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NONPARAMETRIC ESTIMATION IN RENEWAL THEORY II:
SOLUTIONS OF RENEWAL-TYPE EQUATIONS

By Konstadinos Politis1 and Susan M. Pitts

University of Southampton and University of Cambridge

Nonparametric estimators of solutions of renewal-type equations are
proposed in terms of the empirical renewal function. Using the approach of
Grübel and Pitts [Ann. Stat. 21 1431–1451 (1993)], who studied asymptotic
properties of the empirical renewal function, a number of properties of
our estimators are established, including strong consistency, asymptotic
normality and efficiency, and asymptotic validity of bootstrap confidence
bounds. The results are illustrated by some particular examples.

1. Introduction. This paper concerns various properties of a nonpara-
metric estimator of a solution of the renewal-type equation

Z�x� = z�x� +
∫
�
Z�x− y�dF�y��(1)

where F is a probability distribution on the real line and z is a bounded Borel
measurable function; Z is the unknown function here. Under the assumption
that the distributionF and the function z are zero for negative argument, such
equations arise often and play an important role in various stochastic models,
typically in stochastic processes where the process “forgets its past” at certain
“renewal” points. Feller [(1971), Chapter XI] contains a detailed discussion for
this case including a number of examples. Here we consider the general two-
sided case where F and z can be nonzero on �−∞�0�. Although this seems
rather less significant probabilistically, it turns out that the results for the
one-sided case carry over without much difficulty to this extended framework.

Let U�x� = ∑∞
k=0F


k�x� be the renewal function associated with F, where
F
k denotes that k-fold Lebesgue–Stieltjes convolution power ofF. We assume
throughout, unless otherwise stated, that F has a finite second and a positive
first moment. These conditions ensure that the associated renewal function
U�x� is finite for all x [see, e.g., Gut (1988), page 89]. When F and z are zero
on the negative half-axis, it is well known [see, e.g., Feller (1971), VI.6] that
the function Z defined by Z�t� = ∫

�0� t� z�t−x�dU�x� is the unique solution of
the one-sided renewal equation

Z�t� = z�t� +
∫
�0� t�

Z�t− x�dF�x�(2)
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vanishing on �−∞�0� and bounded on finite intervals. A number of quanti-
ties in applied probability satisfy (2). We mention two well-known examples
from reliability theory, although some of the equations described below are
also important in other contexts, such as branching processes and sequential
analysis.

Example I (The spent, residual and total lifetime). In a renewal process
on �0�∞�, let At be the time elapsed since the last renewal at time t and
Bt be the time remaining until the next renewal at time t. Finally, let Ct

denote the time between the last and the next renewal at time t.
Assume that ξ > 0 is fixed and let Z1�t� = P�At ≤ ξ�, Z2�t� = P�Bt ≤ ξ�

andZ3�t� = P�Ct ≤ ξ�. Then,Zi is the solution of the equationZi = zi+Zi
F
for i = 1�2�3, where, for these values of i and for t ≥ 0, zi�t� is given by

z1�t� = 1�0� ξ��t��1−F�t��� z2�t� = F�t+ ξ� −F�t��
z3�t� = 1�0� ξ��t��F�ξ� −F�t���

here 1A denotes the indicator function of the set A.

Example II (Point availability). In an alternating renewal process, one en-
visages a device which is installed in a system at time t = 0 and it works until
it fails. Then it takes a random time to be repaired, when it starts working
again. Many examples of renewal processes are of an alternating type [see,
e.g., Feller (1971)]. We assume that working times are independent identically
distributed (i.i.d.) random variables with a distributionFW, while repair times
are independent with a common distribution FR, and that working times are
independent of repair times. The lifetime distribution of the process is then
F = FW
FR. Let the functionZ be defined byZ�t� = P(the system is working
at time t). The value of Z at time t is known as the availability of the system
at time t [see, e.g., Barlow and Proschan (1975), 7.2]. Another interpretation
of Z is that if repairs are not allowed, then Z�t� represents the probability
that the system operates without failure throughout the interval �0� t�. By a
straightforward renewal argument we can see that Z satisfies the (one-sided)
renewal equation

Z�t� = 1−FW�t� +
∫
�0� t�

Z�t− x�dF�x��(3)

For the statistical problem of estimating Z in a renewal-type equation that
we consider here, if the functional form of the underlying probability distri-
bution F is known, parametric estimates for Z can be constructed. In many
situations, however, the functional form of the distribution F, which typically
represents the distribution of times between successive events in a renewal
process, is unknown, thus a nonparametric approach is needed.

Assume, for instance, that a component is installed at a system and is re-
placed by a new one after failure. If replacements are immediate, then with
the notation of Example I above, Bt is the remaining lifetime of the com-
ponent in operation at time t. Assuming that lifetimes of successive compo-
nents are i.i.d., and provided that a sample X1�X2� � � � �Xn from the lifetime
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distributionF is available, we can estimate the probability that the remaining
lifetime of a component, Bt, does not exceed a certain value ξ.

If, on the other hand, repair times are nonzero and have a common distri-
bution FR, then with the setup of Example II, we can estimate the availability
of the system on the basis of a sample X1�X2� � � � �Xn from the working time
distribution FW and a sample Y1�Y2� � � � �Yn of repair times.

Our methods and results complement and extend those of Grübel and Pitts
(1993), who considered the problem of estimating the renewal function U for
the general two-sided case, on the basis of a sample X1�X2� � � � �Xn from F.
They proposed as an estimator the empirical renewal function, Ûn, defined by
Ûn�x� =

∑∞
k=0 F̂


k
n �x�, provided ∑

Xi > 0; otherwise, Ûn is defined to be iden-
tically zero. Here F̂n�x� = n−1∑n

k=1 1�−∞� x��Xk� is the empirical distribution
associated with X1�X2� � � � �Xn. This estimator was shown to have a num-
ber of properties, including consistency, asymptotic normality and asymptotic
validity of bootstrap confidence limits.

As mentioned in the beginning of the paper, here also we consider the gen-
eral case where the distribution F and the function z can be nonzero for neg-
ative argument. The renewal function U corresponding to F plays a similar
role in determining the solution Z of (1) as with the one-sided case. It follows
from the results of Karlin (1955) and Smith (1961) that the function Z de-
fined by Z�x� = ∫

� z�x− y�dU�y� is the unique bounded solution of (1) such
that limx→−∞Z�x� = 0, provided that the function z satisfies the following
conditions:

(i) z is continuous almost everywhere,
(ii)

∑
k∈�

sup
k<x≤k+1

�z�x�� <∞�(4)

A treatment of renewal-type equations on the whole real line, including the
result above, can be found in Alsmeyer (1991); see also Rudin [(1991), Chapter
9], Bingham (1989) and Feller [(1971), VI.10]. We mention in particular that
any two bounded solutions of (1) differ necessarily by a constant [Karlin (1955),
Lemma 4]. The conditions we impose for the function z in the sequel imply
that z satisfies (4). Thus we may from now on speak unambiguously about
the solution of (1) and it will be implicitly understood that we refer to the
unique bounded solution such that limx→−∞Z�x� = 0. A seemingly different
condition from (4) for the function z in (2), which is often used, is that z is di-
rectly Riemann integrable [see Feller (1971), pages 361–362; Alsmeyer (1991)].
Hinderer (1987) has shown that when z vanishes on �−∞�0�, the two notions
coincide, and this is in fact true even without this assumption.

Our main effort in what follows is to extend the work of Grübel and Pitts
(1993) to solutions of renewal-type equations and to translate the results for
the renewal function to the solution Z of (1). We consider the case where the
function z in (1) depends on F so that, based on a sample X1�X2� � � � �Xn

from F, we estimate both U and z by Ûn and ẑn, the plug-in estimate of
z. Combining these two estimators together, we arrive at a nonparametric
estimator Ẑn = ẑn 
 Ûn of Z. As it turns out, Ẑn retains all the properties
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of Ûn, apparently in a rather stronger form. For example, since the renewal
function U is unbounded, one cannot hope for uniform convergence of Ûn to
U on the whole real line. Under the above conditions for z and F, however, Z
is in fact bounded. In Section 3, we show that Ẑn converges to Z uniformly on
� almost surely (a.s.), so that it is a strongly consistent estimator in a sense
which is made precise after our definitions in Section 2.

As in Grübel and Pitts (1993), we take a functional approach and we con-
sider the nonlinear functional � that maps the (tail of the) distribution F in
(1) to the unknown solution Z there. Paralleling similar results which have
been developed in a parametric framework, the two ingredients for the suc-
cess of the method in a nonparametric setup are the statistical properties of
the input estimators, such as F̂n and ẑn, combined with analytic properties of
the map �; see Gill (1989) for a general nonparametric context, Grübel and
Pitts (1993) for its use in estimating the renewal function, and Pitts (1994a,
b). This approach complements a similar functional view which is used in
order to obtain analytic approximations for the unknown output quantity in
question, as discussed in Grübel (1989); more recently, Politis and Pitts (1998)
gave approximations and Taylor series expansions for the solution Z of (2).

Although we essentially extend the functional discussed in Grübel and Pitts
(1993) one step further, we note that the tractability of the approach applied
to a specific model requires a detailed study of the local properties of the
relevant functional. In many cases, including the three equations of Example I
above, our general results in Sections 3–5 apply directly to establish statistical
properties of the proposed estimators. For (3), however, an ad hoc analysis
is needed and this is carried out in Sections 3.2 and 4.2. The use of special
arguments is not untypical of the functional approach, since this method often
requires subtle analytic arguments and careful choice of topology particular to
each application considered. Modulo this proviso, in this paper we demonstrate
that the functional approach can indeed be applied to solutions of renewal-type
equations in the function-space setting of Grübel and Pitts (1993).

We set up the necessary background in Section 2. Each of the following
two sections establishes an analytic property for the map �. In Section 3, we
show continuity of �, which yields consistency of the estimator Ẑn in our first
main result, Theorem 3.4. In Section 4, we consider differentiability (in an
appropriate sense), which implies our second main result, Theorem 4.2, which
says that the “empirical” process

√
n�Ẑn−Z� is asymptotically Gaussian; this

is an application of the delta method as described in Gill (1989). Theorem
4.5 gives asymptotic validity of nonparametric confidence bounds for Z based
on the bootstrap. Finally, in the last section, we consider efficiency of our
estimators, and in Theorem 5.4 we establish asymptotic efficiency of Ẑn in
the sense of van der Vaart (1988, 1991); see also Pitts (1994a).

2. Definitions and preliminaries. In our functional approach, we con-
sider distribution functions, as well as the other functions arising in this
context, as single elements in function spaces with a suitable topological
structure. A well-known space to accommodate probability distributions and
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their empirical counterparts is the space of càdlàg functions [see, e.g., Pol-
lard (1984), Chapter V], that is, the set of functions f� �−∞�∞� → � which
are right-continuous on �−∞�∞� and have left-hand limits on �−∞�∞�. This
space endowed with the supremum norm, �f�∞ = supx∈� �f�x��, is a nonsepa-
rable Banach space,D∞. We note that any right-continuous function f� � → �
with left-hand limits and with finite limits at ±∞ can be extended to a func-
tion in D∞ by continuity. We identify any such function f and its extended
version in D∞. Any probability distribution function F is then in D∞. An al-
ternative topology which has often been considered for functions in D∞ is the
Skorohod topology [Harel, O’Cinneide and Schneider (1995) in this context; see
also Dorado, Hollander and Sethuraman (1997), who studied a repair model
of interest in reliability]. This, however, apart from being weaker, is also less
convenient.

The renewal function U associated with a (proper) distribution F is un-
bounded (by the elementary renewal theorem), so that U is not an element of
D∞. Following Grübel and Pitts (1993), we consider instead weighted càdlàg
spaces; for α�β ∈ �, we associate a function f on �−∞�∞� with a new function
Tαβf as follows:

Tαβf�x� =
{ �1+ x�βf�x�� x ≥ 0,
�1− x�αf�x�� x < 0.

Then the space of functions Dαβ = �f� �−∞�∞� → �� Tαβf ∈ D∞� with the
norm on Dαβ defined by �f�αβ = �Tαβf�∞ is again a nonseparable Banach
space.

For purposes of measurability, in Dαβ we take the σ-fields generated by the
closed balls in the respective norm [see Pollard (1984), Chapter IV]. Note
that for a probability distribution F, existence of moments of order β for
some β > 0 implies that 1�0�∞� − F belongs to the space Dββ. Further, the
renewal function belongs to the space D0�−1. We also need the notion of weak
convergence on arbitrary metric spaces. A sequence of random elements �Xn�
in a metric space converges in distribution to X if Ef�Xn� → Ef�X� as
n → ∞ for all real-valued, bounded, continuous measurable functions f; see
again Pollard [(1984), Chapter IV]. We write Xn →d X to denote that Xn

converge in distribution toX. In the following sections, checking measurability
of our estimators will be left for the reader. For measurability considerations
in this context, we refer to the relevant discussions in Pollard (1984), Gill
(1989) and Pitts (1994a).

As mentioned in the Introduction, a key component of the functional ap-
proach is to establish convergence properties of the input estimators. The
following result strengthens the well-known Glivenko–Cantelli lemma, by im-
posing moment conditions on the underlying distribution F. This is Grübel
and Pitts [(1993), Proposition 3.7], and it is proved by rescaling by F the cor-
responding result for the uniform distribution [Shorack and Wellner (1986),
Section 10.2].
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Lemma 2.1. Let α ≥ 0. Then, for a probability distribution F, the condition∫
� �x�αdF�x� <∞ implies that a.s.

lim
n→∞�F̂n −F�αα = 0�

We shall also need the following refinement of the empirical central limit
theorem [see, e.g., Pollard (1984), V2.11], for weak convergence of the empirical
process,

√
n�F̂n −F�, to a Brownian bridge. This is Grübel and Pitts [(1993),

Proposition 3.8].

Lemma 2.2. Let F be a probability distribution on the real line such that, for
some α > 0�

∫ �x�αdF�x� < ∞, and let B denote a standard Brownian bridge.
Then, for any β < α/2,

√
n�F̂n −F� →d B ◦F in Dββ�

where �B ◦F��t�ω� = B�F�t��ω�.

The main technical difficulty that arises when we estimate Z rather than
U in this context is that the former is not a nondecreasing function in general.
This prompts us to extend the notion of a convolution, as defined in Grübel
and Pitts (1993), so that it can also be defined with respect to a function of
bounded variation on the line (BV, for short). The definition, along with some
simple properties of the convolution operator, are given in the Appendix.

The next result gives conditions under which the solution Z = z 
 U of (1)
is a BV function.

Lemma 2.3. (i) Let F be a distribution on the real line with a finite positive
first moment µ such that, for some positive integer k, F
k has a nonvanishing
absolutely continuous component. Then, if U is the renewal function corre-
sponding to F and h = 1�a� b�� for −∞ < a < b < ∞, we have that h 
 U is of
bounded variation on �.

(ii) Assume in addition that F has finite second moment and z is a function
which is absolutely integrable and of bounded variation on the line. Then z
U
is also of bounded variation.

Proof. (i) The result follows from Rogozin [(1976), Corollary 1], where it
is established that the lemma is true when h is of the form h = 1�0� b� for some
b > 0.

(ii) Stone (1966) has shown that, under the conditions of the lemma, the
function V�x� = U�x� − �x/µ�1�0�∞��x� is BV. We now write

�z 
 U��x� =
∫
�
z�x− y�dV�y� + 1

µ

∫ x

−∞
z�y�dy�

It is well known that the convolution of two BV functions is also BV, which
deals with the first term. Writing z = z1 − z2 with z1 and z2 nonnegative
functions, we see that the second term is also BV. ✷
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Let the set � be as in Definition A.1. For convenience of notation, we define
the following.

Definition 2.4. For any function H in � and a fixed c ∈ �+, we define a
new function *cH� � → � by

*cH = 1�0� c� 
 H�

For c = 1, we write *cH = *H.

Note that *cH is well defined, that is, 1�0� c� 
 H always exists (for H ∈ � �,
because the effective range of the integration is finite. Further, it is obvious
from the definition that *cH�x� =H�x� −H�x− c�.

In what follows, we will be interested in the function *U, where U is the
renewal function corresponding to a distribution function F. The equivalence
between Blackwell’s renewal theorem and the key renewal theorem [see, e.g.,
Feller (1971), XI] exemplifies the intimate relationship between the function
*U and the more general class of functions of the form z 
 U, which corre-
spond to solutions of (2). Note that, under the conditions of Lemma 2.3 (i), *U
qualifies as a right factor for the convolution operator according to Definition
A.1. Further, we note that *U satisfies the equation

*U = 1�0�1� + *U 
 F�(5)

In the next section, the results for solutions of renewal-type equations will
first be proved for the function *U (that is, for z = 1�0�1�� and then, using
these, the general case will be derived.

3. Consistency.

3.1. Continuity and strong consistency. After these preparatory definitions
and results, we now investigate how the convergence of a sequence of distri-
butions �Fn� to a distribution F is transmitted to the convergence of the
corresponding solutions of renewal-type equations Zn = zn 
 Un to Z = z 
U,
provided, of course, that the functions zn converge to z in an appropriate
sense. In the simplest case, zn = z for all n ∈ �, and this is the case we begin
with. We follow the outline by Grübel and Pitts (1993); our results will first be
established for a deterministic sequence Fn with the desired properties, and
then for the empirical distribution F̂n.

Apart from the moment conditions to ensure that U�x� < ∞ for all x, we
assume that the distribution F in (1) is spread out, that is, some convolution
power of F has a nonvanishing absolutely continuous part, as in Asmussen
[(1987), VI]. For the function z in (1), we assume throughout that, for some
α > 1, z is in Dαα. Note that this condition implies (4), and yields in particular
that z
U belongs to the space D∞. A more elaborate statement, which we use
repeatedly in the sequel, is contained in Pitts (1991). Let F be a nonlattice
probability distribution function on � with

∫
x2 dF�x� < ∞�

∫
xdF�x� > 0,

and U be the associated renewal function. Assume that z is a measurable
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real-valued function such that, for some α > 1� z ∈ Dαα. Then there exists a
constant c1 = c1�α� such that

�z 
 U�∞ ≤ c1�z�αα�*U�∞�(6)

Note that here we use the term lattice to denote a distribution which is
concentrated on the integer multiples of some λ > 0. In the literature, this is
sometimes called a lattice distribution with span λ and displacement 0, while
a lattice distribution is defined more generally as one which puts all its mass
at the points a+ rλ, for r ∈ �, where a and λ are not commensurate.

We are now in a position to state the following.

Proposition 3.1. For n = 1�2� � � � � let Fn be a sequence of nonlattice prob-
ability distribution functions on the real line with a finite second moment and
let F be another distribution with a positive first moment µ and a finite second
moment, such that F is spread out. Assume that the following hold:∫

x2 dFn�x� →
∫
x2 dF�x��(7)

and, for some α > 1,

lim
n→∞�Fn −F�αα = 0�(8)

Let U,Un be the renewal functions for F,Fn, respectively. Then

lim
n→∞�*Un − *U�∞ = 0�

Proof. Let µ1� n� µ2� n be the first and second moments of Fn�n = 1�2� � � � �
It is easily verified that (8) implies that µ1� n → µ as n → ∞. Since the
functions *Un satisfy the inequality �*Un�∞ ≤ 1/µ1� n + µ2� n/µ

2
1n [see, e.g.,

Grübel and Pitts (1993), Lemma 3.3], it follows from (7) that

sup
n

�*Un�∞ <∞�(9)

Further, for n = 1�2� � � � � the functions Un satisfy Un = 1�0�∞� + Fn 
 Un,
which yields that ��1�0�∞�−Fn�
Un�
*U = *U. From (5) we also have, using
Lemma A.2(ii),

��1�0�∞� −F� 
 Un� 
 *U = ��1�0�∞� −F� 
 *U� 
 Un

= 1�0�1� 
 Un = *Un�

from which we derive

��F−Fn� 
 Un� 
 *U = *U− *Un�(10)

The norm inequality (6) with (8) and (9) imply that �F−Fn� 
Un → 0 in D∞�
Lemma A.2 (iii) now gives that

�*U− *Un�∞ = ���F−Fn� 
 Un� 
 *U�∞
≤ ��F−Fn� 
 Un�∞�µ*U�����

and the result follows from Lemma 2.3(i). ✷



96 K. POLITIS AND S. M. PITTS

Remarks. (i) As in many places in renewal theory, a special treatment is
needed for lattice distributions. If, for some n ∈ ��Fn in the proposition is a
lattice distribution concentrated on the integer multiples of some λ, then it
follows directly from the renewal theorem for the lattice case [Feller (1971),
XI] that *Un�x� does not converge to a limit as x→ ∞ (unless, of course, 1 is a
multiple of λ). The consequence is that *Un does not belong to D∞ and, if this
happens for infinitely many n, the proposition cannot be true. On the other
hand, the nonlattice assumption of Fn is sufficient to ensure that *Un ∈ D∞
for all n, by the renewal theorem again.

(ii) It is obvious that the proposition remains valid if the nonlattice as-
sumption for the Fn’s is replaced by the condition that “at most finitely many
Fn are lattice.”

Suppose now thatX1�X2� � � � � is a sequence of independent and identically
distributed random variables on a probability space �.�� ��� and let the
distribution function of X1 be F. In order to apply Proposition 3.1 to the
sequence of empirical distributions �F̂n�, we need, in view of Remark (ii)
above, to ensure that only finitely many F̂n are lattice.

Lemma 3.2. Let F be a probability distribution on the line such that F has
a nontrivial continuous part (i.e., F is not purely atomic), and for n ∈ �, let
F̂n be the empirical distribution function corresponding to the independent
random variables X1�X2� � � � �Xn, each having distribution F. Then �-almost
surely, only finitely many of the F̂n are lattice.

Proof. The assumptions on F in the lemma imply that F can be written
as F = Fa + Fc, where Fc is a continuous distribution whose total mass is
nonzero. Let α = ∫

� dFc�x�. Define An to be the event that F̂n is lattice and
let, for any x ∈ ���x = �rx� r ∈ ��. Note that F̂n is lattice if and only if the
ratios X2/X1� � � � �Xn/X1 are rational numbers. We then get, conditioning on
the value of X1, and using the independence of the Xi’s,

��An�X1 = x� = ��Xi ∈ �x for i = 2�3� � � � � n�
(11) = �Fa��x� +Fc��x��n−1�
Since Fc��x� = 0, we obtain that ��An�X1 = x� ≤ �1− α�n−1, so that, consid-
ering now all possible values of X1,

��An� =
∫
Fa��x�d��x� ≤ �1− α�n−1�

The Borel–Cantelli lemma now yields that ��lim supAn� = 0, whence the
result. ✷

Remarks. (i) A trite modification is needed in (11) if x = 0, because in
this case the first equality there fails. This can be overcome by conditioning,
instead of X1, on the value of the first nonzero of the Xi’s.
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(ii) If the distribution F in the lemma is only assumed nonlattice, then
the result is no longer true. To see a counterexample, consider a nonlattice
distribution F concentrated on the set � of rational numbers; for example, if
�r1� r2� � � �� is an enumeration of the rationals, then F can be taken to be a
purely atomic distribution assigning mass 2−k to rk. Then, with probability 1,
all of F̂n are lattice with F being obviously nonlattice.

Note that the condition “F has a nontrivial continuous part” is weaker than
the condition “F is spread out” which we impose in the sequel, so that Lemma
3.2 holds if F is assumed spread out there.

We now turn to apply the results above to solutions of renewal-type equa-
tions, as asserted. The result of Proposition 3.1 can be easily generalized, so
that the function 1�0�1� is replaced by any indicator function on a half-open
finite interval �a� b� of the real line. This, in turn, implies that the result re-
mains valid for any finite linear combination of such functions. Finally, by
approximating any function z ∈ Dαα by step functions, we arrive at the fol-
lowing.

Proposition 3.3. Let F,Fn�α be as in Proposition 3.1 and assume that, for
some α′ > 1� z� zn are functions in Dα′α′ such that

lim
n→∞�zn − z�α′α′ = 0�(12)

Then

lim
n→∞�zn 
 Un − z 
 U�∞ = 0�

The appearance of (12) in Proposition 3.3 is intuitively plausible. Conver-
gence of both zn and Un to z and U, respectively, in an appropriate way is
needed for the convergence of zn 
 Un to z 
 U. The fact that Un is “close”
to U here is guaranteed by the convergence of Fn to F, as Grübel and Pitts
(1993) have shown. The practical significance of (12), however, can be perhaps
better understood after the following theorem, which is the main result in this
section. We now substitute the sequence of functions Fn by the empirical se-
quence F̂n. Since F̂n is a random sequence of functions, one wonders whether
the same will be true for ẑn. To see the answer, recall that in (1) the func-
tion z depends most often on F. We may therefore assume that there exists a
smooth function T which associates the distribution F with the function z in
(1). It is, in fact, more convenient to take 1�0�∞� −F as the input of the map
T, so that T�1�0�∞� −F� = z. Thus, ẑn = T�1�0�∞� − F̂n� stands for the natural
nonparametric estimator of z. The next theorem gives strong consistency of
an estimator ẑn 
 Ûn for Z in (1).

Theorem 3.4. Let F be a spread-out distribution with finite second and
positive first moment, U be the associated renewal function and F̂n the empiri-
cal distribution associated with a random sampleX1� � � � �Xn with distribution
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F. Let α′ > 1 and assume that a sequence �ẑn�n∈N of random elements of the
space Dα′α′ satisfies

lim
n→∞�ẑn − z�α′α′ = 0 a�s��

where z is a function in Dα′α′ . Then the following holds:

lim
n→∞�ẑn 
 Ûn − z 
 U�∞ = 0 a�s�

Proof. SinceF is assumed spread out, employing Lemma 3.2 and Remark
(ii) after Proposition 3.1, we see that there is no loss of generality if we assume
that, for all ω in a set S ∈ � with ��S� = 1� F̂n��� ω� is nonlattice for all
positive integers n.

Further, Lemma 2.1 shows that the F̂n satisfy (8) a.s. More precisely, there
is a set S′ in � , with ��S′� = 1 and such that, for ω ∈ S′,

lim
n→∞ sup

x∈�
�1+ �x��α�F̂n�x�ω� −F�x�� = 0�

The fact that the F̂n also satisfy (7) almost surely is a direct consequence of
the strong law of large numbers; since

∑n
k=1X

2
k/n = ∫

x2 dF̂n�x�, we obtain
that

∫
x2 dF̂n�x�ω� →

∫
x2 dF�x� for all ω in set S′′, with ��S′′� = 1. Finally,

under the conditions of the theorem, we can also find a set S′′′ with ��S′′′� = 1
and such that

lim
n→∞ sup

x∈�
�1+ �x��α�ẑn�x�ω� − z�x�� = 0

for all ω ∈ S′′′. Proposition 3.3 now gives that

lim
n→∞ sup

x∈�
��ẑn 
 Ûn��x�ω� − �z 
 U��x�� = 0�

for all ω ∈ S ∩S′ ∩S′′ ∩S′′′, and the result follows. ✷

Remarks. Note that, if F�0−� = 0, the second moment condition can be
relaxed. For indeed in this case, *Ûn�x� ≤ Ûn�1� for any x ∈ � a.s. [see, e.g.,
Asmussen (1987), IV, Theorem 2.4]. Next, Baxter and Li (1994) proved that
Ûn�x� → U�x� a.s. for any fixed x ≥ 0. [In fact, Baxter and Li (1994) require
F to be continuous. However, for the result quoted here, this assumption is
easily seen to be unnecessary.] For x = 1, this shows that supn�*Un�∞ < ∞,
and consequently, for F one-sided, (7) in Proposition 3.1 is superfluous. Thus,
the finiteness of a moment higher than the first would be sufficient for F in
the theorem.

Let E be the subset of D∞ consisting of all nonlattice probability distribu-
tions F with a finite second and a positive first moment. Further, we define
E1 = �1�0�∞� −F� F ∈ E�. Then E1 is a subset of Dαα for any α > 1. Consider
the map �� E1 → D∞ defined by ��1�0�∞� −F� = T�1�0�∞� −F� 
 U. Assume
that a distribution F ∈ E is such that F is spread out. Then, Proposition 3.3
shows that the map � is continuous at 1�0�∞� − F if T is so. Intuitively, the
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reason that we need continuity of T only for the map � to be continuous, relies
on the fact that the map 2� E1 → D0�−1 with 2�1�0�∞� −F� = U is continuous
[Grübel and Pitts (1993), Proposition 3.11; see also the first example in the
next subsection].

3.2. Applications. We now look at some consequences of Theorem 3.4 by
considering some special cases of renewal-type equations. To begin with, it is
very simple to verify that the consistency result we proved in the previous
subsection holds for the resulting estimator Ẑn in each of the three equations
in Example I in the Introduction. On the other hand, our results apply for
equations over the whole real line. In the first example below, we consider such
an equation and we demonstrate that results for a solution of a renewal-type
equation can be utilized to deduce analogous results for the renewal function.
A different example of encountering (1) in a probabilistic context can be seen
by considering the renewal function in an renewal process on �, when the
distribution of the first renewal point is different from that of the subsequent
ones.

Example (a). Consider the equation

Z�x� = z�x� +
∫
�
Z�x− t�dF�t��(13)

where the function z is defined as follows:

z�x� =




1
µ

∫ ∞

x
�1−F�t��dt� x ≥ 0,

1
µ

∫ x

−∞
F�t�dt� x < 0.

(14)

Then, provided that F has finite second moment, the function V defined by
V�x� = U�x� − �x/µ�1�0�∞��x� is the unique bounded solution of (13); see
Alsmeyer [(1991), p. 95] and the relevant discussion in the Introduction. This
equation has been studied extensively in the one-sided case; see, for example,
Feller [(1971, XI.3]. Some discussion in the general case is in Smith (1960).

In order to be able to apply Theorem 3.4, we need to show that the sequence
of the “empirical” elements ẑn converges to z in some D-space. This follows
from the proof of the following lemma.

Lemma 3.5. Let F be as in Proposition 3.1, assuming in addition that F
possesses a finite moment of order β for some β > 2. Let Fn be a sequence of
nonlattice probability distributions such that each Fn has finite moments of
order β, and assume further that

lim
n→∞�Fn −F�ββ = 0�

Assume that U, Un are the renewal functions associated with F�Fn, res-
pectively, and defineV�x� = U�x�−�x/µ�1�0�∞��x� andVn�x� = Un�x�−�x/µn�
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1�0�∞��x�, where µn > 0 is the first moment of Fn. Then we have that

lim
n→∞ sup

x∈�
�Vn�x� −V�x�� = 0�

Proof. Consider the equation (13) with z being defined as in (14). Let, for
any positive integer n, the function zn be defined by

zn�x� =




1
µn

∫ ∞

x
�1−Fn�t��dt� x ≥ 0,

1
µn

∫ x

−∞
Fn�t�dt� x < 0.

Then for z as in (14), we have that V = z 
 U, and similarly, Vn = zn 
 Un.
By considering positive and negative values of x separately, we obtain that
limn→∞ �zn − z�αα = 0. The lemma now follows from Proposition 3.3. ✷

Theorem 3.6. Assume that F, U, V are as in Lemma 3.5, F̂n is the em-
pirical distribution based on a random sample X1�X2� � � � �Xn taken from

F and Ûn is the empirical renewal function. For n = 1�2� � � � � let µ̂n be

the average of Xi for 1 ≤ i ≤ n and define the function V̂n by V̂n�x� =
Ûn�x�− �x/µ̂n�1�0�∞��x�, provided that µ̂n > 0; otherwise, let V̂n be identically
zero.
Then with probability 1 it holds that

lim
n→∞ sup

x∈�
�V̂n�x� −V�x�� = 0�

Proof. This follows immediately from Lemma 3.5 on noting that the ar-
guments in the proof of Theorem 3.4 apply again. ✷

The corresponding consistency result for the empirical renewal function Ûn,
similar to Grübel and Pitts [(1993), Theorem 2.1], is an easy deduction from
above. With the assumptions of Theorem 3.6, it holds that a.s.

lim
n→∞�Ûn −U�0�−1 = 0�

In the next example, we consider a renewal-type equation on the non-
negative half-line. We therefore assume until the end of this section that
F�0−� = 0. To simplify the notation, we write 1−F rather than 1�0�∞� − F
for a distribution F on �0�∞�, and it will be tacitly understood that the func-
tion denoted by 1−F is identically zero on �−∞�0�.

Example (b). Consider Example II in the Introduction about an alternat-
ing renewal process. With the notation of that example, suppose that we
sample repeatedly from FW and FR and let F̂W�n be the empirical distri-
bution based on a sample X1�X2� � � � �Xn from FW and F̂R�n be the empir-
ical distribution based on a sample Y1�Y2� � � � �Yn from FR. Assume that,
for i = 1�2� � � � � n�Xi and Yi are all defined on the same probability space
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�.�� ���. Then �X1+Y1�X2+Y2� � � � �Xn+Yn� constitutes a random sample
taken from F.

However, in this case, it seems more natural to estimate F = FW 
 FR

by the convolution of the empirical distributions F̂W�n 
 F̂R�n� rather than
the empirical distribution F̂n of F based on �Xi + Yi�. A similar choice (in
a different context) is made in Pitts, Grübel and Embrechts (1996); see also
Theorem 5.6 here. We thus consider a function F̃n defined for t ≥ 0 and ω ∈ .
by F̃n�t�ω� = �F̂W�n 
 F̂R�n��t�ω�, or, for brevity, F̃n = F̂W�n 
 F̂R�n.

In order to prove strong consistency for a nonparametric estimator for the
function Z in (3) based on F̃n, we need the following lemma.

Lemma 3.7. Let β > 0 and �gn�n∈� be a sequence of functions in D0β such
that gn�x� = 0 for x < 0, and for some function g ∈ D0β,

lim
n→∞�gn − g�0β = 0�

Assume that �Fn�n∈N is a sequence of probability distribution functions on
�0�∞� with the property supn

∫
xβ dFn�x� < ∞, and F is another distribution

function on �0�∞� such that
lim
n→∞�Fn −F�0β = 0�

Then for all 0 < α < β, we have

lim
n→∞�gn 
 Fn − g 
 F�0α = 0�

Proof. Pitts [(1994b), Lemma 2.3] gives that, for g ∈ D0β and a probabil-
ity distribution function F, the following norm inequality holds:

�g 
 F�0β ≤ 2β�g�0β��1−F�0β + 1��(15)

Observe that this implies in particular that, under the conditions on gn�g�Fn�
F in the lemma, both gn 
 Fn and g 
 F are in D0β; the fact that they are
right-continuous with left-hand limits is easily checked from dominated con-
vergence.

We then decompose the term in the final statement of the lemma as follows:

gn 
 Fn − g 
 F = �gn − g� 
 Fn + �g 
 Fn − g 
 F��(16)

We see immediately from (15) that ��gn − g� 
 Fn� → 0 in D0β; thus, the
convergence is also true in D0α for any 0 < α < β. Considering the remaining
term on the right-hand side of (16), let� be the space of linear combinations of
indicator functions on intervals �a� b�, for −∞ < a < b <∞. Using arguments
like those in Grübel and Pitts [(1993), proof of Lemma 3.12], we see that there
exists a sequence �hk�k∈� of functions in � vanishing on �−∞�0� and such
that, for 0 < α < β� limk→∞ �hk − g�0α = 0.
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Next, it is straightforward to verify that, for any function h ∈ � which is
zero for negative argument,

lim
n→∞�h 
 Fn − h 
 F�0α = 0�(17)

We then bound the � �0α-norm of the second term in (16) as follows:

�g 
 Fn − g 
 F�0α ≤ �g 
 Fn − hk 
 Fn�0α + �hk 
 Fn − hk 
 F�0α
+ �hk 
 F− g 
 F�0α�

Using (15), (17) and the convergence of hk to g in D0α, we see that each of the
three terms above converges to zero, taking the limits first with respect to n
and then as k→ ∞, and this yields the result. ✷

We can now state the following, which gives strong consistency of Z̃n.

Theorem 3.8. Consider an alternating renewal process with everything de-
fined as above. Assume that for some α > 1, the working and repair time
distributions, FW and FR, respectively, satisfy∫

�0�∞�
xα dFW�x� <∞�

∫
�0�∞�

xα dFR�x� <∞�(18)

and assume further that F = FW 
 FR is spread out.
Let, for n ∈ �� Ũn be defined by Ũn = ∑∞

k=0 F̃

k
n if F̃n is not concentrated

at zero; in such a case, let Ũn ≡ 0. Define also the function Z̃n by Z̃n =
�1− F̂W�n� 
 Ũn. Then a.s.,

lim
n→∞�Z̃n −Z�∞ = 0�

Proof. With probability 1, Z̃n in the statement of the lemma is the solu-
tion of (3) corresponding to F̃n (and 1−F̂W�n�. Further, in the remark following
Theorem 3.4, we proved that when F vanishes on the negative half-line, only
the finiteness of a moment of order higher than the first is needed for Propo-
sitions 3.1 and 3.3 to apply. The finiteness of such a moment for F here can
be easily seen from (18). Next, Lemma 2.1 with (18) show that

lim
n→∞�F̂W�n −FW�0α = 0� lim

n→∞�F̂R�n −FR�0α = 0(19)

almost surely. We now write

F̃n −F = �F̂R�n −FR� − ��1− F̃W�n� 
 F̂R�n − �1−FW� 
 FR��
Let α′ be such that 1 < α′ < α. Since supn

∫
xα

′
dF̂n�x� < ∞ a.s., employing

(19) and Lemma 3.7, we obtain that the term in the square brackets above
tends to zero in D0α′ a.s. Using (19) again, we finally deduce from the last
equation that limn→∞ �F̃n − F�0α′ = 0 a.s. The theorem now follows from
Proposition 3.3, employing arguments similar to those in Theorem 3.4. ✷



ESTIMATION FOR RENEWAL EQUATIONS 103

4. Asymptotic normality and the bootstrap.

4.1. Differentiability and asymptotic normality. In this section, we extend
the results of Grübel and Pitts (1993) for the empirical renewal process√
n�Ûn − U� and consider the asymptotic behavior of the process√
n�Ẑn − Z�. Here we make the additional assumption that the function z

appearing in the renewal-type equation is of bounded variation, so that the
function Z = z 
U is also BV from Lemma 2.3(ii). In view of this, we can use
a more direct approach, so that in particular, there is no need to establish the
results for indicator functions first, as in Section 3.

We begin with the following observation. If the function z is BV and belongs
to the setDαα for some α > 1, andFn is a sequence of probability distributions,
then, using arguments similar to those in the proof of Proposition 3.1, it is easy
to see that the following generalization of (10) holds:

��F−Fn� 
 Un� 
 �z 
 U� = z 
 U− z 
 Un�(20)

provided thatF�Fn have finite second and positive first moment and thatF is
spread out; these assumptions yield in particular, in view of Lemma 2.3, that
the function z
U is an appropriate right factor for the convolution operator 
.

Proposition 4.1. Let �Fn�n∈� be a sequence of nonlattice probability dis-
tribution functions on the real line with a finite second and a positive first
moment, and suppose that F is a spread-out distribution on � such that

∫
�
x2 dF�x� <∞�

∫
�
xdF�x� > 0�

and that (7) holds. Assume that, for some α > 1, there exists a function g in
Dαα such that

√
n�Fn −F� → g inDαα�(21)

Further, let, for α′ > 1 and for n ∈ �� �zn� be a sequence of functions in Dα′α′

and z be another function in Dα′α′ , so that z is BV. Assume additionally that
there exits a function q ∈ Dα′α′ such that

√
n�zn − z� → q inDα′α′ �(22)

Then
√
n�zn 
 Un − z 
 U� → �g 
 U� 
 �z 
 U� + q 
 U inD∞�

Proof. We mention first that conditions (21) and (22) in the statement
of the proposition imply that Fn −F → 0 and zn − z → 0 in Dαα and Dα′α′ ,
respectively. This shows the force of Proposition 3.3 in the course of the proof
below. We now write

√
n�zn 
 Un − z 
 U� = √

n�zn 
 Un − z 
 Un� +
√
n�z 
 Un − z 
 U��(23)
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For the first term, we have
√
n�zn 
 Un − z 
 Un� − q 
 U

(24) = �√n�zn − z� − q� 
 Un + �q 
 Un − q 
 U��
We now use (6) to obtain that

��√n�zn − z� − q� 
 Un�∞ ≤ c�√n�zn − z� − q��α′α′ �*Un�∞�
for some constant c, and the right-hand side of this tends to 0 because of (22).
As a result, using Proposition 3.3 and (24), we deduce that

√
n�zn 
 Un − z 
 U� → q 
 U in D∞�

Considering the second term in (23), we employ (20), which gives
√
n�z 
 Un − z 
 U� = �√n�Fn −F� 
 Un� 
 �z 
 U��

We consequently write
√
n�z 
 Un − z 
 U� − �g 
 U� 
 �z 
 U�

= ��√n�Fn −F� − g� 
 Un� 
 �z 
 U� + �g 
 Un − g 
 U� 
 �z 
 U��
Using (6) once more, we see that ��√n�Fn − F� − g� 
 Un� → 0 in D∞ as
n→ ∞, while Proposition 3.3 shows again that g 
Un−g 
U→ 0 in D∞. An
application of Lemma A.2 then yields, using again that z 
 U is BV, that

√
n�z 
 U− z 
 Un� → �g 
 U� 
 �z 
 U�

in D∞, whence the result. ✷

We use Proposition 4.1 to obtain an appropriate differentiability property
for �. Recall the discussion at the end of Section 3.1 and the definition of
the sets E1 and E there. Further recall that we assume ��1�0�∞� − F� =
T�1�0�∞�−F�
U, where T�Dαα → Dα′α′ is defined by T�1�0�∞�−F� = z. Hence,
we require a particular differentiability property for T, that of Hadamard
differentiability. Gill (1989) asserts that a necessary and sufficient condition
for a map ψ taking x in a Banach space �B1� � · �1� to an element ψ�x� in
another Banach space �B2� � · �2� to be Hadamard differentiable at x ∈ B1 is
that there exists a map ψ′

x which is linear and bounded so that

�ψ�x+ tnhn� − ψ�x� − ψ′
x�tnh��2

tn
→ 0 as n→ ∞�(25)

for any real sequence tn with limn→∞ tn = 0 and any sequence hn in B1 such
that hn → h ∈ B1. Assuming that T is Hadamard differentiable at 1�0�∞� −F,
we obtain under the conditions on �Fn� and F in Proposition 4.1,

√
n
(
��1�0�∞� −Fn� −��1�0�∞� −F�) → �′

1�0�∞�−F�g��
where

�′
1�0�∞�−F�g� = −�g 
 U� 
 �z 
 U� +T′

1�0�∞�−F�g� 
 U�
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This says that � is differentiable in a certain sense at 1�0�∞� −F, where F is
a spread-out probability distribution function with corresponding z BV. This
is a version of Hadamard differentiability for � defined on E1, along certain
curves, that is, along those curves where

∫
x2 dFn�x� →

∫
x2 dF�x�.

The condition (21) is clearly imposed in Proposition 4.1 with a view to ap-
plying Lemma 2.2. When we substitute Fn by the sequence of empirical dis-
tributions F̂n, the function g in the limit of (21) becomes a Brownian bridge
B scaled by the distribution F.

Theorem 4.2. Let F be a spread-out probability distribution with∫
xdF�x� > 0

and such that, for some α > 2,
∫ �x�α dF�x� <∞. Assume further that for some

β�β′ > 1, there exists a measurable mapT�Dββ → Dβ′β′ withT�1�0�∞�−F� = z,
so that z is BV and such that T is Hadamard differentiable at 1�0�∞� −F. Let

ẑn be defined for ω ∈ . by ẑn��� ω� = T�1�0�∞�−F̂n��� ω��. Let B be a Brownian
bridge and let the process B ◦F be defined by �B ◦F��t�ω� = B�F�t��ω�. We
then define, suppressing the dependence on ω of the functions involved,

B̂z
n = √

n�ẑn 
 Ûn − z 
 U�(26)

and

Bz = ��B ◦F� 
 U� 
 �z 
 U� + �T′
1�0�∞�−F�−B ◦F�� 
 U�

Then we have that, in D∞,

B̂z
n →d B

z�

Proof. Since for any function g�g ∈ Dββ implies that g ∈ Dγγ for any
γ < β, there is no loss of generality if we take β < α/2. Lemma 2.2 yields
that, for such β,

√
n�F̂n −F� →d B ◦F in Dββ�

Let Cββ�F� be the space of all functions in Dββ that are continuous except
possibly at the points where F jumps. Since the Brownian bridge B has con-
tinuous sample paths, B ◦F is concentrated on Cββ�F� [Pollard (1984), page
97]. On noting that this is a separable subspace of Dββ, the result is now
readily verified by applying a Skorohod–Dudley–Wichura construction [Pol-
lard (1984), page 71], as in Grübel and Pitts [(1993), Theorem 2.2], and using
Proposition 4.1. ✷

It is easily seen that the map T in the statement of the theorem is es-
sentially only required to be Hadamard differentiable along the appropriate
curves. Also, one might only assume T to be defined in an open subset of the
space Dββ rather than throughout that space.
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4.2. Examples. We now illustrate the use of the results so far in this sec-
tion with reference to the two examples considered in the Introduction. In the
first example Theorem 4.2 is directly applicable, while for the second a modi-
fication is needed and we prove differentiability of the functional in question.
Since both examples involve functions which are identically zero for negative
argument, we write 1−F rather than 1�0�∞� −F for the tail of a distribution
function, as in Section 3.2.

(a) Consider the three equations in Example I of Section 1. Assume that
the set E1 is as in Section 3.1 and let, for i = 1�2�3, the map Ti be defined
on the set of all functions in E1 that are zero on �−∞�0�, by Ti�1 −F� = zi
with zi defined for a fixed ξ > 0 as in the Introduction. Suppose that F is
a distribution on �0�∞� which satisfies the conditions of Proposition 4.1. For
any sequence �Fn� of probability distribution functions such that (21) holds
for some g ∈ Dαα (with α > 1), it is immediate to verify that Ti is Hadamard
differentiable along the appropriate sequences. Thus, when we substitute Fn

by the empirical distribution function F̂n, Theorem 4.2 shows that in each
of the three cases for the spent, residual and total lifetime, respectively, the
empirical process B̂z

n in (26) converges in distribution, as random elements of
D∞, to a Gaussian process Bzi which is given by

Bzi = ��B ◦F� 
 U� 
 �z 
 U� −Bi
ξ 
 U�

where Bi
ξ is a process defined, for i = 1�2�3 and for t ≥ 0, as follows:

B1
ξ�t� �� = 1�0� ξ��t�B�F�t�� ���

B2
ξ�t� �� = B�F�t�� �� −B�F�t+ ξ�� ��

and

B3
ξ�t� �� = 1�0� ξ��t��B�F�ξ�� �� −B�F�t�� ����

(b) We continue the discussion of Example (b) in Section 3 about the estima-
tor Z̃n in an alternating renewal process. Here we establish asymptotic nor-
mality of

√
n�Z̃n−Z�. For a fixed time t, asymptotic normality of

√
n�Z̃n�t�−

Z�t��, in the usual sense that it converges in distribution to a normal variable,
has been shown by Baxter and Li (1994).

We have seen in Section 3 that a complication arises if we are to use Z̃n

rather than Ẑn as an estimator of Z. In analogy with that section, here we
cannot apply Theorem 4.2 to study the behavior of the empirical process B̂z

n,
since B̂z

n in (26) is expressed in terms of the empirical renewal function Ûn,
while Z̃n is defined using Ũn (see Theorem 3.8). More explicitly, we note that
since we sample from both the working and the repair time distributions, FW

and FR, here it seems more suitable to use the pair of functions �1−FW�1−
FR� rather than 1 −FW 
 FR as the input of this new functional, which we
denote by �̃.
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More precisely, the map �̃ can be decomposed as follows:

�1−FW�1−FR� → �1−FW�1−FW 
 FR� → �1−FW� 
 U�(27)

where U is the renewal function corresponding to FW 
FR. We thus see that
an extra step is required in proving differentiability of �̃. This step involves
establishing that the functional which maps �1−FW�1−FR� to 1−FW 
FR

is differentiable. This is achieved in the next auxiliary result, whose proof is
based on Lemma 3.7.

Lemma 4.3. Let �Fn�� �Gn� be two sequences of probability distribution
functions concentrated on �0� ∞� for all n ∈ �, and such that Fn�Gn have
finite moments of order α for some α > 1. Assume that F�G are two other
probability distribution functions on �0� ∞� with finite moments of order α,
and suppose that, for some functions g�h ∈ D0α,

√
n�Fn −F� → g�

√
n�Gn −G� → h in D0α�

Then, for any 0 ≤ α′ < α, the following holds:
√
n�Fn 
 Gn −F 
G� → g 
 G+ h 
 F in D0α′ �

Proof. We use the following decomposition for the difference between the
two sides in the final statement of the lemma:

√
n�Fn 
 Gn −F 
G� − �g 
 G+ h 
 F�

= {√
n�Fn −F� − g

}

 Gn

+ {√
n�Gn −G� − h

}

 F+ �g 
 Gn − g 
 G��

The moment conditions of Gn imply that the sequence �1 − Gn� is � �0α-
bounded. Using (15) and the assumptions in the statement of the lemma, we
thus derive that

{√
n�Fn −F� − g

}

 Gn → 0�

{√
n�Gn −G� − h

}

 F→ 0�

in the space D0α; thus, the above statements are also true in the weaker norm
of the space D0α′ . Finally, the fact that g 
 Gn − g 
 G → 0 in D0α′ as n → ∞
under the assumptions of the lemma, can be seen to be true from Lemma 3.7.

✷

In the next theorem, we obtain the asymptotic behavior of the process√
n�Z̃n −Z�. Its proof relies on the Skorohod–Dudley–Wichura theorem com-

bined with an appropriate differentiability property for each of the two com-
ponent maps of �̃ in (27), which was given respectively in Proposition 4.1 and
Lemma 4.3, and the intrinsic property of Hadamard differentiation that it
obeys the chain rule; see also Pitts [(1994a), proof of Theorem 4.3].
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Theorem 4.4. In an alternating renewal process, assume that the working
and repair time distributions satisfy, for an α > 2,

∫
�0�∞�

xα dFW�x� <∞�
∫
�0�∞�

xα dFR�x� <∞�

and assume further that F = FW 
FR is spread out. Let B�B
′ be two indepen-

dent Brownian bridges and define a process BW�R by

BW�R = �B ◦FW� 
 FR + �B′ ◦FR� 
 FW�

Then, with Z̃n defined as in Theorem 3.8, the process
√
n�Z̃n −Z� converges

in distribution, as random elements of D∞, to the process

�BW�R 
 U� 
 ��1−FW� 
 U� + �B ◦FW� 
 U�

Here U is the renewal function associated with F.

4.3. Bootstrap. A problem that has attracted interest from statisticians
is how we can construct nonparametric confidence intervals for the renewal
functionU. Baxter and Li (1994) and Frees [(1986), using a different estimator
for U, however] obtained asymptotic confidence intervals for U�t� in the case
where t is viewed as fixed. Grübel and Pitts (1993), exploiting the Dαβ-space
framework that we have also adopted here, derived asymptotic bootstrap con-
fidence bounds for U that hold for any t ∈ �. Grübel and Pitts (1993) quote
Shorack (1982) and Gill [(1989), Section 2.4] for the idea underlying the con-
struction. Gill [(1989), Theorems 4 and 5] showed that, if Fn is an estimator
sequence for F in a Banach space B1 and φ is a differentiable functional from
B1 into another Banach space B2, then the distribution of

√
n�φ�Fn�−φ�F��

is asymptotically the same as that of
√
n�φ�F∗

n� − φ�Fn��, where F∗
n is the

distribution based on a sample of size n from Fn. It is noticeable that, as Gill
(1989) points out, φ is only required to be differentiable at a single point F
and not even locally.

After these considerations, it seems plausible that the construction of non-
parametric asymptotic confidence bounds for z 
U, in the spirit of Grübel and
Pitts [(1993), Theorem 2.3], should present no real difficulty, since we have
established differentiability of the map �. Recall the definitions of B̂z

n�B
z in

Theorem 4.2. Let now

Rn�x� = ����B̂z
n��∞ ≤ x�� R�x� = ����Bz��∞ ≤ x��

Since the distribution function R is unknown, we use the bootstrap to obtain
confidence bounds for the output of �. As in Grübel and Pitts (1993), consider,
for n ∈ �, a functional 	n� �n → D∞ which associates with each vector x =
�x1� � � � � xn� in �n a probability distribution function 	n�x� with jumps of size
1/n at each of the points �x1� � � � � xn�. Namely, 	n�x� = n−1∑n

i=1 1�xi�∞�. Let
�X1� � � � �Xn� be a random sample from the distribution F and �Xi1

� � � � �Xin
�
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be a bootstrap sample from F based on the observations X1� � � � �Xn. Then
the bootstrap estimate R̂n�x� of Rn�x� is given by

R̂n�x� = n−n ∑
i∈In

1�0� x�

×
(√

n���(
1�0�∞� − 	n�Xi1

� � � � �Xin
�)−�

(
1�0�∞� − F̂n

)��∞
)
�

where the summation is taken over all i = �i1� � � � � in� in the set In = �1�
2� � � � � n�n.

The next theorem and its proof are merely a restatement of Grübel and
Pitts [(1993), Theorem 2.3] for the current situation.

Theorem 4.5. Assume the conditions of Theorem 4.2 and let R�Rn� R̂n be
defined as above. Let 0 < δ < 1 and, for n = 1�2� � � � � let q̂n�δ� be the δ-quantile
of the distribution R̂n. Then, provided that R�0� = 0, the following holds:

lim
n→∞ �

(��B̂z
n��∞ ≤ q̂n�δ�

) = δ�

Similar results, concerning the successful use of the bootstrap to construct
nonparametric confidence intervals in stochastic models, have appeared in
Pitts (1994a) in the context of queueing theory and Pitts (1994b) for compound
distributions.

A small-scale simulation study to assess the performance of the bootstrap
for the distribution of the residual lifetime Z2 in a renewal process has been
carried out in Politis (1997). Using 1500 samples of size n = 300, it was found
that the coverage probabilities of the 80% and 90% confidence bounds for Z2
were 0.8093 and 0.9113, in both cases exceeding the nominal confidence level.

5. Efficiency. The notion of asymptotic efficiency we discuss here is that
of van de Vaart (1988, 1991). Generally, suppose that 
 is a set of probability
measures defined on a measurable space �S�� � and that we estimate κ�P�,
where P is a member of 
 and κ is a functional taking values in a Banach
space B1. More precisely, based on a random sample X1�X2� � � � �Xn from
P, we form an estimator sequence Tn, that is a measurable map of the data
vector, Tn = sn�X1�X2� � � � �Xn�, where sn� �Sn�� n� → �B1�� � is measurable
and � is a σ-field of sets on B1.

Let now φ� B1 → B2 be another functional, where B2 is a Banach space
again. The main result of van de Vaart (1991) is that if Tn is asymptotically
efficient for κ�P�, then φ�Tn� is asymptotically efficient for �φ◦κ��P� provided
that φ and κ are “smooth” enough, in an appropriate sense. Smoothness of φ
can be made precise by considering a weak version of Hadamard differentiabil-
ity, as discussed in Gill (1989). Building on van der Vaart’s (1991) results, and
utilizing the fact that the map � of the previous sections is differentiable, we
prove asymptotic efficiency for our estimator Ẑn. We use the same framework
as the one we considered to prove consistency and asymptotic normality; we
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regard the tail of the (unknown) probability distribution function F, 1�0�∞�−F,
as an element of a space Dαβ, while the sequence �1�0�∞� − F̂n� plays the role
of the estimator sequence, Tn.

Definition 5.1. For β ≥ 0, let 
β be the set of probability measures P on

the Borel σ-field of the real line with
∫ �x�2β dP�x� < ∞. For such a P in 
β,

we define

�β�P� =
{
g ∈ L2�P��

∫
gdP = 0�

∫
�x�2βg2�x�dP�x� <∞

}
�

Let now 
β�P� be the collection of all maps �0�1� → 
β, t→ Pt, such that, as
t→ 0,

∫ [
1
t

{
�dPt�1/2 − �dP�1/2

}
− 1

2
g�dP�1/2

]2
→ 0�(28)

for some function g ∈ �β�P�, and

sup
t

∫
�x�2β dPt�x� <∞�

We also define a map κ� 
β → Dββ with κ�P� = 1�0�∞� −F, where F is the
probability distribution function associated with the measure P.

The definition is similar to that in Pitts (1994a), on noting that in that
paper, the probability measures considered are concentrated on �0�∞�. Using
Definition 5.1 and van der Vaart [(1988), Lemma 5.21], we arrive at the fol-
lowing which gives the required smoothness condition for κ, the map defined
above.

Lemma 5.2. Let β be in �+. For any P ∈ 
β, there exists a bounded linear
map κ′

P� �β�P� → Dββ such that

1
t
�κ�Pt� − κ�P�� → κ′

P�g� in Dββ�

for every path in 
β�P� satisfying (28). Further, κ′
P�g� =

∫
1���∞�gdP.

We now define efficiency of an estimator in our context, following van der
Vaart (1991). Note that, without loss of generality, we may replace the continu-
ous paths �Pt� in (28) by sequences �Pn� (setting, e.g., n = t−2) as in Groene-
boom and Wellner [(1992), page 18]. We then write Pn instead of Pn−1/2 to
simplify the notation. Let Tn be an estimator sequence for κ at P in the space
Dββ. Assume that for every sequence �Pn� of probability measures which sat-
isfies (28) for some function g, it holds that, under Pn,

n1/2[Tn − κ�Pn�
] →d L�(29)

where L is a tight probability measure on Dββ that does not depend on the
function g. Then there exists a tight Borel measure NP on this space with
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NP

[
κ′
P�T�P��] = 1 and NP ◦ b∗−1 =N�0� �κ̄P� b∗�2P�, for all b∗ ∈ D∗

ββ, the dual
space of Dββ; here, κ̄P� b∗ is the gradient of κ in direction b∗ [see, e.g., van
der Vaart (1991)], and � �P denotes the L2-norm with respect to the reference
measure P. Moreover, there exist independent random elements G andW into
the space Dββ with its Borel σ-field, such that  �G� = NP� �W� is tight
and L =  �G+W�; here,  �X� denotes the law of a random element X in a
metric space. An estimator sequence Tn is called (asymptotically) efficient for
κ at P if it satisfies (29) with L =NP.

Let now Tn = 1�0�∞� − F̂n. We have the following, which gives efficiency
of our input estimator. This is similar to Pitts [(1994a), Lemma 5.2]; see that
paper for a proof (notice that the continuity condition for F has been dropped
here, however).

Lemma 5.3. Let γ > β > 0 and assume that
∫ �x�2γ dF�x� <∞. Then Tn is

efficient for κ at P in Dββ (relative to �β�P�).

Recall the definition of Hadamard differentiability from Section 4.1. If S is
a subspace of the Banach space B1 there and (25) holds only for sequences
hn with hn → h ∈ S, then the map ψ is said to be Hadamard differentiable
(at x) tangentially to S [see Gill (1989) for details of this concept]. A simple
inspection of the arguments in the proof of Theorem 4.2 shows that the func-
tional � with ��1�0�∞� −F� = z 
U is Hadamard differentiable (along certain
curves) tangentially to the space Cββ�F�. Further, it follows from Theorem 2.1
of van der Vaart and Lemma 2.2 that κ′

P��β�P�� ⊂ Cββ�F�. Lemma 5.3 and a
slight variation of van der Vaart [(1991), Theorem 3.1] to take account of (7),
together yield the following.

Theorem 5.4. Consider a renewal-type equation Z = z + Z 
 F on the
real line where F is a spread-out probability distribution with a positive first
moment,

∫ �x�2γ dF�x� < ∞, where γ > β > 1, and β�T� z and ẑn are as in
Theorem 4.2. Then ��Tn� is efficient for Z in the space D∞ [relative to the
space �β�P��.

The result is in the same spirit as Pitts [(1994a), Theorem 5.3], who proved
asymptotic efficiency of an estimator for the waiting time distribution in a
GI/G/1 queue. In general, in the function space framework of Grübel and Pitts
(1993) which we have followed throughout, once differentiability is established
for a “stochastic functional,” asymptotic efficiency follows along with the other
statistical properties we have considered so far. For our functional �, the
main effort in a particular renewal-type equation is to prove that the map T
is differentiable, since differentiability of � then follows as we have seen in
the previous sections. The next theorem illustrates this, and complements the
results of Grübel and Pitts (1993).

Theorem 5.5. Let F be a nonlattice probability distribution function with
a positive first moment, P be the associated probability measure and α > 2.
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Assume that, for a γ > 2α,
∫ �x�γ dF�x� < ∞. Then the empirical renewal

function Ûn is efficient for U in the space D0�−1 [relative to �α�P�].

Proof. Grübel and Pitts [(1993), Proposition 3.14] have shown that the
functional 2 defined in a suitable subset of Dαα which associates the tail of
a distribution function F to the renewal function U ∈ D0�−1 corresponding
to F, is differentiable at 1�0�∞� − F for all F satisfying the conditions of the
theorem. The result now follows, in a similar fashion with Theorem 5.4, from
van der Vaart [(1991), Theorem 3.1] and Lemma 5.3. ✷

Note in particular that the spread-out assumption for F has been relaxed
here. This is so because for the results of Grübel and Pitts (1993), this as-
sumption is unnecessary. Compared with the results of the current paper, it
appears that the relaxed assumptions for F there seem to be a consequence
of the monotonicity of the renewal function U.

A different approach for Theorem 5.5 might be based on Example (a) of
Section 3.2, where a normalized version of the renewal function is seen to be a
solution of a renewal-type equation. This would reduce the moment conditions
on F, but would require F to be a spread-out distribution.

Finally, in Example (b) of Section 3.2 for an alternating renewal process, we
have chosen the function F̃n rather than the empirical distribution F̂n as an
estimator for the distribution F there. The following result justifies this choice
as it shows that the resulting nonparametric estimator for Z is efficient.

Theorem 5.6. Let α > β > 1 and assume that the working and repair time
distributions FW and FR in an alternating renewal process satisfy∫

�0�∞�
x2α dFW�x� <∞�

∫
�0�∞�

x2α dFR�x� <∞�

and that F = FW 
FR is spread out. Then Z̃n is efficient for the solution Z of
(3) in the space D∞ [relative to �β�P�].

APPENDIX

Here we collect some standard results on functions of bounded variation on
the real line and define the convolution operator 
 which is used throughout
the paper.

Recall that a function H� � → � is of bounded variation on the line if
and only if it can be represented as the difference between two nondecreasing
bounded functions. We write H = H1 − H2 for the Jordan decomposition
of H, and we may assume without loss of generality that both H1 and H2
are nonnegative. When we speak of BV functions, we shall always assume
implicitly that they are right-continuous and that limx→−∞H�x� = 0. If g
is a Borel measurable real-valued function, the integral

∫
g�x�dH�x� is then

the Lebesgue–Stieltjes integral defined by
∫
g�x�dH�x� = ∫

g�x�dH1�x� −∫
g�x�dH2�x�.
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It is well known [see, e.g. Gelfand, Raikov and Shilov (1964), Section 31]
that to any complex-valued functionHwhich is BV there corresponds uniquely
a complex measure µH. If H is a real-valued function, then µH is a signed
measure and this is the case we consider here. To this measure µH we associate
a positive measure �µH�, the total variation measure of µH, defined by

�µH��E� = sup
∑
i

�µH�Ei���

where the supremum is taken over all partitions �Ei� of the set E; see Rudin
[(1987), Chapter 6]. The following result is well known; see, for example, Rudin
[(1987), Theorems 6.2 and 6.4]. Let H� � → � be a function which is BV and
�µH� be the total variation measure associated with µH. Then �µH� is a positive
measure such that �µH���� <∞.

Remark. Since �µH��E� ≥ �µH�E�� for any set E, with our notation, every
signed measure on the Borel σ-field associated with a BV function is, in fact,
finite. In the literature, a signed measure is sometimes defined as any σ-
additive set function, and our notion of a signed measure coincides with what
is referred to as a finite signed measure.

For various proofs in the main body of the text, we need to define convolution
with respect to nonmonotonic BV functions, as well as with respect to non-
decreasing functions.

Definition A.1. Let� be the set of all right-continuous functionsH� � →
� with limx→−∞H�x� = 0 and such that H satisfies one of the following
conditions:

(a) H is nondecreasing.
(b) H is of bounded variation on �.

Let g� � → � be a measurable function such that the functions y→ g�x−y�
are H-integrable for all x ∈ �. Then we define the convolution g 
 H as the
real-valued function

�g 
H��x� =
∫
g�x− y�dH�y�� x ∈ ��

This extends Grübel and Pitts [(1993) Definition 3.1], who considered con-
volutions with respect to a (possibly, unbounded) nondecreasing function, such
as the renewal function.

The following readily proved lemma lists some elementary properties of the
operator 
 defined above.

Lemma A.2. (i) Let H�J belong to � . Then we have

H 
J = J 
H�

in the sense that if one exists, then the other exists as well and they are equal.
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(ii) Let g be such that, for H�J ∈ � , g 
H and g 
 J exist. Then

�g 
H� 
 J = �g 
 J� 
 H�

in the sense that if one exists, so does the other and they are equal.
(iii) Let J be a function of bounded variation and g be any function in D∞.

Then g 
 J belongs to D∞ and the following holds:

�g 
 J�∞ ≤ �g�∞�µJ���� <∞�

where �µJ� is the total variation measure associated with the function J.
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