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NONPARAMETRIC ESTIMATION OF PARTIAL TRANSITION
PROBABILITIES IN MULTIPLE DECREMENT MODELS!

By OpD AALEN
University of Oslo and University of California, Berkeley

Nonparametric estimators are proposed for transition probabilities in
partial Markov chains relative to multiple decrement models. The estima-
tors are generalizations of the product limit estimator. We study the bias
of the estimators, prove a strong consistency result and derive asymptotic
normality of the estimators considered as stochastic processes. We also com-
pute their efficiency relative to the maximum likelihood estimators in the
case of constant forces of transition.

1. Introduction. The multiple decrement, or competing risks, model is an
old tool in actuarial science, demography and medical statistics. Nelson (1969),
Altshuler (1970), Hoel (1972), Peterson (1975) and Aalen (1976) have studied
empirical, or nonparametric, statistical analyses for such models. The methods
applied are related to the product-limit estimator of Kaplan and Meier (1958).
The present paper is a continuation of Aalen (1976). We give nonparametric es-
timators of general partial transition probabilities. For theoretical study of these
quantities, see e.g., Hoem (1969). Peterson (1975) independently of us suggests
the same kind of estimator. Our theoretical results are, however, not contained
in his paper.

Note that the assumptions made in our competing risks model correspond to
what is often termed “independence” of risks.

Formally a multiple decrement model may be described as a time-continuous
Markov chain with one transient state labeled 0 and m absorbing states numbered
from 1 to m. We define P(r); i =0, 1, ..., m; to be the probability that the
process is in state i at time ¢ given that it started in state O at time 0. The force
of transition (see e.g., Hoem (1969)) or infinitesimal transition probability from
state 0 to state / at time ¢ is given by

a ) = P/(1)/P7) i=1, . m

provided the derivative exists. We make the following assumption (cf. Feller
(1957), Section XVII.9): :

ASSUMPTION. a,(?) exists and is continuous everywhere fori =1, - .., m.
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The word “nonparametric” will in this paper mean that no further assumption
is made about the a ().

By a partial chain we mean the model that occurs if we put a,(¢) = 0 for all
j & A where A4 is some subset of {1, ..., m}. We want to estimate the transition
probabilities in the partial chain. The above mentioned papers study such esti-
mation in the case that 4 contains only one state.

We introduce some notation. The total forces of transition to the set of states
{1, ---, m} and to a subset A4 of states are given by

o(t) = X, ai?) and 04() = Dicai(?)

respectively. The cumulative forces of transition are given by

Bu(t) = (50.(s)ds,  Br) = Stays)ds.

Let ¢,(¢) be the probability, relative to the partial model, of not leaving state 0
in the time interval [0, t]. We have ¢,(f) = exp(—B4(¢)). Let p,(f) = 1 — q,(?)
and p,(f) = p,(¢). Finally, define p(f) = P(¢) and r(f) = p(f)~*.

The probability of transition 0 — i in the time interval [0, ¢] in the partial
chain corresponding to 4 is given by

Pyt, A) = {¢ a,(s) exp(— §50,(u) du) ds .
(Of course we must have i € 4.)

We will make the following assumption about the experiment and the obser-
vation: we observe continuously, over the time interval [0, 1], n independent
processes of the kind described above, each with the same set of forces of tran-
sition. Every process is assumed to be in state 0 at time 0.

Use the following notation: N(¢) is the number of processes in state i at time
t. We define the N,(7) to be right-continuous fori > 0. Let N,(f) = ;. 4 Ni(?),
and let M(r) = N,(¢) and define this to be a left-continuous process. Define:

R() = M(5)™* if M(t)>0,
=0 if M =0.
As usual “a.s.” denotes “almost surely”, while X, — X denotes convergence in
probability. Let L(X) denote the distribution of X, and let I(B) denote the indi-
cator function of the set B.

If we want to stress the dependence on n we will write M, (¢), N, ,(¢) and simi-
larly for the other quantities.

2. Estimation. Write:

Py(t, A) = (§q.4(s) dBi(s) -
We will estimate this quantity by substituting estimators for the functions g,(s)
and §,(s).
If we think of the set 4 as one single state, then we can use Kaplan and
Meier’s (1958) product limit estimator for estimating ¢,(f). It can be written
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in the following form:

(2.1 G.(t) = exp §¢log (1 — R(s)) dN ,(s) .
This integral, and the similar integrals below, are to be taken as Lebesgue-
Stieltjes integrals over the time interval [0, ].

For B,(f) we can use the closely related estimator studied by Nelson (1969)
and Aalen (1976):

(2.2) Bi(t) = §L R(s) dN(s) .

We suggest the following estimator for Pz, A):

(2.3) By(t, A) = §54.(s — 0) dBy(s) .
Alternatively we can write the estimator in the form:
(2.9 By(t, A) = §{G,(s — O)R(s) dN (s) .

Clearly, one might suggest other versions of this estimator. Instead of sub-
stituting § (1) for g,(¢) one could use exp[— { R(x) dN ()] while B,(r) might be
estimated by — {{log[1 — R(u)] dN,(u). (This was suggested by a referee.) When
we prefer the estimator (2.3) this has the following reason: firstly, it may be
shown that Pt, {i}) coincides with Kaplan and Meier’s estimator of pit) =

Pyt {i}). Clearly, this ought to be the case since our intention is to generalize
that estimator. Secondly, consider the case 4 = {1, --., m}. Then Pyt, A) =
Py(t), and hence it is reasonable to require that the estimator Pi(t, A) specializes
to (1/n)Ny(t). That this is indeed the case may be shown with some computation.

By results of Kaplan and Meier (1958), Breslow and Crowley (1974), Meier
(1975) and Aalen (1976) §,(r) and f(f) are known to have nice properties, and
it is reasonable to assume that these carry over to £, 4). In this paper we

will mainly concentrate on large sample properties, but first we will give the
following results:

PROPOSITION 1. Py(t, A) is based on minimal sufficient and complete statistics.
This proposition is an immediate consequence of Theorem 3.1 of Aalen (1976).

PROPOSITION 2. Let p(f) = Pyt, {i}). Tke following holds:

() 0 = pit) — Ep(r) = (1 — p(0)"B41);

(i) [EP(t, 4) — Pt, A)] = (1 — p())"BLO(1 + Bu(1)).

Note that according to this proposition the bias of p,(¢) and £y(z, 4) converges
exponentially to 0 when n — co. Moreover, Proposition 1 implies that these
estimators are uniformly minimum variance estimators for their expectations.
These facts coupled together indicate that the estimators should be reasonable
candidates.

In the case 4 = {1, .-, m} we have Pyt, 4) = (1/n)N,(r) and hence it is of
course unbiased. By Proposition 1 we have in this case a uniformly minimum
variance unbiased estimator.
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Proposition 2 is easily proved by the technique used in the proof of Theorem
4.1 in Aalen (1976). For completeness the proof will be given in the Appendix.
The same method of proof may be used to derive approximate expressions of
variances and covariances. However, in this paper we will only give the vari-
ances and covariances of the limiting distribution.

3. Consistency. We will prove the following consistency result. (All limits
below are taken with respect to n.)

THEOREM 1. When n — oo the following holds:

n

b a
|P; (1, A) — P(t, A)) >0 a.s.
n

Sup0§t§1 lOg

For the proof we need some intermediate results. The first one is a part of
Lemma 2.2 of Barlow and van Zwet (1970).

LemMma 1. Let X, X,, ---, X, be independent and identically distributed with
continuous distribution function F(x). Let F,(x) be the empirical distribution func-
tion. Then

nt

sup, |F,(x) — F(x)| >0 a.s.
n

We next state Lemma 1 of Breslow and Crowley (1974).
LeMMA 2. Let B,(f) = Sicq But)- If M(1) > 0, then

N n— M(1)
0 < _log qA(t) IBA(I) < —W(T)— .

The first part of the next proposition is a strengthening of Theorem 6.1 in
Aalen (1976). The second part gives a strong consistency result for the product
limit estimator.

PROPOSITION 3. The following limits hold when n — oo:
(1) SUPys.s: (mt/log n)|B; .(f) — Bi(1)| — 0 aus.,
(i) supygis: (n}/log n)|g (1) — ()] — 0 a.s.
Proof. Put ¢, = nt/logn. The supremas below are all taken over the set
0<t=<1. Wehave
5 1 1
Bunlt) = BU1) = $4 (Ry(5) = 7(5)) d( - Nea(s) ) + S5 79 (- Nol9) = Pi(5))
Hence: :
sup cnIABi,n(t) - ‘Bz(t)l é X'n. + Y'n.
where
X, = sup ¢,|nR,(1) — r(r)|
Yo = sup|§5r) d] e (- Noals) = P9) ]|
n

= sup
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It is enough to show that X, — 0 and Y, — 0 a.s. We have:

sup e, |- M (1) — p(1)
X, S ——
L M, (1yp(1)

n

IM,(1) > 0) + 2nir(1)I(M,(1) = 0).

The first part goes to 0 a.s. by Lemma 1. The second part goes to 0 a.s. by the
Borel-Cantelli lemma and the fact that M, (1) is binomial (n, p(1)). Partial inte-
gration gives us for Y,

Y, = sup

r()e, <_’11_ Ny (1) — Pi(t)> —fse, (% N, o(s) — P,.(s)> dr(s)

<2r(l)supc,

LN — Pi(t)l .
n

Hence, by Lemma 1, also Y, — 0 a.s. This proves (i). For the proof of (ii) we
first use (i) and Lemma 2 to establish the following:

¢, I(M,(1) > 0) sup, |log G, () — log (1)) >0 a.s.
By applying the mean value theorem we get:
cuI(M(1) > 0)sup, [4,,.(1) — 4,()| >0 as.

Using the fact that M,(1) is binomially distributed and applying the Borel-
Cantelli lemma we get:

cuI(My(1) = 0) sup, [,,.(1) — 9.()] =0 a.s. 0
ProoOF oF THEOREM 1. We can write:
B, (t, A) — Py(t, A)
= §§4u.a(s — 0) dB; o(s) — Yo 9.4(5) 4B.(s) )
= §6(Ganls — 0) — 44(5)) @P:,n(8) + §59u(5) d(Bi,n(5) — Bils)) -

By treating separately the two integrals of the last expression Theorem 1 may be
proved in the same way as part (i) of Proposition 3. ]

4. Weak convergence. In this section we will study convergence in distri-
bution of the stochastic processes By(t, 4). Throughout the section ¢ will be
limited to the interval [0, 1]. Let D be the function space considered in Section
14 of Billingsley (1968) and let p be the metric d, defined there. In this section
the term “weak convergence” will be used with respect to the product metric p,
on the product space D* for appropriate values of k. Let C be the subset of D
consisting of all continuous functions on [0, 1], and let A be the usual uniform
metric on this space. Let 1, be the product metric on the product space C*. It
is well known that 1, and p, coincide on C*. It is also known that if x, € D*
and x € C¥, then x, — x in the 2,-metric if and only if x, — x in the p,-metric.
For both these facts see e.g., Billingsley (1968, page 112). They will be repeatedly
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used below without further mentioning. A consequence of the last mentioned
fact is that if Z, and Z are random elements of D and C respectively, then
0(Z,, Z) —, 0 if and only if 4,(Z,, Z) —, 0.

Let X}, - - -, X,, be independent Gaussian processes on the time interval [0, 1],
each with independent increments and expectation 0. Let the variances be given
by Var X,(¢) = {§ a,(s)r(s) ds. We choose versions of X, - - -, X,, with continuous
sample paths.

THEOREM 2. The vector consisting of all processes of the form Y, (., A) =
nt(P; (+, A) — Py(+, A)) for ic A and A C {1, ---, m} converges weakly to the
vector consisting of the Gaussian processes Y (+, A) defined by:

—Yi(t, 4) = §i[5: qa(w)a(u) du — q,(s)] dX(s)
+ Diea—w 6 Vi qa(w)a(u) du dX(s),
where the integrals are stochastic integrals in quadratic mean.
REMARK. Stochastic integrals in quadratic mean are defined e.g., in Cramér
and Leadbetter (1967, Section 5.3) where their properties are discussed. One
should note that the representation of the Y-processes as stochastic integrals

over the X-processes makes it very simple to compute moments. For instance
we have:

—EY(t, A) = (5 [V gu(w)a,(u) du — q,(5)] dEX(5)

+ Djea—ta 16 §i qa(u)ai(u) du dEX(s) = 0.
Since the X; are independent processes and have independent increments, we
have:

Var Y1, 4) = §i[§; ga()ai(u) du — q,(s)]* d(Var X(s))
+ Diea-w S0 [5 ga(®)a(u) du]* d(Var X (s))
= V5 [§: gu(@)ai(u) du — g ,(s)P'ai(s)r(s) ds

+ Djea—tn 16 [§5 qu(@)a(u) dul'a;(s)r(s) ds .
It is clear how covariances between pairs of Y,(¢, 4) for different i, ¢ and A can
be computed in the same easy way. The expressions will not be given here, we
will just note that if i € 4 and j e B, then:

AN B= @ =Y(., A) isindependent of Y, (-, B).

ProofF. The proof will follow the Pyke and Shorack (1968) approach. Define

X, (1) = n¥(B..(1) — Bu1) and Z,, (1) = n¥(§,..(1) — q4(0))-
We can write:

(4.1) Y, (1, A) = §§Z, .(5) dBi(S) + §89a(s) dX; a(s) + n72 (5 Z,, () dX; (5) -
(These integrals and the integrals below are still defined as Lebesgue-Stieltjes or
Lebesgue integrals until otherwise stated.)

For proving the theorem we will use the following proposition which is proved
as Theorem 8.2 in Aalen (1976). Put X =[X,- - -, X, ]and X(n)=[X, ,, - -, X,

m,n]‘
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PROPOSITION 4. X(n) converges weakly to X.

To exploit this result we must express the Y; (-, A4) in terms of the X ,. We
will write U, = o,(1) for random elements U, of D* when p,(U,, 0) (or equiva-
lently 4,(U,, 0)) converges in probability to 0.

By the arguments used in the proof of Proposition 3, part (ii) we have:

Zyw= _qAné(aB‘A,n — B4+ 0,(1)
= —q42ijeaX;n Tt op(l) :
Using this (4.1) can be rewritten in the following way:
(4.2) Y, (t, A) = —§594(8) 2 e4 X; u(s)ai(s) ds
+ S(t) qA(s) dXi,'n(s) - Si,n(t’ A) + o?(l)

Silts A) = 174 Fje s §594(8)X; 0(8) X 0(5) -
We now want to prove that S, (-, A) = o,(1). Here we follow Pyke and Shorack
(1968) in using item 3.1.1 in Skorohod (1956). D is complete and separable with
metric p and the same holds therefore for D* with metric p,. Thus the mentioned
result of Skorohod ensures us that there exists a probability space representation
of the processes '

X = X,""Xm and Xn=X1n""’an
1 ) )

where

such that p,(X(n), X) — 0 a.s., and we use this representation in the following.
All supremas below are taken over z € [0, 1]. We have:

SUP [t A)| = Zjea n™H sUP [§5 44(5)X; n() dX; 0 (5)]
= Zjeantsup|[§5 ga()(X;,u(s) — Xi(5)) dX;0(5)]
+ Zjean tsup [§5 4u(5)X,(s) dX,.()]
< TjeasUP X 4(0) — X,(0I(Bea(1) + B4(1))
+ Tjeasup |35 4(5)X;(5) d(Biu(s) — Bu9))] -
The first term in the last expression converges in probability to 0. For the second
term we use the method described in the proof of Theorem 4 in Breslow and
Crowley (1974). Consider a subset Q, of the underlying probability space such
that P(Q)) = lA, and such that for w € Q, all X; are uniformly continuous on
[0, 1], and o(B; ,, B;) converges to 0. Choose a partition (depending on ) of
[0, 1] into K intervals I, = (&,_,, &,] such that
sup; sup,ey, [ X;(1)g.4(1) — X;(6.)9.4(60)| < ¢
for k =1, ..., K. Then the second term above is bounded by
e(Bun(1) + A1) + 2KA(X; 44> 0)2(B1.0s B1)

which tends to 28,(1)e when n — co. Since ¢ is arbitrary, this shows that the
second term also converges in probability to 0. Hence by (4.2) we can write:

Yiu(ty A) = — Zjea §0 94()X; a(5)ls) ds + §5 9.4(5) dXi 1(s) + 0,(1) -
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By partial integration rewrite the second term above and get:
Yiult, A) = — Zjen §6 9a(5)X; u(s)als) ds + q,(0)Xy,0(2)
— $5Xe,a(5) d[g.4(5)] 4 0,(1) -

We are now ready to use Proposition 4. Let Y(n) be the vector consisting of
all Y, ,(+, A) in some order. It is easily figured out that the vector has /| = m2™-1
components. If we regard Y(n) as a function of X(n), then we have a mapping
from D™ to D'. If we use the metrics ,, and 4, on these spaces then the mapping
is obviously continuous. This is also the case for the metrics p, and p, if the
function is restricted to C™. Since now X is a.s. an element of C™, it follows

from Theorem 5.1 of Billingsley (1968) and from Proposition 4 above that Y(n)
converges weakly to the vector consisting of the components:

Uit A) = — Zjea $0 9a(9)Xi(s)ai(s) ds + () Xi(r) — §5 Xi(s) d[q.4(5)] -
So far all our integrals have been Lebesgue-Stieltjes or Lebesgue integrals. How-
ever, as shown on page 90 in Cramér and Leadbetter (1967), the integrals in the
last expression can alternatively be taken as stochastic integrals in quadratic

mean without changing their value. By using the partial integration formula
5.3.7 in Cramér and Leadbetter (1967) we conclude that U(t, A) = Y, (¢, A). []

5. Estimation of the asymptotic variance. We will suggest an estimator of
Var Y,(t, A), which is given in the remark after Theorem 2. We first rewrite
the expression for the variance in the following form:

Var Y (1, A) = ({[Pi(t, A) — Pi(s, A) — q(5)]’r(s) dBi(s)
+ Ziea—in Vo [Pit, A) — Py(s, A)P’r(s) dB,(s) -
Estimators of ¢,(7), 8,(t) and P(t, A) are given by (2.1), (2.2) and (2.3). Since
M(¢) is binomial (n, r(f)™?), it is reasonable to estimate () by nR(¢). Hence, by
the same principle as was used for estimating P,(z, A), we assert that the follow-
ing is a reasonable estimator of Var Y (¢, 4).
n 3 [pi(t’ A) — Pi(s, A) — §4(5)I'R(s) dﬁi(s)
+ Diea—w §s [ﬁi(t, A) — Pi(s, A)I’R(s) dB;(s) -
Alternatively we can write:
nis [f’i(t, A) — Bs, A) — G ,(5)]*R*(s) dN(5)
+ Tjeacin n 5 [PAt, A) — Pys, A)I"R¥(s) dN(s) -
By the same kind of arguments as in Section 3 it is easily shown that this esti-
mator converges almost surely to Var Y,(¢, A), uniformly in ¢.

Of course, relevant covariance functions of different kinds can be estimated
in a similar way. ‘

6. Asymptotic relative efficiency. In this section we will assume that all
forces of transition are constant on the time interval [0, 7], i.e.,

afs)=a, Ysel0,1], i=1.-...m0<t<1,
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where the a; are positive numbers. Let a}, be the maximum likelihood estimator
of a; based on complete observation over the time interval [0, f]. The a}, are
the so-called “occurrence/exposure” rates for the a;. They are given by:

ak¥, = Ny(1)/\s M(s) ds ,
(see e.g., Hoem (1971)).
Let 6 =37, a, 0y = Dljea 0 =}, af, 0%, = ZjeAa;!‘,t‘ The
maximum likelihood estimators of the P,(t, 4) are given by:

*
At

*
A,t

Px(t, A) = S0t (1 — ¢ %),

In this section we will study the asymptotic efficiency of Py(t, A) relative to
P;*(t, A) in the sense that we will compare the variances of the asymptotic distri-
butions. We will denote these by asVar P,(¢, 4) and asVar P,*(t, A) respectively.
We regard i and A as fixed and introduce parameters a and b by 4, = ad and
a, = bd,. Onenotesthat 0 <a<1and0 b < 1.

By applying a Taylor series development and using resules in Hoem (1971)

TABLE 1
Asymptotic efficiency
or=.5
a=.20 a= .40 a= .60 a=.80 a=1.00
b= .25 .985 .990 .993 .996 .997
b= .50 .983 .987 .989 .991 .992
b= .75 .981 .983 .985 .986 .987
b=1.00 .979 .979 .979 .979 .979
ot=1.0
a=.20 a=.40 a=.60 a=280 a=1.00
b= .25 .942 .961 .976 .987 .991
b= .50 .936 .950 .963 .973 .979
b= .75 .929 .937 .945 .953 .958
b=1.00 .921 .921 .921 .921 .921
or=2.0
a=.20 a=.40 a= .60 a=.80 a=1.00
b= .25 .795 .866 « .928 .970 .988
b= .50 175 .834 .892 .940 .967
b= .75 752 .789 .835 .882 .920
b=1.00 .724 .724 .724 .724 .724
ot =3.0
a=.20 a=.40 a=.60 a=.80 a=1.00
b= .25 .610 .746 .874 .960 .992
b= .50 .580 .697 .827 .928 .976
b= .75 .542 .622 .736 .856 .935

b=1.00 .496 .496 .496 .496 .496
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we find:
asVar P*(t, A) = (1 — e™*)"'a"'b[a*hd* P~ + (1 — b)(1 — e~%)?].
From the variance formula in the remark to Theorem 2 we can compute:
asVar P,(t, A) = (1 — 2a)~'ab[(1 — 2ab)e’ - — p(1 — 2a)e*t — 1 4 b].
The efficiency is the quotient between asVar P,*(¢, 4) and asVar B,(z, A):

e(a, b, 3, ) = (1 — 2a)[a®bd*e=2t 1 (1 — b)(1 — e~*)?]
T a(1 — e=)[(1 — 2ab)e’*—2 _ p(1 — 2a)e~ — 1 + b]

Table 1 gives values of this function for some values of a, b and dz.
It is seen from the expression above that

fla, b, 0) = lim,__ e(a, b,0,1) =0 a<} or b=1

_2a-—1
==

a=% and b< 1.

One should note the discontinuity of fat & = 1. In particular f(1, b, ) = 1 for
b < 1 while f(1, 1, d) = 0.This complements results given by Sverdrup (1965,
page 195) for a single decrement model, where of course b = 1.

Table 1 together with the asymptotic results in the last paragraph seem to in-
dicate that the relative efficiency of the nonparametric estimators is good when
either d¢ is small or when b < 1 and a is relatively close to 1.
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APPENDIX
Proor of ProrosiTIiON 2. We will first show:
(A.1) 0 < EG (1) — q.(t) < B.()A — p(0).

In Section 1 M(t), and hence R(f), was defined to be left-continuous. By using
this fact together with (2.1) we can write:

4u(t + ) = 4.(0(1 — R, )1 — U, b))
where I(t, k) is 1 if there is at least one transition to 4 in the time interval
(t, t + k) and O otherwise, and

Pr (U(t, k) # 0) = o(h), PrO Ut 1)=1.
Hence, if we put f(f) = E§,(f), we get
[t + k) = f(t) — EG RO, k) + o(h) -
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Now Pr [I(t, k) = 1| M(t)] = M(t)d,(t)h + o(h), hence:

[t + k) = f(t) — ko (YEG(OR(OM(1)) + o(h) ;
fe) = flt — ) — ho,(t — K)E[§.(t — W)R(t — H)M(r — h)] + o(h) .

Hence: (1) = —d,(0)E[4()R()M()].
Define K by K(x) = 1 if x = 0 and K(x) = 0 otherwise. We then get

f()) = =a,(0f(1) + 3, (NE[F.()K(M(1))] -
Solving for f(f) and exploiting the condition f(0) = 1 gives us:

f(t) = q4(1) + §5 E[§4(5)K(M(s))] exp(—{; 0.4(u) du)d(s) ds -
Hence:
0 = (1) — 9.(1) = EK(M(1))B.4(%)
which is equivalent to (A.1). By now using a method similar to the one above
we can easily show:

EP(t, A) — P(t, A) = [ (E§a(s) — 4a(s)a(s) ds — §§ E[§u()K(M(s))]ati(s) s -
Hence by (A.1):
|ER(t, d) — P, A)] < i (1 — p(s))"Ba(s)as(s) ds + §§ E[Gu(s)K(M(s))]er(s) ds
= (I = p()"B4(0B:(1) + E(K(M(1))A(1)
= (I — p0)"B0)(1 + B4(1)) -

This proves Proposition 2.
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