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Summary
An important statistical objective in environmental risk analysis is estimation of minimum
exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response
in a dose-response experiment. In such settings, representations of the risk are traditionally based
on a parametric dose-response model. It is a well-known concern, however, that if the chosen
parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result.
We apply a nonparametric approach for calculating benchmark doses, based on an isotonic
regression method for dose-response estimation with quantal-response data (Bhattacharya and
Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based
confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a
short simulation study. An example from cancer risk assessment illustrates the calculations.
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1. Introduction
1.1. Benchmark risk analysis

An important objective in environmental risk assessment is estimation of the severity and
likelihood of damage from hazardous stimuli to humans or to the environment (Stern, 2008).
To identify the damaging effects of a hazardous agent, investigators often consider bioassays
on small mammals or other biological systems, or epidemiological analyses of human
populations at risk. This risk is quantified via a function R(x), which is typically the
probability of exhibiting the adverse effect in a subject exposed to a particular dose or
otherwise-quantifiable exposure level, x, of the hazardous agent. A major effort in risk
analysis involves dose-response modeling, i.e., modeling of the risk function R(x).
Commonly, observations are taken as proportions of responding subjects at each x. This is
the ‘quantal response’ setting, and it is common in carcinogenicity testing, environmental
toxicity analysis, and many other biomedical risk investigations (Piegorsch, 2002).

*Correspondence to: Walter W. Piegorsch, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
wpiegors@email.arizona.edu.

This paper has been submitted for consideration for publication in Environmetrics

NIH Public Access
Author Manuscript
Environmetrics. Author manuscript; available in PMC 2013 December 01.

Published in final edited form as:
Environmetrics. 2012 December 1; 23(8): 717–728. doi:10.1002/env.2175.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



When conducting environmental risk/safety studies that generate dose-response data, an
increasingly popular statistical technique is benchmark analysis (Crump, 1984, 2002). The
strategy manipulates components of the dose-response curve to yield the benchmark dose
(BMD) of the agent necessary to induce a predetermined change in the adverse effect,
relative to background levels. The pre-specified target change is called the benchmark
response (BMR). If the exposure is measured as a concentration, one refers to the exposure
point as a benchmark concentration, or BMC. Risk analysts use BMDs or BMCs for setting
exposure limits or other so-called ‘points of departure’ when assessing the effects of
hazardous environmental stimuli (Kodell, 2005).

Statistical inferences in benchmark analysis focus on 100(1 − α)% confidence limits for the
benchmark dose. Driven by public health or other safety considerations, only one-sided,
lower limits are employed, denoted as BMDLs (Crump, 1995). Where needed for clarity, we
add a subscript for the BMR level at which each quantity is calculated: BMD100BMR and
BMDL100BMR; 0 < BMR < 1. In this fashion, BMDs and BMDLs – or BMCs and BMCLs,
etc. – are employed for risk characterization and management by a variety of agencies,
including the U.S. Environmental Protection Agency (EPA), the U.S. Food and Drug
Administration (FDA), the Organisation for Economic Co-operation and Development
(OECD), and many others (Faustman and Bartell, 1997).

With quantal data we assume a binomial model: Yi ~ indep. Bin. (Ni, R(xi)), where Ni is the
number of subjects tested and R(xi) is the function representing the probability of response
at dose xi (i = 1, …, n). For risk-analytic considerations the exposed subjects’ differential
risk adjusted for any spontaneous or background effects is often of interest. This leads to
consideration of excess risk functions such as the extra risk RE(x) = {R(x) − R(0)}/{1 −
R(0)} (Piegorsch and Bailer, 2005, §4.2). With proportion and incidence data the BMD is
determined by setting RE(x) = BMR over x > 0 and finding the smallest solution. The
method is a form of inverse non-linear regression and except for the use of an excess risk
function upon which to base the inversion, is essentially equivalent to estimation of an
‘effective dose’ such as the well-known median effective dose, ED50 (Piegorsch and Bailer,
2005, §4.1).

1.2. Model dependence
A fundamental concern with benchmark analysis is its potential sensitivity to specification
of the dose-response function, R(x). A wide variety of parametric forms has been proffered
for R(x) when estimating BMDs. Most operate well at (higher) doses near the range of the
observed quantal outcomes; however, these different models can produce wildly different
BMDs at very small levels of risk when applied to the same set of data (Faustman and
Bartell, 1997; Kang et al., 2000). Past strategies to avoid parametric model dependencies in
low-dose risk analysis generally relied on the so-called No-Observed-Adverse-Effect Level
(NOAEL), which did not require specification of R(·). Substantial statistical instabilities
have been identified with use of the NOAEL for risk estimation, however, and contemporary
analysts recommend against use of this dated technology (Kodell, 2009; Izadi et al., 2012).
Needed is a modern statistical methodology that can avoid instabilities and inadequacies
resulting from uncertain model specification.

Recent work in this direction has led to some intriguing advances, including model
averaging techniques motivated from both frequentist (Moon et al., 2005; Faes et al., 2007;
Wheeler and Bailer, 2009) and Bayesian (Bailer et al., 2005; Morales et al., 2006)
perspectives. Other work has adopted the Bayesian paradigm to study non- and semi-
parametric approaches for BMD estimation (Wheeler and Bailer, 2012; Roy et al., 2012).
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Alternatively, we consider a (frequentist) nonparametric estimator for the observed dose-
response pattern without call to a specific parametric form, and then invert this to construct a
model-independent estimator for the BMD. Model-free curve estimation has seen only
limited implementation in risk assessment. Krewski et al. (1991) provided perhaps the
earliest such effort of any substance, in their discussion of ways to avoid model specification
in low-dose risk extrapolation, but they did not connect this to the modern machinery of
benchmark analysis. More recently, Dette et al. (2005) and Dette and Scheder (2010) (along
with the references found therein) discussed kernel-based nonparametric estimation for
effective doses, such as the ED50, from a quantal-response experiment. As noted above,
ED50 estimation shares many similarities with BMD estimation, although Dette and his co-
authors did not connect their work to problems in risk analysis. Bhattacharya and Lin (2010)
produced an adaptive, isotonic regression-based method for estimating nonparametric
effective doses in the larger area of bioassay analysis, but also considered explicitly the
benchmark dose problem. Their approach was based on earlier work of Bhattacharya and
Kong (2007), henceforth ‘BK’, and they constructed dose estimates inverted from the
original risk function R(x), not from excess risk functions such as RE(x). Nonetheless,
adaptations and extensions of the BK technique can be effectively manipulated to calculate
BMDs and BMDLs with quantal data, and we focus herein on such operations. Section 2
reviews the BK methodology and expands upon it to construct BMDs from a
nonparametrically estimated extra risk function. Section 3 explores ways to calculate
corresponding BMDLs, using nonparametric bootstrap methods. Section 4 evaluates the
small-sample performance of these bootstrap-based BMDLs via a short simulation study,
and Section 5 illustrates the methods with a modern example from cancer risk assessment.
Section 6 ends with a brief discussion.

2. Model-independent benchmark analysis
2.1. Isotonic dose-response estimators

We continue to assume a binomial structure for our quantal-response data: Yi ~ indep. Bin.
(Ni, R(xi)), i = 1, …, n. We write the sample proportions as pi = Yi/Ni, and assume the dose
values are ordered such that 0 = x1 < x2 < ··· < xn. Rather than rely on any parametric
specifications on the dose-response function, however, we mimic the strategy taken by BK
and only oblige R(·) to satisfy simple continuity and monotonicity assumptions. Imposition
of monotonicity constraints is not new in quantal-response analysis; e.g., Müller and Schmitt
(1988) described a monotonized kernel smoothing approach for estimating an effective dose
such as ED50, which was then expanded upon by Dette et al. (2005) – mentioned above –
and Yuan and Yin (2011), among others. Our focus here with the BK strategy is driven by a
number of factors: as shown below, the method has a naturally intuitive nature and is fairly
straightforward to implement. (In §6 we will also briefly explore some smoothing extensions
of the approach.)

Formally, we require R(x) to be an absolutely continuous function R: ℝ → [0, 1] such that
R(a) ≤ R(b) for any ordered reals a ≤ b. Notice that such an R(·) possesses the characteristics
of a continuous cumulative distribution function (c.d.f.).

Initially, the BK strategy views the monotonized sequence {R(x1), R(x2), …, R(xn)} as the
estimation target, for which the unique maximum likelihood estimator (MLE) is the isotonic
sequence

(2.1)
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(Ayer et al., 1955). This ensures p̃1 ≤ ··· ≤ p̃n, and may be obtained via the well-known pool-
adjacent-violators (PAV) algorithm (Silvapulle and Sen, 2004, §2.4). For a model-
independent, isotonic estimator of the function R(x), BK construct a linear interpolating
spline from the PAV estimates p̃i:

(2.2)

for i = 1, …, n − 1, and R̃(xn) = p̃n. If focus is on estimation of an ED50, or more generally
any ED100π for a fixed π ∈(0, 1), one simply inverts the isotonic estimator in Equation (2.2)
at that π. This achieves a model-independent estimate of the effective dose:

. By viewing R(x) as a c.d.f. and  as its πth sample quantile,
BK show that this ED estimator is unique, consistent, and asymptotically normal under a set
of typical regularity conditions.

Applied to benchmark analysis, this approach can be manipulated to produce model-
independent estimates of the BMD. For notational simplicity, we denote BMD100BMR as
ξ100π, where π = BMR. Differing from an effective dose, the BMD is defined by inverting
the extra risk RE(x) = {R(x) − R(0)}/{1 − R(0)} at the desired level of π = BMR ∈ (0, 1):
ξ100π = inf{x > 0 : RE(x) = π}. Thus we mimic the BK construction and build an isotonic
estimator for RE(x) from the PAV-constrained values in Equation (2.1). The result is a linear
interpolating spline connecting the suitably adjusted, monotonized, pointwise estimates of
the extra risks at each xi: R̃E(x) = {R̃(x) − R̃(0)}/{1 − R̃(0)}, or

(2.3)

for i = 1, …, n − 1, and R̃E(xn) = (p̃n − p̃1)/(1 − p̃1).

2.2. Model-independent BMDs
We employ the model-independent, isotonic estimator in (2.3) to calculate a similarly
model-independent estimator for the BMD: as one would do with any estimated extra risk
function, simply invert R̃E(x) at the specified BMR = π and find the smallest positive
solution. That is, take ξ̃100π = inf{x > 0: R̃E(x) ≥ π}. Using arguments similar to those
employed by BK and Bhattacharya and Lin (2010), we can show that this point estimator
possesses asymptotic qualities similar to its simpler cousin based on (2.2). Formally, for
convergence we have:

Lemma 2.1—For a given π = BMR ∈ (0, 1) assume the BMD, ξ100π, is the unique
positive solution to RE(ξ) = π, and also assume there exists some γ > 0 such that

Let the estimator ξ̃100π be defined via ξ̃100π= inf{x > 0: R̃E(x) ≥ π}. Then ξ̃100π → ξ100π
a.s. as N* → ∞ and n → ∞, for

(2.4)
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where N*= mini=1,…,n{Ni} and  for some εo > 0 and some bounded
interval [a, b] ⊂ [ξ100π − γ, ξ100π + γ] that contains the true ξ100π.

Asymptotic normality also follows:

Lemma 2.2—For a given π = BMR ∈ (0, 1) assume the risk function R(x) is twice
differentiable, its first derivative R′(x) has a lower bound, and its second derivative R″(x)
has an upper bound, all in some neighborhood of the true BMD, ξ100π. As above, let N* =
mini=1,…,n{Ni} and assume the ratio of N* to maxi=1,…,n{Ni} and the ratio of
mini=1,…,n−1{xi+1 − xi} to maxi=1,…,n−1{xi+1 − xi} are both bounded away from zero. Then
for ξ̃100π = inf{x > 0: R̃E(x) ≥ π} and p1 = Y1/N1,

as N*/n1/4 → ∞, where λπ = R(0) + π{1 − R(0)}, λ̂π = p1 + π(1 − p1), and

with i = [R(xi), R(xi+1)] (i = 1, …, n − 2), n−1 = [R(xn−1), R(xn)] and ℐ (λ) as the
indicator function such that ℐ (λ) = 1 if λ ∈ and ℐ (λ) = 0 otherwise.

We give brief sketches of the proofs for these lemmas in the Appendix.

Notice that since R ̃E(x) is a form of isotonic, continuous, linear interpolating spline, we can
solve for our model-independent estimator ξ̃100π = inf{x > 0: R̃E(x) ≥ π} explicitly:

(2.5)

(We discuss below strategies to accommodate the unusual case when ξ = BMR > {p̃n − p̃1}/
{1 − p̃1}.)

These results help motivate use of ξ̃100π in practice. In particular, for risk/regulatory
purposes the BMDL can be built from ξ̃100π as a large-sample, lower, 100(1 − α)%
confidence limit on BMD; denote this by ξ100π. One possible construct is the simple Wald
limit ξ100π = ξ̃100π − zασ̃π, where zα is the upper-α critical point from a standard normal
distribution and σ̃π is the estimated large-sample standard error of ξ̃100π. Notice from
Lemma 2.2, however, that computation of σ̃π depends upon the underlying risk function,
creating difficulties if we are unwilling to fully specify the form of R(x) (as is our basic
premise). BK encountered a similar predicament for their model-independent  estimator
based on (2.2), and appealed instead to the bootstrap (DiCiccio and Efron, 1996) for making
confidence statements. They found that their nonparametric bootstrap-based inferences
could achieve respectable stability for inverse-dose estimation, and so we also consider the
bootstrap to build model-independent BMDLs. We explore this in the next section.
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3. Model-independent bootstrap BMDLs
Appeal to bootstrapping for construction of confidence limits in risk assessment has seen a
number of recent applications, and is becoming an accepted approach for calculating critical
risk-analytic quantities such as the BMDL. Most authors employ it under some form of
parametric specification, however; cf., e.g., Zhu et al. (2007), Wheeler and Bailer (2008),
West et al. (2009), Buckley et al. (2009) and the references therein. Here, we develop a
bootstrap-based approach for building BMDLs with our model-independent estimator from
(2.5).

In keeping with our general estimation strategy, we assume no parametric form for R(x),
although we do continue to impose our continuity and monotonicity assumptions. We also
continue to assume a binomial parent distribution for the data. To perform the bootstrapping,
we begin with the original proportions Yi/Ni (i = 1, …, n) and resample each n-dose quantal
response B > 0 times. That is, in the bth resample at each xi we generate the pseudo-random
variate  from Bin.(Ni, Yi/Ni), i = 1, …, n. We then apply the PAV algorithm to the s to
yield the monotonized bootstrap sequence

From these we produce an isotonic bootstrap estimate of the extra risk via (2.3). Denote this

as . We then apply (2.5) to find a bootstrapped . (For simplicity here we suppress
the BMR subscript π on ξ̃, but it is understood that all these operations are conducted for a
fixed, pre-specified π = BMR.) Following suggestions by Moerbeek et al. (2004) and West
et al. (2009) for the number, B, of bootstrap resamples, we work with B = 2000.

Two special cases occur when Yi = 0 or when Yi = Ni at any i. If so, the resampling will
always produce  or , respectively, generating no new bootstrap information
(Bailer and Smith, 1994). Various remedies for this are possible (Buckley et al., 2009); in
keeping with our nonparametric strategy, we refrain from applying any parametric-model
constructs. Instead, we add a small constant ε > 0 to the numerator and twice it to the
denominator of the observed proportions Yi/Ni. That is, whenever Yi = 0 or Yi = Ni, we
replace Yi/Ni with {Yi + ε}/{Ni + 2ε}. This shrinks the proportion away from 0 or from 1
and towards . (Shrinkage towards any fixed value is admittedly arbitrary, and we chose 
here simply as an objective, default, shrinkage target. If in practice a different target were
available based on experiment- or stimulus-specific considerations, it could be easily
employed instead.) We experimented with a variety of possible values for ε, and found that
only a slight amount of shrinkage was needed to stabilize the bootstrap calculations. We
settled on , i.e., whenever Yi = 0 or Yi = Ni, replace Yi/Ni with .

To find a lower 100(1 − α)% confidence limit on the BMD, we collect the s together to
produce a bootstrap distribution for ξ̃. From this, we apply the well-known percentile

method (DiCiccio and Romano, 1988): order the B bootstrapped  values into

 and report the lower αth percentile: . This represents a
model-independent, nonparametric BMDL for use in risk assessment practice.
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4. BMDL performance evaluation
4.1. Simulation design

To investigate the performance of our model-independent BMD, ξ̃100π, and BMDL, ξ100π,
in finite-sample settings we conducted a short series of Monte Carlo simulations. We set the
BMR to the standard default level π = 0.10 (U.S. EPA, 2012), and for ξ100π = ξ10 operated
at 95% nominal coverage. The design was chosen to involve either four dose levels, x = 0,
0.25, 0.5, 1.0, corresponding to a standard design in cancer risk experimentation (Portier,
1994), or six dose levels, x = 0, 0.0625, 0.125, 0.25, 0.50, 1.0, expanding on the four-dose
geometric spacing. We also included a modified six-dose design x = 0, 0.1, 0.2, 0.4, 0.6, 1.0
that gives less focus to doses near x = 0. Equal numbers of subjects, Ni = N, were taken per
dose group. We fixed the total sample size at (or as near as possible to) ΣNi = 100, 200, 400,
or 4000, so that the per-dose sample sizes were N = 25, 50, 100, or 1000 for the four-dose
design and N = 16, 33, 66, or 666 for the six-dose designs.

For the underlying dose-response patterns we chose three popular quantal-response models
from cancer risk assessment (Schlosser et al., 2003):

constrained multi-stage, , where βj ≥ 0 (j = 0, 1, …, k);

log-probit, R(x) = γ0 + (1 − γ0)Φ(β0 + β1 ln[x]), where γ0 ∈ (0, 1); or

Weibull, R(x) =γ0 + (1 − γ0)(1 − exp{−eβ0xβ1}), where γ0∈ (0, 1) and β1 ≥ 1.

(Here Φ(·) is the standard normal c.d.f.) For the constrained multi-stage specification we set
k = 2 to produce a comparable three-parameter model. Note that with the log-probit we
define R(0) = γ0.

To set the parameters for each model, we fixed R(x) at the three doses x = 0, , 1 and solved
for the three unknowns. Based on typical patterns seen in cancer risk assessment (Bailer and
Smith, 1994; Buckley and Piegorsch, 2008), we set risks at x = 0 between 1% and 30%, and
increased the other risk levels to produce a variety of (strictly) increasing forms ending with
high-dose risks at x = 1 between 10% and 90%. The actual specifications and resulting
parameter configurations for the various models are given in Table 1; we also include the
corresponding values of ξ10. For each configuration (labeled A–F), 2000 individual, pseudo-
binomial, data sets were simulated to produce point estimates ξ̃10.

From Lemma 2.1 we expect ξ̃100π → ξ100π in sufficiently large samples. To study the
pattern of this convergence we calculated the median value of ξ̃10 from the 2000 simulated
data sets at each model parameterization in Table 1, and subtracted from this the
corresponding, true value of ξ10 to produce an estimate of median bias.

To construct the 95% BMDL, B = 2000 bootstrap samples were generated from each
simulated data set as described in §3, and ξ10 was taken as the lower 5th percentile of this
bootstrap collection. Coverage was then evaluated as the event ξ10 ≤ ξ10. (Notice that the
approximate standard error of the empirical coverage proportion over the original 2000

simulated data sets is .) All of our calculations were performed
with the R statistical programming environment (R Development Core Team, 2011).

4.2. Infinite BMDs
An unusual artifact we uncovered while conducting our Monte Carlo computations was that
for some dose-response patterns, calculation of a nonparametric BMD can occasionally
break down. One obvious case is when the BMR is set too high, so that the isotonic extra
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risk estimator never reaches the desired benchmark response over the range of the doses,
i.e., R̃E(x) < π = BMR, ∀x ∈ [0, xn]. If so, there is no solution to the BMD-defining
relationship R̃E(ξ) = π. Of course, if the extra risk were estimated using a fully parametric
(non-decreasing) function one could simply extrapolate the function outside of the dose
range to acquire the solution. To imitate this strategy with our nonparametric estimator,
suppose that R̃E(x) from (2.3) is strictly increasing along its final segment between xn−1 and
xn. Then if R̃E(x) < π ∀x ≤ xn, we simply extend this final line segment past xn until it
intersects with the horizontal line at π, and solve for the ξ̃100π at that intersection point.
While admittedly one should apply any such extrapolations past the range of the data with
great caution, this strategy nonetheless allows us to report an objective estimate for the
BMD in this unusual case.

The extrapolative estimate for the BMD will still fail if the final line segment from (2.3) is
flat, i.e., if p̃n−1 = p̃n (or when p̃n−2 = p̃n−1 = p̃n, etc.). When this occurs, the data are in effect
telling us that the nonparametrically estimated dose response cannot attain the BMR, no
matter how large x grows. Correspondingly, in such an instance we simply drive the
estimator ξ̃100π to ∞, or, equivalently, report it as undefined.

Operationally, when any ‘infinite’ ξ̃100π was observed in our bootstrap procedure, we set the
estimate equal to machine infinity. If this occurred for more than 100(1 − α)% of the
bootstrapped ξ̃*s, we defined ξ100π itself as ‘infinite’, and viewed this as failure to cover the
true ξ100π.

4.3. Simulation results
We summarize the results from our Monte Carlo study in a series of figures. Complete
details are available from the authors, or in Xiong (2011). Recall that we fix BMR = 0.10
and for the BMDL we operate at nominal 95% coverage. We begin with small-sample bias
in the estimator: Figure 1 displays summary boxplots of the median biases observed with the
four-dose design across all model configurations, plotted as a function of per-dose sample
size N. We see that a small-but-consistent negative bias is evidenced, even as N grows large,
although variation in the bias decreases at larger sample sizes. Figure 2 displays the
corresponding results for the geometric six-dose design, where the negative bias is still
evidenced; however, for large N the bias is smaller and has tighter variation. (Results for the
modified six-dose design – not shown – were roughly similar.) On a relative scale the bias is
not exceptional and in fact is not wholly unexpected: bias can be a recurring issue with
isotonic regression estimators (Wright, 1978; Zhao and Woodroofe, 2012). Here, all our
simulation models are convex over the dose range and thus more often than not will produce
convex dose-response patterns in the p̃is. Linearly interpolating between these may lead to
slight overestimation of the extra risk, which would translate as underestimation of ξ100π.
While easy to calculate, the linear interpolator in (2.3) can restrict the method’s ability to
capture nonlinearity in the dose response, especially when n is small. We discuss some
adjustments for this in §6.

Moving to our results for empirical coverage, we next display summary boxplots of the
coverages recorded across all model configurations as a function of per-dose sample size N.
Figure 3 presents the results for the geometric four-dose design: we see median coverages
center near the nominal level, and generally lie within Monte Carlo sampling variability of
nominal, although a pattern of slight undercoverage is observed at the lower sample sizes.

Figure 4 displays results for the geometric six-dose design. The coverage patterns appear
somewhat more stable than those in Figure 3, although there is also a slight skew towards
undercoverage. Variability in the coverage rates is again greater at smaller sample sizes; we
found that this was most common with the constrained (k = 2) multi-stage model.
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Decreasing the per-dose sample sizes while increasing the number of doses appears to yield
greater stability at larger sample sizes, but the effect appears to reverse when sample sizes
drop.

Results for the modified 6-dose design appear in Figure 5. Here, rise in variation is seen
again at small sample sizes, similar to that in Figure 4, but the pattern of median coverage is
more similar to Figure 3. As perhaps expected when the design deemphasizes doses near to
zero, more variation in the coverage rates and more cases of below-nominal coverage
occurred, particularly at small sample sizes. The effect was, however, not dramatic.

On balance, our simulation results indicate stable large-sample coverage characteristics for
the model-independent, bootstrap limit ξ100π at the standard level of π = BMR = 0.10.
Slight undercoverage is evidenced with smaller sample sizes in selected instances,
suggesting that the method should be applied when sufficient data are available to help
validate its asymptotic motivation.

Given the consistent, if slight, negative bias exhibited by the isotonic estimator ξ̃100π, we
also considered use of a more complex bootstrapping procedure that can adjust for such
bias: the bias-corrected, accelerated (BCa) bootstrap. The BCa approach augments the
standard percentile method: it includes a bias correction along with an ‘acceleration’
parameter which are used in tandem to adjust the percentile level for determining ξ100π
(DiCiccio and Efron, 1996). As above, we set the nominal confidence level to 95% and took
π = BMR = 0.10. We evaluated coverage provided by the BCa approach using ξ̃100π as the
point estimator, focusing on the standard four-dose design. Not surprisingly, the resulting
BMDLs exhibited slightly tighter empirical coverages at smaller sample sizes and with the
more spread-out, shallow response configurations ‘A’ and ‘B’. (Generally speaking, a more-
shallow response will yield a higher BMD.) Improvements were not seen across all
configurations studied, however, and the percentile method operated about as well as the
BCa for larger sample sizes. [Details are available in Xiong (2011).] From this, we can
recommend use of BCa-based BMDLs when samples sizes are very small and/or for shallow
response patterns; however, both methods appear to operate adequately in the majority of
cases we studied.

We also conducted Monte Carlo coverage evaluations for the case of BMR = 0.01. While
less common, this smaller BMR may be employed when sufficient data are available to
support inferences at extreme low doses (Kodell, 2009). Our results [not shown; details are
available in Xiong (2011)] were generally similar to those seen above; in particular, the
coverage rates again converged to the nominal 95% level as the sample size increased. At
the lowest sample sizes, however, they appeared much more variable, and often in the
direction of undercoverage. We encountered a few empirical coverage rates that dropped
below 60% with some of the low-response-rate models, especially configurations ‘A’ and
‘B’. This is, in fact, consistent with established benchmark experience: when response rates
are very small at low doses, and if the Nis do not counter by being adequately large,
insufficient information will be available to perform effective inferences if the BMR is set
very low. We therefore urge caution in practice when employing these methods with very
small sample sizes, particularly under very shallow or low-response patterns.

5. Numerical example: Formaldehyde carcinogenesis in laboratory animals
To illustrate how the isotonic BMD equations come together when analyzing quantal data,
consider the following example on the carcinogenic potential of formaldehyde, CH2O.
Formaldehyde is a well-known industrial compound, occupational and environmental
exposures to which are extensive. Schlosser et al. (2003) reported on nasal squamous cell
carcinomas observed in laboratory rats after chronic, two-year, CH2O inhalation exposure.
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Because it is a gas, the CH2O exposure measure, x, is actually a concentration (in ppm) here.
Thus technically we will compute benchmark concentrations (BMCs) based on the quantal
carcinogenicity data. Six CH2O concentrations were studied: x = 0.0, 0.7, 2.0, 6.0, 10.0, and
15.0 ppm. Since intercurrent mortality often occurs in such chronic-exposure studies, the
final tumor incidences were adjusted for potential differences in animal survival. Table 2
lists the survival-adjusted quantal responses provided in Schlosser et al. (2003).

Of interest is calculation of the BMC (and more importantly, a 95% lower confidence limit,
BMCL) to help inform risk characterization of this potential carcinogen. We operate at
BMR = 0.10. To illustrate application of our model-independent methodology, we assume
only that the true dose response is continuous and monotone non-decreasing over x ≥ 0.
From Table 2 the observed response is already non-decreasing, so the per-concentration
PAV estimates p̃i are simply the observed proportions: p̃1 = p̃2 = p̃3 = 0, , and

. Constructing the isotonic extra risk estimator from Equation (2.3) and setting it equal
to BMR = 0.10 produces the model-independent estimate ξ̃10 = 6.50 ppm.

For the BMCL we apply the percentile bootstrap as described in §3. Generating B = 2000
resamples from the original data, we produced the bootstrap distribution displayed in Figure
6. (No occurrences of infinite ξ̃*s were observed among the bootstrap resamples.) Our 95%
BMCL is the lower 5th percentile from this distribution: ξ10 = 6.33 ppm. By comparison,
Schlosser et al. (2003) reported a BMC10 of 6.90 ppm with corresponding 95% BMCL10 =
6.25 ppm under the log-probit model (considered best able to describe the tumor data via a
“statistical goodness-of-fit criterion”). Both sets of values rest in similar ranges, and provide
comparable points of departure for conducting further risk-analytic calculations on
formaldehyde carcinogenicity. We find that our model-independent approach operates
similarly to established parametric analyses for these data, while also freeing the risk
assessor from uncertainties about the quality of any parametric assumptions made to support
the benchmark computations.

6. Discussion and extensions
Herein, we consider a model-independent, nonparametric method for estimating benchmark
doses (BMDs) in quantitative risk analysis. Placing emphasis on cancer risk assessment, our
approach estimates the BMD without the need to specify a particular parametric dose-
response model. Environmental risk analysts can apply our results to construct inferences for
the BMD, avoiding concerns over parametric model adequacy and expanding past the many,
varied parametric models seen in practice.

Of course, some caveats and qualifications are in order. Focus herein has been on
introducing the model-independent estimator ξ̃100π and exploring its asymptotic properties.
We recognize that more complete evaluations are needed to study the operating
characteristics of ξ̃100π and of the corresponding BMDL ξ100π. The three model forms
employed in our simulation study from §4 were motivated primarily from our own
experience with them in cancer risk assessment and from their favored use by Schlosser et
al. (2003). As we presented them, however, these three models do not differ greatly, even
when studied across the various parameterizations in Table 1. Thus we do not wish to leave
readers with a sense that model choice is unimportant. Indeed, many possible models have
been proffered for use with quantal carcinogenicity data, and our isotonic method’s
capabilities under a fuller range of possible dose-response patterns/shapes are open for
further study.

Extensions to more-general nonparametric estimation of shape-constrained regression
functions may also be possible, where information on the shape of the dose response can be
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used to improve quality of the estimation process. Indeed, as noted earlier, the linear
interpolator in (2.3) restricts the method’s ability to capture nonlinearity in the observed
response. This is particulary true when the dose spacings are sparse and wide, as is common
in many cancer risk assessment studies. (Often, as few as n = 3 doses/concentrations are
employed, which spreads the placement even farther apart. We do not recommend
application of our techniques to such sparse designs.) For a relatively simple adjustment,
consider the following, smoothed extension: start by creating an expanded set of dose values
{x̌j} over which to apply the isotonic estimator in (2.2). Between each original, adjacent
dose pair xi < xi+1 (i = 1, …, n − 1) add two additional ‘pseudo-doses’ and space each pair
of pseudo-doses equidistant between their bounding, original doses. Thus between xi = x̌3i−2

and xi+1 = x̌3i+1 take  and , i = 1, …, n − 1. Notice
that this set of J = 3n − 2 expanded doses is again ordered: x̌1 < ··· < x̌J. Next, compute the
estimated isotonic risks from (2.2) at every x̌j; call these p̌j = R̃(x̌j), j = 1, …, J. This gives an
expanded isotonic set of n responses and 2(n − 1) ‘pseudo-responses’ from which to
construct a smoothed risk:

(6.1)

where K(·) is a univariate kernel function and h is a global bandwidth for the smoother. We
choose K(·) as the standard Gaussian kernel and select h via generalized cross-validation
(Green and Silverman, 1994, §3.3). Notice that (6.1) is just the standard Nadaraya-Watson
kernel smoother (Opsomer, 2002), with monotonicity imposed on the p̌js. Also, since the
Gaussian kernel K(·) is log-concave Ř(x) will be monotone (Mukerjee, 1988), as desired.
From this, the smoothed extra risk is simply ŘE(x) = {Ř(x) − Ř(0)}/{1 − Ř(0)}, and at a
fixed π = BMR we can invert this to achieve the smoothed isotonic estimator ξ̌100π = inf{x
> 0: ŘE(x) ≥ π}. To find the BMDL, ξ̌100π, we again apply the percentile bootstrap method
from §3.

To briefly explore how this smoothed construction compares with our simpler, linearly-
interpolated BMDL ξ100π, we returned to our simulation study in §4, and applied the
bootstrap/smoothed strategy to our simulated data. For simplicity, we operated at only BMR
= 0.10 and considered just the four- and six-dose geometric designs. Nominal coverage was
again set to 95%. Figures 7 and 8 display summary boxplots of the resulting coverage
results, for comparison with Figures 3 and 4, respectively. We see roughly similar patterns at
n = 4 doses, although coverage with the smoothed BMDLs appears to be more variable. By
contrast, with the geometric six-dose design the smoothed BMDL exhibits empirical
coverages closer to nominal. Upon closer inspection, we found that the smoothing in ŘE(x)
tended to bow in the extra risks slightly closer to x = 0. This was independent of the true
underlying model, and consequently led to slightly lower BMDLs than those produced from
the linear interpolator, particulary with the four-dose design (cf. the slightly larger
undercoverage seen in Figure 7). For example, applying this smoothing strategy to the
formaldehyde carcinogenicity data in Table 2 produces a slightly smaller point estimate and
bootstrap BMDL: ξ̌10 = 6.27 ppm and ξ̌10 = 6.08 ppm, respectively. (The smoothing
operation may have particular influence with these data, since we have three consecutive
zero responses.) In any case, for achieving our goal to recover greater curvature in the
estimated dose response, this limited investigation suggests that further development of
kernel smoothers may prove advantageous in expanding the nonparametric benchmark
approach.
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It is also of interest to study in greater depth how our estimators’ large-sample features
manifest themselves in small samples. Our asymptotic results require both the number of
doses n and the per-dose sample sizes Ni to grow large. In practice, however, one often
encounters resource constraints that restrict one or both of these factors. As suggested above,
we can gain greater information about the pattern of dose response, and therefore about
ξ100π, if we increase the number of doses. Can increasing n to, say, 10 doses improve the
small-sample operating characteristics of the BMDL if resource constraints or animal-
welfare concerns force the Nis down to perhaps only 10 subjects/dose? [Or, even lower? The
OECD runs its avian toxicity test with n = 10 doses and as little as a single bird per dose,
i.e., N = 1! We should note that their recommended design includes a sequential sampling
scheme that can help increase power and estimation accuracy (OECD, 2010).] For example,
Bhattacharya and Lin (2011) were able to show that an adaptive nonparametric estimator
based on inverting (2.2) proved competitive with more doses but few observations/dose;
how this extends to estimation with extra risk functions is yet another open question. We are
studying all of these inter-related issues for model-independent benchmark analysis, and
hope to report on them in a future manuscript.
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Appendix
In this Appendix we give proofs for the asymptotic results from Lemmas 2.1 and 2.2. They
follow similar outlines as their counterparts based on R̃(x) in BK and Bhattacharya and Lin
(2010), hence we provide only brief sketches here.

Proof of Lemma 2.1 (Sketch)
The core approach of our result is to establish that ξ̃100π and ξ100π both lie in an interval
such that |ξ̃100π − ξ100π| shrinks to zero as n → ∞ and N* → ∞, and where (2.4) is
satisfied. To do so, one shows that under these conditions p̃i converges to R(xi) uniformly
for all i, and from this that {p̃i − p̃1}/{1 − p̃1} converges to RE(xi). Since the p̃is are
monotone non-decreasing, it follows that linearly interpolating the quantities {p̃i − p̃1}/{1 −
p̃1} as in (2.3) produces an estimator that converges a.s. to the extra risk at dose x for all

, where , provided R(0) ≥ ϕo. [If R(0) = 0, then the
problem reduces to the setting in BK.] Viewing ξ100π as the inverse of the strictly increasing
extra risk function with a derivative bounded away from zero, this is a continuous function
of π = BMR, as is ξ̃100π. One then shows that if ξ̃100π is found by inverting R̃E(x), |ξ̃100π −
ξ100π| will be bounded above by a value that itself approaches zero, and hence ξ̃100π will
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converge to ξ100π, uniformly, with probability one, on the interval . This attains an
outcome complementary to that achieved by BK, extending their results to estimation of
RE(x) and ξ100π via (2.3) and (2.5), respectively.

Proof of Lemma 2.2 (Sketch)
The proof of asymptotic normality for ξ̃100π extends arguments given by Bhattacharya and
Lin (2010). Fix π = BMR ∈ (0, 1) and denote the associated, true BMD at that π as ξ100π,
satisfying {R(ξ100π) − R(0)}/{1 − R(0)} = π. Recognize that for a given value of R(0),
RE(x) is a monotone function of R(x). In terms of R(·), we can define ξ100π via R(ξ100π) =
R(0) + π{1 − R(0)}; the corresponding PAV-based estimator ξ̃100π satisfies R̃(ξ̃100π) = p1 +
π(1 − p1), where R̃ is given in (2.2). We have then essentially reframed the problem in terms
of the original risk function, as in BK and Bhattacharya and Lin (2010). As BK showed, as
both N* and n approach ∞, and with R(x) strictly increasing in a neighborhood of ξ100π, the
monotonized MLE will collapse to the usual MLE, i.e., one may view p̃i → pi (i = 1, …, n).
Now take advantage of the independence among the pis and, under the conditions listed in
Lemma 2.2, apply Theorem 2.3(a) from Bhattacharya and Lin (2010), which specifies the
asymptotic normality of estimators based on inverting the PAV-estimated risk function.
Here, conditional on p1 we apply their Theorem to ξ̃100π and achieve the result given in the
statement of the Lemma.
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Figure 1.
Median empirical bias from Monte Carlo evaluations for model-independent BMD estimator
ξ̃10 with geometric four-dose design. Horizontal line indicates zero bias.
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Figure 2.
Median empirical bias from Monte Carlo evaluations for model-independent BMD estimator
ξ̃10 with geometric six-dose design. Horizontal line indicates zero bias.
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Figure 3.
Empirical coverage rates from Monte Carlo evaluations for model-independent bootstrap
BMDL ξ10 with geometric four-dose design. Horizontal line indicates 95% nominal
coverage level.
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Figure 4.
Empirical coverage rates from Monte Carlo evaluations for model-independent bootstrap
BMDL ξ10 with geometric six-dose design. Horizontal line indicates 95% nominal coverage
level.
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Figure 5.
Empirical coverage rates from Monte Carlo evaluations for model-independent bootstrap
BMDL ξ10 with modified six-dose design. Horizontal line indicates 95% nominal coverage
level.
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Figure 6.

Probability histogram (and overlaid density estimator) of bootstrap distribution for with
formaldehyde carcinogenicity data from Table 2.
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Figure 7.
Empirical coverage rates from Monte Carlo evaluations for model-independent bootstrap
BMDL10 based on smoothed isotonic interpolator under geometric four-dose design.
Horizontal line indicates 95% nominal coverage level.
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Figure 8.
Empirical coverage rates from Monte Carlo evaluations for model-independent bootstrap
BMDL10 based on smoothed isotonic interpolator under geometric six-dose design.
Horizontal line indicates 95% nominal coverage level.
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