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We present estimators for nonparametric functions that are nonadditive
in unobservable random terms. The distribution of the unobservable random
terms is assumed to be unknown. We show that when a nonadditive, non-
parametric function is strictly monotone on an unobservable random term,
and it satisfies some other properties that may be implied by economic the-
ory, such as homogeneity of degree one or separability, the function and the
distribution of the unobservable random term are identified. We also present
convenient normalizations, to use when the properties of the functions are
unknown. The estimators for the nonparametric function and for the dis-
tribution of the unobservable random terms are shown to be consistent and
asymptotically normal. We extend the results to functions that depend on
multivariate random terms. The results of a limited simulation study are
presented.
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1. INTRODUCTION

A COMMON PRACTICE when estimating many economic models proceeds
by first specifying the relationship between a vector of observable exogenous
variables, X, and a dependent variable, Y , and then, adding a random un-
observable term, ε, to the relationship. In the resulting model, ε is typically
interpreted as the difference between the observed value of the dependent
variable, Y , and the conditional expectation of Y given X. This procedure
has been criticized on the grounds that instead of adding an unobservable
random term to the relationship, as an after-thought, one should be able
to generate an unobservable random term from within the model. When
approaching the random relationship in the latter way, ε may represent an
heterogeneity parameter in a utility function, some productivity shock in
a production function, a utility value for some unobserved attributes, or
some other relevant unobservable variable (see, for example, Heckman (1974),
Heckman andWillis (1974), McFadden (1974), and Lancaster (1979)). When
using this approach, the random term ε rarely appears in the model as a term
added to the conditional expectation of Y given X (McElroy (1981, 1987),
Brown and Walker (1989, 1995), Lewbel (1996).) In general, unless one spec-
ifies very restrictive parametric structures for the functions in the economic
model, the function by which the values of Y are determined from X and ε
is nonadditive in ε.
Most nonparametric methods that are currently used to specify the rela-

tionship between a vector of observable exogenous variables, X, an unobserv-
able term, and an observable dependent variable, Y, define the unobservable
random term as being the difference between Y and the conditional expecta-
tion. The resulting model is then one where the unobservable random term
is added to the relationship. Although one could interpret this added unob-
servable random term as being a function of the observable and some other
unobservable variables, the existent methods do not provide a way of study-
ing this function, which has information about the important interactions
between the observable and unobservable variables.
In this paper, we present a nonparametric method for estimating a non-

parametric, not necessarily additive function of a vector of exogenous vari-
ables, X, and an unobservable vector of variables, ε. The value of a dependent
variable, Y , is assumed to be determined by this nonparametric function.
The distribution of ε is not parametrically specified and it is also estimated.
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We first consider the model Y = m(X,ε), where ε is a random variable,
m is strictly increasing in ε, and both the function m and the distribution of
ε are unknown. We characterize the set of functions that are observationally
equivalent to m, when ε is independent of X, and provide three different
specifications for the function m, which allow one to identify the distribution
of ε and the functionm. The first specification is just a convenient normaliza-
tion. It specifies the value of m(x, ε) at a particular value of x, or a subvector
of x. The second specification imposes an homogeneity of degree one con-
dition, along a given ray, on some coordinates of X and ε. This condition,
together with the specification of the value of m at only one point of the ray,
is shown to be sufficient to identify the distribution of ε and the function
m. This second specification is particularly useful, for example, when the
function m is either a cost or profit function, since economic theory implies
that these functions are homogenous of degree one in some or all of their argu-
ments. The third specification can be seen as a nonparametric generalization
of semiparametric transformation models where neither the transformation
function nor the distribution of the unobservable random term are paramet-
rically specified. Instead of specifying that Y = Λ(β0X + ε), where Λ is a
strictly increasing, unknown function, and where both, the absolute value of
one of the coordinates of β and the value of Λ at one point are given (see,
for example, Horowitz (1996)), we specify that Y = s(X1, ε−X2), for some
unknown function s, which is strictly increasing in the last coordinate and
whose value is given at one point. In the latter specification, X = (X1, X2)
and X2 ∈ R.
For each of the three specifications, we extend the identification results to

the case where ε is independent of only some coordinates of X, conditional
on the other coordinates. A special case of this is, of course, when ε is
independent of X, conditional on some vector Z, which is not an argument
of m, since we can consider functions m that are constant as Z varies. We
also extend the results to the case where the variable Y depends on a vector
of unobservable variables, (ε1, ε2, ..., εK).
For each of the specifications and assumptions on the distribution of ε,

we show that the estimator for the distribution of ε at a particular value,
e, is obtained from an estimator for the conditional distribution function of
Y given X, evaluated at particular values of X and Y. The estimator for
the value of the function m at a particular vector, (x, e), is defined as an
estimator for a quantile of the conditional distribution function of Y given
X = x, where the quantile is the value of the estimator for the distribution of
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ε, at ε = e.The estimator for the quantile is based on the quantile estimator
of Nadaraya (1964) (see also Azzalini (1981)).
The estimators for the distribution of ε and for the function m are shown

to be consistent and asymptotically normal. Each of these estimators is a
nonlinear functional of a kernel estimator for the density function of (Y,X).
We derive their asymptotic distributions using a Delta method of the type
developed in Ait-Sahalia (1994) and Newey (1994). This method proceeds
by first obtaining a first order Taylor expansion of each nonlinear functional
around its true value, and then deriving the asymptotic distribution of the
linear part of the expansion.
Some other papers that considered nonparametric models where the ran-

dom terms do not enter in an additive form are Roehrig (1988), Brown and
Matzkin (1996), Olley and Pakes (1996), Altonji and Ichimura (1997), Bri-
esch, Chintagunta and Matzkin (1997), Heckman and Vytlacil (1999, 2001),
Vytlacil (2000), Blundell and Powell (2000), and Altonji and Matzkin (2001).
Roehrig (1988) provides a general condition for the identification of non-
parametric systems of equations. Brown and Matzkin (1996) extend Roehrig
(1988)’s conditions and provide an extremum estimator for estimating non-
parametric simultaneous equations of the form studied in Roehrig (1988).
Olley and Pakes (1996) consider a dynamic model where a firm’s invest-
ment at time t depends in a nonadditive, monotone way on an unobservable
productivity variable. Altonji and Ichimura (1997) consider models with
one dependent variable, and estimate an average derivative. Briesch, Chin-
tagunta, and Matzkin (1997) consider estimation of discrete choice models
where an unobserved heterogeneity variable enters the systematic subutili-
ties in a nonadditive way. Heckman and Vytlacil (1999, 2001) and Vytlacil
(2000) consider models where potential outcomes are nonadditive in unob-
servable random terms. Blundell and Powell (2000) consider a nonadditive
structural function, and estimate its average. Altonji and Matzkin (2001)
provide methods to estimate functions, distributions, and average derivatives
in nonparametric, nonadditive models with endogenous regressors.
Recently, Bajari and Benkard (2001), Chesher (2002a,2002b), Heckman,

Matzkin and Nesheim (2002), Hong and Shum (2001), Imbens and Newey
(2001), and Matzkin (2002) have extended some of the identification ideas
presented in this paper to develop estimation methods for hedonic prices
(Bajari and Benkard), triangular equation models (Chesher and Imbens and
Newey), hedonic equilibrium models (Heckman, Matzkin and Nesheim), and
models where endogeneity is dealt with using functional restrictions (Matzkin).
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In nonparametric models where the unobservable random term is addi-
tive, shape restrictions have been used in previous work to identify otherwise
unidentified nonparametric functions and to estimate nonparametric mod-
els (see, for example, Matzkin (1992)). Matzkin (1994) provides a review
of some of the existent literature for limited dependent variable models and
nonparametric regression functions.
There is also a large literature in econometrics, which started with Heck-

man and Singer (1984a), on models that incorporate an unobservable random
term, which is interpreted as an heterogeneity parameter, and whose distri-
bution is nonparametric.
The outline of the paper is as follows. In the next section, we present the

basic model and study its identification. In Section 3, we present estimators
for the function m and the distribution of ε, together with their asymptotic
properties. The results are extended to functions that depend on a multidi-
mensional random term ε, in Appendix A. Section 4 presents the results of
some simulations. A short summary is presented in Section 5. Appendix B
contains the proofs of the main theorems.

2. THE MODEL

The building block for the models that we will study can be described by
the basic model

(2.1) Y = m(X, ε)

where m : A × E → R is continuous in (X, ε) and strictly increasing in
ε, A ⊂ RL is the support of X, E ⊂ R is the support of ε, Y and X
are observable, X has a continuous density fX , and ε is an unobservable
random term which is distributed, with a distribution Fε, independently (or
conditionally independently) of X. Many widely used type of models fall
into this category. Models where ε represents unobserved heterogeneity or
a technological shock may satisfy model (2.1). Models that are expressed
in terms of an unobservable variable that is not independent of X may be
rewritten as models with an unobservable random term that is independent of
X. If Y = r(X, η), where η is not independent of X, but η = s(X, ε) where
ε is independent of X, then Y = r(X, s(X, ε)) = m(X, ε). Suppose, for
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example, that we represent the relationship Y = m(X, ε) by Y = v(X) + η,
where v(X) = E(Y |X). Then, η = Y − v(X) is mean independent of X,
but will, in general, depend on X. The conditional expectation function v
is useful to predict Y. However, this function is not as useful when one is
interested in studying the structural random relationship between Y and X,
which gives information about the interaction between the observable X and
the unobservable ε. In fact, estimating m(X, ε) is analogous to estimating
the function η = s(X, ε) = Y − v(X).
Some transformation models satisfy (2.1), such as the one presented in

Box and Cox (1964) and the semiparametric generalized regression model in
Han (1987), when the transformation is strictly increasing. All the transfor-
mation models studied in Horowitz (1996), of the type Y = Λ−1(β0X + ε),
where Λ is an unknown, strictly increasing function and ε is distributed in-
dependently of X with an unknown distribution, satisfy model (2.1).
Duration models, where Y denotes time in a state and ε is the negative

of the log-integrated hazard function, fall into the category of model (2.1),
even when the hazard function is not separable in any of its arguments. In
this case, ε is distributed extreme value, independently of X, and m(X, ε) =
Λ−1(X, e−ε), where Λ(X,Y ) is the integrated hazard up to time Y, conditional
on X, and Λ−1(X, ·)denotes the inverse of Λ(X,Y ) with respect to Y.
Duration models with unobserved heterogeneity also satisfy model (2.1),

when the conditional hazard function is multiplicative in the unobserved
heterogeneity variable. Let θ denote the unobserved heterogeneity variable,
assumed to be distributed independently of X. Let h(s|X, θ) denote the con-
ditional hazard function, and suppose that it can be written as h(s|X, θ) =
r(s,X)e−θ for some unknown, nonnegative function r. Let ε = u + θ, where
u is the negative of the log of the integrated conditional hazard function.
Then, u is distributed extreme value, independently of (X, θ), and, hence, ε
is independent of X. In this model m(X, ε) = Λ−1(X, e−ε), with Λ(X,Y ) =R Y
s=0

r(s,X)ds. The identification of this model, with r possessing no par-
ticular structure, was studied in Heckman (1991).The case where r(s,X) =
r1(s)r2(X) was studied by Elbers and Ridders (1982), Heckman and Singer
(1984), Barros and Honore (1988), and Ridders (1990). (See Barros (1986)
for the case where r(s,X) is a known function of r1(s) and r2(X).)
In many situations, the value of Y is determined by a vector, (ε1, ..., εK),

of unobservable variables, instead of by a single variable. In Appendix A, we
deal with this important case.
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The first question that arises when specifying the model in (2.1) is whether
one can identify the function m and the distribution of ε. Following the
standard definition of identification, we say that (m,Fε) is identified if we
can uniquely recover it from the distribution of the observable variables. More
specifically, let M denote a set to which the function m belongs, and let Γ
denote a set to which Fε belongs. Let FY,X(·;m0, F 0

ε) denote the joint cdf of
the observable variables when m = m0 and Fε=F 0

ε. Then,

DEFINITION: The pair (m,Fε) is identified in the set (M × Γ) if
(i) (m,Fε) ∈ (M × Γ) and (ii) for all (m0, F 0

ε) in (M × Γ) ,
[FY,X(·;m,Fε) = (FY,X(·;m0, F 0

ε)]=⇒ (m 0,F 0ε) = (m,F ε)

If for any two functions, m0 and m” in M , we can find distributions, F 0
ε

and Fε” in Γ such that the pairs (m0, F 0
ε) and (m”, Fε”) generate the same

distribution of observable variables, m0 andm” are said to be observationally
equivalent.

DEFINITION: Any two functions, m0 and m” in M are said to be observationally
equivalent if there exist F 0

ε, F
”
ε in Γ such that for all (y, x), Fy,x(y, x;m

0, F 0
ε) =

Fy,x(y, x;m
”, F ”

ε ).

To analyze the identification of (m,Fε) in model (2.1), we first note that,
since m is strictly increasing in ε, there exists a function v such that for all
x ∈ A, ε ∈ E, and y ∈ m(A,E), v(x, y) = ε if and only if y = m(x, ε).
Hence, the function v is the inverse of m, conditional on X. Clearly, (v, Fε) is
identified if and only if (m,Fε) is identified. Let Γ denote a set of continuous,
strictly increasing distribution functions. Let V denote a set of continuous
functions to which v belongs. The next Lemma shows what properties V has
to satisfy to guarantee the identification of (v, Fε) in V ×Γ. If the function v
were assumed to be differentiable, we could present a different proof for this
lemma, using the results in Roehrig (1988).

LEMMA 1: v, ev ∈ V are observationally equivalent if and only if there exists
a strictly increasing function g : R→ R such that ev = g ◦ v.

PROOF OF LEMMA 1: Note that, by the definition of v and the inde-
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pendence between ε and X,

Pr(Y ≤ y|X = x) = Pr(m(X, ε) ≤ y|X = x) = Pr(ε ≤ v(x, y)|X = x) = Fε(v(x, y)).

Hence, FY |X=x(y) = Fε(v(x, y)).

If v and ev are observationally equivalent, there exist eFε and F ε in Γ such
that for all (x, y), F ε(v(x, y)) = eFε(ev(x, y)). Since eFε is strictly increasing,ev(x, y) = ( eFε)

−1 ◦F ε(v(x, y)). Let g = ( eFε)
−1 ◦F ε.Then, g is strictly increas-

ing and ev = g ◦ v.
On the other side, suppose that ev = g ◦ v for some strictly increasing

function g. Let eFε = Fε ◦ g−1. It then follows that

FY |X=x(y; v, Fε) = Fε(v(x, y)) = eFε(ev(x, y)) = FY |X=x(y;ev, eFε)

Hence, v and ev are observationally equivalent. This completes the proof.
The lemma states that the function v is identified up to a monotone

transformation, g. One implication of this is that ratios of derivatives of v
are identified, without requiring any normalization. Another implication is
that for any monotone transformation g, (g ◦ v, Fε ◦ g−1) and (v, Fε) gener-
ate the same distribution of (Y,X). To see what this means in terms of the
inverse function m, suppose that m∗ and F ∗ε are the true function and distri-
bution, and let v∗ denote the inverse function of m∗, conditional on x. Then,
ε = v∗(x, y) is distributed with F ∗ε and y = m∗(x, ε). Let g be any strictly in-
creasing transformation. Let eε = g(ε) and ev(x, y) = g(v∗(x, y)). The lemma
implies that the model eε = g(ε) = g(v∗(x, y)) = ev(x, y) generates the same
distribution of the observable variables as the model ε = v∗(x, y). Let em
denote the inverse function of ev, conditional on x. Then, for any value e,em(x, e) denotes the value of y that satisfies e = ev(x, y). Let then eε and x be
given. To find such a value of y, we note that since eε = ev(x, y) = g(v∗(x, y)),
v∗(x, y) = g−1(eε). Hence, since m∗ is the inverse of v∗, conditional on x, y =
m∗(x, g−1(eε)). This shows that em(x,eε) = m∗(x, g−1(eε)), or, since eε = g(ε),em(x, g(ε)) = m∗(x, ε). Hence, em andm∗ are observationally equivalent if and
only if em equals m∗ with ε substituted by g(ε), for some strictly increasing
function g, that is em(x, g(ε)) = m∗(x, ε).
The discussion in the above paragraph shows that, for normalization pur-

poses, we are free to choose the function g. One convenient normalization is
given by the function g such that, for some given value x of X, g(v(x, y)) = y.
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The function m,which is the inverse function of g ◦ v is the function that
satisfies m(x, ε) = ε. Hence, this normalization amounts to fixing the values
of the function m at some value of the vector X. Note that a normalization
of this type is implicitly assumed when specifying a linear random coefficient
model where m(x, ε) = ε · x, in which case x = 1. An implication of this is
that the linear random coefficient model is too restrictive. There is no need
to specify a multiplicative structure between ε and x. One only needs the
property that m(1, ε) = ε in order to identify the distribution of ε and the
functionm. Note also that the linear specificationm(x, ε) = β ·x+ε satisfies
this normalization with x = 0. Somewhat more generally, we could require
thatm(x0, x1, ε) = ε, for all x0 and some given x1, whereX = (X0,X1). If, for
example, m(x0, x1, ε) = ε · x1 + r(x0, x1), where r(x0, x1) = 0 when x1 = x1,
then m would satisfy this. Note that the structure would not need to be
maintained when X1 6= x1.
When using a normalization of the type m(x, ε) = ε when estimating a

random demand or supply function, it may become important to know what
is the implied normalization in the generating utility or production function.
Suppose for example that m(x, ε) represents the demand for a single input by
a perfectly competitive firm, where X = w is the input price, in terms of the
output price, and ε is a productivity shock. Denote the random production
function of the firm by f(y, ε), where y denotes the quantity of the input.
Then, the value y = m(w, ε) that satisfies the first order condition for profit
maximization is that for which f1 (y, ε) = w, where f1 denotes the derivative
of f with respect to its first coordinate. The condition that m(w, ε) = ε for
some w can be restated in terms of the production function f, by requiring
that for each t, f1(t, t) = w. This condition states that along the isoprofit
defined by w, the value of the productivity shock ε that corresponds to a
firm whose production function is tangent to the isoprofit at Y = y is ε =
y. Examples of random production functions where the productivity shock
enters in this way are those that, for some α ∈ (0, 1) and all ε > 0, concide on
the ray where y = ε with functions of the type f(y, ε) = yαε1−α or f(y, ε) =
(yα + εα)1/α . For the first type, w = α, while for the second w = (2)(1−α)/α.
(For the use of this normalization in hedonic models see Heckman, Matzkin
and Nesheim (2002)).
An alternative route to choosing a normalization is to see whether the

restrictions of economic theory that are implied on the function m could be
used to restrict the set of functions v in such a way that no two different
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functions that satisfy those restrictions can be strictly transformations of
each other. Suppose for example that the function m is homogeneous of
degree one in ε and some other of its arguments, on some given ray from the
origin. More specifically, suppose that, for some X = (x0, x1), some α ∈ R,
some ε, and all λ ≥ 0

m(x0, λx1, λε) = λα where m(x0, x1, ε) = α

Then, using arguments as those in Matzkin (1992, 1994), one can show that
for any two conditional inverse functions v, corresponding to two different
functions m, it is not possible to write one of those v functions as a strictly
increasing transformation of the other. One can obtain the same effect if
the function m is such that for some x1, some α ∈ R, all x0 and all λ ≥ 0

m(x0, λx1, λε) = λα where m(x0, x1, ε) = α.

When m is a profit function or a cost function, m is homogeneous of degree
one in all or some of its arguments. Hence, in these cases, identification
requires only a location normalization, which can be imposed by fixing the
value of the function at one point. Suppose, for example, that X0 denotes
a vector of observable characteristics of a typical firm, (X1, ε) denotes the
vector of output and input prices, andm denotes the profit of the firm. If the
firm chooses its output and input quantities taking prices as given, m will
be homogenous of degree one in (X1, ε) . As another example, suppose that
X0 denotes the output quantity of a typical firm, (X1, ε) denotes a vector
of input prices, and m denotes the cost function of the firm. Then, if the
firm minimizes costs taking input prices as given, m will be homogenous of
degree one in (X1, ε) .
If it is reasonable to assume that the v function is additive in one of its

arguments, then, again one can show that no two different functions v can
be written as strictly increasing transformations of each other (see Matzkin
(1992,1994)). More explicitly, suppose that X = (X0,X11,X12) is such that
X12 ∈ R, and that

v(x0, x11, x12, y) = r(x0, x11, y) + x12

where for some (x0, x11, y), r(x0, x11, y) = α. Then, the inverse function
m has the form

m(x0, x11, x12, ε) = s(x0, x11, ε− x12) where s(x0, x11, α) = y.
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This specification can be seen as a nonparametric, partially nonadditive gen-
eralization of the transformation model studied in Horowitz (1996), where
Y = Λ−1(β0X + ε), Λ−1 is unknown and strictly increasing, and the distrib-
ution of ε is unknown. In Horowitz (1996), the value of Λ is specified at one
point and the absolute value of the coefficient of one coordinate of X is set to
1. In our specification, we specify the value of s at the point (x0, x11, α) and
set the coefficient of X12 equal to −1. (Note also the resemblance with the
parametric, random production function specified in McElroy (1987)). The
identification here can be also achieved if

m(x0, x11, x12, ε) = s(x0, x11, ε− x12)

where for some x11 and all x0, s(x0, x11, α) = y. This would be satisfied, for
example, if the function m were such that m(x0, x11, x12, ε) = n1(x11, x12 −
ε)+n2(x0, x11), for some unknown functions n1 and n2 such that n2(x0, x11) =
0 for all x0. Note that this function need not be additively separable in the
n1 and n2 functions when X11 6= x11.
To see how this specification may arise, for example, in a demand function,

suppose that the preferences of a typical consumer for commodities Z and Y
are represented by a twice continuously differentiable, strictly increasing and
strictly concave utility function U(z−ε, y), with strictly positive cross partial
derivative, U12. Then, the solution to the maximization of U subject to the
budget constraint z+py = I, which is obtained by maximizing U(I−ε+py, y)
over y, is given by a function of the form Y = m(p, I − ε), which is strictly
increasing in its last coordinate. If the utility function U depends also on
some vector, w, of observable characteristics of the consumer, then we will
have that Y = m(w, p, I − ε).
An additional implication of Lemma 1 is that, instead of studying various

specifications for the function m, one can achieve identification by specifying
the distribution function Fε. Suppose that the utility function of a typical
consumer is a function U(z, y, ε), which is strictly increasing and strictly
concave with respect to its first two arguments and twice continuously dif-
ferentiable with respect to its three arguments. The first and second order
conditions for utility maximization subject the budget constraint z+ py = I
together with the Implicit Function Theorem imply that the demand func-
tion Y = m(p, I, ε) will be strictly increasing with respect to ε if for all p,
U13p− U23 < 0. This is satisfied, for example, if for some functions v and ev,
U(z, y, ε) = v(z, y)+ev(y, ε), where ev12 > 0. It follows by Lemma 1 that if the
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distribution of ε is specified, the demand function m will be identified. (See
Brown and Matzkin (1996) and Heckman, Matzkin and Nesheim (2002) for
methods to estimate the utility functions in a particular case and in hedonic
models, respectively.)
In some cases, one may even know the distribution of ε. Consider, for

example, a duration model with a nonparametric hazard function λ(X, t) >

0. Let ε = ln
R T
−∞ λ(X, t) dt. Then, it is well known that η = −ε is distributed

independently of X and, for all e, Fη(e) = exp (− exp(−e)) . Hence, Fε(e)
= 1 − exp (− exp(e)) . Let y = T . Then, using Lemma 1, we get the well
known result that the function v(x, y) = ln

R y
−∞ λ(x, t) dt is nonparametrically

identified, since FY |X=x(y) = 1− exp (− exp (v(x, y))) .

3. ESTIMATION OF THE BASIC MODEL

To develop estimators for the function m and the distribution of ε in the
basic model (2.1), we will derive expressions for these, in terms of the distri-
bution of the vector of the observable variables. We will do this for the three
basic specifications described in Section 2. Analogous expressions could be
obtained for other specifications of the function m. Once the unknown func-
tions and distributions are expressed in terms of the distribution of (Y,X),
we will derive estimators for these unknown functions and distributions by
substituting the distribution of the observable variables with a nonparamet-
ric estimator of it. While we could consider using any type of nonparametric
estimator for this distribution, we present here the details and asymptotic
properties for the case in which the conditional cdf’s are estimated using the
method of kernels. To express the unknown functions and distributions in
terms of the distribution of the observable variables, let X = (X0,X1). We
will make the following assumptions:

ASSUMPTION I.1: ε is independent of X1, conditional on X0.

ASSUMPTION I.2: For all values of X, m is strictly increasing in ε.

Assumption I.1 guarantees that, conditional on X0, the distribution of
ε is the same for all values of X1. Although we explicitly write X0 as an
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argument of the function m, this is not necessary. The vector X0 may be
such that the function m is not a function of it. Assumption I.2 guarantees
that the distribution of ε can be obtained from the conditional distribution
of Y given X.
Under these assumptions, the mapping between the unknown functions

m and Fε|X and the distribution of the observable variables FY,X is given by

(3.1) Fε|X0=x0(e) = FY |X=x (m(x, e)) for all e ∈ E and x = (x0, x1) such that fX(x) > 0,

This is because Fε|X0=x0(e) = Pr (ε ≤ e|X0 = x0) = P (ε ≤ e|X0 = x0,X1 = x1)
= Pr(m(X, ε) ≤ m(x, e) | X = (x0, x1) ) = Pr (Y ≤ m(x, e) | X = x) =
FY |X=x (m(x, e)) . The first equality follows by the definition of Fε, the sec-
ond follows by the conditional independence between ε and X1, the third
follows by the monotonicity of m(x, ·) in its last argument, the fourth follows
by the definition of Y, and the fifth equality follows by the definition of FY |X .
Equation (3.1) provides an easy interpretation of m(x, e). From these

equations it follows that m(x, e) is the same quantile of the distribution of
Y given X = x as the quantile that e is of the distribution of ε conditional
on X0. In other words, let q be such that e is the qth quantile of Fε|X0; then,
by (3.1), m(x, e) must be the qth quantile of the conditional distribution,
FY |X=x, of Y given X = x. The set {m(x, e)|x ∈ A} then represents the
set of the conditional qth quantiles of the distribution of Y given X. So, for
example, if the median of ε, conditional on X0, is zero, then for all x, m(x, 0)
is the median of Y conditional on X.

3.1. Specification I

Consider first the case where for all ε ∈ E, some x1 and all x0 such that
fX(x0, x1) > 0,

(I.1)
m(x0, x1, ε) = ε,

and Assumptions I.1 and I.2 are satisfied

LettingX1 = x1 in (3.1), it follows that for all x0 such that fX(x0, x1) > 0,and
all e ∈ E,

(3.2) Fε|X0=x0(e) = FY |X=(x0,x1) (e) .

14



Hence, the conditional distribution of ε given X0 = x0 equals the conditional
distribution of Y when X = (x0, x1). To derive an expression for the function
m, we note that since Y = m(X, ε) and m(x, ·) is strictly increasing on E,
the conditional cdf of Y given X = x is strictly increasing on the set m(x,E)
= {y|y =m(x, ε), ε ∈ E}; hence FY |X has an inverse onm(x,E). From (3.1)
and (3.2), it then follows that for all (x0, x1) such that fX(x0, x1) > 0,

(3.3) m(x, e) = F−1Y |X=(x0,x1)
¡
FY |X=(x0,x1) (e)

¢
.

Suppose, next that for all ε ∈ E, some x1 and all x0 such that fX(x0, x1) >
0,

(I.2)
m(x0, x1, ε) = ε,

and Assumptions I.1’ and I.2 are satisfied

where

ASSUMPTION I.1’: ε is independent of (X0, X1).

then, we have that for all e ∈ E and x such that fX(x) > 0,

(3.10) Fε(e) = FY |X=x (m(x, e))

Expression (3.1’) follows because Fε(e) = P ( ε ≤ e|X = x) = Pr(m(x, ε)
≤ m(x, e) | X = x ) = Pr (Y ≤ m(x, e) | X = x) = FY |X=x (m(x, e)) . This
expression implies, in particular, that for all e ∈ E and all ex0 such that
fX(ex0, x1) > 0,

(3.20) Fε(e) = FY |X=(x0,x1) (e) and

(3.30) m(x, e) = F−1Y |X=(x0,x1)
¡
FY |X=(x0,x1) (e)

¢
The overidentification of Fε(e) and m(x, e), in this case, is the result of
strengthening the conditional independence assumption I.1 to the stronger
independence assumption I.1’. Since

R
fX0|X1=x1(ex0) dex0 = 1, it follows from

(3.20) that

Fε(e) =
R
Fε(e) fX0|X1=x1(ex0) dex0

15



=
R
FY |X=(x0,x1) (e) fX0|X1=x1(ex0) dex0

=
R R e

−∞
f(s,x0,x1)
f(x0,x1)

f(x0,x1)
f(x1)

ds dex0
=
R e
−∞

f(s,x1)
f(x1)

ds

= FY |X1=x1 (e) .

Hence, under (I.2) we also have that

(3.200) Fε(e) = FY |X1=x1 (e) and

(3.300) m(x, e) = F−1Y |X=(x0,x1)
¡
FY |X1=x1 (e)

¢
.

When X0 is not an argument of m, (3.300) implies that

(3.3000) m(x, e) = F−1Y |X1=x1

¡
FY |X1=x1 (e)

¢
.

3.2. Specification II

Consider next the case where for some ε ∈ E, some α, y ∈ R, some
x1, all x0 such that fX(x0, x1) > 0, and all λ ∈ R such that λε ∈ E and
fX(x0, λx1) > 0,

(II.1)
m(x0, x1, ε) = α

m(x0, λx1, λε) = λα
and Assumptions I.1 and I.2 are satisfied

Then, given any λ and letting x1 = λx1 and e = λε, we have, from (3.1), that
for all such x0, Fε|X0=x0(λε) = FY |X=(x0,λx1) (m(x0, λx1, λε)) = FY |X=(x0,λx1) (λα) ,
where the second equality follows because m(x0, λx1, λε) = λm(x0, x1, ε) =
λα. In particular, for any e ∈ E such that fX(x0, (e/ε)x1) > 0,

(3.4) Fε|X0=x0(e) = FY |X=(x0,(e/ε)x1) ((e/ε)α) ,

by letting λ= (e/ε). Hence, Fε|X0=x0(e) can be recovered from the conditional
cdf of Y given X, when y = (e/ε)α and x = (x0, (e/ε)x1) . Since the strict
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monotonicity ofm(x, ·) implies that FY |X has an inverse onm(x,E), it follows
from (3.1) and (3.4) that

(3.5) m(x, e) = F−1Y |X=x
¡
FY |X=(x0,(e/ε)x) ((e/ε)α)

¢
,

which provides the mapping between m(x, e) and the distribution of the
observable variables.
Next, suppose that for some ε ∈ E, some α, y ∈ R, some x1, all x0 such

that fX(x0, x1) > 0, and all λ ∈ R such that λε ∈ E and fX(x0, λx1) > 0,

(II.2)
m(x0, x1, ε) = α

m(x0, λx1, λε) = λα
and Assumptions I.1’ and I.2 are satisfied

Then, using the same reasoning as used for the case where m(x0, x1, ε) = ε,
we have that (3.1’) is satisfied, and we obtain the overidentification result
that for all ex0 such that fX(ex0, (e/ε)x1) > 0

(3.40) Fε(e) = FY |X=(X0,X1)=(x0,(e/ε)x1) ((e/ε)α) and

(3.50) m(x, e) = F−1Y |X=(x0,x1)
¡
FY |X=(X0,X1)=(x0,(e/ε)x1) ((e/ε)α)

¢
Using, analogously to the derivation of (3.200), the fact that

R
fX0|X1=(e/ε)x1(ex0) dex0 =

1, we get that

(3.400) Fε(e) = FY |X1=((e/ε)x1) ((e/ε)α) and

(3.500) m(x0, x1, e) = F−1Y |X=(x0,x1)
¡
FY |X1=((e/ε)x1) ((e/ε)α)

¢
.

As in specification (I.2), when X0 is not argument of m, (3.500) can be sub-
stituted by

(3.5000) m(x1, e) = F−1Y |X1=x1

¡
FY |X1=((e/ε)x1) ((e/ε)α)

¢
.

3.3. Specification III
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Finally, we consider the case where for some unknown function s(·), all
ε ∈ E, some α, y ∈ R, some x11 and all x0, x12 such that fX(x0, x11, x12) > 0

(III.1)
m(x0, x11, x12, ε) = s(x0, x11, ε− x12)

s(x0, x11, α) = y
and Assumptions I.3 and I.4 are satisfied

where

ASSUMPTION I.3: ε is independent of X1 = (X11,X12), conditional on
X0.

ASSUMPTION I.4: For all (x0, x11), s(x0, x11, ·) is strictly increasing.

Then, for all e ∈ E and x = (x0, x11, x12) such that fX(x) > 0,

(3.6) Fε|X0=x0(e) = FY |X=x (s(x0, x11, e− x12))

since Fε|X0=x0(e) = Pr (ε ≤ e|X0 = x0) = P ( ε ≤ e|(X0,X1) = (x0, x1)) =
Pr( ε−X12 ≤ e−x12 | (X0, X1) = (x0, x1) ) = Pr (s(X0, X11, ε−X12) ≤ s(x0, x11, ε− x12) | X = x)
= FY |X=x (s(x0, x11, e− x12)) .
Letting X11 = x11 and X12 = e− α, in (3.6), we get that

(3.7) Fε|X0=x0(e) = FY |X=(x0,x11,e−α) (y) .

Hence, the value of the conditional distribution of ε given X0, at ε = e,
equals the value of the conditional distribution of Y at y, when (X11,X12) =
(x11, e−α). To derive an expression for the function s, we use (3.6) and (3.7)
to get

(3.8) s(x0, x11, e− x12) = F−1Y |X=x
¡
FY |X=(x0,x11,e−α) (y)

¢
If we consider

ASSUMPTION I.3’: ε is independent of X.

and the specification is that for some unknown function s(·), all ε ∈ E, some
α, y ∈ R, some x11 and all x0, x12 such that fX(x0, x11, x12) > 0
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(III.1)
m(x0, x11, x12, ε) = s(x0, x11, ε− x12)

s(x0, x11, α) = y
and Assumptions I.3’ and I.4 are satisfied

then, we get an overidentification result that for all for all ex0 such that
fX(ex0, x1, e− α) > 0

(3.70) Fε(e) = FY |(X0,X1)=(x0,x11,e−α) (y) and

(3.80) s(x0, x11, e− x12) = F−1Y |X=(x0,x11,x12)
¡
FY |(X0,X1)=(x0,x11,e−α) (y)

¢
which, averaging out over ex0, using the conditional pdf of X0 given X1, gives
that

(3.700) Fε(e) = FY |X1=(x11,e−α) (y) and

(3.800) s(x0, x11, e− x12) = F−1Y |X=x
¡
FY |X1=(x11,e−α) (y)

¢
As in (I.2) and (II.2), if X0 is not argument of the function s, then (3.800)
may be substituted by

(3.8000) s(x11, e− x12) = F−1Y |(X11,X12)=(x11,x22)

¡
FY |(X11,X12)=(x11,e−α) (y)

¢
.

3.4. Estimation using specifications I, II, and III

To develop the estimators, let the data be denoted by {X i, Y i}Ni=1 . Let
f(y, x) and F (y, x)denote, respectively, the joint pdf and cdf of (Y,X),
let f̂(y, x) and F̂ (y, x) denote, respectively, their kernel estimators, and let
f̂Y |X=x(y) and F̂Y |X=x(y) denote the kernel estimators of, respectively, the
conditional pdf and conditional cdf of Y given X = x. Then, for all (y, x) ∈
R1+L,

f̂(y, x) = 1

NσL+1N

PN
i=1 K(y−Y

i

σ
, x−X

i

σ
), F̂ (y, x) =

R y
−∞
R x
−∞ f̂N(s, z) ds dz,

f̂Y |X=x(y) =
f̂N (y,x)

∞
−∞ f̂N (s,x) ds

, and F̂Y |X=x(y) =
y
−∞ f̂N (s,x) ds
∞
−∞ f̂N (s,x) ds
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where K : R × RL → R is a kernel function and σN is the bandwidth.
The above estimator for F (y, x) was proposed in Nadaraya (1964). When
K(s, z) = k1(s)k2(z) for some kernel functions k1 : R→ R and k2 : RL → R,

F̂Y |X=x(y) =

PN
i=1
ek1(y−Y i

σ
) k2(

x−Xi

σ
)PN

i=1 k2(
x−Xi

σ
)

where ek1(u) = R u−∞ k1(s) ds. Note that the estimator for the conditional cdf of
Y given X is different from the Nadaraya-Watson estimator for FY |X=x(y).
The latter is the kernel estimator for the conditional expectation of Z ≡
1[Y ≤ y] given X = x. For any t and x, F̂−1Y |X=x(t) will denote the set of

values of Y for which F̂Y |X=x(y) = t.When the kernel function k1 is an every-
where positive density on a convex support, this set of values will contain a
unique point. The estimators are obtained by substituting FY |X and F−1Y |X bybFY |X and bF−1Y |X , at the corresponding values of Y and X, in equations (3.2),
(3.3), (3.20), (3.30), (3.200), (3.300), (3.3000), (3.4), (3.5), (3.40), (3.50), (3.400),
(3.500), (3.5000), (3.7), (3.8), (3.70), (3.80), (3.700), (3.800), and (3.8000). Hence, for
example, when (I.1) is satisfied

bFε|X0=x0(e) = bFY |X=(x0,x1) (e) and bm(x, e) = bF−1Y |X=(x0,x1)

³ bFY |X=(x0,x1) (e)
´
,

when (I.2) is satisfied,

bFε(e) = bFY |X1=x1 (e) and bm(x, e) = bF−1Y |X=(x0,x1)

³ bFY |X1=x1 (e)
´
, with

bm(x, e) = bF−1Y |X1=x1

³ bFY |X1=x1 (e)
´

when X0 is not an argument of m.
When (II.1) is satisfied,

bFε|X0=x0(e) = bFY |X=(x0,(e/ε)x1) ((e/ε)α) and bm(x, e) = bF−1Y |X=x

³ bFY |X=(x0,(e/ε)x) ((e/ε)α)
´
,

with analogous expressions for when (II.2) is satisfied; and when (III.1) is
satisfied

bFε|X0=x0(e) = bFY |X=(x0,x11,e−α) (y) and bs(x0, x11, e−x12) = bF−1Y |X=x

³ bFY |X=(x0,x11,e−α) (y)
´
,
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with analogous expressions for when (III.2) is satisfied.
In all the above definitions, the value of the marginal or conditional dis-

tribution of ε at some given value e, is given by the value of the conditional
distribution of Y, given that X, or, more generally, a subvector, W, of X,
equals a given value, w. This conditional distribution of Y is evaluated at
some given value y. The estimator is obtained by substituting the true con-
ditional distribution of Y by its kernel estimator. Thus, the consistency and
asymptotic normality of the estimator of the marginal or conditional distri-
bution of ε will follow from the consistency and asymptotic normality of the
kernel estimator for the conditional distribution of Y given that W = w. In
particular, the asymptotic properties for each of the estimators for the dis-
tribution of ε given above can be derived from the result in Theorem 1,
below, after substituting the corresponding values of w and y. Let W de-
note a subvector of X of dimensiond. Let w be a particular value of W. LetR
K(u)2 =

R ¡R
K(u, v) dv

¢2
du, where v ∈ R1+L−d and u ∈ Rd. We make

the following assumptions:

ASSUMPTION C.1: The sequence {Y i,X i} is i.i.d.

ASSUMPTION C.2: f(Y,X) has compact support Θ ⊂ R1+L and it has
an extension to all of R1+L that is continuously differentiable up to the order
s0, for some s0 > 0.

ASSUMPTION C.3: The kernel function K(·, ·) is differentiable of orderes, the derivatives of K of order es are Lipschitz, K(·) vanishes outside a
compact set, integrates to 1, and is of order s00, where es+ s00 ≤ s0.

ASSUMPTIONC.4:As N →∞, σN → 0, ln(N)/
¡
NσL+1N

¢
→ 0,

√
Nσ

d/2
N →

∞,
√
Nσ

(d/2)+s00

N → 0, and
p
NσdN

³q
(ln(N)) /

¡
NσL+1N

¢
+ σs

00
´2
→ 0.

ASSUMPTION C.5: 0 < f(w) <∞.

Assumption C.2 requires that the pdf of (Y,W ) be sufficiently smooth.
Note that this requires ε to have a smooth enough density. The support of f
is required to be compact in order to guarantee that f can be approximated
by functions that vanish outside a compact set. Assumption C.3 restricts
the kernel function that may be used. Assumption C.4 restricts the rate at
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which the bandwidth, σN , goes to zero.

THEOREM 1: Let bFY |W=w(y) denote the kernel estimator for the condi-
tional distribution of Y, conditional on W = w, evaluated at Y = y. Suppose
that Assumptions C.1-C.5 are satisfied, for es ≥ 0 and s00 ≥ 2. Then,

sup
y∈R

¯̄̄ bFY |W=w(y)− FY |W=w(y)
¯̄̄
→ 0 in probability, and

√
Nσ(d/2)

³ bFY |W=w(y)− FY |W=w(y)
´
→ N (0, VF ) in distribution, where

VF =

½Z
K(u)2

¾£
FY |W=w(y) (1− FY |W=w(y)

¤
[1/f(w)]

The proof is given in Appendix B. This theorem shows that bFε converges
to Fε in the supremum norm, and bFε(e) is asymptotically normal with mean
Fε(e) and variance equal to

©R
K(u)2

ª
[Fε(e) (1− Fε(e)] /

£
N f(w) σd

¤
,

where w is the value of W on which we have to condition bFY |W to estimatebFε(e), and where d is the dimensionality of W.
To study the asymptotic properties of the estimator for the unknown func-

tion m, we note that the value of the function m at any given vector (w, e)
is given by the composition of F−1Y |W=w and FY |W=w(ee), for some particular
vector values w and ew, and some particular value ee. By F−1Y |W=w we denote
the inverse of the conditional distribution of Y given that the subvector, W,
of X, equals a value w; by FY |W=w(ee) we denote the conditional distribution
of Y given that the subvector, fW, of X, equals the value ew. The subvectors
W andfW , of X, are not required to have the same dimension. The estimator
is obtained by substituting the true conditional distributions of Y by their
kernel estimators. Hence, the consistency and asymptotic normality of the
estimator of m will follow from the consistency and asymptotic normality
of the functional, Φ, of the kernel estimator for the distribution of (Y,X),

which is defined by Φ( bFY,X) = bF−1Y |W=w

³ bFY |W=w(ee)´ . Let d1 denote the num-
ber of coordinates of fW, d2 denote the number of coordinates of W, and let
d = max{d1, d2}. Let 1[·] = 1 if the expression in [·] is true; 1[·] = 0 otherwise.
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Let
R
K(u)2 =

R ¡R
K(u, v) dv

¢2
du, where v ∈ R1+L−d and u ∈ Rd. Our next

theorem will make use of Assumptions C.1-C.3 and the following:

ASSUMPTION C.4’: As N →∞, σN → 0, ln(N)/
¡
NσL+1N

¢
→ 0, for j =

1, 2,
√
Nσ

dj/2
N →∞,

√
Nσ

(dj/2)+s
00

N → 0, and
p
NσdN

³q
(ln(N)) /

¡
NσL+1N

¢
+ σs

00
´2
→

0.

ASSUMPTION C.5’: The subvectors W and fW have at least one co-
ordinate in common, and the values, w and ew, are different at one such
coordinate; 0 < f(w), f(ew) < ∞; and there exist δ, ξ > 0 such that
∀s ∈ N(m(w, e), ξ), f(s, w) ≥ δ.

THEOREM 2: Let bn(w, e) = bF−1Y |W=w

³ bFY |W=w(ee)´ and n(w, e) = F−1Y |W=w

³
FY |W=w(ee)´ . Suppos

that Assumptions C.1-C.3, C.4’ and C.5’ are satisfied with s00 ≥ 2 and
s0 ≥ s00. Then, bn(w, e)→ n(w, e) in probability and

√
Nσ

d/2
N (bn(w, e)− n(w, e))→ N (0, Vn) in distribution, where

Vn =

½Z
K(u)2

¾⎡⎣FY |W=w(ee) ³1− FY |W=w(ee)´
fY |W=w(n(w, e))2

⎤⎦∙1[d1 = d]

f(ew) +
1[d2 = d]

f(w)

¸

The proof is given in Appendix B. The statement of the theorem implies
then that bn(w, e) is consistent and asymptotically normal with mean n(x, e)

and asymptotic variance equal to
©R

K(u)2
ª
(Fε(e) (1− Fε(e)))

h
1[d1=d]
f(w)

+ 1[d2=d]
f(w)

i
/
£
fY |W=w(n(w, e))

2 N σdN
¤
, where ew is the value of the vectorfW on which we

have to condition bFY |W to estimate bFε(e), w is the value of the vectorW that
enters as a coordinate in the function n, and d is the maximum between the
number of coordinates offW andW. Note that the value of the density of ew in-
fluences the asymptotic variance only when the number of coordinates of ew is
at least as large as that of w. Also, if the distribution of ε is specified, instead
of being estimated, so that bn(w, e) = bF−1Y |W=w

³
FY |W=w(ee)´ where FY |W=w(ee)

is known, then
√
Nσ

d/2
N (bn(w, e)− n(w, e))→ N (0, Vn) in distribution where

23



Vn =
©R

K(u)2
ª h³

FY |W=w(ee) ³1− FY |W=w(ee)´´ / ¡fY |W=w(n(w, e))
2 f(w)

¢i
with d = d2.
While the kernel function used may be of any order larger than 2, bF−1Y |W=w

will be a function only when the order is 2. With higher order kernels, bF−1Y |W=w

will converge to a function, as the number of observations increases, but,
for any given t, bF−1Y |W=w(t) may possess several values, when the number
of observations is finite. Another issue that may be encountered in prac-
tice is that, with a finite number of observations, there may not exist a
value n∗ such that n∗ = bF−1Y |W=w

³ bFY |W=w(ee)´ . This may occur close to
the endpoints of the support of ee, when the range of bFY |W=w does not
include the range of bFY |W=w(ee). To deal with this problem, one has to
first find the minimum and maximum values, Fl and F u, of the range ofbFY |W=w, and then define a function

bF Y |W=w(ee) by: bF Y |W=w(ee) = F u ifbFY |W=w(ee) > F u, bF Y |W=w(ee) = bFY |W=w(ee) if Fl < bFY |W=w(ee) < F u,

and bF Y |W=w(ee) = Fl if bFY |W=w(ee) < Fl. The estimator for n(w, e) becomes

then: bn(w, e) = bF−1Y |W=w

³bF Y |W=w(ee)´ .
To use the results of Theorems 1 and 2 in tests of hypotheses, it is nec-

essary to replace VF and Vn by consistent estimators. Under the assump-
tions of Theorem 1, a consistent estimator for VF can be obtained by re-
placing FY |W=w(y) and f(w), in the equation for VF , by their respective
kernel estimators, bFY |W=w(y) and bf(w). Under the assumptions of Theorem
2, a consistent estimator for Vn can be obtained by replacing, in the equa-
tion for Vn, FY |W=w (ee) by bFY |W=w (ee), f (ew) by bf (ew) , f (w) by bf (w) , and
fY |W=w (n(w, e)) by bfY |W=w (bn(w, e)) , where bFY |W=w,

bf, and bfY |W=w are the
kernel estimators for, respectively, FY |W=w, f, and fY |W=w, and where bn(w, e)
is as defined in the statement of Theorem 2.

3.5. Estimation of Derivatives

In many cases in economics, we estimate a function because we are inter-
ested in its derivatives. For example, we might estimate a demand function
because we want to study some price effect. As another example, we might
want to estimate the demand and supply functions of a firm, when no obser-
vations are available on the demanded and supplied quantities, but there are
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observations on the profit of the firm, besides observations on prices. Then,
we can estimate the profit function, and obtain the demand and supply func-
tions by differentiating the estimated profit function with respect to prices.
In particular, if ε represents an unobserved price in a profit functionm(x, ε),
the derivative of mwith respect to εdetermines the demand for the input
whose price is ε. Matzkin (1999) presents estimators for the derivatives of
the function m with respect to x and ε, for some of the specifications pre-
sented in Section 2, and shows their consistency and asymptotic normality.

4. SIMULATIONS

To provide an indication of how the new estimators may perform in prac-
tice, we run a small simulation experiment, using the following two designs:

• DESIGN I: Y = X + ,

where X ∼ N(0, 1) and ∼ N(0, 1).

• DESIGN II: Y = 33

44
X4 (−ε)−3

where X ∼ N(6, 1) and ∼ N(−6, 1).

The first design was chosen to evaluate how badly the estimator may perform,
relative to the best estimator that one can use when the function is additively
separable in ε and its parametric form is known. Design II is the profit
function generated from a production function of the form p(z) = za where
a = .75, X is the price of the output, and −ε is the price of the input z. We
wrote this function in terms of −ε to transform it to be strictly increasing in
ε.
For each design, we run 100 simulations of 250 and 500 observations. For

each simulation, we estimated the functions m and Fε at 100 fixed points,
which were drawn from a uniform distribution with support [−2, 2]× [−2, 2]
for design I and support [4, 8]× [−8,−4] for design II. Besides using our Non-
parametric Nonadditive (NPNA) estimator, we also used, for comparison, a
Nadaraya-Watson estimator (NW) and a Linear Least Squares Estimator
(LS). When using the Nadaraya-Watson estimator, we estimated the model
y = m(x, ε) = v(x) + ε, with v nonparametric and ε possibly dependent on
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X. When using the Linear Least Squares estimator, we estimated the model
y = β · x+ ε with ε independent of X.
To estimate the functionsm and Fε using our new estimators, we specified

x = ε = 1 and α = 2 for Design I, and x = ε = 6 and α = 6 ·33/44 for Design
II. The estimators were obtained using a multiplicative Gaussian kernel.
The bandwidths that were used are presented in Table I. (Details about
the simulations, including bandwidths selection, can be obtained from the
author’s web page. Matzkin (1999) presents the results obtained from using
the same designs to estimate the derivatives of m with respect to x and ε.)
For each of the three estimation methods, we estimated the functions m

and Fε at each of the 100 fixed points that were drawn from a uniform dis-
tribution. For each point and estimated function, we used the simulations
for which the estimated densities, and multiplications of densities, that ap-
pear in the denominator of the estimator, were above .025. >From these
simulations, we calculated the absolute value of the bias, variance, and mean
squared error. The averages of these results, over the 100 points, are reported
in Tables II and III for design I, and in Tables IV and V for design II.
The graphs show the average behavior, over 500 simulations, of the NPNA

estimators for design II with N=500. They show the average of bm over the
simulations, and the mean (in a−− line), the median (in a−.− line), and the
5th and 95th percentiles (in the · · ·· lines) of bFε, bm(·, 0) and bm(1, ·), together
with the true values of Fε, m(·, 0) and m(1, ·) (in the solid lines). For graphs
corresponding to Design I, see Matzkin (1999).

5. SUMMARY

We have presented estimators for models in which the value of a depen-
dent variable is determined by a nonparametric function that is not neces-
sarily additive in unobservable random terms. The estimators for the dis-
tribution of the unobservable random terms and the nonparametric function
were derived and were shown to be consistent and asymptotically normal.
The estimators were defined as nonlinear functionals of a kernel estimator
for the distribution of the observable variables. The results of some simula-
tions indicate that the method may outperform alternative parametric and
nonparametric estimators.
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APPENDIX A: MULTIVARIATE UNOBSERVABLE RANDOM TERM

Imposing some structure on the function m, we can use the basic model
described in Section 3 to identify and estimate random functions that depend
on a vector of unobservable random terms. Let X = (X0, X1) be such that
X0 = w0, and X1 = (w1, ..., wK). Let ε = (ε1, ..., εK). Assume that ε is
distributed independently of X1 conditional on X0. Assume, further, that
the joint distribution of (ε1, ..., εK), conditional on X0, is the multiplication
of the marginal distributions of the εk’s, conditional on X0. For each k, let
w0k denote a subvector of w0. Then, if the function m can be expressed as a
known function of K basic functions, each of which satisfies model (2.1), it
is possible, under some restrictions, to identify the distribution of ε and each
of the K random functions.
Our results allow the identification of each individual function in a sum-

mation, when only the value of the sum of the random functions is observed.
They also allow the identification of each individual function in a multiplica-
tion, when only the total value of the multiplication of the random functions
is observed. The summation case would be important, for example, if we
were interested in identifying individual random behavior from observations
on only the aggregate value of a dependent variable. The multiplicative case
would be important, for example, if we were interested in estimating a mul-
tiplicative production function for some product, when the product is pro-
duced using some intermediate inputs. If these intermediate products were
unobserved and were produced by some observable, more basic products,
according to some unknown random production functions, then, using the
results below, we can determine that the random production functions of the
unobservable intermediate inputs are identified, as well as the distributions
of the unobservable random terms, ε.
We present the results for the case in which each of the K basic functions

satisfies specification (I.1). Analogous results can be obtained by using the
other possible specifications. Suppose that

m(X, ε) = r(n1(w01 , w1, ε1), ..., nK(w0K , wK, εK))

for some known, continuously differentiable function r : RK → R and some
unknown, nonparametric functions n1, ..., nK . Note that in this specification,
each subvector wk enters as an argument only in the function nk. Some, or all,
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of the coordinates of w0 may enter as arguments in some, or all, of the func-
tions nk. Let Fε|X0 denote the unknown distribution of ε, conditional on X0.
Let α1, ..., αK be known numbers. We will make the following assumptions:

(A.i) At (α1, ..., αK), the function r is strictly increasing in each of its
arguments.

(A.ii) For each k, there exists a value wk of wk such that for all values
of (w0k , εk),
nk(w0k ,wk, εk) = εk.

(A.iii) For each k, there exists a value ewk of wk such that for all values
of (w0k , εk),
nk(w0k ,ewk, εk) = αk,

(A.iv) For each k, and each (w0k , wk, εk) such that wk 6= ewk, nk(w0k , wk, εk)
is strictly increasing
in εk,

(A.v) For all e1, ..., eK , f(ε1,...,εK)|X0=w0(e1, ..., eK) =
QK

k=1 fεk|X0=w0(ek)

(A.v’) For all e1, ..., eK, f(ε1,...,εK)(e1, ..., eK) =
QK

k=1 fεk(ek)

(A.vi) f(ε1,...,εK)|X(e1, ..., eK) = f(ε1,...,εK)|X0(e1, ..., eK),

(A.vi’) f(ε1,...,εK)|X(e1, ..., eK) = f(ε1,...,εK)(e1, ..., eK), and

Assumptions (A.ii) and (A.iv) impose on each function nk the specifica-
tion (I.1). Assumption (A.iii) is used to find values of the vector X for which
the conditional distribution of Y coincides with the conditional distribution
of nk. A very simple example of a function m that satisfies assumptions
(A.i)-(A.iv) is m(X, ε) =

PK
k=1 εkwk, where wk ∈ R. In this case, wk = 1 and

for αk = 0, ewk = 0. Assumption (A.v) states that, conditional on X0, the
εk are independent across them, while Assumption (A.v’) states that the εk
are unconditionally independent across them. These assumptions allow us to
identify, respectively, the conditional and unconditional joint distribution of
ε, from the marginal distributions. If these conditions are not satisfied, we
will only be able to show the identification of the marginal distributions of the
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εk. By Assumption (A.vi), ε is independent of X1, conditional on X0, while
by Assumption (A.vi’), ε is independent of X = (X0,X1). For each k, let wk

denote the value of X1 when wj = ewj for j 6= k; let wk denote the value of X1

when wk = wk and wj = ewj for j 6= k; let Xk = (w0k ,X1), and, for each k,
define the function rk : R → R by rk(t) = r(α1, ..., αk−1, t, αk+1, ..., αK).We
can now state the following result, which is proved in Appendix B:

Theorem 1 3:(5.I) If Assumptions (A.i)-(A.vi) are satisfied, then Fε|X0=w0

and m are identified. In particular, for all k and all (w0, wk, ek),

Fεk|X0=w0(ek) = FY |X=(w0,wk)(rk(ek)), and

nk(w0k , wk, ek) = r−1k

³
F−1
Y |Xk=(w0k ,w

k)

¡
FY |X=(w0,wk)(rk(ek)

¢´
(5.II) If Assumptions (A.i)-(A.iv), (A.v’) and (A.vi’) are satisfied, then

Fε and m are identified. In particular, for all k and all (w0, wk, ek),

Fεk(ek) = FY |X1=wk (rk(ek)) , and

nk(w0k , wk, ek) = r−1k

³
F−1
Y |Xk=(w0k ,w

k)

¡
FY |X1=wk (rk(ek))

¢´
Since, in the statement of the above theorem, the random functions, nk,

and the marginal distributions of the εk’s are expressed in terms of func-
tionals of the distribution of the observable variables, we can define esti-
mators for these functions and distributions by substituting the true dis-
tribution of (Y,X) by its kernel estimator, in a similar way as that fol-
lowed in Section 3. The asymptotic properties of the estimators for the
marginal distributions of the εk’s can be determined using the results of
Theorem 1. The consistency of the estimators for the nk functions follows
by the convergence in probability of bF−1

Y |Xk=(w0k ,w
k)

³ bFY |X=(w0,wk)(rk(ek)
´
to

F−1
Y |Xk=(w0k ,w

k)

¡
FY |X=(w0,wk)(rk(ek)

¢
and the convergence in probability ofbF−1

Y |Xk=(w0k ,w
k)

³ bFY |X1=wk (rk(ek))
´
to F−1

Y |Xk=(w0k ,w
k)

¡
FY |X1=wk (rk(ek))

¢
,which

can be established using the results of Theorem 2, and the continuity of the
function r. The asymptotic distribution of the estimators for the nk functions
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follow from the results of Theorem 2 and by the standard Delta method, using
the continuous differentiability of the function r. Hence, under the assump-
tions of Theorem 2, we get that, when (A.i)-(A.vi) are satisfied, and d equals
the dimension of (w0, wk),

√
Nσ

d/2
N (bnk(w0k , wk, ek)− nk(w0k , wk, ek))→ N (0, Vk) in distribution, where

Vk =

½Z
K(u)2

¾"
FY |X=(w0,wk)(rk(ek))

¡
1− FY |X=(w0,wk)(rk(ek))

¢
fY |Xk=(w0k ,w

k)(nk(w0k , wk, ek))2

# ∙
1

f(w0, w
k)
+
1[w0k = w0]

f(w0k , w
k)

¸
(

∆k=

⎛⎝∂r−1k

³
F−1
Y |Xk=(w0k ,w

k)

¡
FY |X1=wk (rk(ek))

¢´
∂t

⎞⎠= 1µ
∂rk(nk(w0k ,wk,ek))

∂t

¶
When (A.i)-(A.iv), (A.v’) and (A.vi’) are satisfied,

√
Nσ

d/2
N (bnk(w0k , wk, ek)− nk(w0k , wk, ek))→ N (0, V 0

k) in distribution, where

V 0
k =

½Z
K(u)2

¾"
FY |X1=wk (rk(ek))

¡
1− FY |X1=wk (rk(ek))

¢
fY |Xk=(w0k ,w

k)(nk(w0k , wk, ek))2

# ∙
1[d1 = d]

f(X1 = wk)
+
1[d2 = d]

f(w0k , w
k)

¸
(∆0

k)
2

∆0
k=

Ã
∂r−1k

¡
FY |X1=wk (rk(ek))

¡
1− FY |X1=wk (rk(ek))

¢¢
∂t

!
=

1µ
∂rk(nk(w0k ,wk,ek))

∂t

¶ ,
and d1 denotes the dimension of wk, d2 denotes the dimension of (w0k , w

k),
and d = max{d1, d2}.

APPENDIX B: PROOFS OF THEOREMS
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In this Appendix, we provide the proofs of Theorems 1, 2, and 3. The-
orems 1 and 2 present the asymptotic properties of our estimators for the
distribution of ε and the function m. Since all these estimators are func-
tionals of kernel estimators for the distributions of the observable variables,
we develop their asymptotic properties using a Delta method, as developed
in Newey (1994) and Ait-Sahalia (1996). We present the general “Delta-
method” result in the Lemma below.
To deal with the situation that the estimators are conditioned on vectors

that may possess only some coordinates in common, we partition X ∈ RL

into X = (W0,W1,W2,W3) , where, after relabeling the axes accordingly, X
= (Z1, X−1) = (Z2,X−2), Z1 = (W0,W1), Z2 = (W0,W2), X−1 = (W2,W3),
and X−2 = (W1,W3). Hence, W0 denotes the subvector of coordinates of
X that Z1 and Z2 share, W3 denotes the subvector of X which is not in-
cluded in either Z1 or Z2, and W1 and W2 denote the subvectors of X that
are included in one but not the other of Z1 and Z2. Let d1 = dim(Z1)
and d2 = dim(Z2). For any function G : R1+L → R, define g(y, x) =
∂1+LG(y, x)/∂y∂x, g(z1) =

R
g(y, z1, x−1) dy dx−1, g(z2) =

R
g(y, z2, x−2) dy

dx−2, g(y, z1) =
R
g(y, z1, x−1) dx−1, g(y, z2) =

R
g(y, z2, x−2) dx−2, Gy|Z1=z1(y

0)

=
³R y0
−∞ g(y, z1)ds

´
/g(z1), and Gy|Z2=z2(y

0) =
³R y0
−∞ g(y, z2)ds

´
/g(z2). Let

C denote a compact set in R1+L that strictly includes Θ, the compact sup-
port of (Y ×X). Let D denote the set of all functions G : R1+L → R such
that g(y, x) exists and vanishes outside C. Denote the norm kGk by

kGk = sup
(y,x)∈Θ

|g(y, x)|

Let Ω(·) denote a functional from the set D into an Euclidean space.

LEMMA: Suppose that
(i) there exists a linear functional, DΩ(·) and a reminder functional

RΩ(·) such that
(i.a) for all H ∈ D, Ω (F +H)− Ω (F ) = DΩ (F,H) +RΩ (F,H)
(i.b) for 0 < a1, a2 <∞ and all H ∈ D for which kHk is sufficiently

small,
|DΩ (F,H)| ≤ a1 kHk and |RΩ (F,H)| ≤ a2 kHk2
(i.c) for values z1 and z2 of subvectors Z1 and Z2 of X, which

possess at least one common coordinate of X with distinct values, and for
real valued functions r1(y, z1, x−1) and r2(y, z2, x−2), which are bounded and
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continuous a.e. and vanish outside a compact set

DΩ (F,H) =
2X

q=1

∙Z
rq(s, zq, x−q) h(s, z

q, x−q) d(s, x−q)

¸
where for some q ∈ {0, 1},

R
rq(s, zq, x−q) h(s, z

q, x−q) d(s, x−q) 6= 0.
For each q, let jq = −1 if, for all h,

R
rq(s, zq, x−q) h(s, z

q, x−q) d(s, x−q) 6=
0; let jq = 0 otherwise. Let ed = max{dq|q such that jq ≥ 0}.
(ii) Assumptions C.1, C.2, and C.3 are satisfied with s00 ≥ 2, s0 ≥ es+ s”

and es ≥ 0.
(iii) As N →∞, σN → 0, ln(N)/

¡
NσL+1N

¢
→ 0,

p
NσdN

³q
(ln(N)) /

¡
NσL+1N

¢
+ σs

00
´2
→

0 and for all q such that jq ≥ 0,
√
Nσ

dq/2
N →∞ and

√
Nσ

(dq/2)+s00

N → 0.

Then,

Ω
³ bF´→ Ω (F ) in probability, andq

NσdN

³
Ω
³ bF´→ Ω (F )

´
→ N (0, V ) in distribution, where

V =

"
2X

q=1

1 [jq ≥ 0] 1
h
dq = edi ∙Z K(s, zq, x−q)dx−q

¸2 ∙Z
[rq(s, zq, x−q)]

2 f(s, zq, x−q)d(s, x−q)

¸#

PROOF: To show convergence in probability, we note that by (ii), (iii)

and Lemma B.3 in Newey (1994),
°°° bF − F

°°° → 0 in probability. Let H =bF − F be such that kHk is sufficiently small. Since by (i.a) and (i.b),¯̄̄
Ω
³ bF´− Ω (F )

¯̄̄
≤ a1

°°° bF − F
°°°+ a2

°°° bF − F
°°°2 , and, by above, °°° bF − F

°°°→
0 in probability, the result follows.
To show the convergence in distribution result, for each q such that jq ≥ 0,

let DΩ (F,H; zq) =
£R

rqk(s, z
q, x−q) h(s, z

q, x−q) d(s, x−q)
¤
. Let H = bF − F.

Then, by (i.c), (ii), (iii), and Lemma 5.3 in Newey (1994),

q
Nσ

dq
NDΩ

³
F, bF − F ; zq

´
→ N (0, Vq) in distribution, where

32



Vq =

∙Z
K(s, zq, x−q)dx−q

¸2 ∙Z
[rq(s, zq, x−q)]

2 f(s, zq, x−q)d(s, x−q)

¸
.

By (i.a), (i.b), (iii), and Lemma B.3 in Newey (1994),
q
NσdNRΩ (F,H)→ 0

in probability. Hence,q
NσdNDΩ (F,H) =

q
NσdN

"
2X

q=1

1 [jq ≥ 0] 1
h
dq = ediDΩ

³
F, bF − F ; zq

´#
+op(1)

The result will then follow once we show that
q
NσdN

h
1 [j1 ≥ 0] 1

h
d1 = ediDΩ

³
F, bF − F ; z1

´i
and

q
NσdN

h
1 [j2 ≥ 0] 1

h
d2 = ediDΩ

³
F, bF − F ; z2

´i
have asymptotic covari-

ance equal to 0. Denote z1 and z2 by z1 = (w10, w
1
1) and z

2 = (w20, w
2
2), where

w10 are w
2
0 are the values of the coordinates that z

1 and z2 have in common.
For each q and i, let vqi =

¡
σL+1

¢−1 R
rq(s, zq, x−q)K(

yi−s
σ
, (zq)i−z

q

σ

(x−q)i−x−q
σ

)ds
dx−q. Then, as is well known (see, for example, the proof of Lemma 5.3 in
Newey (1994))

(1) E(vqi ) =

Z
rq(s, zq, x−q)f(s, z

q, x−q)dsdx−q +O(σs
00
)

By the definition ofDΩ
³
F, bF − F ; zq

´
, the covariance between

q
Nσd1N

³
DΩ

³
F, bF − F ; z1

´´
and

q
Nσd2N

³
DΩ

³
F, bF − F ; z2

´´
equals

σ(d1+d2)/2

σ2(L+1)

½
E

∙µZ
r1K1

¶µZ
r2K2

¶¸
−E

µZ
r1K1

¶
E

µZ
r2∂K2

¶¾
where for q = 1, 2

µZ
rqKq

¶
=

Z
rq(s, zq, x−q)K

µ
si − s

σ
,
(zq)i − zq

σ
,
(x−q)i − (x−q)

σ

¶
d(s, x−q)

Note that

E

∙µZ
r1K1

¶µZ
r2K2

¶¸
= σ2L+2−d1−d2

Z µZ er1 eK1

¶µZ er2 eK2

¶
f(si, x

i)d
¡
si, x

i
¢
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where
R er1 eK1 =

R
r1(si−σes, z1, wi

2−σ ew2, wi
3−σ ew3)K ³es, wio−w10σ

,
wi1−w11

σ
, ew2, ew3´ des

dew2 dew3³R er2 eK2
´
=
R
r2(si−σes, z2, wi

1−σ ew1, wi
3−σ ew3)K ³es, wio−w20σ

, ew1, wi2−w22σ
, ew3´ des

dew1 dew3
and xi = (wi

o, w
i
1, w

i
2, w

i
3). Let tu = dim(wu) for u = 0, 1, 2, 3. Then, d1 =

t0 + t1, d2 = t0 + t2, L = t0 + t1 + t2 + t3 and

E

∙µZ
r1K1

¶µZ
r2K2

¶¸
=

= σ(t1+t2)/2
Z µZ br1 bK1

¶µZ br2 bK2

¶
f(si, w

1
o+σ bw0, w11+σ bw1, w22+σ bw2, wi

3)d
¡
si, bwo, bw1, bw2, wi

3

¢
where

R br1 bK1 =
R
r1(si−σes, z1, w22−σ( bw2−ew2), wi

3−σ ew3) K (es, bw0, bw1, ew2, ew3) des dew2 dew3
and

R br2 bK2 =
R
r2(si−σes, z2, w11−σ(bw1−ew1), wi

3−σ ew3)K ³es, ew0 + w10−w20
σ

, ew1, bw2, ew3´ des dew1 dew3.
It then follows by bounded convergence, (1), and (iii) that the covariance
converges to 0.
This completes the proof of the Lemma.

PROOFOFTHEOREM1: Define the functional Λ(·) byΛ(G) = GY |W=w(y).

Then, Λ( bF ) = bFY |W=w(y) and Λ(F ) = FY |W=w(y). (We omit writing explic-
itly the dependence of Λ on y and w, for brevity of exposition.) For any H
such that H vanishes outside a compact set and kHk is sufficiently small, we
have that, |h(w)| ≤ a kHk ,

¯̄̄R y
−∞ h(s, w)ds

¯̄̄
≤ a kHk , and |f(w) + h(w)| ≥

b |f(w)| for some 0 < a, b <∞.Moreover,

(1) Λ(F +H) − Λ(F ) = (F +H)Y |W=w(y) − FY |W=w(y) = DΛ(F,H) +
RΛ(F,H), where

DΛ(F,H) =
y
−∞ h(s,w)ds−h(w) FY |W=w(y)

f(w)
andRΛ(F,H) =

h y
−∞ h(s,w)ds−h(w) FY |W=w(y)

f(w)

i h
h(w)

f(w)+h(w)

i
Hence, for some c <∞,

(2) |DΛ(F,H)| ≤ c
f(w)

kHk and |RΛ(F,H)| ≤ c
f(w)2

kHk2 .
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Letting z1 = w and r2 ≡ 0, it follows by the assumptions of the Theorem
and the Lemma that FY |W=w(y) = Λ( bF ) → Λ(F ) = FY |W=w(y) in proba-

bility and
p
NσLN

³ bFY |W=w(y)− FY |W=w(y)
´
=
p
Nσ2LN

³
Λ( bF )− Λ(F )

´
→

N(0, VF ), where

VF =
nR ¡R

K(u, v)dv
¢2
du
o n³

1
f(w)2

´onR £
1 [s ≤ y]− FY |W=w(y)

¤2
f(s, w)ds

o
=
nR ¡R

K(u, v)dv
¢2
du
o ³

1
f(w)2

´ £
FY |W=w(y)

¡
1− FY |W=w(y)

¢¤
, u ∈

Rd and v ∈ R1+L−d

PROOF OF THEOREM 2: LetW andfW be two subvectors of X. Define
the functionalΦ(·) byΦ(G) =G−1Y |W=w

³
GY |W=w(ee)´ , whereG−1Y |W=w denotes

an arbitrary element of the set G−1Y |W=w, if G
−1
Y |W=w is not a singleton. Then,

Φ(F ) = n(w, e) and Φ( bF ) = bn(w, e). Define the functionals η and ν by η(G)
= GY |W=w(Φ(G)), and ν(G) = GY |W=w(ee). Then, Φ(F ) satisfies the equation:
η(F ) = ν(F ) and, for any H, Φ(F +H) satisfies the equation: η(F +H) =
(F+H)Y |W=w(Φ(F+H)) = (F+H)Y |W=w(ee) = ν(F+H). Let ρ1 > 0be such
that if kHk ≤ ρ1 then, for some 0 < a, b <∞, all y and all s ∈ N(m(w, e), ξ),

(1) |h(w)| ≤ a kHk ,
¯̄̄R y
−∞ h(s, w)ds

¯̄̄
≤ a kHk ,

|f(w) + h(w)| ≥ b |f(w)| , and f(s, w) + h(s, w) ≥ b |f(s, w)| ,

and, by (1) and (2) in the proof of Theorem 1, for some d < ∞ and all w0

such that 0 < f(w0) <∞,

(2) supy∈R
¯̄
(F +H)Y |W=w0(y)− FY |W=w0(y)

¯̄
≤ dkHk

f(w0) .

Using arguments similar to those used in Matzkin and Newey (1993), we will
show that there exist ρ ≤ ρ1 such that if kHk ≤ ρ then

(3) (F +H)−1Y |W=w(FY |W=w(ee)) ∈ N(m(w, e), ξ).

To show (3), we let r∗ = F−1Y |W=w(F
−1
Y |W=w

(ee)), r = (F+H)−1Y |W=w(F
−1
Y |W=w

(ee)), and
s = FY |W=w(r), so that r = F−1Y |W=w(s).Then,
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r − r∗ = (F +H)−1Y |W=w(FY |W=w(ee))− F−1Y |W=w(FY |W=w(ee))
= F−1Y |W=w(s)− F−1Y |X=w(FY |W=w(ee))
=
³

1
fY |W=w(FY |W=w

(e)

´
(s− FY |W=w(ee)) + Rem1

where, for some j1 < ∞, |Rem1| ≤ j1

¯̄̄
s− FY |W=w(ee)¯̄̄2 , and where the last

equality follows fromTaylor’s Theorem. Since (s−FY |W=w(ee)) = (FY |W=w(r)−
(F+H)Y |W=w(r), it follows from (2) that |r − r∗|≤

¯̄̄
1/
³
fY |W=w(FY |W=w(ee))´¯̄̄

d kHk /f(w) +
¡
j1d

2 kHk2
¢
/f(w)2.Hence, if kHk is sufficiently small, |r − r∗| <

ξ,which implies that (F +H)−1Y |W=w(FY |W=w(ee)) ∈ N(m(w, e), ξ).

Consider then the H 0s such that kHk ≤ ρ.We will show, again using
arguments similar to those used in Matzkin and Newey (1993) that for some
c1 <∞,

(4) |Φ(F +H)− Φ(F )| ≤ c1 kHk .

For this we note that

(5) Φ(F +H)− Φ(F )

= (F +H)−1Y |W=w

³
(F +H)Y |W=w(ee)´− F−1Y |W=w

³
FY |W=w(ee)´

=
n
(F +H)−1Y |W=w

³
(F +H)Y |W=w(ee)´− (F +H)−1Y |W=w

³
FY |W=w(ee)´o

+
n
(F +H)−1Y |W=w

³
FY |W=w(ee)´− F−1Y |W=w

³
FY |W=w(ee)´o

To obtain an expression for the difference in the first brackets of (5), we note
that by Taylor’s Theorem,

(F +H)−1Y |W=w

³
(F +H)Y |W=w(ee)´− (F +H)−1Y |W=w

³
FY |W=w(ee)´

=
∂(F+H)−1

Y |W=w

∂r

³
FY |W=w(ee)´h(F +H)Y |W=w(ee)− FY |W=w(ee)i+Rem1
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where, for some j2 <∞, |Rem2| ≤
¯̄̄
(F +H)Y |W=w(ee)− FY |W=w(ee)¯̄̄2 .Hence,

since¯̄̄̄
∂(F+H)−1

Y |W=w

∂y

³
FY |W=w(ee)´¯̄̄̄ = ¯̄̄̄ 1

(f+h)Y |W=w((F+H)
−1
Y |W=w

(F
Y |W=w

(e)))

¯̄̄̄
=

¯̄̄̄
f(w)+h(w)

f((F+H)−1
Y |W=w

(F
Y |W=w

(e)),w)+h((F+H)−1
Y |W=w

(F
Y |W=w

(e)),w)

¯̄̄̄
is bounded by (1) and (3), and, by (2),

¯̄̄
(F +H)Y |W=w(ee)− FY |W=w(ee)¯̄̄ ≤

d kHk / f(w),it follows that for some a2 <∞,

(6)
¯̄̄
(F +H)−1Y |W=w

³
(F +H)Y |W=w(ee)´− (F +H)−1Y |W=w

³
FY |W=w(ee)´¯̄̄ ≤

a2 kHk .

To obtain an expression for the difference in the second brackets of (5), we

note that by (1) and theMean Value Theorem, (F+H)Y |W=w

³
(F +H)−1Y |W=w (t)

´
− (F+H)Y |W=w

³
F−1Y |W=w (t)

´
= ∂(F+H)Y |W=w/∂y(r2)

h
(F +H)−1Y |W=w(t)− F−1Y |W=w(t)

i
, where r2 is between (F+H)−1Y |W=w(t) and F

−1
Y |W=w(t) and where t = FY |W=w(ee).

Hence, since (F+H)Y |W=w

³
(F +H)−1Y |W=w (t)

´
= t= FY |W=w

³
F−1Y |W=w (t)

´
,

it follows by (3) that

(F+H)−1Y |W=w(t)−F
−1
Y |W=w(t) =

FY |W=w F−1
Y |W=w

(t) −(F+H)Y |W=w F−1
Y |W=w

(t)

(f+h)Y |W=w(r2)
.

It then follows by (2) that for some a3 <∞,

(7)
¯̄̄
(F +H)−1Y |W=w(t = FY |W=w(ee))− F−1Y |W=w(t = FY |W=w(ee))¯̄̄ ≤ a3 kHk .

Hence, (4) follows by (5)-(7).
Next, we will obtain a first order Taylor expansion for Φ(F +H), using

the fact that η(F +H)− η(F ) = ν(F +H)− ν(F ). Let
R t denote R t−∞ . By

the definition of η,

η(F +H)− η(F ) = (F +H)Y |W=w(Φ(F +H))− FY |W=w(Φ(F ))

=
Φ(F+H) f(s,w) ds+ Φ(F+H) h(s,w) ds

f(w)+h(w)
−

Φ(F ) f(s,w) ds

f(w)
.
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By the Mean Value Theorem, there exist rf and rh between Φ(F ) and Φ(F +
H) such that

R Φ(F+H)
f(s, w) ds −

R Φ(F )
f(s, w) ds = f(rf , w) (Φ(F +H)−

Φ(F )) and
R Φ(F+H)

h(s, w) ds −
R Φ(F )

h(s, w) ds = h(rh, w) (Φ(F + H) −
Φ(F )). Let ∆Φ = Φ(F +H)− Φ(F ). Then,

η(F+H)−η(F ) = f(w)f(rf ,w)∆Φ+f(w)h(rf ,w)∆Φ+f(w) Φ(F ) h(s,w)ds−h(w) Φ(F ) f(s,w)ds

f(w)(f((w)+h(w))
·

where, by (1), f(w) + h(w) > 0. By the definition of ν,

ν(F +H)− ν(F ) = (F +H)Y |X=w(ee)− FY |X=w(ee)
=

e f(s,w) ds+ e h(s,w) ds

f(w)+h(w)
−

e f(s,w) ds

f(w)

=
f(w) e h(s,w) ds−h(w) e f(s,w) ds

f(w)(f(w)+h(w))
. Let

Aew = f(ew) R e h(s, ew)ds−h(ew) R e f(s, ew)ds andAw = f(w)
R Φ(F )

h(s, w)ds−
h(w)

R Φ(F )
f(s, w)ds. Then,

(8) η(F +H)− η(F ) =
h
f(rf ,w)+h(rf ,w)

f(w)+h(w)

i
∆Φ+ Aw

f(w)(f((w)+h(w))
, and

(9) ν(F +H)− ν(F ) = Aw
f(w)(f(w)+h(w))

.

Since η(F +H)− η(F ) = ν(F +H)− ν(F ), it follows from (8) and (9) that

∆Φ = (f(w)+h(w))Aw

f(w)(f(w)+h(w))(f(rf ,w)+h(rf ,w))
− Aw

f(w)(f(rf ,w)+h(rf ,w))
.

By the Mean Value Theorem, there exist r0f , between Φ(F ) and rf , such that
f(rf , w) − f(Φ(F ), w) = ∂f(r0f , w)/∂y (rf − Φ(F )) . Hence,

∆Φ = (f(w)+h(w))Aw

f(w)(f(w)+h(w)) f(Φ(F ),w)+
∂f(r0

f
,w)

∂y (rf−Φ(F ))+h(rf ,w)
− Aw

f(w) f(Φ(F ),w)+
∂f(r0

f
,w)

∂y (rf−Φ(F ))+h(rf ,w)
.

Let

DΦ(F,H) = f(w)
f(w)2f(Φ(F ),w)

Aew + f(w)
f(w)2f(Φ(F ),w)

Aw, and
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RΦ(F,H) =

⎡⎣ (f(w)+h(w))

f(w)(f(w)+h(w)) f(Φ(F ),w)+
∂f(r0

f
,w)

∂y (rf−Φ(F ))+h(rf ,w)
− f(w)

f(w)2f(Φ(F ),w)

⎤⎦Aew
−

⎡⎣ 1

f(w) f(Φ(F ),w)+
∂f(r0

f
,w)

∂y (rf−Φ(F ))+h(rf ,w)
− 1

f(w)f(Φ(F ),w)

⎤⎦Aw.
Then,

(10) Φ(F +H)− Φ(F ) = DΦ(F,H) +RΦ(F,H).

By the definition of RΦ(F,H),

RΦ(F,H) =

"
f(w)2f(Φ(F ),w)h(w)−f(w)f(w)2

∂f(r0f ,w)
∂y

(rf−Φ(F ))−f(w)f(w)2h(rh,w)
f(w)2(f(w)+h(w))f(Φ(F ),w)(f(rf ,w)+h(rf ,w))

#
Aew

−
"
f(w)f(w)h(w)f(Φ(F ),w)+f(w)f(w)h(w)

∂f(r0f ,w)
∂y

(rf−Φ(F ))+f(w)f(w)h(w)h(rh,w)
f(w)2(f(w)+h(w))f(Φ(F ),w)(f(rf ,w)+h(rf ,w))

#
Aew

+

"
∂f(r0f ,w)

∂y (rf−Φ(F ))+h(rf ,w)
f(w)f(Φ(F ),w)(f(rf ,w)+h(rf ,w))

#
Aw.

Since, by the definition of rf and by (8), |rf − Φ(F )| ≤ |Φ(F +H)− Φ(F )| ≤
c1 kHk , it follows by (1) that, for some a4 < ∞, |RΦ(F,H)| ≤ a4 kHk2 .
Moreover, by the definition of DΦ(F,H), there exists a5 < ∞ such that
|DΦ(F,H| ≤ a5 kHk . It then follows by the assumptions of the Theorem and
the Lemma that m̂(w, e) − m(w, e) = Φ(F̂ )−Φ(F ) → 0 in probability and√
N σ

d/2
N (m̂(w, e)−m(w, e)) =

√
N σ

d/2
N

³
Φ(F̂ )− Φ(F )

´
→ N(0, Vn) whereed=max{d1, d2} and Vn = ©R K(u)2ª h³FY |W=w(ee) ³1− FY |W=w(ee)´´ /fY |W=w(n(w, e))

2
ih

1[d1 = ed]/f(ew) + 1[d2 = ed]/f(w)i .
PROOF OF THEOREM 3: We consider the case where Assumptions

(A.i)-(A.vi) are satisfied. The case where Assumptions (A.i)-(A.iv), (A.v’)
and (A.vi’) are satisfied can be analyzed in a similar way. Without loss
of generality, we will show the identification of the distribution of ε1, con-
ditional on X0 = w0. Given η ∈ R, let y = r1(η). Note that when X =
(w0, w1, ew2, ..., ewK) = (w0, w

k), Y = m(X, ε) = r1(ε1). Hence,
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Pr
¡
Y ≤ y|X = (w0, w

k)
¢
= Pr

¡
r1(ε1) ≤ r1(η)|X = (w0, w

k)
¢
= Pr (ε1 ≤ η|X0 = w0)

where the last equality follows by Assumption (A.vi). Hence, the marginal
distribution of ε1, conditional on X0, is identified from the conditional distri-
bution of Y , when X = (w0, wk). Using similar arguments, we can conclude
that the marginal distribution of each εk, conditional on W0, is identified
from the conditional distribution of Y when X = (w0, w1, w2, ..., wK) is such
that wk = wk and wj = ewj for j 6= k. By Assumption (A.v), the distribu-
tion of ε conditional on X0 is the multiplication of the marginal distributions,
conditional on X0. Hence, Fε|X0 is identified..
Next, we show that the functions nk are identified. Again, without loss

of generality, we take k = 1. Note that when X = (w0, w1, ew2, ..., ewK) =
(w0, w

k), Y = m(X, ε) = r1 (n1(w01, w1, ε1)) . Hence, using the conditional
independence between ε and X1, and the strict monotonicity of n1 in ε1 it
follows that
Pr(ε1 ≤ η|X0 = w0) = Pr(ε1 ≤ η|X = (w0, w

k))
= Pr(n1(w01 , w1, ε1) ≤ n1(w01, w1, η)|X = (w0, w

k))
= Pr

¡
r1 (n1(w01, w1, ε1)) ≤ r1 (n1(w01, w1, η)) |X = (w0, w

k)
¢

= Pr
¡
Y ≤ r1 (n1(w01, w1, η)) |X = (w0, w

k)
¢
.

Since, as we have shown above, Pr (ε1 ≤ η|W0 = w0) = Pr
¡
Y ≤ r1 (η) |X = (w0, w

k)
¢

it follows that FY |X=(w0,wk) (r1 (η)) = FY |X=(w0,wk) (r1 (n1(w01 , w1, η))) . Par-
tition w0 as w0 = (w01 , w0−1). Note that

FY |X=(w0,wk) (r1 (n1(w01 , w1, η)))

=
R r1(n1(w01 ,w1,η)) f(s, w0, w1, ew2, ..., ewK) / f(w0, w1, ew2, ..., ewK)ds

=
R r1(n1(w01 ,w1,η)) f(s,w0,w1,w2,...,wK)

f(w0,w1,w2,...,wK)

hR f(w01 ,w0−1 ,w1,w2,...,wK)

f(w01 ,w1,w2,...,wK)
dw0−1

i
ds

=
R r1(n1(w01 ,w1,η)) R f(s,w01 ,w0−1 ,w1,w2,...,wK)

f(w01 ,w1,w2,...,wK)
dw0−1ds

=
R r1(n1(w01 ,w1,η)) f(s,w01 ,w1,w2,...,wK)

f(w01 ,w1,w2,...,wK)
ds

= FY |X=(w01 ,wk) (r1 (n1(w01 , w1, η)))
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Hence, since FY |X=(w0,wk)(r1(η)) = FY |X=(w01 ,wk) (r1 (n1(w01, w1, η))) it follows
that n1(w01 , w1, η) = F−1

Y |X=(w01 ,wk)
¡
FY |X=(w0,wk) (r1(η))

¢
. This completes the

proof of the first part of the theorem.
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TABLE I

BANDWIDTHS

N=250 N=500
σY σX σY σX

Design I .4497 .3239 .4031 .2928
Design II .0650 .3050 .0596 .2619

TABLE II

DESIGN I, N=250

NPNA NW LS
abs(bias) var mse abs(bias) var mse abs(bias) var mse

m .1284 .0691 .0961 .0981 .0191 .0324 .0048 .0049 .0050
Fε .0072 .0011 .0012 .0220 .0005 .0010 .0166 .0003 .0006

TABLE III

DESIGN I, N=500

NPNA NW LS
abs(bias) var mse abs(bias) var mse abs(bias) var mse

m .0986 .0409 .0564 .0668 .0105 .0171 .0056 .0024 .0025
Fε .0075 .0007 .0007 .0186 .0003 .0007 .0137 .0002 .0004

TABLE IV

DESIGN II, N=250
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NPNA NW LS
abs(bias) var mse abs(bias) var mse abs(bias) var mse

m .1048 .1077 .1606 .6035 .0160 .5877 .8417 .0050 1.1455
Fε .0404 .0019 .0037 .1081 .0016 .0213 .0379 .0001 .0020

TABLE V

DESIGN II, N=500

NPNA NW LS
abs(bias) var mse abs(bias) var mse abs(bias) var mse

m .0800 .1022 .1285 .6030 .0155 .5816 .8408 .0025 1.1433
Fε .0324 .0012 .0023 .1104 .0013 .0215 .0293 .0002 .0014
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