (yN , xN ) of

(Y, X).

The problem considered here is a linear ill-posed inverse problem. We can write

(1.3) r(x) =
∫

b∈Sd−1

I
{
x′b ≥ 0

}
fβ(b)dσ(b) =

∫

H(x)
fβ(b)dσ(b) := H (fβ) (x)

where the set H(x) is the hemisphere {b : x′b ≥ 0}. The mapping H is called the hemispherical

transformation. Inversion of this mapping was first studied by Funk (1916) and later by Rubin (1999).
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Groemer (1996) also recalls some of its properties. H is not injective without further restrictions and

conditions need to be imposed to ensure identification. Even under an additional condition which

guarantees identification, however, the inverse of H is not a continuous mapping, making the problem

ill-posed. To see this, suppose we restrict fβ to be in L2(Sd−1). Since the kernel is square integrable by

compactness of the sphere, the operator is Hilbert-Schmidt and thus compact. Therefore if the inverse

of H were continuous, H−1H would map the closed unit ball in L2(Sd−1) to a compact set. But the

Riesz theorem states that the unit ball is relatively compact if and only if the vector space has finite

dimension. The fact that L2(Sd−1) is an infinite dimensional space contradicts this. Therefore the

inverse of H cannot be continuous. In order to overcome this problem, we use a one parameter family

of regularized inverses that are continuous and converge to the inverse when the parameter goes to

infinity. This is a common approach to ill-posed inverse problems in statistics (see, e.g. Carrasco et

al., 2007).

Due to the particular form of the kernel of the operator H involving the scalar product x′b,

the operator is a non commutative analogue of the convolution in Rd. This analogy provides a clear

insight into the identification issue. We indeed face a problem of the type of the boxcar deconvolution

(see, e.g. Groeneboom and Jongbloed (2003) and Johnstone and Raimondo (2004)) in the unidentified

case. It is also useful in deriving an estimator based on a series expansion on the Fourier basis or

its extension to higher dimensional spheres called Fourier-Laplace series. These bases are defined via

the Laplacian on the sphere, and they diagonalize the operator H on L2
(
Sd−1

)
. Such techniques

are used in Healy and Kim (1996) for nonparametric empirical Bayes estimation in the case of the

sphere S2. The boxcar kernel of the integral operator H, however, does not satisfy the assumptions

made by Healy and Kim. In contrast to this paper, we make use of so-called “condensed” expressions.

The approach replaces a full expansion on a Fourier-Laplace basis by an expansion in terms of the

projections on the finite dimensional eigenspaces of the Laplacian on the sphere. This is useful since

an explicit expression of the kernel of the projector is available. It allows us to work in any dimension

and does not require a parametrization by hyperspherical coordinates nor the actual knowledge of an

orthonormal basis. This approach, to the best of our knowledge, appears to be new in the econometrics

literature.

The paper is organized as follows. In Section 2 we introduce a toy model and the tools from

harmonic analysis that are used for the development of our estimation procedure and its asymptotic

analysis. Section 3 deals with both the identification and a general procedure for the estimation of

the density of the random coefficient relying on an estimate of the choice probability. In Section 4 we
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study a particular estimate of the choice probability and its derivatives and present their asymptotic

properties. The corresponding estimator of the density of the random coefficients takes a simple closed

form, we prove consistency in all the spaces Lp and a pointwise CLT for this particular estimate in

Section 5. Extensions such as estimation of marginals, models with non-random coefficients, treatment

of endogeneity and multiple alternatives are presented in Section 6. Finally we give in section 7 an

application to simulated data.

2. Preliminaries

In this section we introduce some tools that are used to relate the estimation of the density of

β to a deconvolution problem and results on the Hemispherical transform.

2.1. A Toy Model. We first study the case where X is of dimension 2 to gain basic insights. We

parameterize the vector b = (b1, b2)
′ of S1 by the angle φ = arccos (b1) in [0, 2π). As it is often the case

when standard Fourier series techniques are used, we consider spaces of complex valued functions. Let

Lp(S1) denote the Banach spaces of Lebesgue p-integrable functions and its norm by ‖ ·‖p. In the case

of L2(S1), the norm is derived from the hermitian product
∫ 2π
0 f(θ)g(θ)dθ. With the parametrization

by angles we obtain

(2.1) H(fβ)(θ) =
∫ 2π

0
I {|θ − φ| < π/2} fβ(φ)dφ.

This expression suggests that the hemispherical transformation is a usual convolution of functions on

R/(2πZ). Rewrite (2.1) as

(2.2)
H(fβ)

π
(θ) =

∫ 2π

0

(
1
π
I {|θ − φ| < π/2}

)
fβ(φ)dφ.

It is then possible to link estimation of fβ with statistical deconvolution problems. H(fβ)/π is then

interpreted as the density of θ, which is generated by adding (on R/(2πZ)) a “noise” drawn from

the uniform density 1
π I{|x| < π/2} to the “signal” φ drawn from fβ. Let us relate inversion of

the operator with differentiation. Differentiating the right hand-side of expression (2.1) we obtain

fβ(θ + π/2)− fβ(θ − π/2) where fβ is defined on the line by periodicity. Under an assumption such

that fβ is supported on a hemisphere, this assumption is discussed further in Section 3.1, we obtain

either fβ(θ + π/2) or −fβ(θ−π/2). When the model is identified properly the inverse is a differential

operator and as such unbounded. It is typically the case that the inverse of kernel operator is a

differential operator but, in order to generalize the inversion to any dimension, it is useful to work

with Fourier series and their generalizations to higher dimensional spheres.
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Fourier series is a useful tool for deconvolution problems on the circle.
(
exp(−int)/

√
2π

)
n∈Z is

the orthonormal basis of L2(S1) used to define Fourier series. This system is also complete in L1(S1).

Denoting by cn(f) =
∫ 2π
0 f(t) exp(−int)dt/(2π) the Fourier coefficients of f ∈ L1(S1)

(2.3) fβ(θ) =
∑

n∈Z
cn(fβ) exp(inθ)

in the L1(S1) sense. Recall also that for f and g in L1(S1),

(2.4) cn(f ∗ g) = 2πcn(f)cn(g).

Using equation (2.4) we obtain the following proposition.

Proposition 2.1. c0(H(fβ)) = πc0 (fβ) and for n ∈ Z \ {0}, cn(H(fβ)) = cn (fβ) 2 sin (nπ/2) /n.

As in classical deconvolution problems on the real line, our aim is to obtain fβ using equation

(2.3) and Proposition 2.1. Notice that among the Fourier coefficients cn(fβ), n = 1, 2, ... it is only

possible to recover the first coefficient c0(fβ) (which is easily seen to be 1/2π, by integrating both

sides of (2.1) and noting that fβ is a probability density function) and the odd coefficients. Indeed,

Proposition 2.1 shows that c2p(H(fβ)) = 0 holds for all non-zero p’s, regardless of the value of c2p(fβ).

In other words, any fβ with the same coefficient c0(fβ) and odd coefficients gives rise to the same

hemispherical transformation. Variations in r do not allow to identify the coefficients c2p(fβ) for a

non zero p. The same phenomenon occurs in higher dimensions, as explained in Section 2.2.

Remark 2.1. If we make the stronger assumption that fβ belongs to L2(S1), we may interpret this

result in terms of operators. For n 6= 0 the vector spaces Hn,2 = span {exp(int)/(2π), exp(−int)/(2π)}
are eigenspaces of the compact self-adjoint operator H(fβ). These eigenspaces are associated with the

eigenvalues 2 sin (nπ/2) /n. Also,
⊕

p∈ZH2p,2 is the null space ker H of H.

2.2. Tools for Higher Dimensional Spheres. Let us introduce some concepts used to treat the

general case where d ≥ 2. We consider functions defined on the sphere Sd−1, which is a d−1 dimensional

smooth submanifold of Rd. The canonical measure on Sd−1 (or spherical measure) is denoted by dσ and

is such that
∫
Sd−1 dσ = |Sd−1| is the area of the sphere. It is given for d ≥ 1 by

∣∣Sd−1
∣∣ = 2πd/2

Γ(d/2) where

Γ is the usual Gamma function. Lp(Sd−1) with norm ‖ · ‖p are the usual spaces of integrable complex

functions and L2(Sd−1) is equipped with the hermitian product (f, g)L2(Sd−1) =
∫
Sd−1 f(x)g(x)dσ(x).

We use the following notation throughout the paper
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Notation. For two sequences of positive numbers (an)n∈N and (bn)n∈N, we write an ³ bn when there

exists M positive such that M−1bn ≤ an ≤ Mbn for every n positive. ¤

The Laplacian ∆S on the sphere allows to extend the Fourier basis to any dimension in the

similar manner as the functions exp(−int)/
√

2π are eigenfunctions of − d
dt2

associated with the eigen-

value n2. Let ∆ denote the Laplacian in Rd, f̌ the radial extension of f , that is f̌(x) = f(x/‖x‖),
and f̂ the restriction of f to Sd−1. ∆S , defined in terms of Riemannian geometry the usual way via a

generalization of the formula “div∇S” see the appendix, has a simple expression in the case of spheres

(2.5) ∆Sf = (∆f )̌̂

also

(2.6) ∇Sf = (∇f )̌̂.

Definition 2.1. A surface harmonic of degree n is the restriction to Sd−1 of a homogeneous harmonic

(solution of ∆f = 0) polynomial of degree n in Rd.

The reader is referred to Müller (1966) and Groemer (1996) for clear and detailed expositions

on these concepts and important results concerning spherical harmonics used in this paper. Erdélyi

et al. (1953, vol. 2, chapter 9) provide detailed accounts focusing on special functions. The proofs

and results below can be found in the above references.

Lemma 2.1. The following properties hold:

(i) −∆S is a positive self-adjoint unbounded operator on L2(Sd−1), thus it has orthogonal eigenspaces

and a basis of eigenfunctions;

(ii) Surface harmonics of positive degree n are eigenfunctions of −∆S for the eigenvalue n(n+d−2);

(iii) The dimension of the vector space Hn,d of spherical harmonics of degree n is

(2.7) dim Hn,d =
(2n + d− 2)(n + d− 2)!

n!(d− 2)!(n + d− 2)
;

(iv) A system formed of orthonormal bases of Hn,d for each degree n = 0, . . . ,∞ is complete in

L1(Sd−1).

Notation. We let h(n, d) denote dim Hn,d and ζn,d = n(n + d− 2). ¤

Lemma 2.1 (i) and (iv) give the decomposition

L2(Sd−1) =
⊕

n∈N
Hn,d
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with orthogonal Hn,d’s being the eigenspaces of ∆S . The space of surface harmonics of degree 0

is the one dimensional space spanned by 1. A series expansion on an orthonormal basis of surface

harmonics is called a Fourier series when d = 2, a Laplace series when d = 3 and in the general case

a Fourier-Laplace series.

Orthonormal bases of surface harmonics usually involve parametrization by angles, such as the

spherical coordinates when d = 3 as used by Healy and Kim (1996) or hyperspherical coordinates for

d > 3. In contrast, here we work with the decomposition of a function on the spaces Hn,d.

Definition 2.2. The condensed harmonic expansion of a function f in L1(Sd−1) is the series
∑∞

n=0 Qn,df .

This leads to a simple method both in terms of theoretical developments and practical imple-

mentations. The projector Qn,d on Hn,d in L2(Sd−1) can be expressed as an integral operator with

kernel

(2.8) qn,d(x, y) =
h(n,d)∑

l=1

Yn,l(x)Yn,l(y),

where (Yn,l)
h(n,d)
l=1 is any orthonormal basis of Hn,d. The kernel has a simple expression given by the

addition formula.

Theorem 2.1 (Addition Formula). The following identity holds

(2.9) qn,d(x, y) =
h(n, d)Cν(d)

n (x′y)

|Sd−1|Cν(d)
n (1)

:= [qn,d(x′y)

where Cν
n are the Gegenbauer polynomials and here

ν(d) = (d− 2)/2.

The Gegenbauer polynomials are defined for ν > −1/2 and are orthogonal with respect to

the weight function (1 − t2)ν−1/2dt on [−1, 1]. They correspond to the 2/n times the Chebychev

polynomials of the first kind when d = 2, to the Legendre polynomials when d = 3 and to the

Chebychev polynomials of the second kind when d = 4. Note that Cν
0 (t) = 1 and Cν

1 (t) = 2νt for

ν 6= 0 while C0
1 (t) = 2t. Moreover, they satisfy the following recursion relation

(2.10) (n + 2)Cν
n+2(t) = 2(ν + n + 1)tCν

n+1(t)− (2ν + n)Cν
n(t).

In our approach the Gegenbauer polynomials will be evaluated at N points for a series of successive

values of the degree n. The recursion relation (2.10) is therefore a powerful tool. Useful results on

these polynomials are gathered in the appendix, see also Erdélyi et al. (1953, vol. 1, p. 175-179).
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Definition 2.3. A zonal function f is a function that depends only on the geodesic distance to the

north pole n = (1, 0, . . . , 0) d(x,n) = arccos(x′n), it can be written as f(x) = [f(x′n) where [f is

defined on [−1, 1].

The convolution of a zonal function f with a function g is defined by

(f ∗ g)(x) =
∫

Sd−1

[f(x′y)g(y)dσ(y).

Note that the convolution operation is commutative when two zonal functions are considered.

Young inequalities are given for example in Kamzolov (1982).

Proposition 2.2 (Young inequalities). When f is zonal and belongs to Lp(Sd−1) and g belongs to

Lr(Sd−1) then f ∗ g is well defined in Lq(Sd−1) when p, q, r ≥ 1 and 1/q = 1/p + 1/r − 1, moreover

‖f ∗ g‖q ≤ ‖f‖r‖g‖p.

It is interesting to note that we can write

(2.11) Hf(x) = (I(·′n ≥ 0) ∗ f)(x),

Qn,df(x) = (qn,d(·,n) ∗ f)(x),

and defining by PT the projection onto
⊕T

n=o Hn,d

PT f(x) = (DT (·,n) ∗ f)(x)

where

DT (x, y) =
T∑

n=0

qn,d(x, y)

is the Dirichlet kernel which extends the classical Dirichlet kernel on the circle. The sum over T in

the definition of DT also has the simple closed form (52) in Müller (1966) in terms of derivatives

of Gegenbauer polynomials. Inversion of H corresponds to deconvolution. We can also note that

the linear form f → (DT (·,n) ∗ f) (x) converges as T goes to infinity to the Dirac measure δx. The

integral operator is indeed a usual kernel operator. Generalization of trigonometric kernels are used

as a regularization tool to estimate the choice probability and the coefficient of the random coefficient.

The Dirichlet kernel corresponds to the best approximation in L2(Sd−1) but is known to have flaws.

It is not a bona fide approximation kernel, see Katznelson (2004), indeed the L1(Sd−1) norm of the

kernel is not uniformly bounded, more precisely we have

(2.12) ‖DT (·,n)‖1 ³ T (d−2)/2
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when d ≥ 3 and

(2.13) ‖DT (·,n)‖1 ³ log T

when d = 2, see Gronwall (1914) for the d = 3 case and Ragozin (1972) and Colzani and Traveglini

(1991) for higher dimensions. Also it is not a positive kernel. One of the consequence is Gibbs

oscillations which are even worth as the dimension increases. This suggests the use of other kernels

as for Fourier series. The Cesàro kernel (see, e.g. Bonami and Clerc, 1973) is given by

(2.14)

Sδ
T,d(x, y) =

T∑

k=0

(
1− k

T + 1

)(
1− k

T + 2

)
. . .

(
1− k

T + δ

)
qk,d(x, y) =

1
Aδ

T

T∑

k=0

Aδ
T−kqk,d(x, y)

where

∞∑

n=0

Aδ
nxn = (1− x)−δ−1, i.e. Aδ

n =


 n + δ

n


 =

(n + δ)(n + δ − 1) . . . (δ + 1)
n(n− 1) . . . 1

³ nδ.

The Cesàro kernel is obtained by taking Cesàro means of the Dirichlet kernel. It puts more weight

than the Dirichlet kernel on the lower frequencies and provides more smoothing. The Fejèr kernel in

the d = 2 case is a Cesàro kernel. Kogbetliantz (1924) proved that [Sδ
T,d is everywhere non-negative

when δ ≥ d− 1. We will now choose δ ≥ d− 1 and δ = d− 1 for the estimation of a function (density,

regression function, here the choice probability, or fβ), δ = d + 1 for the estimation of a function

and its derivatives and so on. Positiveness is very convenient in our case to treat the plug-in. An

important result (see, e.g. Kamzolov, 1982) is

(2.15) ∀δ > (d− 2)/2, ∀p ≥ 1,
∥∥∥Sδ

T,d(·,n)
∥∥∥

p
³ T (d−1)(1−1/p)

which implies that for our choice of δ the L1(Sd−1) norms of the Cesàro kernels are uniformly bounded.

Note that L1(Sd−1) norms are of the same order in T for Riesz kernels (see, e.g. Colzani and Traveglini,

1991) but here working with Cesàro kernels we also obtain positive kernels. As well we can prove, see

the appendix, the following proposition.

Proposition 2.3. For all δ non-negative, there exists a constant K such that for all x, y, z ∈ Sd−1,

∣∣∣[Sδ
T,d(z

′x)− [Sδ
T,d(z

′y)
∣∣∣ ≤ K|x− y|T d+1.

Lemma 2.1 (ii) allows to define the Sobolev spaces. They are defined using the distribution

gs(x) =
∑∞

k=1 ζ
−s/2
k,d qk,d(x,n).
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Definition 2.4. The Sobolev space Ws
p(Sd−1) is the set of functions f for which there exists fs in

Lp(Sd−1) satisfying
∫
Sd−1 fs(x)dσ(x) = 0 and a constant C such that

f(x) = C + (gs ∗ fs) (x).

If s is an integer then we for example equip the space with either one of the equivalent norms

‖f‖p,s = max {‖f‖p, ‖f1‖p, . . . , ‖fs‖p} or ‖f‖p,s = ‖f‖p +
s∑

l=1

‖fl‖p.

In the case of the Sobolev spaces Hs(Sd−1) := Ws
2(Sd−1) it is possible to work as well the

equivalent norm which square is equal to

∞∑

n=0

(1 + ζn,d)
s ‖Qn,df‖2

2

and consider a continuum of values for s. We use these spaces to make smoothness assumptions.

Useful bounds on the approximation are given as follows (see, e.g. Kamzolov (1982) and Kushpel et

al. (1997)).

Proposition 2.4 (approximation error). (i) For f in Hs(Sd−1) and v < s where v and s take

continuous values,

‖f −DT (·,n) ∗ f‖2,v ≤ T−(s−v) ‖f‖2,s ;

(ii) For d ≥ 2, p in [1,∞) and s an integer, there exists a constant A(d, δ, s, p) such that for every

f in Ws
p(Sd−1),

∥∥∥f − Sδ
T,d(·,n) ∗ f

∥∥∥
p
≤ A(d, δ, s, p)T−s ‖f‖p,s .

The odd and even part of a function defined on the sphere are important notions in the

development of our analysis of the identification.

Definition 2.5. We define the odd part and the even part of a function f by:

f−(b) = (f(b)− f(−b))/2

and

f+(b) = (f(b) + f(−b))/2,

for every b in Sd−1
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If the function f is in L2(Sd−1) then using equations (2.9) and (9.10) we can check that for

p non-negative Q2p,df(x) = Q2p,df(−x) and Q2p+1,df(x) = −Q2p+1,df(−x). Thus the sum of the

odd terms in the condensed harmonic expansion corresponds to f− and the sum of the even terms

corresponds to f+. If a non-negative function f has its support included in some hemisphere then

(2.16) f(x) = 2f−(x)I
{
f−(x) > 0

}
.

If we denote by suppf the support of f , this follows from the fact that f−(x) = f+(x) ≥ 0 on suppf

while f−(x) = −f+(x) ≤ 0 on −suppf and both f− and f+ are 0 on Sd−1 \ (suppf
⋃−suppf).

If f is a probability density function, the coefficient of degree 0 in the expansion of f on surface

harmonics is 1/|Sd−1|.

Remark 2.2. Reciprocally, any harmonic polynomial or series such that the degree 0 coefficient is

1/|Sd−1| integrates to one. Thus, truncation used below as a regularization procedure, preserves the

probability mass. Non-negativity can be ensured working with well chosen Cesàro kernels.

The next theorem shows that Fourier-Laplace series on spheres is a very natural tool for the

study of our operator which as we have seen corresponds to convolution.

Theorem 2.2 (Funk-Hecke Theorem). If g belongs to Hn,d for some n and F is such that
∫ 1

−1
|F (t)|2(1− t2)(d−3)/2dt < ∞,

then

(2.17)
∫

Sd−1

F (x′y)g(y)dσ(y) = λn(F )g(x)

where

λn(F ) =
∫ 1

−1
F (t)[qn,d(t)(1− t2)(d−3)/2.

In other words, the kernel operator K defined by

f ∈ L2(Sd−1) 7→
(

x 7→
∫

Sd−1

F (x′y)f(y)dσ(y)
)
∈ L2(Sd−1)

is, when restricted to a subspace Hn,d, the multiplication by λn(F ). Thus a basis of surface harmonics

diagonalizes any integral operator where the kernel function involves the scalar product x′y.

Remark 2.3. Healy and Kim (1996) use Fourier-Laplace expansions to analyze a deconvolution

problem on the sphere in dimension d = 3. As we shall see below, the Addition Formula along
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with condensed harmonic expansions provide a general treatment that works for cases with arbitrary

dimension.

2.3. The Hemispherical Transform. The Hemisphercial transform corresponds to a particular

case of the kernel F in the Funk-Hecke theorem.

Notation. We define λ(n, d) = λn (I {t ∈ [0, 1]}) for d ≥ 3 and λ(n, 2) = 2 sin(nπ/2)
n of Proposition

2.1. ¤

Proposition 2.5. When d ≥ 2, the coefficients λ(n, d) have the following expression

(i) λ(0, d) = 2
|Sd−1|

(ii) λ(1, d) = |Sd−2|
d−1

(iii) ∀p > 0, λ(2p, d) = 0

(iv) ∀p > 0, λ(2p + 1, d) = (−1)p|Sd−2|1·3···(2p−1)
(d−1)(d+1)···(d+2p−1) .

For the sake of completeness we give a simple proof of this result in the appendix (see also

Groemer (1996) and Rubin (1999)). The following corollary corresponds to an observation made in

Remark 2.1 for the d = 2 case.

Corollary 2.1. The null space of H seen as an operator on L2(Sd−1) is

ker H =
∞⊕

p=1

H2p,d.

The spaces H0,d and H2p+1,d for p non negative are the eigenspaces associated with non zero eigen-

values.

As a consequence of Proposition 2.5 H is not injective and restrictions have to be imposed in

order to ensure identification. In Section 3 we present conditions for identification which often make

sense in Economics and which implies that we can reconstruct fβ given f−β .

Restricting to odd functions and defining in a similar manner as above the spaces L2
odd(Sd−1)

and Hs
odd(Sd−1), the following proposition can be found in Rubin (1999).

Proposition 2.6. H is a bijection from L2
odd(Sd−1) to Hd/2

odd(S
d−1).

Thus the random coefficient discrete choice model still imposes a relatively mild structure. We

can also easily check, see the proof in the appendix, that
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Proposition 2.7. For all s non-negative, there exists positive constants Cl and Cu such that for all

f in Hs(Sd−1)

Cl

∥∥f−
∥∥

2,s
≤ ∥∥H(f−)

∥∥
2,s+d/2

≤ Cu

∥∥f−
∥∥

2,s
.

The factor d/2 corresponds to the degree of regularization. Now the inverse of an odd function

R− is given by the distribution

(2.18) H−1(R−)(b) =
(
is ∗R−)

(b)

where the distribution is is given by:

(2.19) is(x) =
∞∑

p=0

1
λ(2p + 1, d)

q2p+1,d(x,n).

When R− belongs to Hd/2(Sd−1) then H−1(R−)(b) is a well defined L2(Sd−1) function, otherwise the

distribution is only defined in a Sobolev space with negative exponent. Moreover as for the d = 2 case,

it is in certain cases possible to relate inversion with differentiation. If we consider the case where d

is even, we know from Proposition 2.5, that

1
λ(2p + 1, d)

= (−1)p|Sd−2|(2p + 1)(2p + 3) . . . (d + 2p− 1).

Thus when 4 divides d,

1
λ(2p + 1, d)

= |Sd−2|
d/4∏

k=1

[−ζ2p+1,d + 2(k − 1)(d− 2k)]

and when d is even but 4 does not divide d,

1
λ(2p + 1, d)

= −|Sd−2|(2p + d/2)
(d−2)/4∏

k=1

[−ζ2p+1,d + 2(k − 1)(d− 2k)].

Hence we have obtained the following result

Proposition 2.8. When 4 divides d,

H−1 = |Sd−2|
d/4∏

k=1

[−∆S + 2(k − 1)(d− 2k)].

As a consequence of Bernstein type inequalities on the sphere (see, e.g. Ditzian, 1998), at least

when 4 divides d and from Section 2.1 when d = 2, we know that

(2.20) ∀q ∈ [1,∞], ∃C > 0 : ∀P ∈
T⊕

p=o

H2p+1,d, ‖H−1P‖q ≤ CT d/2‖P‖q.
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But the results in Ditzian (1998) allow indeed to prove directly such inequalities for all dimensions,

see the appendix, and to obtain the following Bernstein type inequalities.

Theorem 2.3 (Bernstein type inequalities). For all dimensions d ≥ 2, all q ∈ [1,∞], there exists C

positive such that for all P in
⊕T

p=0 H2p+1,d,

(2.21) ‖H−1P‖q ≤ CT d/2‖P‖q.

This proves to be very important for our subsequent analysis of the estimation of the density

of the random coefficient. In addition to the bound implied by Proposition 2.7, we use in our analysis

bounds involving the L1(Sd−1) and L∞(Sd−1) norms.

Rubin (1999) gives other inversion formulas for the Hemispherical transform. For example,

when d is even, the inverse of H2 is a polynomial of degree d/2 in the Laplacian, it is straightforward

from the above computations. When d is odd, the inverse involves a differential operator as well as

an operator involving the principal value. It is also shown that a wavelet transform also allows to

invert the hemispherical transform. The fact that the inversion corresponds roughly to a differential

operator is another manifestation, besides invertibility or identification, of the ill-posedness. Indeed,

it implies that the operator is unbounded. We call the factor d/2, which is exact for L2(Sd−1), the

degree of ill-posedness of the inverse problem.

3. General Results

3.1. Identification in the Random Coefficient Model. This section analyzes the identifiability

of fβ and discusses sufficient conditions for identification. We make the following assumption which

also appears in Ichimura and Thompson (1998). It is used to extend the choice probability r(x) to a

function on the whole sphere and as a result to identify fβ.

Assumption 3.1. The support of X is the whole northern hemisphere H+ = {x ∈ Sd−1 : x′n ≥ 0}.

This assumption demands that X̃ is supported on the whole space Rd−1. It rules out discrete or

bounded X̃ (See Section 6 for a potential approach to deal with such regressors as dummy variables).

We now assume that the law of X is absolutely continuous with respect to dσ and denote its density

fX .

We now consider choice probabilities r(x) given by (1.2) which are invariant by dilatation

∀x ∈ Rd, P(Y = 1|X = x) = P(Y = 1|X = x/‖x‖).
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As such they can be studied as function on the sphere. The invariance by dilatation is satisfied in

the case of the random coefficient model (1.1). They are only defined on the support of X. Under

Assumption 3.1 it is possible to extend such functions r(x) to a bona fide function on the whole sphere.

If we again think that the choice probability is such that model (1.1) holds then, as fβ is a probability

density function, we obtain for x in H+

(3.1) H(fβ)(−x) =
∫

H(−x)
fβ(b)dσ(b) = 1− r(x) = 1−H(fβ)(x).

We thus consider the extension R such that

(3.2) ∀x ∈ H+, R(x) = r(x), and ∀x ∈ −H+, R(x) = 1− r(−x) = 1−R(−x).

Note that

R(x) = R+(x) + R−(x)(3.3)

=
1
2

[R(x) + R(−x)] + R−(x)

=
1
2

[R(x) + (1−R(x))] + R−(x) by (3.2)

=
1
2

+ R−(x)

thus R is then entirely determined by its odd part. Now, provided that the extension R belongs to

Hd/2(Sd−1) (the Sobolev imbedding of Hs(Sd−1) into the space of continuous functions for s > (d−1)/2

implies it is continuous), there exists a unique odd function f− in L2(Sd−1) such that

R =
1
2

+H (
f−

)
= H

(
1

|Sd−1| + f−
)

,

This follows from Proposition 2.6. Moreover as ∀x ∈ Sd−1, 0 ≤ R(x) ≤ 1,
∫
{f−(b)≥0} f−(b)dσ(x) =

− ∫
{f−(b)≥0} f−(b)dσ(b) ≤ 1, thus

∫
Sd−1 |f−(b)|dσ(b) ≤ 1.

Also, following the discussion of Section 2.2, 1
|Sd−1| + f− integrates to 1. Proposition 2.5 implies that

whatever the even function g having 0 as coefficient of degree 0 (i.e. integrating to zero over the

sphere),

R = H
(

g +
1

|Sd−1| + f−
)

.

Now the function

g = |f−| − 1
|Sd−1|

∫

Sd−1

|f−(b)|dσ(b)

is even, integrates to zero and is such that

fβ := g +
1

|Sd−1| + f− = 2f−I{f− > 0}+
1

|Sd−1|
(

1−
∫

Sd−1

|f−(b)|dσ(b)
)
≥ 0,
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of course f−β = f−. This function fβ is non-negative and bounded from below by (and equal to on at

least a whole hemisphere) 1
|Sd−1|

(
1− ∫

Sd−1 |f−β (b)|dσ(b)
)
.

Concerning identification per se, there might still be several such functions g giving rise to a

positive function and and observationally equivalent R. Only the odd part f−β of the density of the

random coefficient, besides the known coefficient of degree 0, is identified. We thus give a sufficient

condition on fβ so that when satisfied, knowledge of f−β implies knowledge of fβ. Ichimura and

Thompson (1998, Theorem 1) give a set of conditions that imply the identification of the model (1.1).

One of the assumptions postulates that there exists c on Sd−1 such that P(c′β > 0) = 1. This, in our

terminology, means that:

Assumption 3.2. The support of β is a subset of some hemisphere.

A weaker condition, provided fβ is defined pointwise, could be fβ is such that if fβ(b) > 0 then

fβ(−b) = 0. As noted by Ichimura and Thompson (1998) Assumption 3.2 does not seem to be too

stringent in Economics. It is often reasonable to assume that one of the random coefficients, such as

a price coefficient, has a known sign. Assumption 3.2 implies the following mapping from f−β to fβ

developed in (2.16):

(3.4) fβ(b) = 2f−β (b)I
{

f−β (b) > 0
}

,

it corresponds to the above case where 1
|Sd−1|

(
1− ∫

Sd−1 |f−β (b)|dσ(b)
)

= 0. This relation is useful

because (i) it shows that Assumption 3.2 guarantees identification if f−β is identified, (ii) it enables us

to derive a key formula that leads to a simple and practical estimation algorithm and (iii) it guaranties

that the estimate of fβ will be non-negative. Hence we have obtained

Proposition 3.1. If Assumption 3.1 is satisfied and if r is such that the extension R belongs to

Hd/2(Sd−1), then there exists a bona fide PDF fβ such that

R = H (fβ) =
1
2

+H
(
f−β

)

and for all x in H+, r(x) = H (fβ) (x).

Moreover, if Assumption 3.2 holds then fβ is uniquely defined and the model is identified.

Remark 3.1. Assumption 3.2 is testable since it yields implications in terms of f−β which is identified

under weak conditions. For example, we can compare the positivity of f−β with its negativity on

the corresponding points on the opposite side of the sphere. Or, it implies that f−β integrates to
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1/(2|Sd−1|) on H and −1/(2|Sd−1|) on −H. An estimator for f−β and its asymptotic properties are

presented in the next section.

3.2. Nonparametric Estimator for fβ and Consistency. If f−β belong to Hs(Sd−1) then R belongs

to Hd/2+s(Sd−1), and if we rely on an estimate R̂−,N of R− and

f̂−,N
β = H−1

(
R̂−,N

)
(3.5)

= is ∗ R̂−,N

=
∞∑

p=0

1
λ(2p + 1, d)

∫

Sd−1

q2p+1,d(·, x)R̂−,N (x)dσ(x)(3.6)

of f−β then Proposition 2.7 implies that for v ∈ [0, s],

(3.7) ‖f̂−,N
β − f−β ‖2,v ³ ‖R̂−,N −R−‖2,v+d/2.

Also setting

(3.8) f̂N
β (b) = 2f̂−,N

β (b)I
{

f̂−,N
β (b) > 0

}

as suggested in Section 3.1, we obtain that

(3.9) ‖f̂N
β − fβ‖2 ³ ‖R̂−,N −R−‖2,d/2.

This is explained in the proof of Theorem 5.1 of Section 5 given in the appendix. Thus, the rate of

consistency for the estimation of fβ is directly related to the rate of consistency for the estimation of

R−. Estimation of R− at the nonparametric rate

Op

(
N
− d/2+s−d/2

2(d/2+s)+d−1

)
= Op

(
N− s

2s+2d−1

)

in Hd/2(Sd−1), recall that R− is defined on a d− 1 dimensional manifold, implies estimation of fβ at

that rate in L2(Sd−1).

As already mentioned, d/2 is the degree of ill posedness (the definition is different from the one

in Kim and Koo (2000) where it would be d/2− 1). It corresponds to the rate of convergence to zero

of |λ(2p+1, d)| which is very similar to what happens in standard deconvolution problems on the line

as obtained in Fan (1991).

We give an example of an estimate of R̂−,N in Section 4 that implies a very simple closed

form estimate for f̂N
β which does not require the evaluation of the integrals in (3.6). In other cases

integration could be carried out numerically. Also for practical issue we are not able to compute, in
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the general case, the infinite sum in (3.6) and truncate the sum up to some integer T , that is we use

the new estimate which could be written in the three equivalent forms

f̂−,N
β = H−1

(
PTN

R̂−,N
)

(3.10)

= is ∗
(
DTN

(·,n) ∗ R̂−,N
)

=
TN∑

p=0

1
λ(2p + 1, d)

∫

Sd−1

q2p+1,d(·, x)R̂−,N (x)dσ(x)(3.11)

for well chosen TN going to infinity with N . This approach amounts to the spectral cut-off method

used in the statistics of inverse problems.

4. Example of an Estimate for the Choice Probability and The Derivatives

We have seen so far that the model implies invariance by dilatation of the vector of covariates

(augmented by 1) of the choice probability. However we also present an estimate for the derivatives

which are very relevant as well in Economics. They are, given x in [0,∞)×Rd−1, the partial derivatives
∂

∂xj
Rˇ which are the components of the gradient in the Euclidian space which satisfies

∇xRˇ =
1
‖x‖∇

S
x/‖x‖R.

Since R is square integrable, it has a condensed harmonic expansion which enables us to obtain the

expressions in the next theorem, a proof is given in the appendix. .

Theorem 4.1. We have for x in Sd−1,

(4.1) R(x) =
1
2

+
∞∑

p=0

E
[
(2Y − 1)
fX(X)

[q2p+1,d(X ′x)
]

and for x in [0,∞)× Rd−1 and X on the sphere,

(4.2) ∇xRˇ =
d|Sd+1|
|Sd−1|‖x‖

∞∑

p=0

E
[
(2Y − 1)
fX(X)

[q2p,d+2(X ′x/‖x‖)X
]

.

Remark 4.1. Note that we can replace above (2Y − 1) by 2Y since
∫
Sd−1 q2p+1,d(x, v)dσ(x) = 0 for

all v in Sd−1. However it appeared on simulated data that the symmetrization provides in general

nicer estimates.

This suggests that we use an estimate of the form R̂N (x) = 1
2 + R̂−,N with

R̂−,N (x) =
1
N

N∑

i=1

(2yi − 1)

f̂N
X (xi)

TN∑

p=0

q2p+1,d(xi, x)
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where f̂N
X is an estimate of fX and TN is a well chosen sequence converging to infinity with N . More

generally we could use an estimate of the form

(4.3) R̂−,N (x) =
1
N

N∑

i=1

(2yi − 1)

f̂N
X (xi)

K−
TN

(xi, x)

where K−
TN

is the odd part of a trigonometric kernel which does not necessarily have to be the Dirichlet

kernel but could also be a Cesàro kernel.

Remark 4.2. Many other estimates of R− or the regression function could be used for example kernel

regression in Rd, kernel regression on the sphere e.g.
∑N

i=1

(2yi−1)K−
TN

(xi,x)

KTN
(xi,x) . . .

Proving properties of the plug-in of f̂N
X in (4.3) could be quite involved if one is willing to obtain

the same rates of convergence with plug-in as if fX were known under mild smoothness conditions on

fX . We choose KTN
= Sδ −

TN ,d for δ ≥ d−1. Here the kernels are uniformly bounded and non-negative.

Because of (2.12) and (2.13), if we use the Dirichlet kernel, we only obtain the same rates with plug-in

as with known fX under very stringent assumptions on the smoothness of fX .

We could consider the two following cases

(I) ∃ mX > 0 : ∀x ∈ H+, fX(x) ≥ mX

(II) Assumption 3.1 is satisfied but condition (I) is not.

Condition (I) is technical but not realistic for usual distributions of X̃ in Rd (see, e.g. Hoderlein et

al., 2007).

Remark 4.3. We need to make an assumption of the type of Assumption 4.1 below in order that the

estimate converges fast enough to fX . It usually requires that fX belongs to Hσ(Sd−1) where σ is large

enough. When fX is bounded from below on H+ it is for example impossible that it is continuous

though it is on the interior of H+. One strategy however is to symmetrize. A first order symmetry

consists in considering f̃X defined by f̃X = fX on H+ and f̃X(−x1, x2, . . . , xd) = fX(x1, x2, . . . , xd) on

−H+. f̃X is continuous and f̃X/2 could be estimated from the sample (xi)
N
i=1 fabricating the auxiliary

sample (x̃i)
N
i=1 by scanning the xi and with probability 1/2 taking the symmetric and otherwise keeping

xi unchanged. Higher-order reflections need to be considered in order to obtain a smoother function

(see, e.g. Evans (1998) p.255 for extensions of functions from a half ball to the other half).
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We now restrict to the case (II) as it is the interesting one. Since fX is not bounded from

below, we use a trimmed version of (4.3)

(4.4) R̂−,N (x) =
1
N

N∑

i=1

(2yi − 1)Sδ −
2TN+1(xi, x)

max
(
f̂N

X (xi), aN

)

with a sequence of the form

(4.5) aN = log(N)−r

for some r positive,

(4.6) R̂N =
1
2

+ R̂−,N .

Concerning derivatives we use the estimate

(4.7) ∇̂xRˇ
N

= ∇x

((
R̂N

)
ˇ
)

=
d|Sd+1|

N |Sd−1|‖x‖
N∑

i=1

2yi − 1

max
(
f̂X(xi), (log N)−r

) [Sδ +
2TN ,d+2(x

′
ix/‖x‖)xi.

For a mathematical treatment of the plug-in it is very convenient that both [Sδ
2TN ,d+2 and [Sδ

2TN+1,d

be non-negative. This can be achieved by taking δ = d + 1. If only want to estimate R, δ = d − 1

provides enough smoothing, while in order to be able to estimate derivatives it is useful to work with

higher order kernels involving higher order Cesàro summation.

Estimation of densities on compact manifolds have been studied by several authors using either

the Histogram by Ruymgaart (1989), Projection estimates (see, e.g. Devroye and Gyorfi (1985) for

the circle and Hendriks (1990) for general compact Riemannian manifolds) or kernel estimates (see,

e.g. Devroye and Gyorfi (1985) for the case of the circle, Hall et al. (1987) and Klemelä (2000) for

higher dimensional spheres). We now consider that the following assumption holds.

Assumption 4.1. fX is smooth enough and its estimate f̂N
X is such that, depending on the type of

result, (i) or (ii) holds

(i)

max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), log(N)−r)

max
(
f̂N

X (xi), log(N)−r
) − 1

∣∣∣∣∣∣
= Op

((
N

(log N)2r+(1−2/q)I{q≥2}

)− σ
2σ+d−1

(log N)−r

)

(ii) There is a constant C such that

limN→∞

(
N

(log N)2r

) σ
2σ+d−1

(log N)r max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), log(N)−r)

max
(
f̂N

X (xi), log(N)−r
) − 1

∣∣∣∣∣∣
≤ C a.s.
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for some r to be specified later and where σ = s + d/2 is the regularity of R and s that of f−β .

This rate can easily be achieved when fX is smooth enough. In Section 7 we use

(4.8) f̂N
X (x) =

1
N

N∑

i=1

Sd−1
TN ,d(xi, x)

for a well chosen TN depending on the sample size and the smoothness of fX . Theoretical properties

of this estimate will appear elsewhere but note that rates of convergence in sup-norm can be obtained

in a similar manner as here in the proof of Theorem 5.1. This estimate is in the spirit of the projection

estimates of Hendriks (1990) but here we are able to obtain a closed form using the condensed harmonic

expansions together with the Addition Formula and consider a modification of the Dirichlet kernel in

order to have a bona fide approximation kernel.

Let us now present the asymptotic properties of this estimate, proofs are very similar to that

of Theorems 5.1 and 5.2 of Section 5 given in the appendix. We first state results on consistency

including strong uniform consistency. Besides the log correction due to trimming of fX , the rate is

the usual nonparametric rate of direct estimation problems.

Theorem 4.2 (Consistency in Lq(Sd−1)). Assume that fX is such that Assumption 3.1 holds along

with condition (II), is smooth enough to admit an estimate which satisfies Assumption 4.1 (i), that R

belongs Wσ
q (Sd−1) with q in [1,∞) and σ positive and TN satisfies

TN ³
(

N

(log N)2r+(1−2/q)I{q≥2}

) 1
2σ+d−1

and if we can find r positive such that

σ
({

0 < fX < (log N)−r
})

= o




(
N

(log N)2r+(1−2/q)I{q≥2}

)−σ+(d−1)(1−1/q)
2σ+d−1




then

∥∥∥R̂N −R
∥∥∥

q
= Op

((
N

(log N)2r+(1−2/q)I{q≥2}

)− σ
2σ+d−1

)
,

∀j = 1, . . . , d,

∥∥∥∥∥∥
∂̂

∂xj
Rˇ

N

− ∂

∂xj
Rˇ

∥∥∥∥∥∥
q

= Op

((
N

(log N)2r+(1−2/q)I{q≥2}

)− σ−1
2σ+d−1

)
.
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Moreover, if Assumption 4.1 (ii) is made then there exists a constant C such that

limN→∞

(
N

(log N)−2r−1

) σ
2σ+d−1

∥∥∥R̂N −R
∥∥∥
∞
≤ C a.s.

limN→∞

(
N

(log N)−2r−1

) σ−1
2σ+d−1

∥∥∥∥∥∥
∂̂

∂xj
Rˇ

N

− ∂

∂xj
Rˇ

∥∥∥∥∥∥
∞

≤ C a.s.

Theorem 4.3 (Asymptotic normality). Assume that R belongs Wσ∞(Sd−1) with σ positive, fX is such

that Assumption 3.1 holds along with condition (II), fX , f̂N
X , TN and r are such that

max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1

∣∣∣∣∣∣
= Op

(
(log N)−2r

)
,

TN = O

((
N

(log N)2r

)1/(d−1)
)

,

TNN− 1
2σ+d−1 = o(1) (under smoothing),

N1/2T
(d−1)/2
N σ

({
0 < fX < (log N)−r

})
= o(1)

then

N
1
2 s−1

1N

(
R̂N (x)−R(x)

)
d→ N(0, 1)

and

N
1
2 s−1

2N

(
d|Sd+1|
|Sd−1|‖x‖

)−1 (
∇̂xRˇ

N
(x)−∇xRˇ

)
d→ N(0, 1)

where

s2
1N := var

(
(2Yi − 1)[Sδ −

2TN+1,d(X
′
ix)

max (fX(Xi), (log N)−r)

)

s2
2N := var

(
(2Yi − 1)[Sδ +

2TN ,d+2(X
′
ix)

max (fX(Xi), (log N)−r)
Xi

)

5. A Closed Form Estimate of fβ

Estimate (4.4) lives in a finite dimensional space, more precisely it is such that PTN
R̂−,N =

R̂−,N , therefore we do not need additional spectral cut-off prior to inversion. We thus consider as an

estimate of f−β

f̂−,N
β = H−1

(
R̂−,N

)
.
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If we are only interested in fβ and not in derivatives we can choose δ = d − 1 below. The estimate

takes a simple closed form and requires no numerical integration since

H−1
(
Sδ −

2TN+1(xi, ·)
)

(b) =
1

Aδ
TN

TN∑

p=0

Aδ
2(TN−p)

λ(2p + 1, d)
q2p+1,d(xi, b).

The final estimate of fβ is obtained using (3.8).

The proof of the following result is given in the appendix.

Theorem 5.1 (Consistency in Lq(Sd−1)). Assume that fX is such that Assumption 3.1 holds along

with condition (II), is smooth enough to admit an estimate which satisfies Assumption 4.1, that f−β
belongs Ws

q(Sd−1) with q in [1,∞) and s > 0 and TN satisfies

TN ³
(

N

(log N)2r+(1−2/q)I{q≥2}

) 1
2s+2d−1

and if we can find r positive such that

(5.1) σ
({

0 < fX < (log N)−r
})

= O




(
N

(log N)2r+(1−2/q)I{q≥2}

)− s+d/2+(d−1)(1−1/q)
2s+2d−1




then

(5.2)
∥∥∥f̂N

β − fβ

∥∥∥
q

= Op

((
N

(log N)2r+(1−2/q)I{q≥2}

)− s
2s+2d−1

)
.

Moreover, if Assumption 4.1 (ii) is made then there exists a constant C such that

(5.3) limN→∞

(
N

(log N)−2r−1

) s
2s+2d−1

∥∥∥f̂N
β − fβ

∥∥∥
∞
≤ C a.s.

The rate N− s
2s+2d−1 is in accordance with the L2 rate in Healy and Kim (1996) who study

deconvolution on S2 for non degenerate kernels. Kim and Koo (2000) prove that the rate in Healy

and Kim (1996) is optimal in the minimax sense. Their statistical problem though does not involve

plug-in and trimming and less importantly does not cover the case of the boxcar kernel. Hoderlein

et al. (2007) study estimation of densities in a linear model with random coefficients and obtain the

same rate when fX is bounded from below and thus no trimming is required (we need to replace their

dimension d by our dimension d − 1). We can easily check that we obtain this rate under the same

condition and a suitable estimate of fX (symmetrized) but we believe that the interesting case is when

fX is not bounded from below. The upper bound on the rate of consistency is logarithmicaly close to

that rate and it all depends on the decay to zero of the density fX(x) as x approaches the boundary

of H+.
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Let us now present a result on pointwise asymptotic normality, the proof is given in the ap-

pendix.

Theorem 5.2 (Asymptotic normality). Assume that f−β belongs Ws∞(Sd−1) with s > 0, fX is such

that Assumption 3.1 holds along with condition (II), fX , f̂N
X , TN and r are such that

max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1

∣∣∣∣∣∣
= Op

(
(log N)−2r

)
,(5.4)

TN = O

((
N

(log N)2r

)1/(d−1)
)

,(5.5)

TNN− 1
2s+2d−1 = o(1) (under smoothing),(5.6)

N1/2T
(d−1)/2
N σ

({
0 < fX < (log N)−r

})
= o(1)(5.7)

then

(5.8) N
1
2 s−1

N

(
f̂N

β (b)− fβ(b)
)

d→ N(0, 1)

holds for b such that fβ(b) 6= 0, where s2
N := 4var(ZN,i), ZN,i =

(2Yi−1)H−1
(
Sδ −

2TN +1(Xi,·
)
(b)

max(fX(Xi),(log N)−r)
.

Condition (5.4) is very mild. Also TN should grow to infinity faster than the optimal rate in

order to neglect the approximation bias but according to condition (5.5) it should not grow too fast

either.

6. Discussion

6.1. Estimation of Marginals. In Section 3 we have provided an expression for the estimate of the

full joint density of β, from which an estimator for a marginal density can be obtained. Let dσk denote

the surface measure and dσk = dσk/|Sk| the uniform measure on Sk. We write β =
(
β
′
, β
′)′

and wish

to obtain the density of the marginal of β which is a vector of dimension d− k. We also define P and

P the projectors such that β = Pβ and β = Pβ and denote by dP ∗σd−1 and dP ∗σd−1 the direct image

probability measures. One possibility is to define the marginal law of β as the measure P ∗fβdσ. This

may not be convenient, however, since then a uniform distribution would have U-shaped marginals.

The U-shape becomes more pronounced as the dimension of β increases. In order to obtain a flat

density for the marginals of the uniform joint distribution on the sphere it is enough to consider

densities with respect to the dominating measure dP ∗σd−1. Notice that sampling U uniformly on

Sd−1 is equivalent to sampling U according to P ∗σd−1 and then given U forming ρ
(
U

)
V where V is
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a draw from the uniform distribution σd−1−k on Sd−1−k and ρ
(
U

)
=

√
1−

∥∥∥U
∥∥∥

2
. Indeed given U ,

U/ρ
(
U

)
is uniformly distributed on Sd−1−k. Thus, when g is an element of L1(Sd−1) we can write

for k in {1, . . . , d− 1},

(6.1)
∫

Sd−1

g(b)dσd−1(b) =
∫

Bk

[∫

Sd−1−k

g
(
ρ

(
b
)

u, b
)

dσd−1−k(u)
]

dP ∗σd−1

(
b
)

where Bk is the k dimensional ball of radius 1. Setting g = |Sd−1|fβ(b)I
{

b ∈ A
}

for A Borel set of Bk

shows that the marginal density of β with respect to the dominating measure dP ∗σd−1 is given by

(6.2) f
β

(
b
)

= |Sd−1|
∫

Sd−1−k

fβ

(
ρ

(
b
)

u, b
)

dσd−1−k(u).

In the particular case where k = d − 1, i.e. we are interested in the marginal of β̃, we use dσ0 =

(δ1 + δ−1) /2 where δ denotes the Dirac mass.

When the dimension of the variables in the integral is small we can use hyperspherical parametriza-

tion (polar coordinates when k = d− 2 and spherical coordinates when k = d− 3) and deterministic

numerical integration methods. When it is not, one may use Monte-Carlo methods, by forming

(6.3) f̂N,T,M

β

(
b
)

=
1
M

M∑

j=1

f̂N,T
β

(
ρ

(
b
)

uj , b
)

where uj are draws from independent uniform random variables on Sd−1−k. Draws uj could be

obtained by computing uj = vj/‖vj‖ where vj are draws from a standard Gaussian random vector of

dimension d− 1− k. When β is of dimension 2 we could draw contour plots on the disk, that is, level

sets of the density. When β is of dimension 3 it is possible to draw contour plots on S2.

6.2. Treatment of non-random coefficients. It may be useful to develop an extension of the

method described in the previous sections to models that have non-random coefficients, at least

for two reasons. First, the convergence rate of our estimator of the joint density of β slows down

as the dimension d of β grows, which is a manifestation of the curse of dimensionality. Treating

some coefficient as fixed parameters alleviates this problem. Second, our identification assumption

in Section 3.1 precludes covariates with discrete or bounded support. This may not be desirable as

many random coefficient discrete choice models in Economics involve dummy variables as covariates.

The following identification/estimation strategy allows such covariates as far as their coefficients are

non-random. Note that Hoderlein et al. (2007) suggest a method to deal with non-random coefficients

in their treatment of random coefficient linear regression models. Identification in random coefficient

binary choice models with covariates with limited support is somewhat tricky. As we shall see shortly,
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identification is possible in a model where the coefficients on covariates with limited support are non-

random, provided that at least one of the covariates with “large support” has a non-random coefficient

as well. More precisely, consider the model:

(6.4) Yi = I{β1i + β′2iX2i + α1Z1i + α′2Z2i ≥ 0}

where β1 ∈ R and β2 ∈ RdX−1 are random coefficients, whereas the coefficients α1 ∈ R and α2 ∈ RdZ−1

are nonrandom. The covariate vector (Z1, Z
′
2)
′ is in RdZ , though the (dZ −1)-subvector z2 might have

limited support: for example, it can be a vector of dummies. The covariate vector (X ′
2, Z1)′ is assumed

to be, among other things, continuously distributed. Normalizing the coefficients vector and the vector

of covariates to be elements of the unit sphere works well for the development of our procedure, as we

have seen in the prevous sections. The model (6.4), however, is presented “in the original scale” to

avoid confusion.

Define β∗1(Z2) := β1 + α′2Z2, τ(Z2) = (β∗1(Z2), α1, β2)′ and W = (1, Z1, X
′
2)
′. We also use the

notation

τ(Z2) :=
(β∗1(Z2), α1, β2)′

‖(β∗1(Z2), α1, β′2)‖
∈ SdX+1, W :=

(1, Z1, X
′
2)
′

‖(1, Z1, X ′
2)′‖

∈ SdX+1.

Then (6.4) is equivalent to:

Y = I{β∗1(Z2) + (α1, β2)(Z1, X
′
2)
′ ≥ 0}

= I{(β∗1(Z2), α1, β2)(1, Z1, X
′
2)
′ ≥ 0}

= I
{

(β∗1(Z2), α1, β2)
‖(β∗1(Z2), α1, β2)′‖

(1, Z1, X
′
2)
′

‖(1, Z1, X ′
2)′‖

≥ 0
}

= I
{
τ(Z2)′W ≥ 0

}
.

This has the same form as our original model if we condition on Z2 = z2. We can then apply previous

results for identification and estimation under the following assumptions. First, suppose (β1, β
′
2)
′ and

W are independent, instead of Assumption 1.1. Second, we impose some condition on fW |Z2=z2
, the

conditional density of W given Z2 = z2. More specifically, suppose there exists a set Z2 ∈ RdZ−1,

such that Assumption 3.1 holds if we replace fX and d with fW |Z2=z2
and dX + 1 for all z2 ∈ Z2. If

Z2 is a vector of dummies, for example, Z2 would be a discrete set. By (4.1) and (2.18) we obtain

(6.5) f−τ(Z2)|Z2=z2
(t) =

∞∑

p=0

1
λ(2p + 1, dX + 1)

E
[

(2Y − 1)q2p+1,dX
(W, t)

fW |Z2=z2
(W )

∣∣∣∣Z2 = z2

]
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for all z2 ∈ Z2, where the right hand side consists of observables. This determines fτ(Z2)|Z2=z2
. That

is, the conditional density

f

(
(β∗1(Z2), α1, β2)
‖(β∗1(Z2), α1, β2)′‖

∣∣∣∣Z2 = z2

)

is identified for all z2 ∈ Z2 (Here and henceforth we use the notation f(·|·) to denote conditional

densities with appropriate arguments when adding subscripts is too cumbersome). This obviously

identifies

(6.6) f

(
(β∗1(Z2), α1, β2)

‖β2‖

∣∣∣∣Z2 = z2

)

for all z2 ∈ Z2 as well. If we are only interested in the joint distribution of β2 under a suitable

normalization, we can stop here. The presence of the term α1Z1 in (6.4) is unimportant so far.

Some more work is necessary, however, if one is interested in the joint distribution of the

coefficients on all the regressors. Notice that the distribution (6.6) gives

f

(
β∗1(Z2)
‖β2‖

∣∣∣∣Z2 = z2

)
= f

(
β1 + α′2Z2

‖β2‖

∣∣∣∣Z2 = z2

)
,

from which we can, for example, get

E
(

β∗1(Z2)
‖β2‖

∣∣∣∣Z2 = z2

)
= E

(
β1

‖β2‖
)

+ E
(

1
‖β2‖

)
α′2z2 for all z2 ∈ Z2.

Define a constant

c := E
(

1
‖β2‖

)

then we can identify cα2 as far as z2 ∈ Z2 has enough variation and

E
(

α1

‖β2‖
)

= cα1

is identified as well. Let

(6.7) f

(
(β′2i, α1, α

′
2)
′

‖β2i‖
)

denote the joint density of all the coefficient (except for β1, which corresponds to the conventional

disturbance term in the original model (6.4), normalized by the length of β2i). Then

f

(
(β′2i, α1, α

′
2)
′

‖β2i‖
)

= f







IdX−1 0

0 1
... cα2

cα1







β2i

‖β2i‖
α1
‖β2i|





 .

In the expression on the right hand side, f ((β′2i, α1)′/‖β2i‖) is already available from (6.6), and cα1

and cα2 are identified already, therefore the desired joint density (6.7) is identified. Obviously (6.7)

also determines the joint density of (β′2i, α1, α
′
2)
′ under other suitable normalizations as well.
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The density (6.5) is estimable: when Z2 is discrete, one can use the estimator of Section ?? to

each subsample corresponding to each value of Z2. If Z2 is continuous we can estimate fW |z2
and the

conditional expectation by nonparametric smoothing. An estimate for the density (6.6) can be then

obtained numerically.

6.3. Endogenous Regressors. Assumption 1.1 is violated if some of the regressors are endogenous

in the sense that the random coefficients and the covariates are not independent. This problem can

be solved if an appropriate vector of instruments is available. To be more specific, suppose we observe

(Y, X, Z) generated from the following model

(6.8) Y = I{β1 + β̃′X ≥ 0}

with

(6.9) X = ΓZ + V

where V is a vector of reduced form residuals and Z is independent of (β, V ). The equations (6.8)

and (6.9) yield

Y = I{
(
β1 + V ′β̃

)
+ Z ′Γ′β̃}.

Suppose the distribution of ΓZ satisfy Assumption 3.1. It is then possible to estimate the density

of τ = τ/‖τ‖ where τ =
(
β1 + V ′β̃, β̃

)′
by replacing Γ with a consistent estimator, which is easy to

obtain under the maintained assumptions. This yields an estimate for the joint density of β̃/‖τ‖, the

random coefficients on the covariates under scale normalization.

6.4. Multiple Alternatives. In this section we give some ideas of how we could treat a multinomial

discrete choice model with random coefficients. For simplicity we consider a three alternative case

{1, 2, 3} and take the alternative 3 as the base alternative. We denote by U13
i and U23

i respectively

the differences of the utility of choosing alternative 1 minus that of choosing 3 and of the utility of

choosing alternative 2 minus that of choosing 3 for an individual i. We consider the following simple

model for the utility differences

U13
i = β13

1,i + β̃′iX̃
13
i

U23
i = β23

1,i + β̃′iX̃
23
i

where we rescale β23 = (β23
1 , β̃′)′ and X23 = (1, X̃23) to be on the sphere. The coefficient β13

1 is

however not restricted and is an element of the whole real line. The probability that the agent i
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chooses 3 is

P(Y = 3|X13 = x13
i , X23 = x23

i ) = P(U13 < 0, U23 < 0|X13 = x13
i , X23 = x23

i ).

This probability could be written as in equation (1.3) where fβ is replaced by

F (b23, x̃13) =
∫

R
I
{

b13
1 ≤ −b̃′x̃13

}
fβ13

1 |β̃=b̃(b
13
1 )db13

1 fβ23(b23).

The assumptions that were required on β and fβ earlier have to be made for F (b23, x̃13). Note that if

β23 is supported in some half sphere then the same holds for F (b23, x̃13). It is then possible to show

that we may write

F (b23, x̃13) =
∞∑

p=0

E
[

(2Y − 1)q2p+1,d(X23, b23)
λ(2p + 1, d)fX23(X23)

∣∣∣∣ X̃13 = x̃13

]
.

It can be estimated using localization, introducing usual kernels K in Rd with smoothing parameter

hN going to zero along with truncation of the sum and replacing the Dirichlet kernel with the Cesàro

kernel. The quantity F (b23, x̃13) characterizes the whole joint law of the random coefficients. It is also

possible to recover the joint density if we differentiate with respect to one of the coordinate, say the

first x̃13
1 of x̃13 of corresponding coefficient b̃1, we obtain −b̃1fβ13

1 |β̃=b̃(−b̃′x̃13)fβ23(b23). Integration of

the function with respect to x̃13
1 or simply letting x̃13

1 go to ∞ if b̃1 is positive or to −∞ otherwise we

obtain fβ23(b23).

7. Application

In this section we apply the estimator of Section 5 to simulated data in the case where d = 3.

We consider the case where fX(x) decays to zero as x approaches the boundary of H+. We choose N =

5000. X is obtained from rescaling (1, X̃) to the sphere, we have chosen X̃ to be N (0, 0.4I) where I is

the 2×2 identity matrix. β = (β1, β2, β3)′ is taken to be supported on Sd−1∩{x3 ≥ 0} and the rescaling

to the sphere of a vector (B, 1) where B is a mixture of two normals: B = UN1 + (1 − U)N2 where

U has a Bernoulli distribution B(0.6), N1 and N2 are respectively N (µ1, 0.005I) and N (µ2, 0.005I)

where µ1 = (0,−0.7)′ and µ2 = (−0.7, 0.7)′. Indeed one nice feature of such a random coefficient

model is that it allows to treat mixtures of different choice behaviors and to isolate two different

subpopulations (say according to the levels of f̂β). It corresponds to the model with latent factor

β1 + β2X̃1 + β3X̃3. We have taken the trimming parameter to be a5000 = 0.2 but this does not seem

to have a big influence, though trimming is necessary. As a result 30 out of 5000 values of f̂X(xi)

have been set to 0.2. The smoothing parameters in the case of the estimation in the inverse problem



32 GAUTIER AND KITAMURA

are T5000 = 13 for f̂X (unimodal densities need relatively less smoothing) and T5000 = 31 (2T5000 + 1

indeed with the convention used so far) for f̂β. For the direct estimate, i.e. when β is observed,

lower values of the smoothing parameter worked well and the graphs correspond to the case where

T5000 = 21. We show surface (projection of an hemisphere onto its boundary large disk) and contour

plots of both the direct estimate and the estimate in the inverse problem.

β
1

β 2

Direct estimate of fβ on the hemisphere β
3
>0

-1 -0.5 0 0.5 1
-1
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Figure 1. Estimation of fβ in the ideal case where β is observed.

β
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3
>0
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Figure 2. Estimation of fβ in the practical case where β is unobserved, with trimming

and plug-in of an estimate of fX .

8. Conclusion

To be added.
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9. Appendix

Let us start by recalling some notions of Riemannian geometry to enlighten the notions of

gradient and Laplacian on the sphere. The tangent space TxSd−1 at a point x on the sphere is the

vector space of tangents d
dtγ(t)

∣∣
t=0

of curves γ : (−ε, ε) → U where ε > 0 and U is a neighborhood

of x in Rd, drawn on Sd−1. We can easily check that it is the orthogonal in Rd of x. Given a map f

from Sd−1 to R, its differential dxf at x in Rd is a linear form acting on TxSd−1. It is such that for h

in TxSd−1 corresponding to a curve γ, dxf.h is defined as d
dt [f(γ)]

∣∣
t=0

. A useful example in the case

of derivatives of choice probabilities is the height function, see do Carmo (1976) p.86, defined for z in

Sd−1 as x ∈ Sd−1 7→ z′x. Its differential is the mapping

(9.1) h ∈ TxSd−1 7→ z′h.

As in the Euclidian plane, the gradient on the sphere is related to the above defined differential using

the scalar product. The gradient of f at x is denoted by ∇S
xf and defined as the vector of TxSd−1

such that for h in TxSd−1, ∇S
xf ′h = dxf.h. The scalar product on the tangent spaces is the restriction

of the scalar product in Rd. This is a general construction of a gradient on smooth submanifolds of

Rd. It matches in the particular case of the sphere the definition provided by identity (2.6). The

Laplace operator on a smooth submanifolds of Rd is defined through the generalization of the formula

div∇. The generalization of the divergence is defined as follows. A vector field X is a map which

to x in Sd−1 assigns a vector X(x) of TxSd−1. It is differentiable if given a local parametrization of

Sd−1, for example using the stereographic projection, consisting of to maps ϕ from an open set U in

Rd−1 to V ∩ Sd−1 where V is an open set of Rd, X(ϕ) is differentiable. The linear mapping which to

v in TxSd−1 corresponding to some curve γ(−ε, ε) → U and X a vector field, assigns the orthogonal

projection of d
dtX(γ)

∣∣
t=0

on TxSd−1 is denoted by D. Then ∆S is defined as trD∇S . Also, see for

example Gallot et al (2004) p.209, we have

(9.2) −
∫

Sd−1

f(x)∆Sf(x)dσ(x) =
∫

Sd−1

‖|dfx‖|2dσ(x) =
∫

Sd−1

∇S
xf ′∇S

xfdσ(x)

where ‖| · ‖| denotes the operator norm. We can check using the condensed harmonic expansion,

Lemma 2.1 (ii) and relation (9.2) that

‖f‖2
2,1 = ‖f‖2

2 + ‖∇Sf‖2
2

where the last term denotes the right hand-side of (9.2). The definition of the Sobolev spaces based

on L2(Sd−1) matches the classical space defined in terms of derivatives.
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We now present some results on the Gegenbauer polynomials. These results can be found in

Erdélyi et al. (1953) and Groemer (1996). The Gegenbauer polynomials have the following explicit

representation

(9.3) Cν
n(t) =

[n/2]∑

l=0

(−1)l(ν)n−l

l!(n− 2l)!
(2t)n−2l

where (a)0 = 1 and for n in N \ {0}, (a)n = a(a + 1) · · · (a + n − 1) = Γ(a + n)/Γ(a). When ν = 0,

case d = 2, it is related to the Chebychev polynomials of the first kind as follows

∀n ∈ N \ {0}, C0
n(t) =

2
n

Tn(t)

and

C0
0 (t) = T0(t) = 1

where

∀n ∈ N, Tn(t) = cos (n arccos(t)) .

When ν = 1, case d = 4, C1
n(t) coincides with the Chebychev polynomial of the second kind Un(t)

which is such that

∀n ∈ N, Un(t) =
sin[(n + 1) arccos(t)]

sin[arccos(t)]
.

The Gegenbauer polynomials are stable by differentiation, they satisfy

(9.4)
d
dt

Cν
n(t) = 2νCν+1

n−1(t)

for ν > 0 and

(9.5)
d
dt

C0
n(t) = 2C1

n−1(t).

For ν 6= 0 the Rodrigues formula states that

(9.6) Cν
n(t) = (−2)−n(1− t2)−ν+1/2 (2ν)n

(ν + 1/2)nn!
dn

dtn
(1− t2)n+ν−1/2.

The following results are also used in the paper

(9.7) sup
t∈[−1,1]

∣∣∣∣
Cν

n(t)
Cν

n(1)

∣∣∣∣ ≤ 1,

(9.8) ∀ ν > 0, ∀n ∈ N, Cν
n(1) =


 n + 2ν − 1

n




(9.9) C0
0 (1) = 1 and ∀n ∈ N \ {0}, C0

n(1) =
2
n

,
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(9.10) Cν
n(−t) = (−1)nCν

n(t).

The normalization of these orthogonal polynomials is such that

(9.11) ‖Cν(d)
n

(
x′·) ‖2 =

∫ 1

−1
(Cν(d)

n (t))2(1− t2)(d−3)/2dt =
|Sd−1|(Cν(d)

n (1))2

|Sd−2|h(n, d)
.

In the proofs of the results we denote by C any constant depending only on the dimension, it

thus takes different values for different inequalities.

Lemma 9.1. For p positive and d ≥ 2,

d
dt

(
[q2p+1,d

)
=

d|Sd+1|
|Sd−1| q2T,d+2

Proof. Using (2.9), (9.4), (9.5), (9.8) and (2.7)
(

d
dt

(
[q2p+1,d

))
(t) =

h(2p + 1, d)

|Sd−1|Cν(d)
2p+1(1)

(d− 2)Cν(d)+1
2p (t)

=
4p + d

|Sd−1|(d− 2)
(d− 2)Cν(d+2)

2p (t).

We conclude since, using again (9.8) and (2.7),

h(2p, d + 2)

C
ν(d+2)
2p (1)

=
4p + d

d
.

¤

Proof of Proposition 2.3. Using Lemma 9.1 and the expression of the Cesàro kernel we obtain

d
dt

(
[Cδ −

2T+1,d

)
=

d|Sd+1|
|Sd−1| Cδ +

2T,d+2.

Using also (2.15), the following inequalities for some constant K depending only on δ and d follow

Sδ
T,d(z

′x)− Sδ
T,d(z

′y) =
∫ z′y

z′x

(
d
dt

Sδ
T,d

)
(t)dt

≤
∥∥∥∥

d
dt

Sδ
T,d

∥∥∥∥
∞
|x− y|

=
∥∥∥∥
d|Sd+1|
|Sd−1| Cδ +

2T,d+2

∥∥∥∥
∞
|x− y|

≤ KT d+1|x− y|.

¤

Let us present some useful inequalities.
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Lemma 9.2.

h(n, d) ³ nd−2,(9.12)

|λ(2p + 1, d)| ³ p−d/2.(9.13)

Proof. Estimate (9.12) is clearly satisfied when d = 2 and 3 since h(n, 2) = 2 and h(n, 3) = 2n + 1.

When d ≥ 4 we have

h(n, d) =
2

(d− 2)!
(n + (d− 2)/2)[(n + 1)(n + 2) · · · (n + d− 3)],

the lower bound is straightforward and the upper bound follows from

h(n, d) ≤ 2
(d− 2)!

(n + d− 3)d−2

and 2/((d− 2)!) by a constant large enough.

When d is even and p ≥ d/2

|λ(2p + 1, d)| = κd

(2p + 1)(2p + 3) · · · (2p + d− 1)

where

κd =
|Sd−2|1 · 3 · · · (d− 1)

d− 1
.

The upper bound is straightforward and we can write

|λ(2p + 1, d)| ≥ κd

(2p + d− 1)d/2

and conclude replacing κd by a small enough constant.

Sterling’s double inequality, see Feller (1968) p.50-53

√
2πnn+1/2 exp

(
−n +

1
12n + 1

)
< n! <

√
2πnn+1/2 exp

(
−n +

1
12n

)

implies that
(2pp!)2

(2p)!
³ √

p

thus

1 · 3 · · · (2p− 1) ³ √
p2 · 4 · · · (2p).

Therefore, for p ≥ d/2 and d odd we have

|λ(2p + 1, d)| ³
√

p

(2p + 2)(2p + 4) · · · (2p + d− 1)

and (9.13) holds for d even and odd. ¤
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Proof of Proposition 2.5. From the Funk-Hecke theorem we know that the coefficients α(n, d) =

C
ν(d)
n (1)|Sd−2|−1λn (I {t ∈ [0, 1]}) are given by

α(n, d) =
∫ 1

0
Cν(d)

n (t)(1− t2)(d−3)/2dt

using (9.6),

α(n, d) =
(−2)−n(d− 2)n

n! ((d− 1)/2)n

∫ 1

0

dn

dtn
(1− t2)n+(d−3)/2dt.

Thus for n ≥ 1 and d ≥ 3,

α(n, d) = −(−2)−n(d− 2)n

n! ((d− 1)/2)n

dn−1

dtn−1
(1− t2)n−1+(d−3)/2dt

∣∣∣∣
t=0

since the term on the right hand-side is equal to 0 for t = 1. To prove that the coefficients α(2p, d)

are equal to zero for p positive it is enough to prove

d2p+1

dt2p+1
(1− t2)2p+1+m

∣∣∣∣
t=0

= 0, ∀m ≥ 1, p ≥ 0.

The Faá di Bruno formula gives that this quantity is equal to

∑

k1+2k2=2p+1

(−1)2p+1−k2(2p + 1)!(m + 1) · · · (2p + 1 + m)
k1!k2!

(1− t2)m+k2(2t)k1

∣∣∣∣∣∣
t=0

.

and we conclude since k1 in the sum cannot be equal to 0.

When n = 2p + 1 for p non-negative we obtain, using again the Faá di Bruno formula, that the

derivative at t = 0 is equal to

(−1)p (2p)!
p!

[(2p + 1 + (d− 3)/2)(2p + (d− 3)/2) · · · (p + 2 + (d− 3)/2)] .

We obtain the result of Proposition 2.5 using identity (9.8). For the case d = 2 we use Proposition

2.1. ¤

Proof of Proposition 2.7. By definition we have

‖H (
f−

) ‖2
2,s+d/2 =

∞∑

p=0

(1 + ζ2p+1,d)s+d/2‖Q2p+1,dH(f−)‖2
2
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where according to the Funk-Hecke Theorem

Q2p+1,dH(f−) = Q2p+1,dH



∞∑

q=0

Q2q+1,df




= Q2p+1,d




∞∑

q=0

λ(2q + 1, d)Q2q+1,df




= λ(2p + 1, d)Q2p+1,df.

We conclude since Lemma 9.2 gives that (1 + ζ2p+1,d)s+d/2λ2
2p+1,d ³ (1 + ζ2p+1,d)s. ¤

Proof of Theorem 2.3. We apply Theorem 3.2. of Ditzian (1998) to −P (D) = H−2 choosing α = 1

and B = Lq(Sd−1) and obtain that there exists B(d, q) positive such that for all P in
⊕T

p=0 H2p+1,d,

‖H−2P‖q ≤ B(d, q)
1

λ2
2T+1

‖P‖q

≤ CT d‖P‖q.

The last inequality follows from (9.13). We deduce the result concerning H−1 the Kolmogorov type

inequality corresponding to Theorem 8.1 of Ditzian (1998). ¤

Proof of Theorem 4.1. R has the following condensed harmonic expansion

R(x) =
1
2

+
∞∑

p=1

(Q2p+1,dR)(x).

We then write using (3.2), changing variables and using (9.10),

(Q2p+1,dR)(x) =
∫

Sd−1

q2p+1,d(x, z)R(z)dσ(z)

=
∫

H+

q2p+1,d(x, z)r(z)dσ(z) +
∫

−H+

q2p+1,d(x, z)(1− r(−z))dσ(z)

=
∫

H+

q2p+1,d(x, z)r(z)dσ(z)−
∫

H+

q2p+1,d(x, z)(1− r(z))dσ(z)

(Q2p+1,dR)(x) =
∫

H+

q2p+1,d(x, z)(2r(z)− 1)dσ(z)

=
∫

H+

q2p+1,d(x, z)E
[

2Y − 1
fX(z)

∣∣∣∣ X = z

]
fX(z)dσ(z)

= E
[
(2Y − 1)q2p+1,d(x,Z)

fX(Z)

]
.
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Lebesgue differentiation theorem along with (9.1) gives

∇S
x/‖x‖R =

∞∑

p=0

E
[
(2Y − 1)
fX(X)

∇S
x/‖x‖

[q2p+1,d(X ′x/‖x‖)X
]

the expression for the gradient of the radial extension of R follows then from Lemma 9.1. ¤

Proof of Theorems 4.2 and 4.3. The proofs for the estimation of R is the same as for fβ below.

For the later we use one more tool being Theorem 2.3. The proof for derivatives is the same and we

only need to replace σ by σ − 1 and d by d + 2. Note that 1/(2σ + d− 1) = 1/(2(σ − 1) + d + 2− 1).

The multivariate CLT for derivatives is obtained using the Cramer-Wold device. ¤

Now we turn to the proofs of Theorems 5.1 and 5.2. For notational convenience we simply

write f̂β := f̂N,T
β , f̂−β := f̂−,N,T

β , I := I{f−β (b) > 0} and Î := I{f̂−β (b) > 0}. Then fβ = 2f−β I and

f̂β = 2f̂−β Î. We denote by

f
−

β,T = H−1R
−

T

f
−

β = H−1R
−
.

where

R
−

T (x) =
1
N

N∑

i=1

(2yi − 1)Sd−1 −
T,d (xi, x)

max (fX(xi), (log N)−r)

R
−(x) =

1
N

N∑

i=1

(2yi − 1)Sd−1 −
T,d (xi, x)

fX(xi)
.

Here we set δ = d − 1 since this is the order of the Cesàro summation which is sufficient for the

estimation of fβ. If one is also interested in derivatives of fβ one should use higher order kernels but

the proofs below work for any δ ≥ d− 1.

We use several times the decomposition

f̂−β − f−β =
(
f̂−β − f

−
β,T

)
−

(
f
−

β,T − E
[
f
−

β,T

])
−

(
E

[
f
−

β,T

]
− E

[
f
−

β

])
−

(
E

[
f
−

β

]
− f−β

)
,

and denote the terms on the right hand side by PIβ (plug-in), Fβ (fluctuations), B1,β (trimming bias)

and B2,β (approximation bias), where each term is H−1 of the corresponding term for R.
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Proof of Theorem 5.1. Take q ∈ [1,∞),

‖f̂β − fβ‖q
q =

∫
(f̂β(b)− fβ(b))qdσ(b)

=
∫

I(b)=1,Î(b)=1
(f̂β(b)− fβ(b))qdσ(b) +

∫

I(b)=0,Î(b)=1
(f̂β(b)− fβ(b))qdσ(b)

+
∫

I(b)=1,Î(b)=0
(f̂β(b)− fβ(b))qdσ(b) +

∫

I(b)=0,Î(b)=0
(f̂β(b)− fβ(b))qdσ(b)

:=A1 + A2 + A3 + A4.

Obviously

A1 =
∫

I(b)=1,Î(b)=1
(2f̂−β (b)− 2f−β (b))qdσ(b)

and A4 = 0. Also,

A2 =
∫

I(b)=0,Î(b)=1
(2f̂−β (b)− fβ(b))qdσ(b).

But given I(b) = 0 and Î(b) = 1, 2f̂−β (b) > 0, fβ(b) = 0 and 2f−β (b) ≤ 0, so replacing fβ with 2f−β in

the bracket,

A2 ≤
∫

I(b)=0,Î(b)=1
(2f̂−β (b)− 2f−β (b))qdσ(b).

Similarly,

A3 =
∫

I(b)=1,Î(b)=0
(f̂β(b)− 2f−β (b))qdσ(b).

and given I(b) = 1 and Î(b) = 0, 2f−β (b) > 0, f̂β(b) = 0 and 2f̂−β (b) ≤ 0, so replacing fβ with 2f−β in

the bracket,

A3 ≤
∫

I(b)=0,Î(b)=1
(2f̂−β (b)− 2f−β (b))qdσ(b).

Overall,

‖f̂β − fβ‖q
q ≤ 4‖f̂−β − f−β ‖q

q.

A similar proof could be carried out replacing Lq(Sd−1) by L∞(Sd−1). We can now focus on upper

bounds for the estimation of f−β in L2(Sd−1) or L∞(Sd−1).

We now denote by VN the speed of convergence and TN the smoothing parameter.
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Let us start with PIβ. We have for q ∈ [1,∞]

‖PIβ‖q =

∥∥∥∥∥∥
H−1


 1

N

N∑

i=1

(2yi − 1)Sd−1 −
2TN+1(xi, ·)

max(fX(xi), (log N)−r)


 max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1







∥∥∥∥∥∥
q

≤ B(d, q)T d/2
N

∥∥∥∥∥∥
1
N

N∑

i=1

(2yi − 1)Sd−1 −
2TN+1(xi, ·)

max(fX(xi), (log N)−r)


 max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1




∥∥∥∥∥∥
q

(using Theorem 2.3)

≤ CT
d/2
N




∥∥∥∥∥∥
2
N

N∑

i=1

yiS
d−1 −
2TN+1(xi, ·)

max(fX(xi), (log N)−r)


 max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1




∥∥∥∥∥∥
q

(by the triangular inequality)

+

∥∥∥∥∥∥
1
N

N∑

i=1

Sd−1 −
2TN+1(xi, ·)

max(fX(xi), (log N)−r)


 max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1




∥∥∥∥∥∥
q




‖PIβ‖q ≤ CT
d/2
N


2

∥∥∥∥∥∥
1
N

N∑

i=1

yiS
d−1
2TN+1(xi, ·)

max(fX(xi), (log N)−r)


 max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1




∥∥∥∥∥∥
q

(by the triangular inequality)

+

∥∥∥∥∥∥
1
N

N∑

i=1

Sd−1
2TN+1(xi, ·)

max(fX(xi), (log N)−r)


 max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1




∥∥∥∥∥∥
q




≤ CT
d/2
N (log N)r

∥∥∥∥∥
1
N

N∑

i=1

Sd−1
2TN+1(xi, ·)

∥∥∥∥∥
q

max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1

∣∣∣∣∣∣
(by positivness)

and can bound from above the norm by

(9.14)

∥∥∥∥∥
1
N

N∑

i=1

Sd−1
2TN+1(xi, ·)− E

[
Sd−1

2TN+1(X, ·)
]∥∥∥∥∥

q

+
∥∥∥E

[
Sd−1

2TN+1(X, ·)
]∥∥∥

q
:= ‖T1‖q + ‖T2‖q.

Let us start with the term ‖T1‖q. We begin with the case where q ∈ [1, 2]. Using the Hölder inequality

we obtain that

E
[‖T1‖q

q

]
=

∫

Sd−1

E [T1(x)q] dσ(x)

≤
∫

Sd−1

E
[
T1(x)2

]q/2
dσ(x)
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where

E
[
T1(x)2

] ≤ 1
N
E

[(
Sd−1

2TN+1(X,x)
)2

]

≤ C

N

∥∥∥Sd−1
2TN+1(?2, ·)

∥∥∥
2

2
(using that fX is bounded)

≤ CT d−1
N

N
(using (2.15))

which implies

T
d/2
N (log N)r‖T1‖q = Op

(
(log N)rN−1/2T

(2d−1)/2
N

)
.

When q ∈ (2,∞], all Lq(Sd−1) norms can be interpolated between L2(Sd−1) and L∞(Sd−1) norms using

the Hölder inequality as follows

∀f ∈ L∞(Sd−1), ‖f‖q = ‖f‖2/q
2 ‖f‖1−2/q

∞ .

We can thus focus on the L∞(Sd−1) case. We cover the sphere by N(N, r, d) geodesic balls (caps)

(Bi)
N(N,r,d)
i=1 of centers (x̃i)

N(N,r,d)
i=1 and radius R(N, r, d), i.e. {x ∈ Sd−1 : cos(x̃′ix) ≤ RN}. We know

that N(N, r, d) ³ R(N, r, d)−(d−1). For some speed ṼN and using Theorem 2.3 it is enough to show

that for every ε positive, there exists M positive such that

P

(
Ṽ −1

N B(d,∞)T d/2
N (log N)r sup

x∈Sd−1

|T1(x)| ≥ M

)
≤ ε.

We write

P

(
Ṽ −1

N B(d,∞)T d/2
N (log N)r sup

x∈Sd−1

|T1(x)| ≥ M

)

≤ P

 ⋃

i=1,...,N(N,r,d)

{
Ṽ −1

N B(d,∞)T d/2
N (log N)r|T1(x̃i)| ≥ M/2

}



+ P
(
∃i ∈ {1, . . . ,N(N, r, d)} : Ṽ −1

N B(d,∞)T d/2
N (log N)r sup

x∈Bi

|T1(x)− T1(x̃i)| ≥ M/2
)

≤ N(N, r, d) sup
i=1,...,NN

P
(
Ṽ −1

N B(d,∞)T d/2
N (log N)r|T1(x̃i)| ≥ M/2

)
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where the last inequality is obtained taking RN small enough and such that RN ³ (log N)−rṼNT
−(3d/2+1)
N M

and using Proposition 2.3. For the remaining probabilities we write

P
(
Ṽ −1

N B(d,∞)T d/2
N (log N)r|T1(x̃i)| ≥ M/2

)

= P




∣∣∣∣∣∣

N∑

j=1

Sd−1
2TN+1(xj , x̃i)

T d−1
N

− E
[

Sd−1
2TN+1(X, x̃i)

T d−1
N

]∣∣∣∣∣∣
≥ T

−(d−1)
N ṼNB(d,∞)−1T

−d/2
N (log N)−rNM/2




≤ 2 exp
{
−1

2

(
t2

v + Lt/3

)}
(using the exponential tail estimate also called Bernstein inequality)

where

t = T
−(d−1)
N ṼNB(d,∞)−1T

−d/2
N (log N)−rNM/2

v ≥
N∑

j=1

var

(
Sd−1

T,d (Xj , x̃i)

T d−1
N

)

∀j = 1, . . . , N,

∣∣∣∣∣
Sd−1

T,d (Xj , x̃i)

T d−1
N

∣∣∣∣∣ ≤ L (for some constant L using(2.15)).

We can take v = CN‖Sd−1
T,d (?2, ·)‖2

2‖fX‖∞T
−2(d−1)
N , i.e. from (2.15) v = CN . v is the leading term in

the denominator. Thus we have for positive constants C and C2 and N large enough

P

(
Ṽ −1

N B(d,∞)T d/2
N (log N)r sup

x∈Sd−1

|T1(x)| ≥ M

)

≤ C exp
{
−(d− 1) log

(
(log N)−rṼNT

−(3d/2+1)
N

)
− (d− 1)(log M)− C2Ṽ

2
NT

−(2d−1)
N (log N)−2rNM2

}

≤ C exp
{
−(d− 1) log

(
(log N)−rṼNT

−(3d/2+1)
N

)
− C2Ṽ

2
NT

−(2d−1)
N (log N)−2rNM2

}

and if we take ṼN = (log N)rVN = (log N)r+1/2N−1/2T
(2d−1)/2
N we obtain for some positive constants

C1 and C2

(9.15) P

(
Ṽ −1

N B(d,∞)T d/2
N (log N)r sup

x∈Sd−1

|T1(x)| ≥ M

)
≤ C exp

{
(log N)(C1 − C2M

2)
}

for M large enough this could be made as small as we wish, thus

B(d,∞)T d/2
N (log N)r‖T1‖∞ = Op

(
(log N)r+1/2N−1/2T

(2d−1)/2
N

)

B(d,∞)T d/2
N (log N)r‖T1‖q = Op

(
(log N)r+1/2−1/qN−1/2T

(2d−1)/2
N

)
.
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Concerning ‖T2‖q, since fX is bounded there exists C positive such that the second term in the right

hand side of (9.14) is less than

C
∥∥∥
∥∥∥Sd−1

2TN+1(?1, ?q)
∥∥∥

1

∥∥∥
q

where integration in ‖ · ‖1 is with respect to argument ?1 and integration in ‖ · ‖q is with respect to

?q.
∥∥∥Sd−1

2TN+1(?1, ?q)
∥∥∥

1
is a constant and does not depend on ?q. This is because we integrate over the

whole sphere and Sd−1
2TN+1(?1, ?q) is indeed a function of ?′1?q. Thus

∥∥∥
∥∥∥Sd−1

2TN+1(?1, ?q)
∥∥∥

1

∥∥∥
q

= |Sd−1|1/q
∥∥∥Sd−1

2TN+1(?1, ?q)
∥∥∥

1

and we can use the fact that for d − 1 > (d − 2)/2 the Cesàro kernels are uniformly integrable to

conclude that this term is O(1) thus

T
d/2
N (log N)r‖T2‖q = O

(
(log N)rT

d/2
N

)
.

For the choice made later for TN this term is of higher order than the first term.

In a similar manner as for ‖T2‖q, we prove that when q ∈ [1, 2],

‖Fβ‖q = Op

(
(log N)rN−1/2T

(2d−1)/2
N

)
,

while for q ∈ (2,∞]

‖Fβ‖q = Op

(
(log N)r+1/2−1/qN−1/2T

(2d−1)/2
N

)
.

Let us now study the bias term induced by trimming

B1,β(b) = E

[
(2Y − 1)H−1

(
Sd−1 −

2TN+1(X, ·)) (b)
fX(X)

(
fX(X)

max(fX(X), (log N)−r)
− 1

)]

=
∫

{z∈Sd−1: 0<fX(z)<(log N)−r}
E[(2Y − 1)|X = z]H−1

(
Sd−1 −

2TN+1(X, ·)) (b) (fX(z)(log N)r − 1) dσ(z),

using Proposition 2.2, (2.15) along with Theorem 2.3 we have

‖B1,β‖q ≤ T
d/2+(d−1)(1−1/q)
N σ(0 < fX < (log N)−r).

Under the assumptions of the theorem this term is negligible compared to the variance term.

We finally treat B2,β using Proposition 2.4 with the assumption that f−β ∈ Ws
q(Sd−1),

‖B2,β‖q ≤ CT−s
N .
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We now need to choose VN and TN such that

V −1
N (log N)rT

d/2
N max

i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1

∣∣∣∣∣∣
= Op(1)(9.16)

V −1
N (log N)r+(1/2−1/q)I{q≥2}N−1/2T

(2d−1)/2
N = O(1)(9.17)

V −1
N T

3d/2−1−(d−1)/q
N σ(0 < fX < (log N)−r) = O(1)(9.18)

V −1
N T−s

N = O(1)(9.19)

and look for solutions of the form

VN =
(

N

(log N)2(r+(1/2−1/q)I{q≥2})

)−α

, TN =
(

N

(log N)2(r+(1/2−1/q)I{q≥2})

)γ

where α and γ are non-negative. The optimal upper bound on VN is obtained by setting

2α + γ(2d− 1) = 1 (from (9.17))(9.20)

α = γs (from (9.19))(9.21)

indeed the left hand side of (9.17) is

Nα−1/2+γ(2d−1)/2(log N)−(α+γ(2d−1)/2−1)2(r+(1/2−1/q)I{q≥2})

which is equal to 1. Condition (5.1) and Assumption 4.1 have been taken so that (9.16) and (9.18)

are then satisfied as well.

In order to prove the strong uniform consistency, noticing that the bias terms are not stochastic and

properly are bounded, we just have to focus on the fluctuations and plug-in. Concerning the plug-in

note that taking M large enough so that C1 − C2M
2 < −1 implies summability of the left hand side

in (9.15) and we conclude from the first Borel-Cantelli lemma that the probability that the events

occur infinitely often is zero thus with probability one

limN→∞Ṽ −1
N B(d,∞)T d/2

N (log N)r sup
x∈Sd−1

|T1(x)| < M.

For the term involving T2 we use the same non stochastic upper bound. We then use Assumption

4.1 (ii) instead of Assumption 4.1 (i) to show that almost sure uniform boundedness of the plug-in

properly rescaled. The fluctuation term is treated like T1. ¤
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Proof of Theorem 5.2. We first prove that the Lyapounov condition holds: there exists δ > 0 such

that for N going to infinity,

(9.22)
E

[
|ZN,1 − E [ZN,1]|2+δ

]

N δ/2 (var (ZN,1))
1+δ/2

→ 0

(see, e.g. Billingsley, 1995) and impose assumptions so that the plug-in and bias terms properly

rescaled are op(1).

We need a lower bound on var (ZN,1). Since E[ZN,1] converges to f−β (x) while the variance blows-up,

it is enough to obtain a lower bound on

E[Z2
N,1](b)

=
TN∑
p=0

(
2Ad−1

2(TN−p)

Ad−1
2TN+1

)2 ∫

H+

(
q2p+1,d(z, b)

max (fX(z), (log N)−r)λ(2p + 1, d)

)2

fX(z)dσ(z)

=
TN∑
p=0

(
2Ad−1

2(TN−p)

Ad−1
2TN+1

)2 ∫

H+

(
q2p+1,d(z, b)
λ(2p + 1, d)

)2 (
1

fX(z)
I{fX ≥ (log N)−r}+ fX(z)(log N)2rI{fX < (log N)−r}

)
dσ(z)

≥ 1
‖fX‖∞

TN∑
p=0

(
2Ad−1

2(TN−p)

Ad−1
2TN+1

)2 (∫

H+

q2p+1,d(z, b)2

λ(2p + 1, d)2
dσ(z)−

∫

{0<fX<(log N)−r}

q2p+1,d(z, b)2

λ(2p + 1, d)2
dσ(z)

)
dσ(z)

where, using Proposition 2.2 and (9.7)

∫

{0<fX<(log N)−r}

q2p+1,d(z, b)2

λ(2p + 1, d)2
dσ(z) ≤ C

(
h(2p + 1, d)
λ(2p + 1, d)

)2

σ
(
0 < fX < (log N)−r

)

≤ Cp3d−4σ
(
0 < fX < (log N)−r

)

thus

E[Z2
N,1](b) ≥

1
‖fX‖∞

bTN /2c∑
p=0

(
2Ad−1

2(TN−p)

Ad−1
2TN+1

)2 ∫

H+

q2p+1,d(z, b)2

λ(2p + 1, d)2
dσ(z)dσ(z)− CT

3(d−1)
N σ

(
0 < fX < (log N)−r

)
.

The first term on the right hand side can be bounded from below by

C

22(d−1)

bTN/2c∑

p=0

∥∥∥∥
q2p+1,d(z, b)
λ(2p + 1, d)

∥∥∥∥
2

2

i.e. by CT 2d−1
N . Thus as σ (0 < fX < (log N)−r) decays fast enough to zero, here it is enough that

σ (0 < fX < (log N)−r) = O
(
T−d+2

N

)
,

E[Z2
N,1](b) ≥ CT 2d−1

N



47

and the denominator of (9.22) is greater than CN δ/2Nα(2d−1)(1+δ/2).

We now obtain an upper bound of E
[
|ZN,1|2+δ

]
using Theorem 2.3 and (2.15)

E
[
|ZN,1|2+δ

]
≤ ‖fX‖∞(log N)r(2+δ)

∥∥∥H−1
(
Sd−1 −

2TN+1(z, ·)
)∥∥∥

2+δ

2+δ

≤ ‖fX‖∞(log N)r(2+δ)B(d, 2 + δ)2+δT
d(2+δ)/2
N

∥∥∥Sd−1 −
2TN+1(z, ·)

∥∥∥
2+δ

2+δ

≤ C(log N)r(2+δ)T
d(2+δ)/2
N T

(d−1)(1+δ)
N .

An upper bound for the ratio appearing in (9.22) is given by

(log N)r(2+δ)

(
T d−1

N

N

)δ/2

as a consequence the Lyapounov condition is satisfied as soon as (5.5) holds. We now need to prove

that the remaining terms multiplied by N1/2s−1
N are op(1).

The plug in is treated in a similar manner as in the proof of Theorem 5.1.

|PIβ(b)| ≤ 2


 1

N

N∑

i=1

∣∣∣H−1
(
Sd−1 −

2TN+1(xi, ·)
)

(b)
∣∣∣

max(fX(xi), (log N)−r)


 max

i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1

∣∣∣∣∣∣
.

Using the Markov inequality the term in parenthesis is an Op of

(log N)r
∥∥∥H−1

(
Sd−1 −

2TN+1(?1, ·)
)∥∥∥

1

and from Theorem 2.3 of

B(d, 1)T d/2
N (log N)r

∥∥∥Sd−1 −
2TN+1(?1, ·)

∥∥∥
1

where using the definition of the odd part is an Op of

B(d, 1)T d/2
N (log N)r

∥∥∥Sd−1
2TN+1(?1, ·)

∥∥∥
1

where the last quantity does not depend on · and is uniformly bounded. We obtained

N1/2B(d, 1)T−(d−1/2)
N |PIβ(b)| ≤

(
N1/2T

−(d−1)/2
N (log N)r

)
max

i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1

∣∣∣∣∣∣

thus N1/2B(d, 1)T−(d−1/2)
N |PIβ(b)| = op(1) when

max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (log N)−r)

max
(
f̂N

X (xi), (log N)−r
) − 1

∣∣∣∣∣∣
= op

(
N−1/2T

(d−1)/2
N (log N)−r

)
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and when condition (5.5) it is enough to assume (5.4). Let us now consider the bias term induced by

the trimming procedure.

In the proof of Theorem 5.1 we have obtained an upper bound for ‖B1,β‖∞ and we deduce that

N1/2T
−(d−1/2)
N ‖B1,β‖∞ = o(1)

when condition (5.6) is satisfied.

Finally, N1/2T
−(d−1/2)
N ‖B1,β‖∞ is an o(1) as soon as condition (5.7) is satisfied.

We conclude using that the asymptotic normality only holds for b such that fβ(b) > 0 and the factor

4 in the variance comes from the fact that f̂β = 2f̂−β Î. ¤
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Arithmétiques”. Journal de Mathématiques Pures et Appliquées, 89, 107-187.

[39] Kushpel, A. K., Levesley, J., and Tas, K. (1997): “ε−Entropy of Sobolev’s Classes on Sd ”. Journal of

Mathematics and Computer Science, 4, 1-13.

[40] Müller, C. (1966): Spherical Harmonics. Lecture Notes in Mathematics, 17, Springer.



51

[41] Ragozin, D. (1972): “Uniform Convergence of Spherical Harmonic Expansions”. Mathematische Annalen, 195,

87-94.

[42] Rubin, B. (1999): “Inversion and Characterization of the Hemispherical Transform”. Journal d’Analyse
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