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Suppose k-variate data are drawn from a mixture of two distributions,
each having independent components. It is desired to estimate the univariate
marginal distributions in each of the products, as well as the mixing
proportion. This is the setting of two-class, fully parametrized latent models
that has been proposed for estimating the distributions of medical test results
when disease status is unavailable. The problem is one of inference in a
mixture of distributions without training data, and until now it has been
tackled only in a fully parametric setting. We investigate the possibility of
using nonparametric methods. Of course, when k = 1 the problem is not
identifiable from a nonparametric viewpoint. We show that the problem is
“almost” identifiable when k = 2; there, the set of all possible representations
can be expressed, in terms of any one of those representations, as a two-
parameter family. Furthermore, it is proved that when k ≥ 3 the problem is
nonparametrically identifiable under particularly mild regularity conditions.
In this case we introduce root-n consistent nonparametric estimators of the
2k univariate marginal distributions and the mixing proportion. Finite-sample
and asymptotic properties of the estimators are described.

1. Introduction and summary. In the problem of determining accuracy of
diagnostic tests, such as those associated with receiver operating characteristic
(ROC) curves, it is clearly advantageous to know the true disease status (present
or absent) for each patient, independently of the patient’s test results. See, for
example, Metz (1978). Such perfectly classified data would form so-called training
samples that could be used in subsequent statistical analyses of the tests, for
example, in studies of the distributions of test results.

In the case of many diseases, however, it is difficult or impossible to
establish a definitive diagnosis. A perfect “gold standard,” as it is often called,
may not exist or may be too expensive or impractical to attain. This is
especially true for complex medical conditions in the usual clinical practice
setting, for example, the condition of myocardial infarction. In such contexts
it has been suggested [see, e.g., Rindskopf and Rindskopf (1986) and Hui
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and Zhou (1998)] that a two-term multivariate mixture model, with the terms
corresponding to “disease absent” and “disease present,” respectively, be fitted
to unclassified data on the results of diagnostic tests. Distributional properties of
individual tests may thereby be determined directly, without the need for training
samples.

In this approach the results of k tests applied to a particular patient are assumed
to be stochastically independent, conditional on the disease status of the patient.
Thus, the k-variate dataset X = {X1, . . . ,Xn} is considered to have been drawn
from a two-term mixture distribution,

F(x) = π

k∏
j=1

Fj1(xj ) + (1 − π)

k∏
j=1

Fj2(xj ).(1.1)

The first term, say, corresponds to patients without the disease, the second to
patients with the disease, and the j th component of the k-vector Xi represents
the result of the j th test applied to the ith patient. In the representation at (1.1),
π denotes the mixture proportion, Fjr is the univariate distribution function of the
j th marginal in the r th population �r , and x = (x1, . . . , xk). We wish to estimate
π and Fjr , for 1 ≤ j ≤ k and r = 1,2, using only the data X. Validity of the
assumption of independent marginals will be discussed in Section 2.3.

In the present paper we consider nonparametric methods for solving this
problem. Clearly, when k = 1 neither π nor Fjr is identifiable nonparametrically.
However, the issue of identifiability is much less clear for k ≥ 2. We shall show in
Section 4 that when k = 2, π and Fjr are in fact not identifiable. Indeed, if k = 2
and F has the form (1.1) for a particular vector

Q = (π,F11, . . . ,Fk1,F12, . . . ,Fk2),(1.2)

then there is in general a continuum of distinct Q’s such that (1.1) holds for the
same F on the left-hand side of (1.1). In a nonparametric setting the continuum of
potential component distributions when k = 2 is determined, as a functional of the
component distributions arising from any particular version of (1.1) for a fixed F ,
by two independent, scalar parameters.

However, for k ≥ 3 and under mild regularity conditions, (1.1) does determine
Q uniquely, up to the dichotomy obtained by interchanging the two products on
the right-hand side of (1.1). Moreover, it is possible to consistently, and often
root-n consistently, estimate all the components of Q using purely nonparametric
methods. These results will be detailed in Section 4. They apparently do not
have straightforward generalizations to mixtures of three or more products of
independent components. However, in the medical diagnosis context of our work
such cases do not seem to be as important as the two-product case.
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The model at (1.1) can be considered to be for mixtures with “fixed effects.”
A density form of the random effects version of the model would be

f (x) = π

∫ {
k∏

j=1

fj1(xj |λ)

}
φ(λ) dλ

(1.3)

+ (1 − π)

∫ {
k∏

j=1

fj2(xj |λ)

}
φ(λ) dλ,

where φ represents the density of the random effect �, λ is a realized value of λ,
and for each λ and for 1 ≤ j ≤ k and r = 1,2, fjr(·|λ) is a univariate probability
density. We may consider f and fjr(·|·) to be analogues, in the random effect
case, of the densities of F and Fjr , the latter appearing at (1.1). We shall show that
regardless of the value of k, and even if each φ and fjr(·|·) has a known parametric
form, the parameters may not be consistently estimated from an infinite amount of
data on f . Likewise, no matter how large the value of k, fjr(·|·) generally cannot
be estimated using any nonparametric procedure. Our counterexamples illustrating
these points are mixtures of distributions with mixture-distribution marginals, and
are not pathological. Inference in the random effects case is becoming popular
[see, e.g., Qu, Tan and Kutner (1996), Hadgu and Qu (1998) and Qu and Hadgu
(1998)].

These and other theoretical results will be outlined in Section 4, with technical
arguments deferred to Section 5. Our methods will be described in Section 2, and
their numerical properties summarised in Section 3.

There is of course an extensive literature on parametric inference in mixture
models. We mention here only the monographs of Titterington, Smith and Makov
(1985), McLachlan and Basford (1988) and Everitt and Hand (1981), and some of
the main types of estimators that have been proposed: maximum likelihood [e.g.,
Cohen (1967), Lindsay (1983a, b) and Redner and Walker (1984)], minimum chi-
square [e.g., Day (1969)], method of moments [e.g., Lindsay and Basak (1993)],
Bayesian approaches [e.g., Day (1969)], and techniques based on the moment
generating function [e.g., Quandt and Ramsey (1978)].

The majority of existing nonparametric techniques rely at least in part on train-
ing data; see, for example, Murray and Titterington (1978), Hall (1981), Tittering-
ton (1983), Hall and Titterington (1984, 1985), Cerrito (1992), Shahshahani and
Landgrebe (1994), Lancaster and Imbens (1996) and Qin (1998, 1999). Very lit-
tle is known of the potential for consistent nonparametric inference in mixtures
without training data, and that problem motivates the present paper.

On the subject of identifiability, Teicher (1967) has shown that in a parametric
setting the k-variate model at (1.1) is identifiable if and only if each univariate
submodel,

Fj (xj ) = π Fj1(xj ) + (1 − π)Fj2(xj ), 1 ≤ j ≤ k,

is identifiable. However, this result does not apply in a nonparametric setting.
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2. Methodology and assumptions.

2.1. Estimation of marginal distributions. We suggest a purely nonparametric
method for estimating the vector Q at (1.2), describing the mixture proportion π

and marginal distributions Fjr in the model at (1.1). To ensure the model
is identifiable in a nonparametric sense we assume k ≥ 3. See Section 4 for
discussion of this issue.

Let X = {X1, . . . ,Xn} denote data generated by the model at (1.1), and
write Xi = (Xi1, . . . ,Xik). Let pijr , for 1 ≤ i ≤ n, 1 ≤ j ≤ k and r = 1,2, be
nonnegative numbers constrained to satisfy

pijr ≥ 0 for each i, j, r and
n∑

i=1

pijr = 1 for each j, r.(2.1)

The j th entry in the vector Xi will be ascribed probability mass pijr when Xi is
used to estimate the distribution of the r th component in the mixture, for 1 ≤ i ≤ n,
1 ≤ j ≤ k and r = 1,2. The estimates that result [see, e.g., (2.2)] are closely
related to weighted- or biased-bootstrap estimates of distributions [see, e.g., Efron
(1981), Barbe and Bertail (1995) and Hall and Presnell (1999)], where a standard
bootstrap estimate in which each datum is weighted equally is replaced by one
where the data are given different weights. It also has connections to the methods
of nonparametric and empirical likelihood; see Laird (1978) and Qin (1998, 1999)
for applications of those ideas in the setting of inference for mixtures.

Put pjr = (p1jr , . . . , pnjr), let p denote the vector of length 2kn obtained by
concatenating the components of pjr (for 1 ≤ j ≤ k and r = 1,2), let X denote
a generic Xi , and let xj < yj for 1 ≤ j ≤ k. The probability Fjr(xj , yj ) that the
j th component of X lies in the interval (xj , yj ], conditional on X coming from
population �r , will be estimated by adding the weights associated with �r and
with data Xi that lie in this interval:

F̃jr(xj , yj ) = F̃jr(xj , yj )(pjr) = ∑
i :xj≤Xij≤yj

pijr .(2.2)

This is a standard weighted-bootstrap estimator tailored to the present setting.
Put y = (y1, . . . , yk). The probability F(x, y) that X lies in the rectangle

R(x, y) = ∏
j (xj , yj ] is estimated by F̃ (x, y), which is defined to equal the

proportion of the data in X that lies in R(x, y). This is a conventional unweighted
bootstrap estimator of a distribution function. In particular, unlike F̃jr , the value
of F̃ does not depend on the pijr ’s; neither does it take any account of the model
structure at (1.1). We estimate the weights pijr , and the mixture proportion π , by
minimizing the distance between F̃ and the version of the distribution at (1.1) in
which each Fjr is replaced by F̃jr .
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That is, we fit the 2k(n − 1) + 1 independent parameters among p and π by
minimizing

S(p,π) =
∫∫

S

[
F̃ (x, y) −

{
π

k∏
j=1

F̃j1(xj , yj )

(2.3)

+ (1 − π)

k∏
j=1

F̃j2(xj , yj )

}]2

w(x, y) dx dy,

where w denotes a nonnegative weight function and S is the subset of the space of
2k-vectors (x1, . . . , xk, y1, . . . , yk) for which xj < yj for 1 ≤ j ≤ k.

Let

(p̂, π̂) = arg min S(p,π),(2.4)

where the minimization is conducted under the constraints at (2.1). Write p̂jr for
the corresponding estimator of pjr , and put F̂jr(x) = F̃jr(−∞, xj )(p̂jr ) and

F̂ (x) = π̂

k∏
j=1

F̂j1(xj ) + (1 − π̂)

k∏
j=1

F̂j2(xj ).

We shall show in Section 4 that under mild regularity conditions, π̂ , F̂jr and F̂ are
root-n consistent for π , Fjr and F , respectively, where F is as defined at (1.1).

2.2. Iterative algorithm. We suggest two methods for computing the starting
point in an iterative scheme for minimizing S(p,π). The first is founded on
maximum likelihood and the EM algorithm, and the second uses a “majority vote”
idea based on inexplicit information contained in the data. As is commonly the
case even for maximum likelihood inference for mixture distributions, the criterion
function S(p,π) generally has a number of local extrema. Randomly perturbing
the starting point and recomputing the local minimum is recommended as a means
of overcoming this problem.

In our first method we assume an approximate parametric model, such as
Normal with means µjr and covariances σjr , in the obvious notation. Define
Di to equal 1 if the ith observation belongs to the first population, and to equal
zero otherwise. Since Di is unobserved we treat it as missing, and use the
EM algorithm to compute maximum likelihood estimates of the vector θ of the
unknown parameters π , µjr and σjr . Use the bracketed superscript notation (m) to
denote values of parameter estimates after the mth iteration of the EM algorithm.
Then, estimates on the next iteration are

π̂ (m+1) = n−1
n∑

i=1

qi1, µ̂
(m+1)
jr =

∑
i q

(m)
ir xij∑

i q
(m)
ir

,

(σ̂
(m+1)
jr )2 =

∑
i q

(m)
ir (xij − µ̂

(m+1)
jr )2∑

i q
(m)
ir

,
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where

q
(m)
ir =

∏
j φ(xij | µ̂(m)

jr , σ̂
(m)
jr )π̂ (m)∑

r

∏
j φ(xij | µ̂(m)

jr , σ̂
(m)
jr )π̂ (m)

and φ denotes a Normal probability density with the indicated mean and
covariance parameters. We iterate until convergence is achieved.

The EM algorithm requires initial values for parameter estimates. We choose
the initial values of µ̂j1 and µ̂j2 to both equal the mean of x1j , . . . , xnj , and the
initial values of σj1 and σj2 to both equal the corresponding sample variance. After
computing the maximum likelihood estimates we use Fisher’s linear discriminant
function, LDF, to classify each observation into one of the two populations [see
O’Neill (1978)]. The LDF is defined by

L(xi) =
k∑

k=1

(µ̂2j − µ̂1j )τ̂
−2
j xij + log{(1 − π̂)/π̂} − 1

2

k∑
k=1

(µ̂2
2j − µ̂2

1j ) τ̂−2
j ,

where τ̂ 2
j = (σ̂ 2

j1 + σ̂ 2
j2)/2. Let Nr (unknown) denote the number of the

observations in the sample belonging to the r th population. We approximate
N1 by nπ̂ and N2 by n − N1. Our initial values for the components of p are
p̂

(0)
ij2 = 1/N2 if L(xi) > 0 and zero otherwise, and p̂

(0)
ij1 = 1/N1 if L(xi) < 0 and

zero otherwise.
To describe our second approach to choosing the initial values we note that in

some applications, such as studies of the accuracy of diagnostic tests, xij may
be thought of as a physician’s degree of suspicion about the presence of disease.
Hence, a higher value of xij indicates a greater “likelihood” of disease than a lower
value. Therefore, using this information we can choose the initial estimates based
on a majority rule. Given a cutoff point c, if the majority of xi1, . . . , xik are greater
than c then we classify the ith subject as diseased (Di = 1, say); otherwise, we
classify it as nondiseased (Di = 0). After classifying all observations into each
population, we approximate N1 by the number of Di’s with Di = 1, and N2 by
n − N1. Our initial values for the components of p are p̂

(0)
ij2 = 1/N2 if Di = 0, and

zero otherwise; and p̂
(0)
ij1 = 1/N1 if Di = 1 and zero otherwise. By altering c we

obtain different starting values.

2.3. Independence assumption. Suppose an “item” (for example, a piece of
engineering equipment or a hospital patient) is subjected to a battery of k tests,
and that the distribution of the vector response, X, is a functional of the value � of
a random variable. The response is broadly classified as one of two types, A or B ,
say, representing “pass” or “fail” in the case of a piece of equipment, or “healthy”
or “ill” in the case of a patient subjected to medical tests.

The variable � would be the random effect in a random effects model. It
would generally be unobservable, and would reflect the response of the item in
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more detailed terms than is encompassed by the simple classification A or B . In
particular, in a medical setting � might represent physiological information that
could be obtained only by invasive tests. If � were known it would be used to
assign the item to category A or B according as � ∈ SA or � ∈ SB , respectively,
where SA and SB denoted complementary sets. For example, if � were a scalar
then it might be appropriate to classify the item as type A if � ≤ λ0, say, and as
type B otherwise.

We may write X = JU +(1−J )V where J is the indicator of the event � ∈ SA,
and the distributions of U and V are those of X conditional on � ∈ SA and � ∈ SB ,
respectively. While the distribution of X conditional on � = λ, for any particular
value λ, might reasonably be modelled by a vector of independently distributed
components, conditional on � ∈ SA or � ∈ SB the marginal distributions may be
far from independent.

Nevertheless, when both SA and SB are singletons, the distributions of U and V

factorize into the products of their respective marginals. In a medical context this
property has been discussed by, for example, Rindskopt and Rindskopt (1986) and
Hui and Zhou (1998), who treated methods that use the independence assumption
as well as methods that do not. A significant number of statistical techniques for
dealing with the problem of an imperfect gold standard assume independence;
see, for example, Thompson and Walter and Irwig (1988), Walter (1988),
Valenstein (1990) and Torrance-Rynard and Walter (1988).

The case where SA is a singleton but SB contains more than one element is also
reasonable. In a medical setting it models test results for a healthy patient by white
noise rather than by a response having a systematic trend depending on �. In this
case the distribution of U will have independent marginals, although that of V

may not. Suppose this setting prevails, and we have approximations to the mixture
proportion π and the means and variances of the populations of type A and type B

patients. This information may come from either previous experience or training
data. It is readily used to approximate a k-variate change of scale, and rotation,
that produce a transformation of the mixture distribution to one with uncorrelated
marginals in both mixture components. Provided uncorrelated marginals are not far
from being independent, this approach (when combined with methods discussed
in Sections 2.1 and 2.2) offers a means of accessing information about component
distributions in mixture data without making parametric assumptions.

The remaining case, where both SA and SB contain more than one element,
seems difficult to accommodate using our approach. There the marginal distribu-
tions of neither type A nor type B items will necessarily factorize, and it is unclear
how to ensure that the mixture distribution is identifiable in a nonparametric sense,
let alone how to estimate it nonparametrically.

Of course, the difficulty here is created by the fact that binning a class of fixed
effects models which, individually, satisfy the independence condition, produces
a model which fails to satisfy the condition. The same “averaging” property
can prevent identifiability of the conventional random effects model, even in
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parametric settings. This is because the mixture distribution produced by a random
effects model is in reality based on certain moments with respect to the distribution
of the random effect, and there may exist more than one random effect distribution,
or more than one set of marginal distributions for the mixture components, that
produces the same moments. We shall give an example in Section 4.2.

3. Simulation study. We assessed numerical properties of the proposed
method in a simulation study. There we generated 250 datasets, each of size
n = 500 (excepting at the very end of this section, where we took n = 1000),
from a trivariate normal mixture,

F(x) = πN3(µ, I ) + (1 − π)N3(0, I ).(3.1)

Thus, k = 3 in the context of (1.1). The value of π was varied. For the
results reported here we took µ equal to either (0.5,1.0,2.5) or (2.0,2.5,3.0),
representing relatively “close” or “distant” component distributions, respectively.
Analogous results, providing a spectrum of performance between these two
extremes, are obtained in intermediate cases.

To apply the method suggested in Section 2 we first used Gauss–Hermite
quadrature to approximate the three-dimensional integral in the definition of
S(p,π), and then employed an IMSL Fortran subroutine, BCONF, to find the
value of (p,π) that minimized S(p,π). Initial values were chosen using the
majority rule described in Section 2, taking c = 0.5. For the parametric maximum
likelihood method we used the EM algorithm to compute estimates of the
component distribution functions and the mixing proportion.

We calculated empirical approximations to bias and mean squared error
(MSE) of both parametric and nonparametric estimators of π in order to assess
their performance. For the parametric and nonparametric estimators of the
component distribution functions we assessed performance in terms of mean
integrated squared error (MISE), integrated squared bias (ISB) and integrated
variance (IVAR).

The first and second rows of panels in Figure 1 display results for estimation
of π in “close” and “distant” settings, respectively. In each row of panels the first
panel gives biases of the parametric and nonparametric estimators of π , and the
second gives MSE. It can be seen from the figure that there is not a great deal
to choose between the estimators of π on the basis of bias. Moreover, while the
parametric approach consistently has less MSE in the “close” setting, the situation
is reversed in the “distant” case.

In the “close” and “distant” settings, respectively, Figures 2 and 3 graph MISE
for both parametric and nonparametric estimators of the marginal distributions. In
each figure the three plots in the first row of panels give results for estimators of
the three respective marginal distributions of the first component in the mixture
at (3.1). The three plots in the second row correspond to the three marginals of the
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FIG. 1. Bias and mean squared error (MSE) of parametric and nonparametric estimators of the
mixing proportion, for sample size 500. (Results for parametric and nonparametric estimators are
depicted by solid and dotted lines, respectively. The first row of panels shows bias and MSE curves
for the “close” distribution setting, while the second row is for the “distant” setting.)

second component. The second component has identically distributed marginals,
whereas the marginals of the first component have different means.

Figures 2 and 3 argue that when estimating the first two distributions in the
first component, the parametric method bests its nonparametric competitor in the
“close” case. However, this order is reversed for the third distribution in the “close”
setting. There is relatively little to choose between parametric and nonparametric
methods when estimating marginal distributions in the first component in the
“distant” setting, although the nonparametric approach has an edge when the first
component is relatively common (i.e., π is close to 1).

However, the nonparametric method performs particularly well when used to
estimate marginal distributions of the second component in either the “close” or
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FIG. 2. Mean integrated squared errors of marginal distribution estimators in the “close” setting,
for sample size 500. (The three plots in the first [respectively, second ] row of panels depict MISE,
graphed against π , for estimates of the three marginal distributions of the first [second ] component in
the mixture at (3.1), when the two components are “close.” Results for parametric and nonparametric
estimators are depicted by solid and dotted lines, respectively.)

“distant” settings. When the second component is commonly observed (i.e., π is
close to 0) the methods perform similarly, but the nonparametric technique rapidly
comes into its own when the second component is rare. It can have substantially
less MISE than its parametric counterpart.

Any difficulties experienced by either the parametric or the nonparametric
method are caused primarily by bias. Indeed, analogues of the plots in Fig-
ures 2 and 3 for ISB, rather than MISE, show curves whose shapes are virtually
identical to those for their respective counterparts in Figures 2 and 3. Reflecting
this property, and with one exception mentioned below, plots of IVAR on the scale
of Figures 2 and 3 are barely distinguishable from 0.
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FIG. 3. Mean integrated squared errors of marginal distribution estimators in the “distant” setting,
for sample size 500. [Graphs are as for Figure 2 except that now the two components at (3.1) are
“distant.”]

The exceptional case is that of estimating marginal distributions in the second
component of the mixture, in the “close” setting. The corresponding IVAR curves,
analogues of the curves in the bottom row of panels in Figure 2, are shown in
Figure 4. It can be seen that the variance contribution to MISE for the parametric
estimator increases from 0 as π increases through values in the mid and upper
range. This increase is also observed in the MISE and ISB plots, but unlike those
cases the IVAR curve stays relatively low as π increases to 1. A very slight
tendency to do the same thing can be noticed for IVAR curves in the “distant”
setting, for the second component of the mixture. By way of contrast, the IVAR
curves for the nonparametric estimator remain very flat, virtually at 0, across the
range of values of π .



212 P. HALL AND X.-H. ZHOU

FIG. 4. Integrated variances of marginal distribution estimators in the “close” setting, for sample
size 500. [The plotted curves represent IVARs for the three marginal distributions in the second
component at (3.1), when the two components are “close.”]

In summary, and in the context of marginal distribution estimation, the
parametric method is sometimes (but not always) superior when both techniques
perform relatively well. However, when both have difficulty the nonparametric
method comes into its own, and can perform substantially better than its parametric
counterpart. It rarely performs worse in that case.

Relatively speaking, difficulties in estimating the mixing proportion are less
pronounced than those when estimating marginal distributions, and the two
methods perform similarly there. In that case the parametric method tends to be
superior, but not universally so.

All the foregoing results are for n = 500. To assess performance in the
“close” setting for a larger sample size, we took n = 1000 and repeated the
earlier simulations. We found that performance of the nonparametric approach
improved very little with a mere doubling of sample size, and in particular it still
struggled when estimating the mixing proportion. For n = 1000 the bias of the
parametric estimator of π was negative over almost all of the interval [0,1], and
its mean squared error slightly improved. Its performance relative to that of the
nonparametric estimator of π improved.

Although, in the “close” setting, the nonparametric estimators of marginal
distributions hardly improved when n = 1000, their parametric competitors made
up significant ground. In particular, the latter’s performance for medium to
large values of π improved considerably, especially in the case of the second
component. As a result, only for π towards the upper end of the interval [0,1]
did the nonparametric estimator have advantages when n = 1000, and then only
occasionally. Figure 5 illustrates this point.
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FIG. 5. Mean integrated squared errors of marginal distribution estimators in the “close” setting,
for sample size 1000. (Graphs are as for Figure 2 except that now sample size has doubled.)

4. Theoretical properties.

4.1. Identifiability of the standard mixture model. In this section we address
identifiability issues associated with the model at (1.1). For simplicity we work
with density versions of the model, and for notational convenience we write
aj and bj , rather than fj1 and fj2, for the densities corresponding to distributions
Fj1 and Fj2, respectively. The notation fj1j2 can then be used for another purpose.

Thus, a1, . . . , ak and b1, . . . , bk denote probability densities, 0 < π < 1, and
we define the mixture density f to be the k-fold partial derivative of F at (1.1),
differentiated once with respect to each xi . Thus,

f (x1, . . . , xk) = π

k∏
j=1

aj (xj ) + (1 − π)

k∏
j=1

bj (xj ),(4.1)
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where k ≥ 2. Given 1 ≤ j1, j2, j ≤ k, with j1 �= j2, write fj1j2 and fj for
the marginal densities corresponding to components j1 and j2 together, and j ,
respectively, of the distribution with density f .

Our first result describes the extent to which pairs of components may be
identified from their respective marginals derived from f . To simplify notation
we represent a general pair (j1, j2), for which j1 �= j2, by simply (1,2).

THEOREM 4.1. Suppose f is given by (4.1). Then the function f12 − f1f2
factorizes. That is, there exist functions g1, g2 such that

f12(x1, x2) − f1(x1) f2(x2) = g1(x1) g2(x2).(4.2)

If in addition f12 is not identically equal to f1f2 then we may write aj =
fj + αjgj and bj = fj + βjgj , where the constants αj ,βj have the properties:
(a) παj + (1 − π)βj = 0 for j = 1,2, and (b) α1α2 = (β1β2)

−1 = (1 − π)/π .

Thus, the right-hand side of (4.2) may be written as π2(1 − π)−2(a1 − b1) ×
(a2 − b2). Of course, g1 and g2 are determined by (4.2) only up to constant
multiples, and gj = cj (aj − bj ) where cj is a constant. If aj , bj and a0

j , b
0
j are

two pairs of candidates for the marginal densities then necessarily, a0
j − b0

j =
dj (aj − bj ) for a constant dj . Hence, d1d2 = 1. If k ≥ 3 then this inequality holds
for at least three analogues of the pair (1,2). This property may be used as the
basis for a proof that, under a mild additional assumption, the model is identifiable
provided k ≥ 3; see Theorem 4.3.

Note that (4.2) implies
∫

gj = 0, and that result (a) in Theorem 4.1 implies
sgnαj = − sgnβj and

π = |βj |
|αj | + |βj | ,(4.3)

from which it follows that the ratio on the right-hand side does not depend on j .
Since aj − bj = (αj − βj)gj then we may think of the denominator at (4.3),
|αj | + |βj | = |αj − βj |, as a measure of how far the j th component densities
are apart.

In the case k = 2 the densities a1, a2, b1, b2 and the mixture proportion π are
determined only up to the properties described in Theorem 4.1, as our next result,
a converse to Theorem 4.1, shows.

THEOREM 4.2. Assume k = 2 and f is a bivariate density, let f1 and f2
denote the respective marginal densities, and suppose the factorization at (4.2)

holds for functions g1, g2. If α1, α2, β1, β2 is any sequence of constants such that
(i) sgnαj = − sgnβj , (ii) |βj |/(|αj | + |βj |) does not depend on j , and (iii) the
functions aj = fj + αjgj and bj = fj + βjgj are nonnegative, then a1, a2, b1, b2
are probability densities, and (4.1) holds for these functions and for π defined
by (4.3).
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Theorem 4.1 implies that the family of densities aj = fj + αjgj and bj = fj +
βjgj , such that (4.1) holds, is completely determined by just two scalar parameters.
Indeed, if nonzero numbers α1, β1 are given and satisfy sgnα1 = − sgnβ1, then α2,
β2 and π are determined:

α2 = −β−1
1 , β2 = −α−1

1 and π = β1/(β1 − α1).(4.4)

Additionally, the values of α1 and β1 are governed by requirement (iii) of
Theorem 4.2. This generally constrains α1 and β1 to lie in intervals, the size and
location of which may be deduced from properties, particularly those of the tails,
of any particular sequence of densities a1, a2, b1, b2 for which (4.1) holds in the
case k = 2. Therefore, there is generally a two-parameter continuum of solutions
(π, a1, a2, b1, b2) to (4.1), if we regard the density f there as given.

To appreciate the origins of (4.4), observe that by (b) of Theorem 4.1, πα1α2 =
1 − π and (1 − π)β1β2 = π , whence

πα1α2 + (1 − π)β1β2 = 1.(4.5)

By (a) of Theorem 4.1, πα1 = −(1 − π)β1, and so by (4.5), (1 − π)β1(−α2 +
β2) = 1. But, again by (a), 1 − π = −α2/(β2 − α2), and so −α2β1 = 1, which
is the first result at (4.4). The second result there follows similarly, and the third
result is a consequence of (a) of Theorem 4.1.

Next we give conditions under which the representation (4.1) is unique for
k ≥ 3. Suppose f admits the representation (4.1). We shall say that f is irreducible
if none of its bivariate marginals factorises into the product of univariate marginals.

THEOREM 4.3. If f admits the representation (4.1), with k ≥ 3, and if f is
irreducible, then, modulo replacing π,a1, . . . , ak by 1−π,b1, . . . , bk , respectively,
the mixture proportion π and the densities aj and bj are uniquely determined
by (4.1). In particular, if it is stipulated that 0 < π < 1

2 , then a1, . . . , ak, b1, . . . , bk

are uniquely determined as functionals of f .

The irreducibility condition is sufficient not only for the representation to be
unique for a particular value of k, but also for it to be unique for any distribution F

that is obtained by integrating out at most k − 3 of the k marginals. It is also
necessary, in the sense that if it fails then f factorizes into the product of its
marginal distributions. See the Appendix for details. Moreover, Theorem 4.3
applies directly to the case where some or all of the marginal distributions are
discrete. To appreciate why, it suffices to note that, without loss of generality,
a discrete marginal distribution is supported on the integers, and that there is a
one-to-one correspondence between such distributions and the set of histogram
densities in which each histogram block is of unit width and centred at an integer.

Theorem 4.3 may be derived as suggested in the paragraph following the
statement of Theorem 4.1. In more detail, assume for simplicity that k = 3. By
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considering the bivariate subproblems defined by the pairs (j1, j2) = (1,2), (2,3)

and (3,1), and noting result (4.4) and the fact that f is irreducible, it may be
shown that f = h1 + h2 where h1 = (c1α1 − α−1

1 )
∏

gj , h2 = ∏
fj + c1f1g2g3 +

f2g1g3 +f3g1g2, and c1 is a constant determined by f alone and not depending on
the particular decomposition of f at (4.1). We rewrite the equation as h1 = f −h2;
the right-hand side here depends only on f , whereas the left-hand side depends,
through α1, on the particular representation chosen. Since f is irreducible then the
latter dependence is nondegenerate. Therefore, c1α1 −α−1

1 must equal a particular
constant, c2 say, completely determined by f . Therefore, α1 is given by the
quadratic equation c1α

2
1 − c2α2 − 1 = 0. The two solutions in α1 of this equation

correspond to the two representations obtained by interchanging π,a1, a2, a3 and
1 − π,b1, b2, b3 at (4.1).

4.2. Nonidentifiability of the random effects model. Here we give counter-
examples that verify claims made in Section 1 about nonidentifiability in the
random effects model at (1.3). It suffices to show that the first product-term in
that model, which we write here as the density

ψ(x) =
∫ {

k∏
j=1

aj (xj |λ)

}
φ(λ) dλ,

is not identifiable.
For each 1 ≤ j ≤ k, let sj and tj denote univariate probability density functions.

In a parametric setting they could be assumed completely known, although they
would be unknown in a nonparametric view of the problem. Let qj (λ) denote a
function that takes values only in the interval (0,1), and put

aj (xj |λ) = qj (λ)sj (xj ) + {1 − qj (λ)}tj (xj ).(4.6)

Then for each λ, aj (·|λ) is a proper probability density. Moreover,

ψ(x) = ∑′
µj1···jk

sj1(xj1) · · · sj�
(xj�

)tj�+1(xj�+1) · · · tjk
(xjk

),(4.7)

where (a) 0 ≤ � ≤ k, (b) (j1, . . . , jk) denotes a permutation of 1, . . . , k with the
properties j1 < · · · < j� and j�+1 < · · · < jk ,

(c) µj1···jk
=

∫
qj1(λ) · · ·qj�

(λ)
{
1 − qj�+1(λ)

} · · · {1 − qjk
(λ)

}
φ(λ) dλ,

and (d)
∑′ denotes summation over � and (j1, . . . , jk) satisfying (a) and (b).

Clearly, ψ depends on the functions qj and the density φ only through the
moments µj1···jk

. Even if φ is known completely, for example if it is the standard
Normal density, there exists an infinity of functions q1, . . . , qk satisfying the
constraint 0 < qj < 1 and producing the same moment sequence µj1···jk

. This
makes the component densities nonidentifiable, even for known φ, if one takes
a nonparametric view of the mixture estimation problem.
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In a parametric setting, for a fixed, known φ such as standard Normal, and
with known functions sj and tj at (4.6), one can readily construct functions
qj = qj (·|θ) which satisfy 0 < qj < 1 and depend in a smooth, nondegenerate
way on a parameter vector θ , but for which each moment µj1···jk

in the series
at (4.7) does not depend on θ . In this case the model for aj is fully parametrized,
but θ is not identifiable from data on ψ .

4.3. Properties of estimators in the standard mixture model. We show that the
estimators proposed in Section 2 are consistent for an irreducible distribution and
its component parts. Moreover, we prove that in many cases the rate of convergence
is Op(n−1/2), where n denotes sample size. To avoid ambiguity in the order of the
two terms at (1.1) we assume 0 < π < 1

2 , and impose this condition too on the
estimator π̂ ; this may be interpreted as replacing π̂ by 1 − π̂ , and interchanging
F̂j1 and F̂j2, if we estimate π to be a number exceeding 1

2 .

THEOREM 4.4. Let the weight function w at (2.3) be a continuous density
supported on all of 2k-dimensional space. Assume too that f admits the
representation (4.1), with k ≥ 3, that f is irreducible, and that 0 < π < 1

2 . Then
the k-variate distribution function F corresponding to f , as well as the mixture
proportion π and the component distribution functions, are strongly, uniformly
consistently estimated by the procedure introduced in Section 2. Furthermore, if
the distributions at (1.1) are compactly supported then π̂ − π = Op(n−1/2) and
all the distribution estimators are root-n consistent in L2, in the sense that∫

{Ĝ(u) − G(u)}2 du = Op(n−1),(4.8)

where G may represent either F , that is, the full mixture distribution, or any one
of its components, that is, Fj1 or Fj2.

Result (4.8) admits generalizations to the case of noncompactly supported dis-
tributions, but they require conditions on the tails of the component distributions.

5. Technical arguments.

5.1. Proof of Theorem 4.1. Since Theorem 4.1 deals only with bivariate
submodels of the full distribution then we may, without loss of generality, assume
k = 2. Then (4.1) becomes

πa1a2 + (1 − π)b1b2 = f,(5.1)

and, integrating with respect to the component complementary to j , we deduce
that

πaj + (1 − π)bj = fj .(5.2)
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Now, (5.2) implies that bj = (1 − π)−1(fj − πaj ). Substituting for b1 and b2
in (5.1), and simplifying, we deduce that

π

1 − π
(a1 − f1)(a2 − f2) = f − f1f2,(5.3)

which proves (4.2), of which the version here is f − f1f2 = g1g2 where g1g2
denotes the left-hand side of (5.3).

Henceforth we assume that f is not identically equal to f1f2. Result (5.3) also
implies that for constants α1, α2,

aj = fj + αjgj where α1α2 = 1 − π

π
.(5.4)

A symmetric argument gives, for constants β1, β2,

bj = fj + βjgj where β1β2 = π

1 − π
.(5.5)

Property (b) in Theorem 4.1 follows from (5.4) and (5.5).
Substituting for a1, a2, b1, b2 in (5.1) using (5.4) and (5.5), and simplifying, we

obtain

{πα1 + (1 − π)β1}f2g1 + {πα2 + (1 − π)β2}f1g2 = 0.(5.6)

Integrating over the first component, and noting that by (4.2),
∫

g1 = 0, we deduce
that {πα2 + (1 − π)β2}g2 = 0, and so either πα2 + (1 − π)β2 = 0 or g2 ≡ 0.
The latter property implies, by (5.4) and (5.5), that a2 = b2 = f2, and hence
by (5.1) and (5.2) that f = f1f2, which is contrary to assumption. Therefore,
παj + (1 − π)βj = 0 for j = 2, and likewise the version for j = 1 holds. This
establishes part (a) of the theorem.

Note that by (a),

π = βj

βj − αj

and 1 − π = −αj

βj − αj

.(5.7)

The denominators here cannot vanish, since to do so would imply αj = βj which,
because αj and βj cannot both vanish, because f is not identically equal to f1f2,
leads to a contradiction via (a) of the theorem. It follows from (a), (5.7) and the
fact that π and 1 − π are both strictly positive that βj and αj must have opposite
signs, which completes the proof of Theorem 4.1.

5.2. Proof of Theorem 4.2. If (4.2) holds then
∫

gj = 0 for each j , and
so by (iii) of Theorem 4.2, a1, a2, b1, b2 are probability densities. Substituting
into (4.1), the right-hand side becomes

f1f2 + g1g2 + {πα1 + (1 − π)β1}f2g1 + {πα2 + (1 − π)β2}f1g2.(5.8)

Defining π by (4.3), and using assumptions (i) and (ii), we may prove that
π = βj/(βj − αj), whence it follows that παj + (1 − π)βj = 0. Therefore the
quantity at (5.8) equals f1f2 + g1g2, which by (4.2) is just f . This proves the
theorem.
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5.3. Proof of Theorem 4.4. Let Nr equal the number of Xi ’s that come
from �r , and put π̃ = Nr/n and

p̃ij r =
{

1/Nr, if Xi ∈ �r ,
0, otherwise,

for 1 ≤ j ≤ k. Let p̃ denote the concatenation of values of p̃ij r . Given two
functions G1(x, y) and G2(x, y) of the type F̃ (x, y), define

‖G1 − G2‖2 =
∫

{G1(x, y) − G2(x, y)}2 w(x, y) dx dy.

Put F̂ (x, y) = ∫
R(x,y) dF̂ (x), D0 = ‖F̃ − F‖ and

D(p,π;F) =
∥∥∥∥∥π

k∏
j=1

F̃j1(xj , yj ) + (1 − π)

k∏
j=1

F̃j2(xj , yj ) − F

∥∥∥∥∥.
In this formula the dependence of D(p,π;F) on p is through the fact that
each F̃jr , on the right-hand side, depends on p; see (2.2).

Recall from (2.4) that (p̂, π̂) minimizes D(p,π, F̃ ), and so D(p̂, π̂; F̃ ) ≤
D(p̃, π̃; F̃ ). Therefore,

‖F̂ − F‖ ≤ D(p̂, π̂; F̃ ) + D0 ≤ D(p̃, π̃; F̃ ) + D0
(5.9) ≤ D(p̃, π̃;F) + 2 D0 ≡ T,

say, where the first and third inequalities are consequences of triangle relations.
It is readily proved that T converges to 0 with probability 1, which, since F is
continuous and monotone, implies strong uniform consistency of F̂ for F .

To prove strong uniform consistency of π̂ , F̂jr for π,Fjr , respectively, suppose
that to the contrary this result is false. Then there exists an event E , with P (E) > 0,
such that on E , at least one of π̂ , F̂jr does not converge to its counterpart
among π,Fjr . Using Helly’s extraction principle, for each sample-space point
ω ∈ E we may choose a subsequence along which π̂ and F̂jr , the latter for each
j and r , converge to proper limits π̂ω and F̂ ω

jr , say, at least one of the latter
being distinct from its counterpart among π and Fjr . Note that F̂ ω

jr may be a

subdistribution function. Either for this reason or because, while each F̂ ω
jr is a

distribution function, either not all these functions are equal to the respective Fjr ’s
or π̂ω �= π , and noting that the representation (1.1) is uniquely determined by F ,
the corresponding mixture distribution or subdistribution function F̂ ω, defined by

F̂ ω(x) = π̂ω
k∏

j=1

F̂ ω
j1(xj ) + (1 − π̂ω)

k∏
j=1

F̂ ω
j2(xj ),

is not identical to F . However, F̂ ω is a limit point of the sequence of functions F̂

when the sample-space point is ω. And it follows, using the argument in the
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previous paragraph, that F̂ converges to F with probability 1 conditional on ω ∈ E .
Therefore, F̂ ω = F with probability 1, conditional on ω ∈ E . This contradiction
proves that each of π̂ , F̂jr converges almost surely to the corresponding π,Fjr .
Finally, note that since Fjr is continuous then convergence of F̂jr to Fjr , in
the sense of weak convergence of distributions, for any particular sample-space
point ω, implies uniform convergence.

If the component distributions are all compactly supported, then T , defined
at (5.9), equals Op(n−1). This implies (4.8) in the case G = F . That result will
imply (4.8) when G is a component distribution and will also imply the property
π̂ − π = Op(n−1/2), if we prove that when

H(x) = q

k∏
j=1

Hj1(xj ) + (1 − q)

k∏
j=1

Hj2(xj )

is a mixture representation alternative to that at (1.1), we have

(π − q)2 +
k∑

k=1

∫ {
(Fj1 − Hj1)

2 + (Fj2 − Hj2)
2} = O

{∫
(F − H)2

}
(5.10)

as H → F in L2.
Redefine ‖ · ‖ to be the L2 norm, that is, ‖F − H‖ = {∫ (F − H)2}1/2. In

this notation, (5.10) may be interpreted as implying that, for example, |π − q| =
O(‖F −H‖) as H → F . This is in turn a smoothness condition on the functional q
of H , a little weaker than the existence of a Fréchet derivative.

To establish (5.10), write K = K[F ] to denote that a given j -variate function K ,
where 0 ≤ j ≤ k, is a functional of F . (The case j = 0 corresponds to K[F ] being
a constant when F is fixed.) We shall say that the functional “is Lipschitz” if
it satisfies ‖K[F ] − K[H ]‖ = O(‖F − H‖) as H → F in L2. If (5.10) were
untrue then it would fail if the left-hand side were replaced by (π − q)2, or if
it were replaced by

∫
(Fjr − Hjr)

2 for some pair (j, r). That is, we see that if
(5.10) were to fail then either (i) |π − q|/‖F − H‖ would be unbounded, or
(ii) ‖Fjr − Hjr‖/‖F − H‖ would be unbounded for some pair (j, r), as H → F

in L2. If (i) were true it would imply that (iii) π = π [F ] was not Lipschitz, while
(ii) would imply that (iv) Fjr = Fjr[F ] was not Lipschitz. We shall contradict (iv)
by proving its complement: (v) Fjr is Lipschitz. Similarly, (iii) may be shown to
be contradicted.

Assume for the sake of simplicity that k = 3, and let g1, g2 and g3 be functions
such that

fj1j2(xj1, xj2) − fj1(xj1) fj2(xj2) = gj1(xj1) gj2(xj2)(5.11)

for (j1, j2) = (1,2), (2,3) and (3,1) [cf. (4.2)]. Put Gj(xj ) = ∫
u≤xj

gj (u) du,
with the constant of proportionality in the definition of gj , for j = 1,2,3,
determined by the condition

∫
G2

1 = 1. Write Aj and Bfj1j2 for the univariate
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marginal distribution function of F corresponding to the j th coordinate, and the
bivariate marginal distribution function of F corresponding to coordinates (j1, j2),
respectively. Then by (5.11),

Bj1j2(xj1, xj2) − Aj1(xj1)Aj2(xj2) = Gj1(xj1)Gj2(xj2).(5.12)

It follows directly from the definitions of Aj and Bj1j2 that both are Lipschitz.
Hence, by (5.12), Gj is also Lipschitz. [Of course, in order to obtain Gj1

from (5.12) we simply take xj2 to be a value for which Gj2(xj2) �= 0. It follows
from the irreducibility condition that this is possible.]

By Theorem 4.1, Fjr = Aj + cjrGj where cjr is a scalar. From this result,
and the Lipschitz property of Gj deduced in the previous paragraph, we see that
Fjr is Lipschitz too, provided cjr is as well. However, we know from the proof of
Theorem 4.3 (outlined two paragraphs below the statement of that theorem) that
cjr is determined as the solution of a quadratic equation. It is straightforward to
prove, first, that each coefficient in the equation is Lipschitz, and thence that cjr

also has that property. This completes the proof of result (v), stated two paragraphs
above.

APPENDIX

Nature of the irreducibility condition. The irreducibility condition implies
that for any particular version of the representation on the right-hand side of (4.1),
no function aj −bj vanishes identically. To appreciate why, let us suppose without
loss of generality that this fails for j = 3; that is, a3 ≡ b3 ≡ A, say. Then we may
write

f (x1, x2, x3) = π

3∏
j=1

aj (xj ) + (1 − π)

3∏
j=1

bj (xj )

=
{
π

2∏
j=1

aj (xj ) + (1 − π)

2∏
j=1

bj (xj )

}
A(x3).

Now integrate over either x1 or x2; choosing x2 we obtain

f (x2, x3) = {π a2(x2) + (1 − π)b2(x2)}A(x3),

which implies that the bivariate density of (X2,X3) factorizes into the product of
its marginals. This violates the irreducibility condition.

Next we prove that if the irreducibility condition fails then f (x1, . . . , xk)

factorizes into the product of its k univariate marginals, and so (4.1) is not uniquely
determined with respect to π . To understand why, note that if irreducibility
fails, then without loss of generality the bivariate density of (X1,X2) factorizes
into the product of its marginals. We shall indicate this by writing f (x1, x2) =
A1(x1)A2(x2), where A1(x1) and A2(x2) are the marginal densities. Consider
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any trivariate density which includes the above two marginals; without loss of
generality it is the density of (X1,X2,X3), and equals

f (x1, x2, x3) = π

3∏
j=1

aj (xj ) + (1 − π)

3∏
j=1

bj (xj ).

Integrating over x3 we deduce that

f (x1, x2) = π

2∏
j=1

aj (xj ) + (1 − π)

2∏
j=1

bj (xj ) = A1(x1)A2(x2).

From this it follows that aj = bj = Aj for j = 1,2. Therefore,

f (x1, x2, x3) = A1(x1)A2(x2){πa3(x3) + (1 − π)b3(x3)}.
This of course implies that f (x1, x2, x3) factorizes as the product of its three
univariate marginals, and arguing in the same manner we may prove by induction
that f (x1, . . . , xk) factorizes into the product of its k univariate marginals.
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