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Abstract

The concept of broad sense agreement (BSA) has recently been proposed for studying the 

relationship between a continuous measurement and an ordinal measurement (Peng et al. [1]). 

They developed a non-parametric procedure for estimating the BSA index, which is only 

applicable to completely observed data. In this work, we consider the problem of evaluating BSA 

index when the continuous measurement is subject to censoring. We propose a nonparametric 

estimation method built upon a derivation of a new functional representation of the BSA index, 

which allows for accommodating censoring by plugging in the nonparametric survival function 

estimators. We establish the consistency and asymptotic normality for the proposed BSA 

estimator. We also investigate an alternative approach based on the strategy of multiple imputation, 

which is shown to have better empirical performance with small sample sizes than the plug-in 

method. Extensive simulation studies are conducted to evaluate our proposals. We illustrate our 

methods via an application to a Surgical Intensive Care Unit study.
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1 | INTRODUCTION

In biomedical research, agreement studies are often carried out to evaluate the similarity of 

measurements obtained by different raters, or to assess whether a new instrument can 

adequately reproduce the result of a “gold standard” instrument. Various methods have been 

developed for studying the agreement between categorical measurements ([2],[3],[4], [5],[6],

[7],[8] among others) and the agreement between continuous outcomes ([9],[10],[11],[12],

[13],[14],[15] among others). These methods are confined to the applications of comparing 

measurements on the same scale.

Peng et al. [1] proposed the concept of broad sense agreement (BSA), which lays the 

foundation for a new framework for assessing the correspondence between a continuous 

scale and an ordinal scale. Peng et al. [1] proposed a sensible BSA index/measure and 
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developed a nonparametric estimation procedure for it. The BSA index is a chance-corrected 

agreement measure that lies between −1 and 1. A higher value of BSA indicates stronger 

alignment between the ordinal scale and continuous scale. A motivating example from Peng 

et al. [1] is the Melanoma and Depression studyMusselman et al. [16], in which the 

depression was measured by the clinician-administered Hamilton Depression Scale (HAM-

D) and self-reported dimensional scale (Carroll-D). The clinician-administered HAM-D 

provided a well-defined depression grade: no depression, mild depression, and severe 

depression, while the self-reported Carroll-D provided a continuous score. The BSA was 

applied to assess whether the less time-consuming Carroll-D could provide consistent results 

as compared with HAM-D to determine the grade of depression. The estimated BSA from 

the study was 0.941, which was close to the upbound of 1. This high value of BSA indicated 

a high capability of finding interpretable cut-off points of Carroll-D that would lead to 

highly consistent ordinal categorical depression grades based on the HAM-D. A more 

detailed review of BSA is presented in Section 2.1.

In this work, we aim to extending the BSA framework by developing BSA estimators which 

can accommodate censored continuous measures. For example, in intensive care unit 

studies, disease severity scores are often used by clinicians for classifying patients to 

different risk groups. A number of studies have been conducted to evaluate the relationship 

between the disease severity scoring and the risk of mortality ([17],[18]). However, it 

remains unknown to which extent the risk grouping method based on disease severity scores 

(ordinal) is concordant with disease-related survival times. One major challenge in this 

example is that disease-related survival times are often subject to censoring due to ICU 

discharge.

Simulation results in section 3 show that directly applying Peng et al. [1]’s estimation 

procedure with censored observations will result in considerably biased estimates. To the 

best of our knowledge, this work is the first to address censored data in the BSA framework.

The presence of censoring to the continuous measurement can greatly complicate the 

estimation and inference of the BSA index. To address this challenge, we first derive a new 

functional representation of the BSA index, which delineates the dependency of the BSA 

index on the the distributions of ordinal and continuous measurements. Such a new 

representation facilitates the development of a new plug-in type estimator of BSA index 

which handles censoring via plugging in existing nonparametric survival distribution 

estimators for censored data. We show the proposed estimator is consistent and 

asymptotically normal and works well with moderate to large sample sizes. The proposed 

estimator also provides computational advantages over Peng et al. [1]’s estimation 

procedure, and can be used as an alternative approach for cases without censoring.

One limitation of the new plug-in estimator is that its empirical performance may be less 

satisfactory when the sample size is small. To achieve improved estimation accuracy with 

small datasets, we investigate an alternative nonparametric estimator based on multiple 

imputation techniques. The imputation-based estimator demonstrate good small sample 

performance at the cost of additional computational intensity.
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The remainder of this paper is organized as follows. In Section 2, we first provide a short 

review of existing estimation method for the BSA measure and then present the proposed 

plug-in and imputation-based estimation methods. We establish the asymptotic properties 

and develop inference procedures for the proposed methods. In Section 3, we conduct 

simulation studies to evaluate the performance of our proposed estimators in comparison 

with the naive methods that either exclude censored observations or treat censored 

observations as observed events. The results show that the proposed estimators successfully 

correct the bias of the naive methods in the presence of censoring. We then illustrate our 

proposed methods via an application to a surgical ICU data in Section 4. Finally, we 

conclude with some remarks in Section 5.

1.1 | Methods

In this section, we provide a brief review of the broad sense agreement (BSA) concept, the 

BSA index and its estimation procedure in Peng et al. [1]. Let X and Y denote a continuous 

and an ordinal measure of a common outcome from the same subject. Let DX and DY  be the 

domain of X and Y, respectively. Peng et al. [1] provided the definition of perfect broad 

sense agreement (disagreement) between X and Y if and only if there exists an increasing 

(decreasing) step function ψ from DX to DY  such that Y = ψ(X) with probability 1. The 

definition of perfect broad sense agreement (disagreement) implies that one is able to 

identify a set of cut-points for the continuous X such that the discretized X is in perfect 

concordance (discordance) with the ordinal Y. Therefore, the BSA framework defined upon 

the above concept provides useful information on the degree of concordance between a 

continuous measure and an ordinal measure.

the perfect broad sense agreement entails a scenario where, for randomlyselected X with Y = 

l, denoted by X(*l), it must be satisfied that X(*1) ⋯ < X(*L)

Based on the above definition, Peng et al. [1] further introduced the definition of a BSA 

index, denoted as ρbsa, to characterize the extent to which the relationship between X and Y 
departures from the perfect BSA scenario. Denote Y as an ordinal variable that takes values 

1 < ⋯ < L, where X is a continuous variable. The perfect broad sense agreement entails a 

scenario where, for randomly selected X with Y = l, denoted by X (*l), it must be satisfied 

that X(*l) <,⋯< X(*L), i.e. the ordering of the continuous measurements should perfectly 

match the ordering of their corresponding ordinal measurements. The BSA measure is 

defined based on the mean square distance between the observed ranks of {X(*l) <,⋯< 

X(*L)} and their expected ranks under the scenario of perfect BSA. Specifically, we denote 

the observed ranks of {X(*l) <,⋯< X(*L)} by (R1, ⋯, RL). Based on the previous description, 

the expected rank of {X(*l) <,⋯< X(*L)} under perfect BSA is (1, ⋯, L). Therefore, the BSA 

measure takes the form,

ρbsa = 1 −
E ∑l = 1

L l − Rl
2

E ∑l = 1
L l − Rl

2 X ⊥ Y
. (1)

The ρbsa is a scaled global measure that takes values from −1 to 1, with larger value 

indicates better BSA and a value of 1(−1) indicates perfect broad sense agreement 

Dai et al. Page 3

Stat Med. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(disagreement). To demonstrate these extreme cases, recall that under the perfect broad 

sense agreement, it must be satisfied that X(*l) <,⋯< X(*L). In the contrary case with perfect 

broad sense disagreement, the ranks of X(*l) <,⋯< X(*L) are reversed; that is, X(*l) >,⋯> 

X(*L). In other words, when X and Y are in perfect broad sense agreement (or 

disagreement), (R1, …, RL) = (1, ⋯, L) (or (L, ⋯, 1)) with probability 1 across random 

samples of X. Therefore, when there is perfect broad sense agreement, the BSA index ρbsa = 

1 given that E ∑l = 1
L l − Rl

2  equals 0. For the perfect broad sense disagreement scenario, 

it can be shown that ρbsa = −1 through some derivation. The details are presented in 

Appendix A in Peng et al. [1] paper.

Peng et al. [1] developed a nonparametric estimation procedure for the proposed BSA index, 

i.e. ρbsa. Suppose the observed data consist of n complete random samples of (X,Y), denoted 

by xi, Y i i = 1
n , and can be arranged based on the ordering of Y as follows,

X1, Y1 = 1 , ⋯, Xn1, Yn1 = 1 ,

Xn1 + 1, Yn1 + 1 = 2 , ⋯, Xn1 + n2, Yn1 + n2 = 2 ,

⋮
X∑l = 1

L − 1nl + 1, Y ∑l = 1
L − 1nl + 1 = L , ⋯, X∑l = 1

L nl, Y ∑l = 1
L nl = L ,

where nl = ∑i = 1
n I Y i = l  is the number of subjects in the lth level of Y and ∑l = 1

L nl = n. 

Peng et al. [1] showed that under the independence assumption between X andY, the 

expected mean square distance can be determined based on the number of Y levels, i.e., 

E ∑l = 1
L l − Rl

2 |X ⊥ Y = CL = L3 − L /6.

Adopting the idea of stratified sampling without replacement, Peng et al. [1] proposed to 

estimate E ∑l = 1
L l − Rl

2  by the sample mean of the mean square distance based on 

stratified samples without replacement, i.e.

W n = ∏
l = 1

L
nl

−1
∑

j1 = 1

n1
⋯ ∑

jL = 1

nL
∑

l = 1

L
l − ∑

r = 1

L
I Xl, jl ≥ Xr, jr

2
.

Note that X1, j1, …, XL, jL  is a random realization of X(*l),⋯>X(*L) and 

∑r = 1
L I Xl, jl ≥ Xr, jr  is the rank of Xl, jl among X1, j1, …, XL, jL  with Xl, jl = X∑r = 1

l − 1 nr + jl
where 1 ≤ jl ≤ nl for 1 ≤ l ≤ L.

Therefore, Peng et al. [1]’s estimator of ρbsa is given by
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ρbsa = W n
CL

= 1

−
∏l = 1

L nl
−1∑j1 = 1

n1 ⋯∑jL = 1
nL ∑l = 1

L l − ∑r = 1
L I Xl, jl ≥ Xr, jr

2

L3 − L /6
.

(2)

The asymptotic variance of ρbsa is estimated using the jackknife method ([1]).

1.2 | A new functional representation of BSA

Peng et al. [1]’s estimation procedure for the BSA index required completely observed data. 

In biomedical data, the continuous measure may be censored due to many reasons, such as 

loss of follow-up. Simulation results in section 3 show that Peng et al. [1]’s estimator will 

result in considerably biased estimates if directly applied to censored observations. We note 

that the estimation of the denominator term of BSA index is fairly simple and does not 

require any information from the continuous X. The key of estimating BSA lies in the 

estimation of the numerator term E ∑l = 1
L l − Rl

2 .

We first derive a new functional representation of the BSA index. Specifically, denote the 

conditional survival function of [X |Y = l] as Sl (x) = P r (X > x |Y = l), l = 1, ⋯, L. We can 

show that the BSA measure in Equation (1) can be written as a functional of the L 
conditional survival functions {S1(·), …, SL(·)}. That is,

ρbsa =
2∑r = 1

L − 1 ∑l = r + 1
L −(l − r)∫0

∞Sl(x)dSr(x)
L3 − L /6

− 1. (3)

Detailed derivation of Equation (3) can be found in [19]. This result holds for continuous 

measurements X with a finite lower bound. In the paper, without loss of generality, we 

assume the lower bound is zero. Let S0 be the collection of a finite dimensional vector 

survival functions S  on ℝL with finite support [0, τ1] × · · · × [0, τL]. Let 

S1 − S1 ∞ ≡ supx S1(x) − S1(x) ≡ S1 − S1 S where S = 1( − ∞, x]:x ∈ ℝ . Then the 

functional T :S0 ℝ

T (S ) =
2∑r = 1

L − 1 ∑l = r + 1
L (l − r)∫0

∞Sld −Sr
L3 − L /6

− 1.

We note that the new representation of ρbsa only consists of several conditional survival 

functions, which can be easily estimated with censored data based on existing software. 

Equation (3) naturally motivates us to construct an estimator of the BSA measure by 

plugging in the estimators of {S1(·), …, SL(·)}.

Suppose the observed data consist of n random samples Xi, Y i, δi i = 1
n , where Xi is the 

observed continuous measurement for subject i, which is defined as the minimum of the 

continuous measurement Xi and the censoring variable Ci, and δi is the censoring indicator, 
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which equals zero if the observation is censored, and one if not censored. C and X are 

independent conditionally on Y. Let survival function Gl (x) = P r (C > x |Y = l). For any l ∈ 
{1, ⋯, L }, Sl (x) can be consistently estimated by the Kaplan Meier estimator SI(x)
stratified forY for any x ∈ 0, τl* , where τl* = sup x:S1(x)G1(x) > 0  (Breslow and Crowley, 

1974; Wang, 1987; Cai, 1997). Given (1), we propose a nonparametric plug-in estimator for 

ρbsa:

ρbsa =
2∑r = 1

L − 1 ∑l = r + 1
L −(l − r)∫0

τl ∧ τrSl(x)dSr(x)
L3 − L /6

− 1, (4)

where τI = max Xl, 1, ⋯,  Xl, nl , a ^ b = min(a, b). Note that the Kaplan-Meier estimators can 

be readily obtained by standard software. Given that SI(x) and Sr(x) are piecewise-constant 

functions, the integrals in (4) can be easily computed through a finite summation. Thus, ρbsa
is a computationally simple nonparametric estimator. [19] shows the proposed 

nonparametric plug-in estimator for ρbsa in (4) is equivalent to the estimator presented in 

Peng et al. [1] when there is no censoring. Through simulation studies, [19] shows the 

nonparametric plug-in estimator is computationally much faster than Peng et al. [1]’s 

estimator.

In the following, we establish asymptotic properties for the proposed estimator ρbsa via the 

Hadamard differentiability of the functional T and the statistical properties of stratified 

Kaplan Meier estimators of the conditional survival functions. For simplicity, we denote 

S = S1, ⋯, SL ′ and S = S1, ⋯, SL ′. First, we show the functional T is Hadamard 

differentiable in Lemma 1.

Lemma 1 Let S0 be the collection of a finite dimensional vector of survival functions S  on 

ℝL with finite support [0, τ1] × ⋯ × [0,τL]. Let 
S1 − S1 ∞ ≡ supx S1(x) − S1(x) ≡ S1 − S1 S where S = 1( − ∞, x]:x ∈ ℝ . Then the 

functional T :S0 ℝ

T (S ) =
2∑r = 1

L − 1 ∑l = r + 1
L (l − r)∫0

∞Sld( − Sr)

L3 − L /6
− 1

is Hadamard differentiable at S  with respect to Kolmogorov distance dK = ∥·∥∞.

The proof of Lemma 1 is provided in Appendix 6.1.

Next, we show the statistical properties of S . Breslow and Crowley (1974) shows that if 

both Sl and Gl are continuous distributions, on the support ′ 0, τ1* , where 

τl* = sup x:Sl(x)Gl(x) > 0 , the Kaplan Meier estimator Sl uniformly consistent and 

n Sl(x) − Sl(x) , x ∈ 0, τl*  converges weakly to a Gaussian process W with mean 0 and 
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covariance function Cov W l(s), W l(t) = Sl(s)Sl(t)al(s), s ≤ t where al(s) = ∫0
s −dSl

sl
2Gl

. We further 

have n S (x) − S (x)  weakly converges to a tight, zero mean Gaussian process 

W (x) = W 1(x), ⋯, W L(x) ′. Based on Lemma 1 and the statistical properties of S , we 

establish the asymptotic properties of the estimator ρbsa in the following theorem.

Theorem 1 Assume τI
p τI, τI* = τI, SI τI

p SI τI = 0, for any l, r ∈ {1, · · ·, L }, the 

proposed estimator ρbsa has the following asymptotic properties:

(i) The estimator ρbsa is strongly consistent. That is, ρbsa − ρbsa 0 with probability 1.

(ii) The estimator ρbsa has the following weak convergence result,

n ρbsa − ρbsa d TS
′ (w ),

where w  is the zero-mean Gaussian process and IS
′ (W ) follows a zero-mean normal 

distribution.

The proof of Theorem 1 is provided in Appendix 6.2. We note that the assumption τl* = τl

implies the upper bounds of the survival time is less than or equal the upper bounds of the 

censoring time. This condition is required because the asymptotic properties of the Kaplan 

Meier estimator of the survival function are only valid within 0, τl* . Our BSA plug-in 

estimator, which is derived based on the survival function estimators, inherits this limitation. 

When this assumption is not valid, that is the upper bound of the censoring time is less than 

that of the survival time, the proposed BSA estimator estimates the broad sense agreement 

between the survival outcome and the ordinal outcome within the upper bound of the 

censoring time instead of the entire range of the survival time distribution.

Since BSA estimator is a Hadamard differentiable function of survival function estimator S , 

it is theoretically possible to attempt an analytical form for the asymptotic variance of the 

BSA estimator from the asymptotic covariance of the S  following functional delta method. 

However, the analytical expression for the variance of the BSA estimator is technically 

challenging since the covariance of S  is already complicated and the variance of BSA 

estimator involves the covariance of S  through a complicated function. Therefore, we 

propose to estimate the variance of BSA estimator using resampling method. The 

resampling method demonstrated good performance through the simulation studies in 

section 2.
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1.3 | An alternative estimator based on multiple imputation

Multiple imputation (MI) is a popular technique for handling missing data. Censoring in 

survival data is a special form of missing data problem. Taylor et al. [20] proposed a 

multiple imputation method to handle missing event times for censored observations. The 

idea was to impute missing event time from the estimated distribution of event times 

amongst those at risk after the censoring time. Their study demonstrated that nonparametric 

multiple imputation successfully recovered the missing time information in the estimation of 

survival distributions. Hsu et al. [21] extended Taylor et al. [20]’s work by incorporating 

auxiliary variables to define the risk sets and performing multiple imputation only within the 

risk sets. They showed that with either time-independent or time-dependent auxiliary 

variables, the multiple imputation approach demonstrated similar results in terms of reduced 

bias due to dependent censoring and improved efficiency as an inverse probability of 

censoring weighted method.

In this section, we adopt the ideas from Taylor et al. [20] and Hsu et al. [21] by considering 

the censoring of the continuous X as a missing data problem and propose an alternative 

estimator for ρbsa based on imputing the censored observations of X. In the following, we 

present the algorithm to impute a censored observation with X = xj, Y = l, δ = 0.

Step 1: Identify the risk set for censored observation (xj, l, 0). Denote the risk set as 

R j+ l = i :  Xi > xj,  Y i = l,  i =  1,  ⋯ ,  n , which includes all the observations whose Y 

takes the same value l and whose survival time X is longer than the censored time xj. Note 

that observations with different Y values other than l are excluded from the risk set.

Step 2: Estimate the distribution of event times among those at risk at the censored time xj 

using the Kaplan-Meier (KM) estimator based on the risk set R j+ | l . The KM estimator of 

the survival function of X given X = xj and Y = l is denoted as Sj+| l(x). It is easy to see that 

Sj+| l(x) jumps only at observed X values in R(j+ |l).

Step 3: Impute an event time for xj by drawing random samples from the empirical 

distribution of event times estimated in step 2. To impute xj, generate a random value from 

the uniform distribution U (0, 1). Find two neighboring observations xs, xt from the sorted 

risk set R(j+ |l), so that 1 − Sj+| l xs , 1 − sj+| l xt  includes α. The imputed value for xj is 

defined as xs.

Repeat the above algorithm for all censored observations until they have been imputed. This 

procedure imputes the censored observations with the observed values unless the largest 

observation is censored in which case some imputed values may include this largest value. 

With M sets of imputations, there are M enhanced data sets and hence M BSA estimates 

with associated jackknife variances, say ρbsa
m  and Ubsa

m , respectively. The imputation-based 

estimator of BSA is defined as the average of the M imputation-based BSA estimates:

ρbsa
m = ∑

m = 1

M
ρbsa

m /M .
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The variance estimator of ρbsa
M  is W = U + 1 + M−1 B ([22]), which consists of two 

components: the average within-imputation variance, which is the average of variance 

estimates from the imputed data sets, i.e., U = ∑m = 1
M Ubsa

m /N, and the between-imputation 

variance, which is the sample variance of the imputed-data BSA estimates, i.e., 

B = ∑m = 1
M ρbsa

m − ρbsa
m 2/(M − 1). The confidence interval can be constructed using fisher’s 

z transformation.

To incorporate the full uncertainty in the imputation, a bootstrapping stage can be added 

when estimating the survival distributions. For Y = l, consider the bootstrap sample 

X1
(B), l, δ1

(B) , ⋯, Xnl
(B), l, δnl

(B)  selected with replacement from the original data set. The 

imputed risk set for the censored time (xj, l, 0) can be redefined as 

R(B) j+ | l = i:xi
(B) > xj, Y i = I, i = 1, ⋯, n  to include those observations that are at risk at 

time xj in the bootstrap sample.

2 | SIMULATION RESULTS

We conducted Monte Carlo simulations to evaluate the finite sample performance of the 

proposed methods. Specifically, we compared empirical bias, standard deviation and 

coverage rates of 95% confidence intervals when sample size, censoring pattern and 

censoring rate varied in the simulation. We considered two sample sizes: N=60, 120 

representing small and moderate sample sizes, respectively. We compared the performance 

of the proposed methods with two naive methods: Peng et al. [1]’s estimator based on a 

partial dataset that excludes censored subjects, i.e. {(Xi,Yi,δi) : δi = 1, i = 1, ⋯, n } and Peng 

et al. [1]’s estimator using the whole dataset while ignoring the censoring to X.

Simulated data was generated as follows. We assumed L = 3 and generated Y from {1, 2, 3} 

with equal probability. Continuous variable X was generated from a non-normal distribution, 

Y + Weibull(2, ξ), where the scale parameter ξ was chosen to simulate different levels of 

BSA between X and Y. Censoring time was generated independently of continuous variable 

X conditional on Y from a non-normal distribution, πCY +Weibull (2, ξC), where ξC was 

selected to achieve different censoring percentages and πC controlled the balance of 

censoring proportions among Y levels. If πC takes the value of 1, censoring rates were the 

same for different Y. If πC = 0.5, censoring rate was higher for larger Y values. Results in 

the following tables were based on 500 simulated datasets.

Tables 1–2 show that when homogeneous censoring proportions of X were presented across 

y levels, naive methods that either exclude censored observations or treat censored 

observations as complete observations (referred to as complete obs. and all obs. respectively) 

produce similar bias for all censoring proportions and their bias increases dramatically as 

censoring proportion of X increases. For example, with moderate BSA, i.e., ρbsa = 0.550, the 

bias of naive estimators increases from 10% to 42% of the true value of BSA as censoring 

proportion increases from 27% to 70%. This leads to a considerably different interpretation 

of the magnitude of BSA, where ρbsa = 0.550 is considered moderate BSA and ρbsa = 0.8 

indicates fairly strong BSA between X and Y. The results also demonstrate that both plug-in 
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method and MI-based methods significantly reduce the bias compared to naive methods. The 

plug-in method performs best when there is strong BSA and the MI-based methods 

outperform the plug-in method in moderate BSA scenarios.

When the censoring rates are heterogeneous across Y levels, the plug-in estimator doesn’t 

perform very well in the small sample scenario with moderate BSA (Table 1)and has similar 

or slightly larger bias as compared to the naive methods. But its performance does improve 

significantly in the moderate sample size case where it generally shows lower bias than the 

naive methods. The MI methods always outperforms the naive methods, demonstrating 

much lower bias.

For both homogeneous and heterogeneous censoring rate scenarios, as sample size increases, 

the bias of plug-in method decreases while the biases of naive methods remain the same or 

even increase. The proposed variance estimator of plug-in method seems to overestimate the 

variance when there is heavy censoring. The coverage probabilities of the estimated 

confidence intervals are close to the nominal level (95%) at most cases. The only exception 

is when there is heavy homogeneous censoring in the high BSA data, in which cases all 

methods fail. The variance estimator of MI method without the bootstrap procedure always 

underestimates the variance. After adding the bootstrap procedure, the variance estimation 

improves significantly and the constructed confidence intervals have reasonably good 

coverage probabilities especially for small to moderate censoring rates.

In Table 4, we compare the computation times of different estimation methods for estimating 

BSA index and jackknife standard error in one simulation. The table shows that the 

computing costs of Peng et al. [1]’s estimator and MI-based estimators increase dramatically 

with the increase of sample size. For a sample size of 240, the computing time for Peng et al. 

[1]’s estimator is 4077 seconds while the computing time for the proposed plug-in method is 

only 5 seconds. The computing time of both MI-based methods are very similar and is nine 

times (which is the number of imputations in each simulation) longer than that of Peng et al. 

[1]’s estimator. Given the results in Table 4, the plug-in method is more appropriate for large 

sample size datasets and the MI-based method may be used for small sample size data.

3 | AN APPLICATION TO A SURGICAL ICU PATIENTS STUDY

Acute Physiology and Chronic Health Evaluation II, often known as APACHE II, is a 

severity-of-disease classification system which has been extensively used in intensive care 

unit (ICU) to assess the morbidity of patients and stratify risk of death ([23]). Many 

literatures have shown a significant correlation between APACHE-II score and the 

probability of hospital-related mortality as well as hospital-acquired infections ([24],[25]). 

However, we sometimes observe that severely sick patients die or acquire infections shortly 

after ICU or hospital discharge. In this case, survival endpoints, such as progression free 

survival (PFS), can be adopted as an alternative way to assess the risk of hospital-related 

mortality and infections.

In this study, 150 patients requiring postoperative surgical ICU (SICU) care were enrolled. 

PFS was measured as the time from first day in SICU to death or first severe infection. PFS 
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was censored by the hospital discharge date if no events happened during the hospital stay. 

Six patients who had preconditioned bloodstream infections (BSI) and lower respiratory 

tract infections(LRI) were excluded from the analysis. For the rest 144 patients, 24 hospital-

related deaths were observed, and 66 hospital-acquired infection incidences were observed, 

which included 30 BSI and 36 LRI. Eighty three patients were observed to be event-free 

during their hospital stays since SICU. Two risk groups are determined based on clinical 

guideline ([26], [17]) using APACHE-II score calculated upon admission to the SICU: 

APACHE II score 0–24 correspond to low risk group; and APACHE II 25 correspond to high 

risk group. Our main interest was to study the relationship between APACHE-II risk groups 

and PFS, in which PFS was defined as a composite endpoint of time to first infection/death.

Table 4 presents the estimated ρbsa and the associated standard errors and confidence 

intervals. We assume that we assume that hospital discharge is a random censoring event to 

PFS. Fisher’s z-transformation is used to compute confidence intervals. Naive estimates for 

ρbsa directly using the whole dataset without adjusting for censoring or using only observed 

subjects, are close to 0, which suggests no beyond-chance agreement between risk group and 

PFS. However, estimates obtained using plug-in method or both multiple imputation 

methods are about 0.27–0.30, which indicates fair agreement. The associated confidence 

intervals exclude 0 for all three proposed methods. We conclude that there is significant 

broad sense agreement between risk group and PFS but the magnitude of the BSA is in the 

low range. Since the censoring is related to hospital discharge, there is a possibility that the 

upper bound of the censoring time may be less than the upper bound of the PFS time 

depending on the hospital discharge policy. If that is the case, the estimated BSA measures 

the broad sense agreement between PFS and the APACHE-II within the upper bound of the 

hospital discharge time. We also note that the independent censoring assumption may be 

questionable for the data example since censoring is related to hospital discharge. This may 

affect the accuracy of the proposed estimator and inference procedure. Deeper investigation 

is needed in future studies to fully study the impact when the independent censoring 

assumption is violated. Another limitation of the application is that APACHE was developed 

to mainly address in-hospital morbidity and mortality while the PFS measured in the current 

study captures both in hospital morbidity and mortality (before discharge) as well as 

potentially out of hospital events. For future studies with APACHE score, it will be helpful 

to define and measure a more meaningful endpoint that would restrict to events before 

discharge.

4 | CONCLUSION

In this paper, we propose novel estimation methods for broad sense agreement index when 

the continuous measure is subject to censoring. Specifically, we propose a plug-in method 

based on the conditional survival distributions, which is computationally efficient and has 

desirable theoretical properties. In addition, we propose another estimation method for 

smaller data sets using multiple imputation techniques. We develop inference procedures for 

the proposed estimators and demonstrate the small-sample performance of the proposed 

methods via simulation studies.
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The application of the proposed plug-in estimator is not limited to the case when the 

continuous measurement is subject to censoring. In fact, the new plug-in estimator can be a 

useful alternative to Peng et al. [1]’s estimator when the sample size is large. In particular, 

the plug-in method can provide a much more computationally efficient estimation of the 

BSA by dramatically reducing the computation time required by Peng et al. [1]’s estimator.
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6 |: APPENDIX

6.1 | Proof of Lemma 1

Proof First, we give the definition of Hadamard differentiability (Gill, 1989; Wellner, 1989). 

A function T : S → R is Hadamard differentiable at S with respect to the Kolmogorov 

distance if there exists Ṫ (S; ⋅ ) continuous and linear satisfying 
T SX − T (S) − Ṫ S; SX − S

|x| = o(1) for all Sx satisfying ∥x
−1(Sx − S) − Δ∥∞→ 0 for some 

function Δ.

For any Slx → Sl, where l = 1, ⋯, L, define αlx ≡ Slx − Sl /x. For Hadamard 

differentiability we have αlx → αl with respect to ∥·∥∞ for some (bounded) function αl. 

Denote α = α1, ⋯, αL . Define

Ṫ (S ; α ) ≡
2∑r = 1

L − 1 ∑l = r + 1
L (l − r) ∫ αrdSl − ∫ αldSr

L3 − L /6

We have

T S1x, ⋯, SLx − T S1, ⋯, SL
x − Ṫ α1x, ⋯, αLx

=
2∑r = 1

L − 1 ∑l = r + 1
L −(l − r)x∫ αlxdαrx

L3 − L /6

=
2∑r = 1

L − 1 ∑l = r + 1
L −(l − r) ∫ αld Srx − Sr + ∫ αlx − αl d Srx − Sr

L3 − L /6

Since Ṫ  is continuous, it suffices to show that the right side converges to 0. For any l, r ∈ {1, 

⋯, L } and l > r,
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∫ αlx − αl d Srx − Sr ≤ αlx − αl ∞ ∫ dSrx + ∫ dSr ≤ 2 αlx − αl ∞ 0

Fix ϵ > 0, since the limit function αl is right continuous with left limits, there is a step 

function with a finite number m of jumps, say α, which satisfies α − α < ϵ. Thus,

∫ αld Srx − Sr ≤ ∫ αl − αl d Srx − Sr + ∫ αld Srx − Sr

≤ 2 αl − αl ∞ + ∑
j = 1

m
αl xj − 1 Srx − Sr xj − 1, xj

≤ 2ϵ + 2m αl ∞ Srx − Sr ∞ 2ϵ .

Since ϵ is arbitrary, this completes the proof that T is Hadamard differentiable.

6.2 | Proof of theorem 1

Proof Before proving Theorem 1, we first show

n ρbsa − T S1, ⋯, SL
p 0 (5)

Consider the difference between nρbsa and nT S1, ⋯, SL ,

n ρbsa − T S1, ⋯, SL

= n
2∑r = 1

L − 1 ∑l = r + 1
L −(l − r)∫0

τl ∧ τrSldSr

L3 − L /6
− 1

−
2∑r = 1

L − 1 ∑l = r + 1
L −(l − r)∫0

∞SldSr

L3 − L /6
+ 1

= 2 n
L3 − L /6

∑
r = 1

L − 1
∑

l = r + 1

L
− (1 − r)∫

0

τl^τr
SldSr − ∑

r = 1

L − 1
∑

l = r + 1

L
− (l − r

)∫
0

∞
SldSr

≤ 2 n
L3 − L /6

∑
r = 1

L − 1
∑

l = r + 1

L
(1 − r) ∫τl ∧ τr

∞
SldSr

(6)

Given the assumptions that Sl τ l
p Sl τl = 0 and Sr τr

p Sr τr = 0 and the strong uniform 

consistency of the KM estimators Sl and Sr, the right-hand side of inequality (6) converges 

to zero in probability.

Next, we prove (i), (ii) of the theorem. The result of T S1, ⋯, SL
p ρbsa = T S1, ⋯, SL

follows the continuity of the Hadamard differentiable function T and the uniform strong 

consistency of Kaplan Meier estimators S . Then ρbsa
p ρbsa via Equation (5). Thus, the 

statement (i) is true.
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According to Equation (5), to prove (ii) is equivalent to show that

n T S1, ⋯, SL − T S1, ⋯, SL
d T S1, ⋯, SL′ (W ), as n ∞ (7)

It’s shown that n S − S  weakly converges to a tight, zero mean Gaussian process W . The 

functional T is proven to be Hadamard-differentiable. Then, statement (7) is true according 

to the functional delta method (van der Vaart and Wellner, 1996). Because W  is a tight 

Gaussian process, the derivative T S1, ⋯, SL′ (W ) is normally distributed. Thus, the statement 

(ii) of the theorem is proven true.
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TABLE 1

Simulation results for estimating moderate broad sense agreement (ρbsa = 0.550) when C ~ Weibull+ Y: 

empirical biases (EmpBias), empirical standard deviation (EmpSD), estimated standard deviation (EstSD), and 

coverage probabilities of 95% confidence intervals (Cov95).

Equal censoring proportions across Y: C ~ Weibull+ Y

N=60 N=120

Censoring Methods EmpBias EmpSD EstSD Cov95 EmpBias EmpSD EstSD Cov95

Low Comp obs.
a 0.054 0.115 0.115 89.8 0.061 0.077 0.880 88.0

(27%,27%,27%) All obs. 
b 0.060 0.097 0.095 87.8 0.059 0.066 0.067 86.2

Plug-in 
c 0.050 0.115 0.114 90.8 0.029 0.078 0.081 93.4

MI 
d −0.020 0.131 0.114 91.0 −0.005 0.083 0.080 94.0

BMI 
e 0.022 0.132 0.120 93.0 −0.006 0.083 0.083 96.0

Moderate Comp obs. 0.149 0.115 0.117 75.0 0.149 0.074 0.080 65.6

(50%,50%,50%) All obs. 0.143 0.080 0.081 67.4 0.146 0.052 0.056 37.8

Plug-in 0.074 0.115 0.144 94.0 0.047 0.092 0.105 93.2

MI −0.020 0.144 0.119 90.0 −0.006 0.110 0.083 87.2

BMI 0.028 0.144 0.141 93.8 −0.017 0.109 0.100 91.9

Heavy Comp obs. 0.232 0.125 0.129 72.3 0.246 0.075 0.078 35.8

(70%,70%,70%) All obs. 0.239 0.060 0.061 21.0 0.243 0.041 0.042 1.0

Plug-in 0.101 0.143 0.161 91.6 0.075 0.117 0.139 92.6

MI −0.010 0.207 0.116 75.8 −0.032 0.157 0.089 72.5

BMI −0.014 0.193 0.159 88.8 −0.049 0.155 0.137 90.6

Unequal censoring proportions across Y: C ~ Weibull+0.5Y

N=60 N=120

Censoring Methods EmpBias EmpSD EstSD Cov95 EmpBias EmpSD EstSD Cov95

Low Comp obs. 0.035 0.125 0.123 93.2 0.034 0.080 0.083 94.4

(25%, 32%, 38%) All obs. −0.049 0.114 0.113 91.8 −0.047 0.076 0.078 92.2

Plug-in 0.060 0.106 0.114 92.6 0.031 0.076 0.082 94.2

MI −0.008 0.120 0.116 94.2 −0.001 0.086 0.080 91.9

BMI −0.007 0.118 0.120 95.6 −0.003 0.086 0.083 94.0

Moderate Comp obs. 0.065 0.116 0.125 91.4 0.053 0.083 0.087 91.6

(33%, 41%, 49%) All obs. −0.052 0.108 0.113 93.2 −0.056 0.077 0.079 91.4

Plug-in 0.075 0.107 0.120 90.8 0.039 0.085 0.086 90.6

MI 0.002 0.124 0.115 92.8 −0.009 0.084 0.084 94.6

BMI −0.003 0.124 0.126 96.0 −0.011 0.087 0.091 96.6

Heavy Comp obs. 0.138 0.155 0.176 87.9 0.134 0.100 0.107 78.8

(60%, 70%, 78%) All obs. −0.060 0.109 0.114 93.4 −0.061 0.073 0.078 89.4

Plug-in 0.121 0.134 0.158 92.2 0.077 0.107 0.122 92.6

MI −0.006 0.201 0.123 79.4 −0.022 0.158 0.090 77.2

BMI −0.017 0.200 0.166 89.8 −0.030 0.151 0.130 87.2
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a
Naive estimator using datasets which exclude censored subjects.

b
Naive estimator using censored observations as observed observations.

c
The proposed plug-in estimator.

d
Kaplan-Meier-based imputation without bootstrap procedure.

e
Kaplan-Meier-based imputation with bootstrap procedure.
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TABLE 2

Simulation results for estimating strong broad sense agreement (ρbsa = 0.827) when C ~ Weibull+ Y: empirical 

biases (EmpBias), empirical standard deviation (EmpSD), estimated standard deviation (EstSD), and coverage 

probabilities of 95% confidence intervals (Cov95).

Equal censoring proportions across Y: C ~ Weibull+ Y

N=60 N=120

Censoring Methods EmpBias EmpSD EstSD Cov95 EmpBias EmpSD EstSD Cov95

Low Comp obs.
a 0.047 0.048 0.049 87.2 0.045 0.036 0.035 77.8

(27%,27%,27%) All obs. 
b 0.047 0.040 0.041 86.4 0.046 0.030 0.029 69.4

Plug-in 
c 0.018 0.067 0.076 94.4 0.011 0.050 0.052 92.4

MI 
d −0.024 0.077 0.066 92.2 −0.018 0.055 0.047 90.4

BMI 
e −0.027 0.074 0.077 95.4 −0.015 0.052 0.054 92.6

Moderate Comp obs. 0.099 0.046 0.043 76.2 0.098 0.031 0.030 37.4

(50%,50%,50%) All obs. 0.099 0.031 0.029 33.4 0.098 0.021 0.021 8.2

Plug-in −0.020 0.120 0.130 87.6 −0.009 0.094 0.100 89.2

MI −0.067 0.136 0.077 73.4 −0.056 0.100 0.055 71.3

BMI −0.081 0.131 0.110 84.0 −0.067 0.098 0.087 81.9

Heavy Comp obs. 0.137 0.042 0.034 90.1 0.139 0.026 0.024 31.0

(69%,69%,69%) All obs. 0.137 0.019 0.019 4.4 0.139 0.013 0.013 0.0

Plug-in 0.080 0.141 0.158 80.6 −0.074 0.136 0.142 74.6

MI −0.099 0.154 0.078 59.1 −0.111 0.129 0.061 44.1

BMI −0.114 0.143 0.120 74.0 −0.120 0.117 0.102 62.4

Unequal censoring proportions across Y: C ~ Weibull+0.5Y

N=60 N=120

Censoring Methods EmpBias EmpSD EstSD Cov95 EmpBias EmpSD EstSD Cov95

Low Comp obs. 0.021 0.056 0.058 94.2 0.021 0.041 0.039 92.0

(20%, 30%, 39%) All obs. −0.086 0.079 0.076 77.0 −0.085 0.051 0.052 54.2

Plug-in 0.031 0.053 0.060 93.8 0.022 0.040 0.041 90.4

MI −0.010 0.066 0.061 93.8 −0.004 0.050 0.042 90.3

BMI −0.012 0.066 0.067 95.6 −0.005 0.050 0.046 88.2

Moderate Comp obs. 0.034 0.059 0.063 96.0 0.035 0.040 0.042 87.8

(33%, 44%, 56%) All obs. −0.118 0.078 0.081 57.8 −0.122 0.056 0.057 27.0

Plug-in 0.023 0.073 0.081 94.8 0.020 0.047 0.052 96.0

MI −0.026 0.092 0.068 86.4 −0.019 0.068 0.049 87.2

BMI −0.032 0.092 0.084 91.0 −0.027 0.072 0.063 91.5

Heavy Comp obs. 0.069 0.077 0.083 97.6 0.072 0.050 0.048 80.2

(54%, 70%, 83%) All obs. −0.155 0.085 0.084 37.6 −0.163 0.056 0.059 6.4

Plug-in 0.019 0.104 0.124 94.7 0.015 0.079 0.088 92.2

MI −0.047 0.144 0.074 75.3 −0.038 0.094 0.054 68.1

BMI −0.069 0.144 0.124 87.8 −0.046 0.090 0.090 91.5
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a
Naive estimator using datasets which exclude censored subjects.

b
Naive estimator using censored observations as observed observations.

c
The proposed plug-in estimator.

d
Kaplan-Meier-based imputation without bootstrap procedure.

e
Kaplan-Meier-based imputation with bootstrap procedure.
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TABLE 3

Comparing computation times (in seconds) for the estimation of BSA index and jackknife standard error in 

one simulation using different estimation methods.

N Peng et al. [1]’s method Plug-in method MI method BMI method

60 12 0.9 117 118

120 247 2 2480 2486

240 4077 5 40593 40611
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TABLE 4

Surgical ICU patient study: estimates of ρbsa by different methods and associated standard errors (SE) and 

95% confidence intervals (95% CI).

Method ρbsa SE 95%CI

Comp obs.
a −0.023 0.103 (−0.221, 0.177)

All obs.
b 0.053 0.153 (−0.243, 0.340)

Plug-in 
c 0.298 0.122 (0.045, 0.515)

MI 
d 0.276 0.109 (0.052, 0.474)

BMI 
e 0.269 0.120 (0.022, 0.485)

a
Naive estimator using datasets which exclude censored subjects.

b
Naive estimator using censored observations as observed observations.

c
The proposed plug-in estimator.

d
Kaplan-Meier-based imputation without bootstrap procedure.

e
Kaplan-Meier-based imputation with bootstrap procedure.
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