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NONPARAMETRIC ESTIMATION OF CORRELATION FUNCTIONS
IN LONGITUDINAL AND SPATIAL DATA, WITH APPLICATION

TO COLON CARCINOGENESIS EXPERIMENTS1

BY YEHUA LI, NAISYIN WANG, MEEYOUNG HONG, NANCY D. TURNER,
JOANNE R. LUPTON AND RAYMOND J. CARROLL

University of Georgia and Texas A&M University

In longitudinal and spatial studies, observations often demonstrate strong
correlations that are stationary in time or distance lags, and the times or lo-
cations of these data being sampled may not be homogeneous. We propose a
nonparametric estimator of the correlation function in such data, using ker-
nel methods. We develop a pointwise asymptotic normal distribution for the
proposed estimator, when the number of subjects is fixed and the number of
vectors or functions within each subject goes to infinity. Based on the asymp-
totic theory, we propose a weighted block bootstrapping method for making
inferences about the correlation function, where the weights account for the
inhomogeneity of the distribution of the times or locations. The method is ap-
plied to a data set from a colon carcinogenesis study, in which colonic crypts
were sampled from a piece of colon segment from each of the 12 rats in
the experiment and the expression level of p27, an important cell cycle pro-
tein, was then measured for each cell within the sampled crypts. A simulation
study is also provided to illustrate the numerical performance of the proposed
method.

1. Introduction. This paper concerns kernel-based nonparametric estimation
of covariance and correlation functions. Our methods and theory are applicable
to longitudinal and spatial data as well as time series data, where observations
within the same subject at different time points or locations have strong correla-
tions, which are stationary in time or distance lags. The structure for the obser-
vation at a particular time or location within one subject can be very general, for
example, a vector or even a function.

Our study arises from a colon carcinogenesis experiment. The biomarker that
we are interested in is p27, which is a life cycle protein that affects cell apoptosis,
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proliferation and differentiation. An important goal of the study is to understand
the function of p27 in the early stage of the cancer development process. In the
experiment, 12 rats were administered azoxymethane (AOM), which is a colon
specific carcinogen. After 24 hours, the rats were terminated and a segment of
colon tissue was excised from each rat. About 20 colonic crypts were randomly
picked along a linear slice on the colon segment. The physical distances between
the crypts were measured. Then, within each crypt, we measured cells at different
depths within the crypts, and then the expression level of p27 was measured for
each cell within the chosen crypts. In this data set, crypts are naturally functional
data (Ramsay and Silverman [13]), in that the responses within a crypt are coordi-
nated by cell depths. There is a literature about similar data, for example, Morris
et al. [11].

However, in this paper we will be focused on a very different perspective. In this
application the spatial correlation between crypts is of biological interest, because
it helps answer the question: if we observe a crypt with high p27 expression, how
likely are the neighboring crypts to have high p27 expression? We will phrase
much of our discussion in terms of this example, but as seen in later sections, we
have a quite general structure that includes time series as a special case. In that
context, the asymptotic theory is as the number of “time series locations,” that is,
crypts, increases to infinity.

Although motivated by a very specific problem, nonparametric covariance/
correlation estimators are worth being investigated in their own right. They can
be used in a statistical analysis as: (a) an exploratory device to help formulate a
parametric model, (b) an intermediate tool to do spatial prediction (kriging), (c)
a diagnostic for parametric models and (d) a robust tool to test correlation. Un-
derstanding the theoretical properties of the nonparametric estimator is important
under any of these situations. A limiting distribution theory would be especially
valuable for purpose (d).

There is previous work on the subject of nonparametric covariance estimation.
Hall, Fisher and Hoffmann [7] developed an asymptotic convergence rate of a ker-
nel covariance estimator in a time series setting. They required not only an increas-
ing time domain, but increasingly denser observations. Diggle and Verbyla [5]
suggested a kernel-weighted local linear regression estimator for estimating the
nonstationary variogram in longitudinal data, without developing asymptotic the-
ory. Guan, Sherman and Calvin [6] used a kernel variogram estimator when as-
sessing isotropy in geostatistics data. They proved asymptotic normality for their
kernel variogram estimator in a geostatistics setting, where they required the spa-
tial locations to be sampled from the field according to a two-dimensional homo-
geneous Poisson process.

As we will show below and as implied by the result from Guan, Sherman and
Calvin [6], if the observations locations (or times) in the design are random, Hall’s
assumption, namely that the number of observations on a unit domain goes to infin-
ity, is too restrictive and not necessary. However, in the setting of Guan, Sherman
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and Calvin [6], given the sample size, spatial locations are uniformly distributed
within the field, which does not fit our problem, where crypt locations within a rat
are, in fact, not even close to uniformly distributed.

Our paper differs from the previous work on the kernel covariance estimators in
the following ways. First, our approach accommodates more complex data struc-
ture at each location or time. Second, we allow the spatial locations to be sampled
in an inhomogeneous way, and as we will show below this inhomogeneity will af-
fect the asymptotic results and inference procedures. In doing so, we generalize the
setting of Guan, Sherman and Calvin [6], and link it to the setting of Hall, Fisher
and Hoffmann [7]. Also, Guan, Sherman and Calvin [6] is mainly concerned with
comparing variograms on a few preselected distance lags; we, on the other hand,
are more interested in the correlation as a function. Third, we propose an inference
procedure based upon our theory, thus filling a gap in the previous literature.

The paper is organized as follows. Section 2 introduces our model assumptions
and estimators, while asymptotic results are given in Section 3. An analysis of the
motivating data is given in Section 4, where we also discuss bandwidth selection
and standard error estimation. Section 5 describes simulation studies, and final
comments are given in Section 6. All proofs are given in the Appendix.

2. Model assumptions and estimators. The data considered here have the
following structure.

• There are r = 1, . . . ,R independent subjects, which in our example are rats.
• The data for each subject have two levels. The first level has an increasing do-

main, as in time series or spatial statistics, and are the crypts in our example.
We label this first level as a “unit,” and it is these units that have time series or
spatial structure in their locations. Within each subject, there are i = 1, . . . ,Nr

such units.
• The second level of the data consists of observations within each of the primary

units. In our case, these are the cells within the primary units, the colonic crypts.
We will label this secondary level as the “subunits,” which are labeled with lo-
cations. The locations with the subunits are on the interval [0,1]. For simplicity,
we will assume there are exactly m subunits (cells) within each unit (crypt),
with the j th subunit having location (relative cell depth) x = (j − 1)/(m − 1).
However, all theories and methods in our paper will go through if the subunits
take the form of an arbitrary finite set.

• For m = 1, define x to be fixed at 0. It is analogous to the time series setting
of Hall, Fisher and Hoffman [7] or the spatial setting of Guan, Sherman and
Calvin [6].

Let �(s, x) be a random field on T ×X, where s is the unit (crypt) location and
x is the subunit (cell) location, so that T = [0,∞), X = {(j − 1)/(m − 1), j =
1, . . . ,m}. Assume that �r(·, ·), r = 1, . . . ,R, are independent realizations of
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�(·, ·). We use the short-hand notation �ri(x) = �r(Sri, x), where Sri is the loca-
tion of the ith unit (crypt) within the r th subject (rat). Our model for the observed
data is that

Yrij = �ri(xj ) + εrij ,(1)

where Y is the response (logarithm of p27 level), εrij are zero-mean uncor-
related measurement errors with variance σ 2

ε , r = 1, . . . ,R, i = 1, . . . ,Nr and
j = 1, . . . ,m are the indices for subjects (rats), units (crypts) and subunits (cells).
Define �r(·) = Er{�ri(·)} to be the subject-level mean, and the notation “Er”
refers to expectation conditional on the subject. Another way to understand �r(·)
is to decompose the random field �r(·, ·) into the random effect model �ri(x) =
�r(x) + �ri(x), where �r(·) is the fixed subject effect and �ri is the zero-mean,
spatially correlated unit effect.

Within each subject, we assume that the correlation of the mean unit (crypt)
level functions is stationary over the distances between the units. In addition, the
covariance between unit locations (s1, s2) at subunit (cell) locations (x1, x2) is
assumed to have the form

V{x1, x2,�} = E[{�r(s1, x1) − �r(x1)}{�r(s2, x2) − �r(x2)}],(2)

where � = s1 − s2. While we develop general results for model (2), in many cases
it is reasonable to assume that the covariance function is separable, that is,

V(x1, x2,�) = G(x1, x2)ρ(�).(3)

When the covariance function is separable, the correlation function at the unit-
level, ρ(·), is of interest in itself. In our application, ρ(·) is the correlation between
crypts. We provide an estimator of ρ(·) as well as an asymptotic theory for that
estimator.

A first estimator for the covariance function has the form

V̂(xj , xl,�) =
[∑

r

∑
i

∑
k �=i

Kh{�r(i, k) − �}(Yrij − Y r·j )(Yrkl − Y r·l)
]

(4)

×
[∑

r

∑
i

∑
k �=i

Kh{�r(i, k) − �}
]−1

,

where Y r·j = N−1
r

∑Nr

i=1 Yrij , �r(i, k) = Sri − Srk and Kh(·) = h−1K(·/h) with
K being a kernel function satisfying the conditions in Section 3.

It is usually reasonable to assume that V(x1, x2,�) has some symmetry prop-
erty, that it is an even function in � and V(x1, x2,�) = V(x2, x1,�). However,
the estimator defined in (4) does not enjoy this property. To see this, we observe
that, for xj �= xl , although (Yrij −Y r·j )(Yrkl −Y r·l) and (Yril −Y r·l)(Yrkj −Y r·j )
estimate the same thing, they only contribute to V̂(xj , xl,�) and V̂(xj , xl,−�),
respectively. We also observe that V̂(x1, x2,�) = V̂(x2, x1,−�).
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To correct the asymmetry of the covariance estimator, for � ≥ 0, define

Ṽ(xj , xl,�) =
[∑

r

∑
i

∑
k �=i

Kh{|�r(i, k)| − �}(Yrij − Y r·j )(Yrkl − Y r·l)
]

(5)

×
[∑

r

∑
i

∑
k �=i

Kh{|�r(i, k)| − �}
]−1

,

and let Ṽ(xj , xl,�) = Ṽ(xj , xl,−�) for � < 0. As shown in the proof of
Theorem 2, for a fixed � �= 0, Ṽ(x1, x2,�) is asymptotically equivalent to
{V̂(x1, x2,�) + V̂(x1, x2,−�)}/2.

In addition, when the separable structure (3) is assumed, define the estimator
for the within-unit covariance as

Ĝ(x1, x2) = Ṽ(x1, x2,0),(6)

and the estimator for the correlation function as

ρ̂(�) =
{ ∑

x1∈X

∑
x2≤x1

Ṽ(x1, x2,�)

}/{ ∑
x1∈X

∑
x2≤x1

Ĝ(x1, x2)

}
.(7)

3. Asymptotic results. The following are our model assumptions. Each sub-
ject (rat) is of length L, where in our example L is the length of the segment of
tissue from each rat. The units (crypts) are located on the interval [0,L], and in
our asymptotics we let L → ∞, so that we have an increasing domain. Suppose
that the positions of the units (crypts) within the r th subject (rat) are Sr1, . . . , SrNr ,
where the Sri’s are points from an inhomogeneous Poisson process on [0,L]. Then
�r,ik = Sri − Srk . The definition of an inhomogeneous Poisson process is adopted
from Cressie [3]. We assume the inhomogeneous Poisson process has a local in-
tensity νg∗(s), where ν is a positive constant and g∗(s) = g(s/L) for a continuous
density function g(·) on [0,1].

A special case of our setting is that g(·) is a uniform density function and the
units (crypts) are sampled according to a homogeneous Poisson process. This is the
setting investigated in Guan, Sherman and Calvin [6]. Our setting resembles that
of Hall, Fisher and Hoffmann [7] in the sense that we also model the unit locations
as random variables with the same distribution: in our setting, the number of units
within a subject (rat) is Nr ∼ Poisson(νL), and given Nr , Sr1/L, . . . , Sr,Nr /L are
independent and identically distributed with density g(·). By properties of Poisson
processes, Nr/L = O(ν) almost surely, as L → ∞, that is, the number of units
(crypts) on a unit length tends to a constant. It is worth noting that Hall, Fisher and
Hoffmann [7] required this ratio to go to infinity. We require less samples on the
domain than do Hall, Fisher and Hoffmann [7].

In what follows, we provide a list of definitions and conditions.
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1. We assume that g(·) is continuous and c1 ≥ g(t) ≥ c2 > 0 for all t ∈ [0,1].
Suppose ti , i = 1,2,3,4, are independent random variables with density g(·),
define f1, f2 and f3 to be the densities for t1 − t2, (t1 − t2, t3 − t2) and (t1 − t2,

t3 − t4, t2 − t4), respectively. Since g(·) is bounded, one can easily derive that
f1(0), f2(0,0) and f3(0,0,0) are positive. We also assume that f1 and f2 are
Lipschitz continuous in the neighborhood of 0, that is, |fi(u)−fi(0)| ≤ λi‖u‖,
for ∀u and some fixed constants λi > 0, i = 1,2.

2. Assume V(x1, x2,�) has two bounded continuous partial derivatives in �, and
that supx1,x2

∫ |V(x1, x2,�)|d� < ∞.
3. Let

M(x1, x2, x3, x4, u, v,w)

= Er [{�ri1(x1) − �r(x1)}{�ri2(x2) − �r(x2)}{�ri3(x3) − �r(x3)}
× {�ri4(x4) − �r(x4)}|�r(i1, i2) = u,

�r(i3, i4) = v,�r(i2, i4) = w]
− V(x1, x2, u)V(x3, x4, v).

We assume M has bounded partial derivatives in u, v and w, and

sup
x1,x2,x3,x4,u,v

∫
|M(x1, x2, x3, x4, u, v,w)|dw < ∞.(8)

4. Denote br(x1, x2,�) = L−1 ∑
i

∑
k �=i Kh{� − �r(i, k)}{Yr(Sri, x1) −

�r(x1)}{Yr(Srk, x2) − �r(x2)}. We assume that, for any fixed �, for some
η > 0,

sup
L,x1,x2

E
(|var−1/2{br(x1, x2,�)}[br(x1, x2,�) − E{br(x1, x2,�)}]|2+η)

(9)
≤ Cη < ∞.

5. Let F (T ) be the σ -algebra generated by {�(s, x), s ∈ T , x ∈ X}, for any Borel
set T ⊂ T . Assume that the random field satisfies the mixing condition

α(τ) = sup
t

[|P(A1 ∩ A2) − P(A1)P (A2)| :A1 ∈ F {[0, t]},
A2 ∈ F {[t + τ,∞)}](10)

= O(τ−δ) for some δ > 0.

6. The kernel function K is a symmetric, continuous probability density function
supported on [−1,1]. Define σ 2

K = ∫
u2K(u)du and RK = ∫

K2(v) dv.
7. Assume that m and R are fixed numbers, L → ∞, h → 0, Lh → ∞ and

Lh5 = O(1).
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In assumption 1, we are imposing some regularity conditions on g and fi . In fact,
when g is differentiable fi are piecewise differentiable, but usually not differen-
tiable at 0. However, the Lipschitz conditions on f1 and f2 are easily satisfied
when, for example, g is Lipschitz continuous on [0,1].

Since we are estimating the covariance function, which is the second moment
function, we need a regularity condition on the fourth moment function as in (8).
Condition (9) may seem strong at the first sight, but it is simply a condition that
bounds the tail probability of our statistics. For example, if we have an assumption
analogous to (8) for the eighth moment of �r(s, x), we can use arguments as in
Lemma A.3 to show that E([br(x1, x2,�) − E{br(x1, x2,�)}]4) = O(L−3h−3),
and therefore condition (9) is satisfied for η = 2. In general, when the distribution
of � is neither too skewed nor has a much heavier tail than that of the Gaussian,
equation (9) will be satisfied. Assumption 6 and 7 are standard in the literature of
kernel estimators.

Denote V(0,0,2)(x1, x2,�) = ∂2V(x1, x2,�)/∂�2. Let V(�), V̂(�) and Ṽ(�)

denote the vectors collecting V(x1, x2,�), V̂(x1, x2,�) and Ṽ(x1, x2,�), respec-
tively, for all distinct pairs of (x1, x2). The following are our main theoretical re-
sults. All proofs are provided in the Appendix. Note that Theorem 1 refers to V̂(·)
in (4), while Theorem 2 refers to Ṽ(·) in (5).

THEOREM 1. Under assumptions 1–7, for � �= �′, we have

(RLh)1/2
[

V̂(�) − V(�) − bias{V̂(�)}
V̂(�′) − V(�′) − bias{V̂(�′)}

]
⇒ Normal

[
0, {ν2f1(0)}−1

(
�(�) C(�,�′)

CT (�,�′) �(�′)

)]
,

where the asymptotic bias bias{V̂(�)} is a vector having entries bias{V̂(x1, x2,

�)} = σ 2
KV(0,0,2)(x1, x2,�)h2/2, �(�) is the covariance matrix with the entry

corresponding to cov{V̂(x1, x2,�), V̂(x3, x4,�)} equal to RK{M(x1, x2, x3, x4,

�,�,0) + I (x2 = x4)σ
2
ε V(x1, x3, 0) + I (x1 = x3)σ

2
ε V(x2, x4,0) + I (x1 = x3,

x2 = x4)σ
4
ε } + I (� = 0)RK{M(x1, x2, x3, x4,0,0,0) + I (x1 = x4)σ

2
ε V(x2,

x3,0) + I (x2 = x3)σ
2
ε V(x1, x4,0) + I (x1 = x4, x2 = x3)σ

4
ε } and C(�,�′) is the

matrix with the entry corresponding to cov{V̂(x1, x2,�), V̂(x3, x4,�
′)} equal

to I (�′ = −�){M(x1, x2, x3, x4,�,−�,−�) + I (x2 = x3)σ
2
ε V(x1, x4,0) +

I (x1 = x4) × σ 2
ε V(x2, x3,0) + I (x1 = x4, x2 = x3)σ

4
ε }.

THEOREM 2. Under assumptions 1–7, for � �= ±�′, we have

(RLh)1/2
[

Ṽ(�) − V(�) − bias{Ṽ(�)}
Ṽ(�′) − V(�′) − bias{Ṽ(�′)}

]
⇒ Normal

[
0, {ν2f1(0)}−1

(
�(�) 0

0 �(�′)

)]
,
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where bias{Ṽ(�)} is a vector with entries bias{Ṽ(x1, x2,�)} = σ 2
KV(0,0,2)(x1, x2,

�)h2/2, �(�) is the covariance matrix with the entry corresponding to cov{Ṽ(x1,

x2,�), Ṽ(x3, x4, �)} equal to (1/2)RK{M(x1, x2, x3, x4,�,�,0) + M(x1, x2,

x3, x4,�,−�,−�) + I (x2 = x4)σ
2
ε V(x1, x3,0) + I (x1 = x3)σ

2
ε V(x2, x4,0) +

I (x1 = x3, x2 = x4)σ
4
ε + I (x2 = x3)σ

2
ε V(x1, x4,0) + I (x1 = x4)σ

2
ε V(x2, x3,0) +

I (x1 = x4, x2 = x3)σ
4
ε } + I (� = 0)(1/2)RK{2M(x1, x2, x3, x4,0,0,0) + I (x2 =

x4)σ
2
ε V(x1, x3,0) + I (x1 = x3)σ

2
ε V(x2, x4,0) +I (x1 = x3, x2 = x4)σ

4
ε + I (x2 =

x3)σ
2
ε V(x1, x4,0) + I (x1 = x4)σ

2
ε V(x2, x3,0) + I (x1 = x4, x2 = x3)σ

4
ε }.

COROLLARY 1. Suppose the covariance function has the separable structure
in (3) with

∑
x1

∑
x2≤x1

G(x1, x2) �= 0 and ρ̂(�) defined in (7). Then for � �= 0, we
have

(RLh)1/2[ρ̂(�) − ρ(�) − bias{ρ̂(�)}] ⇒ Normal[0, {ν2f1(0)}−1σ 2
ρ (�)],

where bias{ρ̂(�)} = {ρ(2)(�) − ρ(�)ρ(2)(0)}σ 2
Kh2/2 is the asymptotic bias of

ρ̂(�) and σ 2
ρ (�) = {∑x1

∑
x2≤x1

G(x1, x2)}−2{1T �(�)1 + ρ2(�)1T �(0)1}.
REMARK. The measurement errors in (1) affect the covariance estimator

mainly though the nugget effect [3]. In our covariance estimators (4) and (5), we
eliminate the nugget effect by excluding the k = i terms in the summation. As a
result, the measurement errors do not introduce bias to our covariance estimators.
However, they do affect the variation of the covariance estimators and hence the
correlation estimator, as seen by the fact that σ 2

ε is in the variance expressions for
all our estimators.

4. Data analysis. In this section we apply our methods to study the between-
crypt dependence in the carcinogenesis experiment. Recall that the main subjects
are rats, the units of interest are colonic crypts and the subunits within a unit are
cells at which we observe the logarithms of p27 in a cell. The subunit locations that
we work with in this illustration are at x = 0,0.1,0.2, . . . ,1.0. We discuss three
key issues in our analysis, namely bandwidth selection, standard error estimation
and positive semidefinite adjustment, in the following three subsections.

4.1. Bandwidth selection.

4.1.1. Global bandwidth. Diggle and Verbyla [5] suggested a cross-validation
procedure to choose the bandwidth for a kernel variogram estimator. We mod-
ify their procedure into the following two types of “leave-one-subject-out” cross-
validation criteria. The first is based on prediction error without assuming any
specific covariance structure and is given as

CV1(h) = ∑
r

∑
|�r(i,k)|<�0

m∑
j=1

m∑
l=1

[
vr,ik(xj , xl) − Ṽ(−r){xj , xl,�r(i, k)}]2

,(11)
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TABLE 1
Outcomes of two cross-validation procedures on the carcinogenesis p27 data

Optimal h Min CV score Min score, 2 par

CV1 124.2334 6.5073 6.4867
CV2 122.7202 6.4955 6.4788

The data used in the validation are those with � values less than �0 = 500 mi-
crons. The first column gives the optimal global bandwidth, the second column
gives the value of the cross-validation function at the optimal global bandwidth
and the third column gives the minimum value of the cross-validation functions
using two different smoothing parameters.

where vr,ik(xj , xl) = (Yrij − Y r·j )(Yrkl − Y r·l), Ṽ(−r)(x1, x2,�) is the kernel co-
variance estimator using bandwidth h, as defined in (5), with all information on
the r th subject (rat) left out. Here we focus on the range |�r(i, k)| < �0, where
�0 is a prechosen cut-off point. The criterion CV1(h) thus evaluates the prediction
error for different h within the range of |�r(i, k)| < �0.

The cross-validation criterion (11) assumes no specific covariance structure,
while our second cross-validation criterion takes into account the separable struc-
ture in (3) and is given as

CV2(h) = ∑
r

∑
|�r(i,k)|<�0

m∑
j=1

m∑
l=1

[
vr,ik(xj , xl)

(12)
− Ĝ(−r)(xj , xl)ρ̂(−r){�r(i, k)}]2

,

where Ĝ(−r)(x1, x2) and ρ̂(−r)(�) are the estimators of G and ρ defined in (6)
and (7), with the r th subject (rat) left out.

We evaluated both criteria to estimate the bandwidth h. We chose �0 = 500
microns. The first two columns of Table 1 give the minimum points and minimum
values of the two cross-validation criteria.

By observing Table 1, we find the two criteria gave almost identical minimum
values. Since the cross-validation scores are estimates of the prediction errors, the
two cross-validation criteria represent prediction errors with and without the sepa-
rable structure (3). The phenomenon that CV1(·) and CV2(·) have almost the same
minimum values suggests that the separability assumption (3) fits the data well.

4.1.2. Two bandwidths. The independent variables in the kernel estimator are
|�r(i, k)| for all pairs of crypts within one subject. As shown in Figure 1, the
distribution of |�r(i, k)| that are less than 1000 microns, even more than the target
range of interest, is locally somewhat akin to a uniform distribution.

As a robustness check on the global bandwidth, we repeated our analysis, except
we used one bandwidth for |�| ≤ 200 microns, and we used a second bandwidth
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FIG. 1. Histogram of |�r(i, k)| in the carcinogenesis p27 data. |�| less than 1000 microns are
considered.

for |�| > 200, and then repeated the cross-validation calculations in (11) and (12).
The minimum values of the two cross-validation criteria are reported in the third
column of Table 1.

Comparing the results in columns 2 and 3 in Table 1, we find the minimum val-
ues of the cross-validation functions did not change much, that is, an extra smooth-
ing parameter did not substantially reduce the prediction error for the domain
|�| ≤ 500 microns. In other words, it appears sufficient to use a global bandwidth
to estimate ρ(�) for |�| ≤ 500. For the following analysis, we use the bandwidth
h = 122 microns, as suggested by CV2, and the resulting estimate ρ̂ is shown as
the solid curve in Figure 2.

4.2. Standard error estimation. Our primary goal in this section is to construct
a standard error estimate for ρ̂(�).

The asymptotic variance of ρ̂(�) has a very complicated form, which involves
the fourth moment function of the random field, M(x1, x2, x3, x4, u, v,w). With so
many estimates of higher-order moments involved, a plug-in method, while feasi-
ble, is not desirable. We instead use a bootstrap method to estimate the variance
directly.

In our model assumptions, the number of subjects (rats) R is fixed, which means
that bootstrapping solely on the subject level will not give a consistent estimator of
the variance. Consequently, we decided to subsample within each subject. When
the data are dependent, block bootstrap methods have been investigated and used,
see Shao and Tu [15]). Politis and Sherman [12] also justified using a block sub-
sampling method to estimate the variance of a statistic when the data are from a
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FIG. 2. Estimated correlation function for the carcinogenesis p27 data. The solid curve is ρ̂(�),
the dotted curves are ρ̂(�) ± 2ŜD{ρ̂(�)}, and the dashed curve is the positive semidefinite adjusted
estimate, ρ̃(�).

marked point process. Our data can be viewed as a marked inhomogeneous Pois-
son process. However, because of the inhomogeneity, we need to modify their
procedure: when we subsample a block from each subject and compute the statis-
tic ρ̂(�) by combining these blocks, the variance of the statistic depends on the
corresponding local intensity at the location where each block is sampled.

By letting R = 1 in Corollary 1, our theory implies that if the number of units
goes to infinity, each subject will provide a consistent estimator of ρ(�). Now, sup-
pose the Poisson process for each subject has a different local intensity, νrg

∗
r (s),

r = 1, . . . ,R. With a slight modification of our theoretical derivations, one can
show that{

R∑
r=1

ν2
r fr,1(0)Lh

}1/2

[ρ̂(�) − ρ(�) − bias{ρ̂(�)}] ⇒ Normal{0, σ 2
ρ (�)},

where fr,1(t) = ∫
gr(t + u)gr(u) du, r = 1, . . . ,R, are the counterparts of f1(t)

used in Theorem 1, 2 and Corollary 1.
Define A(�) = ∑

r

∑
i

∑
k �=i Kh{�r(i, k) − �}. Then by Lemma A.2,

A(�)
/{

R∑
r=1

ν2
r fr,1(0)L

}
→ 1, in L2.

Note that A(�) here is defined slightly different from a(�) in Lemma A.2.
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This equation suggests a natural way to construct correction weights in a
weighted block bootstrap procedure that accommodates the inhomogeneous local
intensity. We now propose our weighted bootstrap procedure:

1. Resample R subjects (rats) with replacement.
2. Within each resampled subject, randomly subsample a block with length L∗.
3. Combine the R blocks as our resampled data, compute ρ̂(�) and A(�) using

the resampled data, with the same bandwidth h as for the kernel estimator (7).
4. Repeat steps 1–3 B times, denoting the results from the bth iteration as ρ̂∗

b (�)

and A∗
b(�).

5. Obtain the estimator of the standard deviation as

ŝd{ρ̂(�)} =
[
A−1(�)B−1

B∑
b=1

A∗
b(�){ρ̂∗

b (�) − ρ̂∗· (�)}2

]1/2

,

where ρ̂∗· (�) = B−1 ∑B
b=1 ρ̂∗

b (�).

The block length L∗ should increase slowly with L. Politis and Sherman [12] pro-
posed a block size selection procedure for dependent data on irregularly-spaced
observation points which are from a homogeneous point process. Their procedure
is built on asymptotic theory and needs a good pilot block size. The good perfor-
mance of the procedure often requires a fairly large sample size. The implementa-
tion could be computationally intense.

One operational idea for a moderate sample size in our context is to choose L∗
such that the correlation dies out outside the block but there are still a relatively
large number of blocks. For this data set, we adopted a block size such that there are
at least a couple of nonoverlapping blocks within each subject, and there are totally
24 nonoverlapping blocks by pooling all subjects together. In our analysis we took
L∗ = 1 cm (=10,000 microns). We also tried L∗ = 8 mm and L∗ = 1.1 cm; the
results are very similar. We investigate the numerical performance of this simple
procedure in both of the two simulation studies in Section 5, and we find it works
pretty well.

The two dotted curves in Figure 2 show ρ̂ ± 2 standard deviation. The plot
implies that the correlation is practically zero when the crypt distance exceeds
500 microns.

4.3. Positive semidefinite adjustment. By definition, ρ(�) is a stationary
correlation function and therefore is positive semidefinite, that is,

∫∫
ρ(�1 −

�2)ω(�1) × ω(�2) d�1 d�2 ≥ 0 for all integrable functions ω(·). By Bochner’s
theorem, the positive semidefiniteness is equivalent to nonnegativity of the
Fourier transformation of ρ, that is, ρ+(θ) ≥ 0 for all θ , where ρ+(θ) =∫ ∞
−∞ ρ(�) exp(iθ�)d� = 2

∫ ∞
0 ρ(�) cos(θ�)d�.
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To make ρ̂ a valid correlation function, we apply an adjustment procedure sug-
gested by Hall and Patil [8]. First we compute the Fourier transformation of ρ̂(·),

ρ̂+(θ) = 2
∫ ∞

0
ρ̂(�) cos(θ�)d�.

In practice, we cannot accurately estimate ρ(�) for a large � because of data
constraints. So, what we should do is multiply ρ̂ by a weight function w(�) ≤ 1
and let

ρ̂+(θ) = 2
∫ ∞

0
ρ̂(�)w(�) cos(θ�)d�.

Possible choices of w(·) suggested by Hall, Fisher and Hoffmann [7] are w1(�) =
I (|�| ≤ D) for some threshold value D > 0; and w2(�) = 1 if |�| < D1, (D2 −
|�|)/(D2 − D1) if D1 ≤ |�| ≤ D2 and 0 if |�| > D2.

The next step is to make ρ̂+ nonnegative and then take an inverse Fourier trans-
formation. So, the adjusted estimator is defined as

ρ̃(�) = (2π)−1
∫

max{ρ̂+(θ),0} cos(θ�)dθ.

The adjusted estimate of the correlation function for the colon carcinogenesis p27
data is given as the dashed curve in Figure 2.

5. Simulation studies. We present three simulation studies to illustrate the
numerical performance of the kernel correlation estimator under different settings.

5.1. Simulation 1. Our first simulation study is to mimic the colon carcino-
genesis data, so that the result can be inferred to evaluate the performance of our
estimators in the data analysis and to justify our choice of tuning parameters.

The simulated data arise from the model

Y ∗
r (sri, xj ) = �∗

r (sri, xj ) + ε∗
rij ,

where �∗
r (s, x) is the r th replicate of a zero-mean Gaussian random field �∗(s, x),

r = 1, . . . ,12. As in our data analysis, x takes values in {0.0,0.1, . . . ,0.9,1.0}. We
used the actual unit (crypt) locations from the data as the sample locations sri in
the simulated data. In addition, �∗(s, x) has covariance structure (2) and (3), with

G∗(x1, x2) =
( 12∑

r=1

Nr

)−1 12∑
r=1

Nr∑
i=1

{Yri(x1) − Y r·(x1)}{Yri(x2) − Y r·(x2)},(13)

which is computed from the data, and ρ∗(�) chosen from the Matérn correla-
tion family ρ∗(�;φ,κ) = {2κ−1�(κ)}−1(�/φ)κKκ(�/φ), where Kκ(·) is the
modified Bessel function; see Stein [16]. In our simulation we chose κ = 1.5
and φ = 120 microns. In addition, the ε∗

rij are independent identically distrib-

uted as Normal(0, σ 2
ε∗). For σ 2

ε∗ we use an estimate of σ 2
ε from the data, σ 2

ε∗ =
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1
11

∑11
j=1{G∗(xj , xj ) − Ĝ(xj , xj )}, where xj = (j − 1)/10, j = 1, . . . ,11, and G∗

and Ĝ are defined in (13) and (6), respectively.
For each simulated data set, we computed ρ̂(�) and the standard deviation es-

timator ŜD{ρ̂(�)} that we proposed in Section 4.2, for bandwidths h = 120 and
200 microns. When doing the bootstrap, we used block size L∗ = 1 cm, as we did
in the p27 data analysis. We repeated the simulation 200 times.

Figure 3 shows the means and 5% and 95% pointwise percentiles of ρ̂ for the
two bandwidths, and compares them to the truth ρ∗. Obviously, as expected from
the theory, the larger bandwidth incurs the bigger bias. By the plots, it seems that
when h = 120 the kernel estimator ρ̂ behaves quite well. We compare the true bias
from the simulation study to the asymptotic bias computed with the true correlation
function ρ∗, under bandwidth h = 120. We find the differences between the two
are less than 0.04. This means the bias shown in Figure 3 is explainable by our
asymptotic theory.

In Figure 4, we show the pointwise standard deviation of ρ̂ from the simulation
and the mean of the bootstrap standard deviation estimates. The closeness of the
two curves implies that our bootstrap procedure in Section 4.2 gives an approxi-
mately unbiased estimator of the true standard deviation, which also implies that
our choice of block length, L∗ = 1 cm, is reasonable. In our simulation, we also
tried L∗ = 8 mm and L∗ = 1.1 cm; the results are very similar.

We applied the positive semidefinite adjustment procedure in Section 4.3 to the
simulation, and the pointwise mean of ρ̃(·) is also shown in Figure 3. We computed
the integrated mean squared errors (IMSE) of ρ̂ and ρ̃ up to � = 500, and found
that IMSE(ρ̂) = 12.56 whereas IMSE(ρ̃) = 8.50. This result agrees with the the-
ory in Hall and Patil [8] that positive semidefinite adjustment can actually improve
the integrated mean squared error of the raw kernel estimator. We found that most
of the improvements come from the regions where ρ(·) is close to 0 or 1, the areas
where the procedure corrects the shape of ρ̂ the most due to the enforcement of
positive semidefiniteness.

5.2. Simulation 2. As suggested by the referees, we provide a second simula-
tion study to evaluate the finite sample numerical performance of our correlation
estimator when the locations or times are from an inhomogeneous Poisson process
as assumed in Section 3. Also, we choose a correlation function which is similar
in shape to that obtained from the p27 data example, but is even less monotone;
this clearly illustrates a situation that an “off-the-shelf” parametric model fails to
fit the data. The true correlation function is given by the solid curve in the middle
panel in Figure 5, while the corresponding spectral density is given in the upper
panel of the same figure.

We kept the same simulation setup as those in Simulation 1, except that the
spatial correlation ρ(�) was set to be the one given in Figure 5, the locations were
sampled from an inhomogeneous Poisson process as given in Section 3 with g a
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FIG. 3. Plots of the correlation estimators in Simulation 1. Upper panel: h = 120; lower panel:
h = 200. In each plot, the solid curve is the true correlation function ρ(·), the dashed curve is the
mean of ρ̂(·), the dotted curve is the mean of ρ̃(·), and the dot-dash curves are the 5% and 95%
pointwise percentiles of ρ̂. h = 200 oversmooths the curve, hence incurs larger bias.
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FIG. 4. Standard deviation of ρ̂ in Simulation 1. The solid curve is the pointwise standard deviation
of ρ̂ from the simulation in Section 5.1, and the dashed curve is the mean of the 200 bootstrap
standard deviation estimates. The bandwidth h = 120 was used.

truncated normal density function on [0,1], and we simulated only one subject on a
prolonged domain [0,L], with L = 50,000 and the expected number of units equal
to 500. We let the bandwidth h = 35 and block size L∗ = 6000 for the weighted
block bootstrap procedure.

We repeated the process described above 200 times, and computed the proposed
correlation estimator for each simulated data set. In the middle panel of Figure 5,
the mean of our kernel correlation estimator is given by the dashed curve, while
the dotted curve is the best approximation to the true correlation function from
the Matérn family. As one can see, our nonparametric method can consistently
estimate a nonmonotone correlation function.

In Figure 5 we also compare the mean of our bootstrap standard deviation esti-
mator with the true pointwise standard deviation curve. We found that the proposed
standard deviation estimator also works quite well given the finite sample size.

5.3. Simulation 3. Our third simulation study has the same setting as Simula-
tion 2, except that the correlation function is replaced by

ρ(�) = 1

2

cos(�/60)

1 + |�|/100
+ 1

2
exp

(
− |�|

800

)
,

as suggested by one referee. This correlation is given by the solid curve in Fig-
ure 6. We use this simulation to illustrate the performance of the kernel correlation
estimator and its adjusted version in the case that the true correlation function is
not smooth at 0.
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FIG. 5. Simulation 2. Upper panel: the spectral density of the correlation used in the simulation;
middle panel: the solid curve is the true correlation function, the dashed curve is the mean of the
kernel correlation estimator and the dotted curve is the best Matérn approximation to the true corre-
lation; lower panel: the solid curve is the true pointwise standard deviation for the kernel correlation
estimator, the dashed curve is the mean for the bootstrap standard deviation estimator.
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FIG. 6. Simulation 3. The solid curve is the true correlation function, the dashed curve is the mean
of our kernel estimator ρ̂, the two dotted curves are the 5% and 95% percentiles of ρ̂, and the
dot–dash curve is the mean of the adjusted estimator ρ̃.

Because this function decays to 0 with a slower rate, we present the estimate
up to � = 1000. The dashed curve in Figure 6 gives the mean of ρ̂ over 200
simulations, the two dotted curves give the pointwise 5% and 95% percentiles of
ρ̂ and the dot–dash curve gives the mean of ρ̃. One can see that ρ̂ still behaves well
even though the true function is not differentiable at 0. The adjustment procedure
introduced some bias, but reduced the variation. We compared the IMSE of the two
estimators over [0,50] and [0,500]: the IMSE values for ρ̂ over the two ranges are
0.40 and 6.59, while the corresponding IMSE values for ρ̃ are 0.19 and 4.53. The
adjustment procedure improved the IMSE on both ranges, even in an area close to
the origin.

This simulation study shows that our estimators work even when the differen-
tiability assumption in Section 3 is mildly violated.

6. Discussion. We have proposed an estimator of stationary correlation func-
tions for longitudinal or spatial data where within-subject observations have a com-
plex data structure. The application we presented has a functional data flavor, in
that each unit (crypt) in a “time series” has subunits (cells), the values from which
can be viewed as a function. However, in this paper, we have focused on estimating
the spatial correlation between the units.

We established an asymptotic normal limit distribution for the proposed estima-
tor. The techniques used in our theoretical derivation were significantly different
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from those of the standard kernel regression literature. In our theoretical frame-
work, as long as we have an increasing number of observations within a subject,
each subject yields a consistent estimate of the correlation function. Our method
and theory are especially useful to the cases where the number of subjects is lim-
ited but we have a relatively large number of repeated measurements within each
subject. Since having more subjects will just further reduce the variation of the
estimator, our main theorems hold when R goes to infinity as well. In that case, we
need to replace the condition that Lh5 = O(1) in assumption 7 in Section 3 with
RLh5 = O(1). In fact, when the number of subjects R → ∞, we can consistently
estimate the within-subject covariance without a large number of units within each
subject. For example, Yao, Müller and Wang [18] proposed using smoothing meth-
ods to estimate within-subject covariance for sparse longitudinal data.

In spatial statistics, many authors have considered the setup under the intrinsic
stationary assumption (Besag, York and Mollié [2], Besag and Higdon [1]). This is
weaker than our second-order stationary assumption. In our case, each unit within
a subject has further structure, so that we can define a cross-variogram (Cressie [3])
instead of the covariance function V(x1, x2,�), and similar limiting distribution
theorems can be proved as in Theorem 1 and 2. However, when it comes to spatio-
temporal modeling, many authors (Cressie and Huang [4], Stein [17]) would still
focus their attention on covariance estimation because it is a more natural way
to introduce the separable structure (3). In our data analysis, we provided some
practical ideas to justify the separable structure in our data, where we compare the
cross-validation scores with and without the separable assumption.

We proposed a weighted bootstrap method to estimate the standard deviation
of the correlation estimator ρ̂, where the weights were constructed based on the
outcome from Lemma A.2 in the proofs. Our simulation studies show that the
proposed correlation estimator and the weighted bootstrap standard deviation esti-
mator work well numerically for finite sample sizes.

APPENDIX: PROOFS

The proofs are organized in the following way: in Section A.1, we provide lem-
mas regarding asymptotic properties of the covariance estimators when there is
only one subject; in Section A.2, we provide lemmas on the estimators with mul-
tiple subjects, and the proofs of Theorems 1, 2 and Corollary 1 are given at the
end.

A.1. Estimation within one subject. We first discuss the case where there is
only one subject and the number of units goes to infinity. Let N(·) be the inho-
mogeneous Poisson process on [0,L] with local intensity νg∗(s). As in Karr [10],
denote N2(ds1, ds2) = N(ds1)N(ds2)I (s1 �= s2). Let �(s, ·) denote the unit-level
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mean at unit location s, and �(·) denote the subject-level mean. Define

a(�) = L−1
∑
i

∑
k �=i

Kh(� − �ik)

= L−1
∫ L

0

∫ L

0
Kh{� − (s1 − s2)}N2(ds1, ds2);

b(x1, x2,�) = L−1
∑
i

∑
k �=i

Kh(� − �ik){Y(Si, x1) − �(x1)}{Y(Sk, x2) − �(x2)}

= L−1
∫ L

0

∫ L

0
Kh{� − (s1 − s2)}{Y(s1, x1) − �(x1)}
× {Y(s2, x2) − �(x2)}N2(ds1, ds2).

LEMMA A.1. Let X1 and X2 be real-valued random variables measurable
with respect to F {[0, t]} and F {[t + τ,∞)} respectively, such that |Xi | < Ci ,
i = 1,2. Then | cov(X1,X2)| ≤ 4C1C2α(τ). If X1 and X2 are complex random
variables, this inequality holds with the constant 4 replaced by 16.

PROOF. The proof is analogous to that of Theorem 17.2.1 in Ibragimov and
Linnik [9]. Denote T1 = [0, t], T2 = [t + τ,∞). Then we have

|E(X1X2) − E(X1)E(X2)|
= ∣∣E[E{X1X2|F (T1)}] − E(X1)E(X2)

∣∣
= ∣∣E(

X1[E{X2|F (T1)} − E(X2)])∣∣
≤ C1E

∣∣E{X2|F (T1)} − E(X2)
∣∣

= C1E
(
u1[E{X2|F (T1)} − E(X2)]),

where u1 = sign[E{X2|F (T1)} − E(X2)]. It is easy to see that u1 is measurable
with respect to F (T1), and therefore |E(X1X2)−E(X1)E(X2)| ≤ C1|E(u1X2)−
E(u1)E(X2)|. By the same argument, we have |E(u1X2) − E(u1)E(X2)| ≤
C2|E(u1u2) − E(u1)E(u2)|, where u2 = sign[E{u1|F (T2)} − E(u1)]. Now we
have |E(X1X2) − E(X1)E(X2)| ≤ C1C2|E(u1u2) − E(u1)E(u2)|. Define the
events A1 = {u1 = 1} ∈ F (T1), A1 = {u1 = −1} ∈ F (T1), A2 = {u2 = 1} ∈
F (T2) and A2 = {u2 = −1} ∈ F (T2). Then

|E(u1u2) − E(u1)E(u2)|
= |P(A1A2) − P(A1A2) − P(A1A2) + P(A1A2)

− P(A1)P (A2) + P(A1)P (A2) + P(A1)P (A2) − P(A1)P (A2)|
≤ |P(A1A2) − P(A1)P (A2)| + |P(A1A2) − P(A1)P (A2)|

+ |P(A1A2) − P(A1)P (A2)| + |P(A1A2) − P(A1)P (A2)|
≤ 4α(τ).
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Thus, the proof is completed for the real random variable case. If X1 and X2 are
complex, we can apply the same arguments to the real and imaginary parts sepa-
rately. �

LEMMA A.2. With the assumptions stated in Section 3, for any fixed �, we
have a(�) → ν2f1(0) in the L2 sense, as L → ∞.

PROOF. Recall that by definition of f1(·), if X1 and X2 are independent and
identically distributed with density g(·), then f1(u) = ∫

g(t +u)g(t) dt is the den-
sity of X1 − X2. Thus, for fixed �,

E{a(�)} = ν2L−1
∫ ∫

s1 �=s2

Kh{� − (s1 − s2)}g(s1/L)g(s2/L)ds1 ds2

= ν2L

∫ 1

0

∫ 1

0
Kh{� − L(t1 − t2)}g(t1)g(t2) dt1 dt2

= ν2L

∫ ∫
Kh(� − Lu)g(t2 + u)g(t2) dudt2

= ν2L

∫
Kh(� − Lu)f1(u) du = ν2

∫
K(v)f1{(� − hv)/L}dv

= ν2
∫

K(v){f1(0) + O(L−1)}dv = ν2f1(0) + O(L−1).

Next,

E{a2(�)} = L−2
∫ L

0

∫ L

0

∫ L

0

∫ L

0
Kh{� − (s1 − s2)}Kh{� − (s3 − s4)}
× E{N2(ds1, ds2)N2(ds3, ds4)}.

Calculations as in Guan, Sherman and Calvin [6] show that

E{N2(ds1, ds2)N2(ds3, ds4)}
= ν4g∗(s1)g

∗(s2)g
∗(s3)g

∗(s4) ds1 ds2 ds3 ds4

+ ν3g∗(s1)g
∗(s2)g

∗(s4)εs1(ds3) ds1 ds2 ds4

+ ν3g∗(s1)g
∗(s2)g

∗(s3)εs1(ds4) ds1 ds2 ds3

+ ν3g∗(s1)g
∗(s2)g

∗(s4)εs2(ds3) ds1 ds2 ds4

+ ν3g∗(s1)g
∗(s2)g

∗(s3)εs2(ds4) ds1 ds2 ds3

+ ν2g∗(s1)g
∗(s2)εs1(ds3)εs2(ds4) ds1 ds2

+ ν2g∗(s1)g
∗(s2)εs1(ds4)εs2(ds3) ds1 ds2,

where εx(·) is a point measure defined in Karr [10], such that εx(dy) = 1 if x ∈ dy,
0 otherwise. Here dy is defined to be a small disc centered at y. There are seven
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terms in the expression above, so the expression for E{a2(�)} can be decom-
posed into seven integrals; denote them as A11–A17. Similar to the calculations of
E{a(�)}, we have

A11 = ν4L−2
∫ ∫

s1 �=s2

∫ ∫
s3 �=s4

Kh{� − (s1 − s2)}Kh{� − (s3 − s4)}
× g(s1/L)g(s2/L)g(s3/L)g(s4/L)ds1 ds2 ds3 ds4

= ν4f 2
1 (0) + o(1),

A12 = ν3L−2
∫
s1 �=s2,s4

Kh{� − (s1 − s2)}Kh{� − (s1 − s4)}
× g(s1/L)g(s2/L)g(s4/L)ds1 ds2 ds4

= ν3L

∫ ∫
Kh(� − Lu1)Kh{� − L(u1 − u2)}f2(u1, u2) du1 du2

(by definition of f2)

= ν3L−1
∫ ∫

K(v1)K(v2)f2{(� − hv1)/L, (v2 − v1)h/L}dv1 dv2

= ν3L−1f2(0,0) + O(L−2).

Similarly, A13–A15 are of order O(L−1). Next,

A16 = ν2L−2
∫
s1 �=s2

K2
h{� − (s1 − s2)}g(s1/L)g(s2/L)ds1 ds2

= ν2
∫

K2
h(� − Lu)f1(u) du

= ν2L−1h−1
∫

K2(v)f1{(� − hv)/L}dv

= ν2L−1h−1f1(0)RK + o(Lh−1).

Similarly, we can show that A17 is of the same order as A16. This means that A11
is the leading term in E{a2(�)}. Hence, E{a(�)−ν2f1(0)}2 → 0, completing the
proof. �

LEMMA A.3. For any fixed �, define β(x1, x2,�) = b(x1, x2,�) − a(�) ×
V(x1, x2,�). Then

E{β(x1, x2,�)} = ν2f1(0)
{
V(0,0,2)(x1, x2,�)σ 2

Kh2/2 + o(h2)
}
,

cov{β(x1, x2,�),β(x3, x4,�
′)}

= ν2L−1h−1RKf1(0)

× [
I (� = �′)

{
M(x1, x2, x3, x4,�,�,0)

+ I (x2 = x4)σ
2
ε V(x1, x3,0) + I (x1 = x3)σ

2
ε V(x2, x4,0)
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+ I (x1 = x3, x2 = x4)σ
4
ε

}
+ I (� = −�′)

{
M(x1, x2, x3, x4,�,−�,−�)

+ I (x2 = x3)σ
2
ε V(x1, x4,0)

+ I (x1 = x4)σ
2
ε V(x2, x3,0)

+ I (x1 = x4, x2 = x3)σ
4
ε

}]
+ o(L−1h−1),

where V(0,0,2)(x1, x2,�) = ∂2V(x1, x2,�)/∂�2.

PROOF. Rewrite

β(x1, x2,�)

= L−1
∫ ∫

Kh{� − (s1 − s2)}
× [{Y(s1, x1) − �(x1)}

× {Y(s2, x2) − �(x2)} − V(x1, x2,�)
]
N2(ds1, ds2).

It follows that

E{β(x1, x2,�)}
= ν2L−1

∫ ∫
s1 �=s2

Kh{� − (s1 − s2)}
× {V(x1, x2, s1 − s2) − V(x1, x2,�)}
× g(s1/L)g(s2/L)ds1 ds2

= ν2L

∫
Kh(� − Lu){V(x1, x2,Lu) − V(x1, x2,�)}f1(u) du

= ν2
∫

K(v)
{−V(0,0,1)(x1, x2,�)hv

+ V(0,0,2)(x1, x2,�)h2v2/2 + o(h2)
}{f1(0) + O(L−1)}dv

= ν2{
f1(0)V(0,0,2)(x1, x2,�)σ 2

Kh2/2 + o(h2)
}
.

In addition,

cov{β(x1, x2,�),β(x3, x4,�
′)}

= L−2
∫ ∫ ∫ ∫

Kh{� − (s1 − s2)}Kh{�′ − (s3 − s4)}
× [

V(x1, x2,�)V(x3, x4,�
′)

− V(x1, x2, s1 − s2)V(x3, x4,�
′)
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− V(x1, x2,�)V(x3, x4, s3 − s4)

+ M{x1, x2, x3, x4, (s1 − s2), (s3 − s4), (s2 − s4)}
+ V(x1, x2, s1 − s2)V(x3, x4, s3 − s4)

+ I (s1 = s3)I (s2 �= s4)I (x1 = x3)

× σ 2
ε V{x2, x4, (s2 − s4)}

+ I (s1 = s4)I (s2 �= s3)I (x1 = x4)

× σ 2
ε V{x2, x3, (s2 − s3)}

+ I (s2 = s3)I (s1 �= s4)I (x2 = x3)

× σ 2
ε V{x1, x4, (s1 − s4)}

+ I (s2 = s4)I (s1 �= s3)I (x2 = x4)

× σ 2
ε V{x1, x3, (s1 − s3)}

+ I (s1 = s3, s2 = s4)

× {
I (x2 = x4)σ

2
ε V(x1, x3,0)

+ I (x1 = x3)σ
2
ε V(x2, x4,0)

+ I (x1 = x3, x2 = x4)σ
4
ε

}
+ I (s1 = s4, s2 = s3)

× {
I (x2 = x3)σ

2
ε V(x1, x4,0)

+ I (x1 = x4)σ
2
ε V(x2, x3,0)

+ I (x1 = x4, x2 = x3)σ
4
ε

}]
× E{N2(ds1, ds2)N2(ds3, ds4)}

− ν4L−2
∫ ∫ ∫ ∫

Kh{� − (s1 − s2)}Kh{�′ − (s3 − s4)}
× {V(x1, x2, s1 − s2) − V(x1, x2,�)}
× {V(x3, x4, s3 − s4) − V(x3, x4,�

′)}
× g(s1/L)g(s2/L)g(s3/L)g(s4/L)ds1 ds2 ds3 ds4.

As in Lemma A.2, according to the expression for E{N2(ds1, ds2)N2(ds3, ds4)},
we can summarize this covariance expression as the sum of seven terms, denoted
as A21–A27. We have

A21 = ν4L−2
∫ L

0

∫ L

0

∫ L

0

∫ L

0
Kh{� − (s1 − s2)}Kh{�′ − (s3 − s4)}
× M{x1, x2, x1, x2, (s1 − s2), (s3 − s4), (s2 − s4)}
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× g(s1/L)g(s2/L)g(s3/L)g(s4/L)ds1 ds2 ds3 ds4

= ν4L2
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
Kh{� − L(t1 − t2)}Kh{�′ − L(t3 − t4)}
× M{x1, x2, x1, x2,L(t1 − t2),L(t3 − t4),L(t2 − t4)}
× g(t1)g(t2)g(t3)g(t4) dt1 dt2 dt3 dt4

= ν4L2
∫ ∫ ∫

Kh(� − Lu1)Kh(�
′ − Lu2)

× M(x1, x2, x1, x2,Lu1,Lu2,Lu3)

× f3(u1, u2, u3) du1 du2 du3

= ν4L−1
∫ ∫ ∫

K(v1)K(v2)M(x1, x2, x1, x2,� − hv1,�
′ − hv2, v3)

× f3{(� − hv1)/L, (�′ − hv2)/L, v3/L}dv1 dv2 dv3

≤ ν4L−1C

∫
M(x1, x2, x1, x2,�,�′, v) dv + o(L−1),

where C is the upper bound for the density function f3(u, v,w) on [−1,1]3. By
assumption 1 in Section 3 that g(·) is bounded, one can easily derive that C is a
finite constant. The second term is

A22 = ν3L−2
∫ ∫ ∫

Kh{� − (s1 − s2)}Kh{�′ − (s1 − s4)}
× ([

V(x1, x2,�) − V{x1, x2, (s1 − s2)}]
× [

V(x3, x4,�
′) − V{x3, x4, (s1 − s4)}]

+ M{x1, x2, x3, x4, (s1 − s2), (s1 − s4), (s2 − s4)}
+ I (x1 = x3)σ

2
ε V{x2, x4, (s2 − s4)})

× g(s1/L)g(s2/L)g(s4/L)ds1 ds2 ds4

= ν3L

∫ ∫ ∫
Kh{� − L(t1 − t2)}Kh{�′ − L(t1 − t4)}
× ([

V(x1, x2,�) − V{x1, x2,L(t1 − t2)}]
× [

V(x3, x4,�
′) − V{x3, x4,L(t1 − t4)}]

+ M{x1, x2, x3, x4,L(t1 − t2),L(t1 − t4),L(t2 − t4)}
+ I (x1 = x3)σ

2
ε V{x2, x4,L(t2 − t4)})

× g(t1)g(t2)g(t4) dt1 dt2 dt4

= ν3L

∫ ∫
Kh(� + Lu1)Kh(�

′ + Lu2)

× [{
V(x1, x2,�) − V(x1, x2,−Lu1)

}
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× {
V(x3, x4,�

′) − V(x3, x4,−Lu2)
}

+ M{x1, x2, x3, x4,−Lu1,−Lu2,L(u1 − u2)}
+ I (x1 = x3)σ

2
ε V{x2, x4,L(u1 − u2)}]

× f2(u1, u2) du1 du2

= ν3L−1
∫ ∫

K(v1)K(v2)
[
I (x1 = x3)σ

2
ε V{x2, x4, (v1 − v2)h + �′ − �}

+ {
V(x1, x2,�) − V(x1, x2,� − hv1)

}
+ {

V(x3, x4,�) − V(x3, x4,�
′ − hv2)

}
+ M{x1, x2, x3, x4,� − hv1,�

′ − hv2,

(v1 − v2)h + �′ − �}]
× f2{(−� + hv1)/L, (−� + v1h)/L}dv1 dv2

= ν3L−1f2(0,0){M(x1, x2, x3, x4,�,�′,�′ − �)

+ I (x1 = x3)σ
2
ε V(x2, x4,�

′ − �)} + o(L−1).

It is easy to see that A23–A25 have the same order as A22. Further, we have

A26 = ν2L−2
∫ ∫

Kh{� − (s1 − s2)}Kh{�′ − (s1 − s2)}
× (

M{x1, x2, x3, x4, (s1 − s2), (s1 − s2),0}
+ [

V(x1, x2,�) − V{x1, x2, (s1 − s2)}]
× [V(x3, x4,�

′) − V{x3, x4, (s1 − s2)}]
+ {

I (x2 = x4)σ
2
ε V(x1, x3,0)

+ I (x1 = x3)σ
2
ε V(x2, x4,0) + I (x1 = x3, x2 = x4)σ

4
ε

})
× g(s1/L)g(s2/L)ds1 ds2

= I (� = �′)ν2
∫ ∫

K2
h{� − L(t1 − t2)}

× (
M{x1, x2, x3, x4,L(t1 − t2),L(t1 − t2),0}
+ [

V(x1, x2,�) − V{x1, x2,L(t1 − t2)}]
× [

V(x3, x4,�) − V{x3, x4,L(t1 − t2)}]
+ {

I (x2 = x4)σ
2
ε V(x1, x3,0)

+ I (x1 = x3)σ
2
ε V(x2, x4,0)

+ I (x1 = x3, x2 = x4)σ
4
ε

})
× g(t1)g(t2) dt1 dt2
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= I (� = �′)ν2
∫

K2
h(� − Lu)

× [
M(x1, x2, x3, x4,Lu,Lu,0)

+ {V(x1, x2,�) − V(x1, x2,Lu)}
× {V(x3, x4,�) − V(x3, x4,Lu)}

+ {I (x2 = x4)σ
2
ε V(x1, x3,0)

+ I (x1 = x3)σ
2
ε V(x2, x4,0)

+ I (x1 = x3, x2 = x4)σ
4
ε }]

× f1(u) du

= I (� = �′)ν2L−1h−1
∫

K2(v)
[
M(x1, x2, x3, x4,� − hv,� − hv,0)

+ {
V(x1, x2,�) − V(x1, x2,� − hv)

}
× {

V(x3, x4,�) − V(x3, x4,� − hv)
}

+ {I (x2 = x4)σ
2
ε V(x1, x3,0)

+ I (x1 = x3)σ
2
ε V(x2, x4,0)

+ I (x1 = x3, x2 = x4)σ
4
ε }]

× f1{(� − hv)/L}dv

= I (� = �′)ν2L−1h−1RKf1(0)

× [
M(x1, x2, x3, x4,�,�,0)

+ {
I (x2 = x4)σ

2
ε V(x1, x3,0) + I (x1 = x3)σ

2
ε V(x2, x4,0)

+ I (x1 = x3, x2 = x4)σ
4
ε

} + o(1)
]
.

Similarly,

A27 = ν2L−2
∫ ∫

Kh{� − (s1 − s2)}Kh{�′ − (s2 − s1)}
× (

M{x1, x2, x3, x4, (s1 − s2), (s2 − s1), (s2 − s1)}
+ [

V(x1, x2,�) − V{x1, x2, (s1 − s2)}]
× [

V(x3, x4,�
′) − V{x3, x4, (s2 − s1)}]

+ {
I (x2 = x3)σ

2
ε V(x1, x4,0) + I (x1 = x4)σ

2
ε V(x2, x3,0)

+ I (x1 = x4, x2 = x3)σ
4
ε

})
× g(s1/L)g(s2/L)ds1 ds2
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= I (� = −�′)ν2
∫ ∫

K2
h{� − L(t1 − t2)}

× (
M{x1, x2, x3, x4,L(t1 − t2),L(t2 − t1),L(t2 − t1)}
+ [

V(x1, x2,�) − V{x1, x2,L(t1 − t2)}]
× [

V(x3, x4,−�) − V{x3, x4,L(t2 − t1)}]
+ {

I (x2 = x3)σ
2
ε V(x1, x4,0)

+ I (x1 = x4)σ
2
ε V(x2, x3,0)

+ I (x1 = x4, x2 = x3)σ
4
ε

})
× g(t1)g(t2) dt1 dt2

= I (� = −�′)ν2
∫

K2
h(� − Lu)

[
M(x1, x2, x3, x4,Lu,−Lu,−Lu)

+ {
V(x1, x2,�) − V(x1, x2,Lu)

}
× {V(x3, x4,�) − V(x3, x4,Lu)}

+ {
I (x2 = x3)σ

2
ε V(x1, x4,0)

+ I (x1 = x4)σ
2
ε V(x2, x3,0)

+ I (x1 = x4, x2 = x3)σ
4
ε

}]
× f1(u) du

= I (� = −�′)ν2L−1h−1
∫

K2(v)

× [
M(x1, x2, x3, x4,� − hv,−� + hv,−� + hv)

+ {
V(x1, x2,�) − V(x1, x2,� − hv)

}
× {

V(x3, x4,�) − V(x3, x4,� − hv)
}

+ {I (x2 = x3)σ
2
ε V(x1, x4,0)

+ I (x1 = x4)σ
2
ε V(x2, x3,0)

+ I (x1 = x4, x2 = x3)σ
4
ε }]

× f1{(� − hv)/L}dv

= I (� = −�′)ν2L−1h−1RKf1(0)

× [
M(x1, x2, x3, x4,�,−�,−�)

+ {
I (x2 = x3)σ

2
ε V(x1, x4,0)

+ I (x1 = x4)σ
2
ε V(x2, x3,0)
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+ I (x1 = x4, x2 = x3)σ
4
ε

} + o(1)
]
.

Both A26 and A27 are of order O{(Lh)−1}, while the rest of the terms are of order
O(L−1). The proof is completed by summarizing the contribution of each term to
cov{β(x1, x2,�), β(x3, x4,�

′)}. �

LEMMA A.4. With β(x1, x2,�) defined as in Lemma A.3, and with all the
assumptions in Section 3, we have

(Lh)1/2[β(x1, x2,�) − E{β(x1, x2,�)}] ⇒ Normal{0, ν2f1(0)σ 2(x1, x2,�)},
where σ 2(x1, x2,�) = RK{M(x1, x2, x1, x2,�,�,0)+σ 2

ε V(x1, x1,0)+σ 2
ε V(x2,

x2,0) + σ 4
ε } + I (� = 0)RK [{M(x1, x2, x1, x2,0,0,0) + I (x1 = x2){2σ 2

ε V(x1,

x1,0) + σ 4
ε }].

PROOF. The proof has similar structure to that of Theorem 2 in Guan, Sher-
man and Calvin [6]. Define a1 = 0, b1 = Lp − Lq , ai = ai−1 + Lp , bi = ai +
Lp − Lq , i = 2, . . . , kL, for some 1/(1 + δ) < q < p < 1 [δ is defined in (10)].
We thus have divided the interval [0,L] into kL ≈ L/Lp disjoint subintervals each
having length Lp − Lq and at least Lq apart. Define Ii = [ai, bi], I = ⋃kL

i=1 Ii ,

I ′
i = [ai/L,bi/L], I ′ = ⋃kL

i=1 I ′
i and

βi(x1, x2,�) = L−1
∫ ∫

Ii×Ii

Kh{� − (s1 − s2)}

× [{Y(s1, x1) − �(x1)}{Y(s2, x2) − �(x2)}
− V(x1, x2,�)

]
× N2(ds1, ds2),

β̃(x1, x2,�) =
kL∑
i=1

βi(x1, x2,�).

Define independent random variables γi(x1, x2,�) on a different probability
space such that they have the same distributions as βi(x1, x2,�), and define
γ (x1, x2,�) = ∑kL

i=1 γi(x1, x2,�). Let φ(ξ) and ψ(ξ) be the characteristic func-
tions of (Lh)1/2[β̃(x1, x2, �) − E{β̃(x1, x2,�)}] and (Lh)1/2[γ (x1, x2,�) −
E{γ (x1, x2,�)}], respectively.

We finish the proof in the following three steps:

(i) ([β(x1, x2,�) − E{β(x1, x2,�)}] − [β̃(x1, x2,�) − E{β̃(x1, x2,

�)}]) p−→ 0;
(ii) ψ(ξ) − φ(ξ) → 0;

(iii) (Lh)1/2[γ (x1, x2,�) − E{γ (x1, x2,�)}] ⇒ Normal{0, ν2f1(0)σ 2(x1,

x2,�)}.
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To show (i), notice that, with |Ii | → ∞, calculations as in Lemma A.3 show that

kL∑
i=1

var{βi(x1, x2,�)} =
kL∑
i=1

ν2L−1h−1RKfi,1(0){σ 2(x1, x2,�) + o(1)},(14)

where fi,1(u) = ∫
gi(u + t)gi(t) dt is the counterpart of f1(u), with gi(t) =

g(t)I (t ∈ I ′
i ). Since g(·) is bounded away from both 0 and ∞, fi,1(0) = ∫

I ′
i
g2(t) =

O(|I ′
i |) = O(Lp−1) and var{βi(x1, x2,�)} = O(Lp−2h−1).

Observe that |I ′| = ∑kL

i=1 |I ′
i | = kL × (Lp − Lq)/L ≈ L/Lp × (Lp − Lq)/L =

1 − Lq−p → 1, and

kL∑
i=1

fi,1(0) =
kL∑
i=1

∫
I ′
i

g(t)2 dt =
∫
I ′

g(t)2 dt →
∫ 1

0
g(t)2 dt = f1(0).(15)

Therefore,
∑kL

i=1 var{βi(x1, x2,�)} = var{β(x1, x2,�)} + o(L−1h−1). Further
but equivalent derivations show that

∑
i �=j cov{βi(x1, x2,�),βj (x1, x2,�)} =

O(L−1). The calculations here are similar to those in Lemma A.3, except that
the i �= j condition excluded terms like A22 through A27. Now we have

var{β̃(x1, x2,�)} =
kL∑
i=1

var{βi(x1, x2,�)} + ∑
i �=j

cov{βi(x1, x2,�),βj (x1, x2,�)}

= var{β(x1, x2,�)} + o(L−1h−1).

Similarly, one can show that

cov{β̃(x1, x2,�),β(x1, x2,�)} = var{β(x1, x2,�)} + o(L−1h−1).

Therefore, (Lh)var[{β(x1, x2,�) − {β̃(x1, x2,�)}] → 0, and step (i) is estab-
lished. To show (ii), we follow similar arguments that prove Theorem 2 (S2)
in Guan, Sherman and Calvin [6]. Denote Ui = exp(Ix(Lh)1/2[βi(x1, x2,�) −
E{βi(x1, x2,�)}]), where I is the unit imaginary number. Then by definition,
φ(x) = E(

∏kL

i=1 Ui), ψ(x) = ∏kL

i=1 E(Ui).
Observing |E(Ui)| ≤ 1 for all Ui , we have

|φ(x) − ψ(x)|

≤
∣∣∣∣∣E

(
kL∏
i=1

Ui

)
− E

(
kL−1∏
i=1

Ui

)
E(UkL

)

∣∣∣∣∣ +
∣∣∣∣∣E

(
kL−1∏
i=1

Ui

)
E(UkL

) −
kL∏
i=1

E(Ui)

∣∣∣∣∣
≤

∣∣∣∣∣E
(

kL∏
i=1

Ui

)
− E

(
kL−1∏
i=1

Ui

)
E(UkL

)

∣∣∣∣∣
+

∣∣∣∣∣E
(

kL−1∏
i=1

Ui

)
−

kL−1∏
i=1

E(Ui)

∣∣∣∣∣|E(UkL
)|
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≤
∣∣∣∣∣E

(
kL∏
i=1

Ui

)
− E

(
kL−1∏
i=1

Ui

)
E(UkL

)

∣∣∣∣∣ +
∣∣∣∣∣E

(
kL−1∏
i=1

Ui

)
−

kL−1∏
i=1

E(Ui)

∣∣∣∣∣.
By induction,

|φ(x) − ψ(x)| ≤
kL−1∑
j=1

∣∣∣∣∣E
(j+1∏

i=1

Ui

)
− E

( j∏
i=1

Ui

)
E(Uj+1)

∣∣∣∣∣
=

kL−1∑
j=1

∣∣∣∣∣cov

( j∏
i=1

Ui,Uj+1

)∣∣∣∣∣.
Observe that

∏j
i=1 Ui and Uj+1 are F ([0, bj ])- and F ([aj+1, bj+1])-measurable,

respectively, with |∏j
i=1 Ui | ≤ 1 and |Uj+1| ≤ 1, and the index sets are at least Lq

away. By Lemma A.1,

|φ(x) − ψ(x)| ≤
kL−1∑
j=1

16α(Lq) ≤ 16L1−p × L−qδ.

By our choice of p and q , it is easy to check 1−p−qδ < 0, and therefore |φ(x)−
ψ(x)| → 0.

(iii) can be proved by applying Lyapounov’s central limit theorem and by the
fact that

(Lh)

kL∑
i=1

var{γi(x1, x2,�)} → ν2f1(0)σ 2(x1, x2,�),

which has been shown in (14) and (15).
It remains to check Lyapounov’s condition. By condition (9),

kL∑
i=1

E(|γi(x1, x2,�) − E{γi(x1, x2,�)}|2+η)

[var{γ (x1, x2,�)}](2+η)/2

= L1−p O{(Lp−2h−1)(2+η)/2}
O{(L−1h−1)(2+η)/2}

= O
(
L−(1−p)η/2) → 0.

The proof is thus complete. �

LEMMA A.5. Let �β(�) be the vector collecting all β(x1, x2,�) for distinct
pairs of (x1, x2). Then, with all assumptions above, for �′ �= �,

(Lh)1/2
[ �β(�) − E{ �β(�)}

�β(�′) − E{ �β(�′)}
]

⇒ Normal
{

0, ν2f1(0)

(
�(�) C(�,�′)

CT (�,�′) �(�′)

)}
,
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where �(�) is the covariance matrix with the entry corresponding to cov{β(x1,

x2,�),β(x3, x4,�)} equal to RK{M(x1, x2, x3, x4,�,�,0) + I (x2 = x4)σ
2
ε ×

V(x1, x3,0) + I (x1 = x3)σ
2
ε V(x2, x4,0) + (x1 = x3, x2 = x4)σ

4
ε } + I (� =

0)RK{M(x1, x2, x3, x4,0,0,0)+I (x1 = x4)σ
2
ε V(x2, x3, 0)+I (x2 = x3)σ

2
ε V(x1,

x4,0) + I (x1 = x4, x2 = x3)σ
4
ε } and C(�,�′) is the matrix with the entry corre-

sponding to cov{β(x1, x2,�),β(x3, x4,�
′)} equal to I (�′ = −�){M(x1, x2, x3,

x4,�,−�,−�) + I (x2 = x3)σ
2
ε V(x1, x4,0) + I (x1 = x4)σ

2
ε V(x2, x3,0) +

I (x1 = x4, x2 = x3)σ
4
ε }.

PROOF. Using similar proofs as for Lemmas A.3 and A.4, we can show that
any linear combination

∑k
i=1 ciβ(xi1, xi2,�) + ∑k′

i=1 c′
iβ(xi1, xi2,�

′) is asymp-
totically normal. By the Crámer–Wold device (Serfling [14]), the joint normality
is established. �

NOTE. If �′ = −�, the limiting distribution on the right-hand side is a de-
generate multivariate normal distribution, because β(x1, x1,�) = β(x1, x1,−�)

for all x1.

A.2. Estimation with multiple subjects. Now suppose we have R subjects,
and R is a fixed number. Define

Yr,ik(xj , xl) = {Yrij − �r(xj )}{Yrkl − �r(xl)},
ar(�) = L−1

∑
i

∑
k �=i

Kh(� − �r,ik),

br(xj , xl,�) = L−1
∑
i

∑
k �=i

Yr,ik(xj , xl)Kh{� − �r(i, k)},

βr(xj , xl,�) = br(xj , xl,�) − ar(�)V(xj , xl,�),

cr(xj ,�) = L−1
∑
i

∑
k �=i

{Yrij − �r(xj )}Kh{� − �r(i, k)}.

Further, define a(�) = ∑
r ar (�), b(xj , xl,�) = ∑

r br(xj , xl,�), β(xj , xl,�) =∑
r βr(xj , xl,�) and V̂0(x1, x2,�) = b(x1, x2,�)/a(�). Let V̂0(�) and V(�)

be the vectors collecting all V̂0(x1, x2,�) and V(x1, x2,�) for all distinct pairs of
(x1, x2), respectively.

LEMMA A.6. With the assumptions in Section 3, for �′ �= �,

(RLh)1/2

{
V̂0(�) − V(�) − σ 2

KV(2)(�)h2/2

V̂0(�
′) − V(�′) − σ 2

KV(2)(�′)h2/2

}

⇒ Normal
[
0, {ν2f1(0)}−1

(
�(�) C(�,�′)

CT (�,�′) �(�′)

)]
,
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where V(2)(�) is the vector collecting V(0,0,2)(x1, x2,�) for all distinct pairs of
(x1, x2).

PROOF. Notice that

V̂0(x1, x2,�) − V(x1, x2,�)

=
[

R∑
r=1

{br(x1, x2,�) − ar(�)V(x1, x2,�)}
]/{

R∑
r=1

ar(�)

}
= β(x1, x2,�)/a(�).

Since subjects are independent, by Lemma A.2, a(�)/{ν2Rf1(0)} p−→ 1. Also,
by Lemma A.5, (R−1Lh)1/2{ �β(�)T , �β(�′)T }T is asymptotically normal with co-
variance matrix given in Lemma A.5. Thus, by Slutsky’s theorem [14],

(RLh)1/2
[

β(�)/a(�) − E{β(�)}/a(�)

β(�′)/a(�′) − E{β(�′)}/a(�′)

]
⇒ Normal

[
0, {ν2f1(0)}−1

(
�(�) C(�,�′)

CT (�,�′) �(�′)

)]
.

Finally, by Lemma A.3, E{β(x1, x2,�)} = Rν2f1(0){V(0,0,2)(x1, x2,�)σ 2
Kh2/

2+o(h2)}, so that we have E{β(x1, x2,�)}/a(�) = σ 2
KV(0,0,2)(x1, x2,�)h2/2+

op(h2). The op(h2) term is eliminated by the assumption that Lh5 = O(1). �

LEMMA A.7. With all the assumptions above, we have that

V̂(x1, x2,�) = V̂0(x1, x2,�) + Op(L−1h−1/2).

PROOF. Notice that

V̂(xj , xl,�) = V̂0(xj , xl,�)

+
[∑

r

{Y r·j − �r(xj )}cr(xl,�)

+ ∑
r

{Y r·l − �r(xl)}cr(xj ,�)(16)

+ ∑
r

{Y r·j − �r(xj )}{Y r·l − �r(xl)}ar(�)

]
a−1(�),

cr(x1,�) = L−1
∫ ∫

{Y(s1, x1) − �r(x1)}Kh{� − (s1 − s2)}N2(ds1, ds2).

Using the expression above, it is easy to see that E{cr(x1,�)} = 0, and calcula-
tions as in Lemma A.3 show that

var{cr(x1,�)} = L−2
∫ ∫ ∫ ∫

Kh{� − (s1 − s2)}Kh{� − (s3 − s4)}
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× [
V{x1, x1, (s1 − s3)} + I (s1 = s3)σ

2
ε

]
× E{N2(ds1, ds2)N2(ds3, ds4)}

= O(ν2L−1h−1).

On the other hand, Y r·j − �r(xj ) = 1
Nr

∫ {Yr(s, xj ) − �r(s, xj )}N(ds). It is easy

to see that E{Y r·j − �r(xj )} = 0, and that

var[Nr{Y r·j − �r(xj )}]
=

∫ ∫
[V{xj , xj , (s1 − s2)} + I (s1 = s2)σ

2
ε ]

× {ν2g(s1/L)g(s2/L)ds1ds2 + νg(s1/L)εs1(ds2) ds1}
= ν2L2

∫
V(xj , xj ,Lu)f1(u) du + νL

∫
{V(xj , xj ,0) + σ 2

ε }g(s1) ds1

= ν2Lf1(0)

∫
V(xj , xj , u) du + νL{V(xj , xj ,0) + σ 2

ε } + o(L).

By properties of Poisson processes, we have Nr/(νL) → 1 a.s. Therefore, we
have Y r·j −�r(xj ) = Op(L−1/2), cr(x1,�) = Op(L−1/2h−1/2). By Lemma A.2,
ar(�) = Op(1). Therefore, V̂(x1, x2,�)− V̂0(x1, x2,�) = Op(L−1h−1/2), com-
pleting the proof. �

PROOF OF THEOREM 1. This is a direct result from Lemmas A.6 and A.7.
�

PROOF OF THEOREM 2. For a fixed � �= 0, when h ≤ |�|, we have
Ṽ(x1, x2,�) = {V̂(x1, x2,�) + V̂(x1, x2,−�)}/2. This equation is true automat-
ically for � = 0. Therefore, the asymptotic distribution of Ṽ(�) is the same as
that of {V̂(�) + V̂(−�)}/2, for any fixed �.

For �1 �= ±�2, by Theorem 1, {V̂(�1), V̂(−�1)}T and {V̂(�2), V̂(−�2)}T
are asymptotically independent, and the joint asymptotic normality of the four vec-
tors can be established. Therefore Ṽ(�1) and Ṽ(�2) are jointly asymptotic normal
and asymptotically independent. It suffices to show that �(�) is the asymptotic
covariance matrix of Ṽ(�).

For � �= 0, apply the delta method to the joint asymptotic distribution of V̂(�)

and V̂(−�); the following gives the asymptotic covariance between Ṽ(x1, x2,�)

and Ṽ(x3, x4,�):

(1/4)(RLh)−1{ν2f1(0)}−1RK

× {
M(x1, x2, x3, x4,�,�,0) + M(x1, x2, x3, x4,−�,−�,0)

+ 2M(x1, x2, x3, x4,�,−�,−�) + 2I (x2 = x4)σ
2
ε V(x1, x3,0)

+ 2I (x1 = x3)σ
2
ε V(x2, x4,0) + 2I (x1 = x3, x2 = x4)σ

4
ε
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+ 2I (x2 = x3)σ
2
ε V(x1, x4,0) + 2I (x1 = x4)σ

2
ε V(x2, x3,0)

+ 2I (x1 = x4, x2 = x3)σ
4
ε

}
.

Note that M(x1, x2, x3, x4,−�,−�,0) = M(x1, x2, x3, x4,�,�,0) by the sym-
metry in the definition of M(x1, x2, x3, x4, u, v,w). Next, for � = 0, we have
Ṽ(x1, x2,0) = V̂(x1, x2,0), and the asymptotic covariance between Ṽ(x1, x2,0)

and Ṽ(x3, x4,0) is given in Theorem 1. The proof is completed. �

PROOF OF COROLLARY 1. The result follows from Theorem 2 and the
delta method. To see this, note that, with the separable structure in (3), we have
V(x1, x2,�) = G(x1, x2)ρ(�) and V(0,0,2)(x1, x2,�) = G(x1, x2)ρ

(2)(�). By
the delta method, the asymptotic mean of ρ̂(�) is∑

x1∈X
∑

x2≤x1
{V(x1, x2,�) + σ 2

KV(0,0,2)(x1, x2,�)h2/2 + op(h2)}∑
x1∈X

∑
x2≤x1

{G(x1, x2) + σ 2
KG(x1, x2)ρ(2)(0)h2/2 + op(h2)}

= {
ρ(�) + σ 2

Kρ(2)(�)h2/2 + op(h2)
}
/
{
1 + σ 2

Kρ(2)(0)h2/2 + op(h2)
}

= {
ρ(�) + σ 2

Kρ(2)(�)h2/2 + op(h2)
} ∗ {

1 − σ 2
Kρ(2)(0)h2/2 + op(h2)

}
= ρ(�) + {

ρ(2)(�) − ρ(�)ρ(2)(0)
}
σ 2

Kh2/2 + op(h2).

The asymptotic variance of ρ̂(�) also follows from the delta method. �
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