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Nonparametric estimation of residual variance revisited

By BURKHARDT SEIFERT, THEO GASSER

Biostatistics Department, Institut fiir Sozial- und Prdventivmedizin, Universitdt Ziirich,
CH-8006 Zirich, Sumatrastrasse 30, Switzerland

AND ANDREAS WOLF

Biostatistics Department, Zentralinstitut fur Seelische Gesundheit, W-6800 Mannheim, J5,
Germany

SUMMARY

Several difference-based estimators of residual variance are compared for finite sample
size. Since the introduction of a rather simple estimator by Gasser, Sroka & Jennen-
Steinmetz (1986) other proposals have been made. Here the one given by Hall, Kay &
Titterington (1990) is of particular interest. It minimizes the asymptotic variance. Unfortu-
nately it has severe problems with finite sample bias, and the estimator of Gasser et al.
(1986) proves still to be a good choice. A new estimator is introduced, compromising
between bias and variance.

Some key words: Divided differences; Efficiency; Nonparametric estimation; Nonparametric regression;
Residual variance.

1. INTRODUCTION

When fitting a nonparametric regression function, it is natural to ask for a nonparametric
estimator of residual variance o as well. It is also needed to check goodness of fit
(Eubank & Spiegelman, 1990), outliers and homoscedasticity, and in bandwidth selection
(Rice, 1984; Gasser, Kneip & Kohler, 1991) or signal restoration (Thompson, Kay &
Titterington, 1991).

A simple difference-based estimator of o was introduced by Gasser, Sroka & Jennen-
Steinmetz (1986). Several authors discussed improvements (Buckley, Eagleson & Silver-
man, 1988; Buckley & Eagleson, 1989; Hall & Marron, 1990; Hall, Kay & Titterington,
1990). To compare the different methods, let us consider a fixed design regression model
y=r+eg, where y=(y,,..., yn) is the vector of observations, r=(r(x,),..., r(x,)) is
an unknown ‘smooth’ regression function at design points x,=<...=<x,, and where
e=(g,,...,&,) are independent random errors satisfying E(g,) =0, var (g,) = a>. We
stick to finite sample properties of difference-based estimators as far as possible and try
to avoid asymptotics. In this way, we can also avoid simulations and give exact results
for selected examples.

In § 2 finite sample properties of difference-based estimators of residual variance are
discussed. A new class of estimators is introduced, which combines the ideas of Gasser
et al. (1986) and Hall, Kay & Titterington (1990). A case study in § 3 compares these
estimators. In § 4 some generalizations are discussed.
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374 B. SEIFERT, T. GASSER AND A. WOLF

2. DIFFERENCE-BASED ESTIMATORS
2-1. Finite sample characteristics

Naive nonparametric residuals, obtained by subtracting an appropriately smoothed
curve from the observations, have been proposed for estimating o (Silverman, 1985;
Wahba, 1983). Inevitably, the smoothing bias results in a substantial positive bias of the
resulting estimator of residual variance. Choosing the curve estimator with respect to
extracting residual variance has been studied by Buckley et al. (1988) and Hall & Marron
(1990). Carter & Eagleson (1992) show the superiority of the estimator of Buckley et al.
over that of Wahba. The resulting estimators are not difference-based. Hall, Kay &
Titterington (1990) mentioned some of their disadvantages.

According to Anderson (1971, pp. 60-), differences were used for correlation between
two series by Cave-Browne-Cave (1904), Hooker (1905) and Student (1914). O. Anderson
(1929) and Tintner (1940) studied variance estimators for equally spaced designs. Gasser
et al. (1986) introduced a method for general designs and Hall, Kay & Titterington (1990)
found asymptotically optimal differences. It is an open question which differences to use
for finite samples.

For coefficients d,, define the ith pseudo-residual of order m as

&= é:o diyi+x (1)
fori=1,...,n—m. Let
dy ... dy,, 0 0
G EEEOE
0 ... 0 du-mpo --- dia—m)m
and A= D'D. Then e = Dy is the vector of pseudo-residuals (1), and
G*=e'e=y'D'Dy=y'Ay (2)
is called a difference-based estimator of the residual variance o”. It has expectation
E(6Y) =a’tr (A)+r'Ar, 3)

where tr(.) denotes the trace of a matrix. For moments of quadratic forms, results given
by Rao & Kleffe (1988, pp.31-) are used.

Assume that the residuals ¢, have finite fourth moments, and let E(e})=yo® and
E(e}) =(x +3)o*. Then, the variance and bias of & are

var (6%) =20* tr (A?) + 40°r'A?r + 2y0[tr {A Diag (Ar1’)}+ r'A Diag (A)1]

+ ko’ tr {A Diag (A)}, (4)
bias (6%) = r'Ar + o*{tr (A) - 1}. (5)
Here Diag (A) denotes the diagonal matrix with the same diagonal elements as A. Assume
tr(A)=3 Y di=1; (6)
f=] k=0

that is ¢ is unbiased for r =0. Asymptotically tr (A) » 1 is necessary for consistency.
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Nonparametric estimation of residual variance 375

Formulae (4) and (5) allow exact computation of variance, bias and mean squared
error of difference-based estimators for finite samples without simulations. Further, the
impact of neglecting terms when deriving an asymptotically optimal estimator can be
assessed. A direct representation in terms of coefficients d;, allows fast computer programs;
further, for given design, r, n and m, the finite sample optimal estimator can be obtained
as a reference. Let e(r)=Dr and a=(a,,, ..., a,,)’. Then

m n—-m-I| fm-1| 2
tr (A%) = ,Z' (Z dz) +2IZ:1 lgl (kgo di,(k+l)d(i+l)_k) s (7)

—m m

tr {A Diag (A)} = kzo d%agiy k) (8)
i=1 -

m n-m—1 fm-I
rA Z ( Z dz) ef(r)+2 ’Z:l g,l (kZ_lo di,(k+l)d(l+l),k) e(r)e . (r), 9)

=1

n—m n—m

rAr= ) ei(r), rADiag(A)1= ) el(a)e(r), (10)
=] =]
min(i+kn—m)
tr {A Diag (Arl)} = Z Z d? i d,ivx—pe(r). (11)
i=1 k=0 j=max(1,i+k—m)

2:2. The estimator of Gasser, Sroka & Jennen-Steinmetz

For the rest of this section let x, <... <x,: see § 4-2 below for a brief discussion of
multiple measurements.

The problem is to find suitable coefficients d;. The disturbing bias of nonparametric
variance estimators and the fact that smooth functions can be locally well approximated
by polynomials led Gasser et al. (1986) to the following procedure for m = 2. Consider
pseudo-residuals e,, ..., e,_, as in (1) satisfying E(e;) =0 when r is a polynomial of
order less than m. The latter is equivalent to

Z dyri =0 ’ (12)
k=0
for all i. Using the normalizing condition
Y di=1/(n-m) (i=1,...,n—m) (13)
k=0

leads to equal variances var (¢;) = o*/(n —m) for pseudo-residuals of such polynomials.
We then get an implicit definition of a Gasser-Sroka-Jennen-Steinmetz-estimator, 05s;
say, for general m.

Definition 1. Let e,,...,e,_, be pseudo-residuals as in (1) satisfying (12) and (13).
Then, a GsJ-estimator of order m is defined as
Gsi= 'Zl e. (14)
THEOREM 1. The GsiJ-estimator of order m is unique.

Proof. Let d,=(d,,...,d,,). By definition we have e, =(y,..., yi+m)d;. For every
polynomial r of order less than m it follows that (..., r.m) = F8, where F, is an
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376 B. SEIFERT, T. GASSER AND A. WOLF

m X (m+ 1) matrix of rank m. Relation (12) yields 4/ F, = 0. Consequently d, is determined
up to a scalar factor. Equation (13) then determines d; up to the sign. a

Divided differences, consult e.g. de Boor (1978, pp. 4-), provide pseudo-residuals
with small bias. Divided differences A™ of order m reduce polynomials r of order less
than m to zero: A‘™r=0. They are constructed as follows. Denote by diag (w;) the
diagonal matrix with diagonal elements w; and define

] 1
D = diag ( , B®M=
Xitk = Xi/ i=1,(n—k)

a weighting matrix of order (n—k) x (n —k) and a bidiagonal matrix of order (n— k) x
(n—k+1). Then divided differences of y of order m are obtained as

A™y=pD™B™ . DVBWYy, (15)

Relation (12) is fulfilled for divided differences of order m. As a consequence of Theorem
1 the GsiJ-estimator is of that form, and (15) together with (13) give a recursive algorithm
for coefficient dy, Gsi-pseudo-residuals ¢; and d5g; in (14).

Because of their small bias for polynomial functions the GsJ-estimators are minimax
in certain classes of ‘smooth’ functions. Smoothness is usually defined by

-1 1

-1 1

J {r'P(x)}? dx < co? (16)

for some smoothness order p. This assumption ensures that every regression function
can be approximated with bounded error by a polynomial of order p—1. For finite
samples we only have information at design points x;, and the derivatives are replaced
by some finite difference-version. Buckley et al. (1988) proposed a version connected
with cubic spline interpolation. Consider now a general difference-version of (16):

rQr<co?, (17)
where (1 is of the form
Q=(A")R'RAY (18)
for some nonsingular matrix R of order (n—p)x(n—p).

THEOREM 2. Consider the class of regression functions r satisfying (17) and (18) for
some given p and arbitrary but fixed ¢ and R, where R is a nonsingular matrix. Consider
further the class of difference-based estimators (2) of order m < p satisfying (13). Then, if
n> p, the Gsi-estimator of order m = p is the unique minimax estimator in this class with
respect to mean squared error.

Proof. From (18) we get r'Qdr =0 for every polynomial of order less than p. If Dr+0
for such a polynomial, we get r'Ar=r'D'Dr>0. Hence the mean squared error of
6*=y'Ay is unbounded in the class of regression functions r satisfying (17) and (18).
Consequently Dr=0 for all polynomials of order less than p is a necessary condition
for a bounded mean squared error of 6. Following de Boor (1978, pp. 4-) the divided
differences of order m = p in (15) are the only differences of order m with this property.
From Definition 1 and Theorem 1 it follows that the Gsi-estimator is the unique difference-
based one of order m satisfying (13) and Dr =0 for all polynomials of order less than p.
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Nonparametric estimation of residual variance 377
It remains to show that the mean squared error of the Gsi-estimator is bounded. Indeed,
r'(A(P))'R'RA(p)r< co?
'\min(R’R) \'\min(R’R).

From (4) and (5) it is standard algebra to prove a bounded mean squared error of
G&si=y'(A P)'CA Py for bounded ||A Pr|2. 0

The result is rather strong, since it holds for all sample sizes, all fixed designs, arbitrary
error distributions, and independently of ¢ and R. Moreover, every function r satisfies
such a condition (17) and (18), even functions with jumps. On the other hand, the
restriction to estimators satisfying (13) is motivated more heuristically than decision-
theoretically. However, the gain from using more general weights is small (§ 4-3). Another
assumption is m < p, which again is motivated by a heuristic argument only. In § 2-4 the
increase of m for fixed p is discussed.

As a consequence of Theorem 2, these estimators are attractive candidates for initial
estimation of residual variance. Of course, with additional knowledge about r and the
error structure, both the minimax argument and the class of quadratic estimators lose
their legitimacy.

||A(p)r||2= r'(A(p))'A(”)rS

2-3. The estimator of Hall, Kay & Titterington
Hall, Kay & Titterington (1990) observed that bias and certain expressions in the
variance are asymptotically negligible. Consequently, based on (4) and (5), the mean
squared error becomes

MSE(G?%) =20* tr (A?) + ko* tr {A Diag (A)}. (19)
Hall, Kay & Titterington (1990) minimized the asymptotic expression of tr (A?) for m <10
under
dy=d, (k=0,...,m;i=1,...,n—m), (20)
2 d=0, Y di=1/(n—m). (21)
k=0 k=0

Let us denote the resulting estimators by 6%3xr. Relations (20) and (21) reflect that
these estimators are designed for smoothness order p = 1in (16). For p = 1 every regression
function can be approximated with bounded error by a constant. Independently of the
design, (20) is then appropriate, and (21) is analogous to (12) and (13).

Under the restrictions (20) and (21), n tr {A Diag (A)} tends to 1 independently of the
choice of d, .. ., d,,, so that the HKT-estimator is asymptotically optimal for normal and
nonnormal residuals.

For m =2 the HKT-estimator yields

tr (Ahikr) =5/{4(n-2)} -3/{8(n-2)},
which is very close to the finite minimum tr (A%,x1) — 1/{8(n —2)*(2n —7)}. The corres-
ponding value of the GsJ-estimator for equidistant design is

tr (Ads;) =35/{18(n—2)}-1/(n-2)%

Assuming r = constant, the finite sample gain of the Hk T-estimator over the GsJ-estimator
is 52% for n =10 and still 36% for large n. The asymptotic gain holds for arbitrary r.
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378 B. SEIFERT, T. GASSER AND A. WOLF

However, the finite-sample performance of the HKT-estimator depends strongly on r. Not
only bias but also variance are adversely affected. The case study in § 3 below shows
that it may take sample sizes of n = 500 or more until the asymptotic formula (19) works.

2-4. A new estimator
Roughly speaking, Theorem 2 says that it is impossible to find a difference-based
estimator, of order not greater than m, which behaves better for a smoothness order
p = m than the GsJ-estimator. A way out is to increase m, in the same way that Hall, Kay
& Titterington (1990) improved the estimator of Rice (1984) (see Table 1) by increasing
m for a fixed smoothness order p=1.

Table 1. Coefficients for equidistant design, relative weights of pth order
divided differences and asymptotic mean squared error of some difference-
based estimators

Estimator m p V(n—m)(d,,...,d,) 8, 5, 5, MSE(67)
Rice 1 1 (-0-707, 0-707) 1 3-00xo*/n
HKT 2 1 (—0-809, 0-500, 0-309) 1 0-382 2:50x o*/n
GSJ 2 2 (—0-408, 0-816, —0-408) 1 - 3-89% 0%/ n
HKT 3 1 (0-194, 0-281, 0-383, —0-858) 1 2-448 4.423 2-33x0%/n
‘New’ 3 2 (0-535, —0-802, 0-000, 0-267) 1 0-500 3-00xc*/n
GSJ 3 3 (0:224,-0-671,0:671,—0-224) 1 4.62xa*/n

Now for smoothness order p =2 the question arises whether it is possible to improve
the variance of the GsJ-estimator without essentially increasing the bias by going from
m =2 to 3. While the idea of divided differences and of the Gsi-estimators is successive
differencing, that of the HKT-estimators is to smooth normalized first-order differences
Yi+1—y: to improve the variance of the estimator. Indeed, for m =2 the HkT-pseudo-
residuals are

e=(n— 2)_5 0-809(1, 0-382)(Yis1 — Y15 Yiv2 = Yix1)'
(Table 1). To generalize this idea to general p and m=p+1 let us introduce

1 8
A= -0 T ,
1§

a bidiagonal smoothing matrix of order (n —m) x (n —m + 1). Then define general differen-
ces of order m=p+1 for smoothness order p as

A™Py = ADPIBP)  DMBMy = AAP)y, (22)

Let A{™" be the rows of A‘™?. Then, pseudo-residuals e, = w,A{™”y can be defined as
weighted general differences, such that (13) is fulfilled, and &7 is as in (2).

A generalization to arbitrary m > p is straightforward. Special cases are the Gsi-
estimator for arbitrary p and m = p with 8§, =0 and the GsJ-estimator for m =p+1 with
8,=—1. For equidistant design the HKT-estimator for m =2 with p=1 and §,=0-382 is
a special case (Table 1).

The question is how to specify the weight §,. A finite optimal 8§, depends on the class
of regression functions, sample size and design. Here, the asymptotic idea of Hall, Kay
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Nonparametric estimation of residual variance 379

& Titterington (1990) proves to be useful. For p=2, m=3 and equidistant design on
[0, 1] general differences (22) become

A?J)y = (nz/z)(la _2+81 ) 1_281 ) 81)(}’:', sy yi+3)la
and tr (A?) in (7) is minimal for

_35(n—3)—54:‘:[{3501—3)—54}2_1]5
' 28(n-3)-36 28(n—3)-36 :

For n-> oo this optimal value tends to §, =(5+3)/4. Table 1 shows the estimator for
8,=0-5. It is called ‘new’ and used in the case study in § 3. The other solution gives just
the reflected difference.

Consider the class of difference-based estimators of order m = p + 1 satisfying (12) for
polynomials of order less than p. Arguments similar to Hall, Kay & Titterington (1990)
show that the ‘new’ estimator is asymptotically optimal in this class under standard
assumptions for regular designs, general error distributions and general regression func-
tions. For an equidistant design we obtain

tr (Afew) =3/{2(n—3)}—33/{49(n -3)*},

which leads to a relative gain in asymptotic variance of 23% relative to the GsJ-estimator
and a loss of 20% relative to the HKT-estimator for m =2; see Table 1.

3. A CASE STUDY
3-1. The design of the case study

The finite sample properties of the GsJ-, HKT- and ‘new’ estimators have been investi-
gated using the formulae (4) and (5) and the explicit expressions (6)-(11). All results
for fixed designs are exact, and no simulations were necessary. After describing the
situations considered the results are illustrated for some typical and interesting ones.

The regression functions considered were (i) linear: r(x) = 2x, (ii) exponential: r(x) =
2 exp(—x/0-3), (iii) sine: r(x)=2sin (4mx), and (iv) linear with Gaussian peak: r(x) =
2—5x+exp {—100(x —0-5)*}. The results were compared for two residual variances (i)
o*=0-1 and (ii) o® = 1. The sample size varied between 15 and 500. Four types of design
on [0, 1] were studied: (i) equidistant fixed design: x; =(i—0-5)/n, (ii) nonequidistant
fixed design: x, are quantiles of a Beta (2, 2) distribution, (iii) random design: x; are
uniformly distributed on [0, 1], and (iv) random design: x, are distributed Beta (2, 2).
The error distributions were: (i) normal (y =0, x =0), (ii) skewed (y=1-155, k =2):
x-distribution with 6 degrees of freedom, and (iii) platykurtic (y =0, x =3): t-distribu-
tion with 6 degrees of freedom.

3-2. Eguidistant design and normal errors

For every situation, r(x), o n and design given, the finite optimal coefficient &, for
general differences in (22) of order m =2 for p=1 was computed by grid search, and
the relative inefficiencies of the HKT-, GsJ- and ‘new’ estimators relative to the resulting
‘ideal’ one were plotted: ineff (¢) = MSE(G?)/MSE(Gisenl)-

For exponential and linear regression functions, asymptotics begin to work already at
sample size n = 30. The HKT-estimator becomes then practically the optimal estimator of
order m = 2. The GsJ-estimator achieves its asymptotic relative inefficiency of 4, and the
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Fig. 1. Relative inefficiencies of the HKT- (long dashes), GSJ- (short dashes), and ‘new’
(dash-dot) estimators for sample size n = 15-500, sine regression function and o*=0-1.
Above are magnified windows for small (left) and large (right) sample size.

‘new’ estimator is a compromise, with relative inefficiency £ The situation changes
dramatically for the sine function and o°=0-1; see Fig. 1. The relative inefficiency of
the HKT-estimator achieves a value of 317 for n =65, while the other estimators behave
well over the whole range of sample sizes (compare the magnified windows in Fig. 1).
For n =200 observations the HKT-estimator has a relative inefficiency of 20. Even for
n =500 the asymptotic formula (19) does not correctly reflect the situation. There the
HKT-estimator still has a relative inefficiency of more than 2, while the ‘new’ estimator
is superefficient. The situation eases for higher noise to signal ratio. The regression
function with a Gaussian peak (Fig. 2) gives similar results.

3:3. Other cases

The situation is comparable for regular nonequidistant fixed designs. The asymptotic
bias, variance and mean squared error remain, but for small sample size the values may
change. In the example of a nonequidistant design with n =25, sine regression and normal
errors with o>=0-1, the mean squared error of the estimators is reduced by factors
3-5 (HKT), 9 (GsJ) and 11 (‘new’). Table 2 shows the mean squared error for a moderate
example. There changes are small for all error distributions.

The shape of the error distribution has no influence on the expectation of a difference-
based estimator (compare (3)). The variance, however, changes; compare (4). The
influence of skewness asymptotically is negligible and small for finite samples. As to the
influence of kurtosis let us assume an equidistant design. Then, standard calculations
using (8) yield

(n—=2m)/(n—m)*<tr{A Diag (A)}<1/(n—m).
Consequently, the kurtosis of the error distribution heavily influences the variances of

estimators, but for all estimators by nearly the same amount. A similar observation holds
for nonequidistant designs (Table 2).
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Fig. 2. Relative inefficiencies of the HKT- (long dashes), GSJ- (short dashes), and ‘new’

(dash-dot) estimators for sample size n=15-500, linear regression function with

Gaussian peak and o> =0-1. Above are magnified windows for small (left) and large
(right) sample size.

Table 2. Mean squared error of estimators for sample
size n = 100, sine regression function and o* =1

Error MSE(5?)
Design distribution HKT GSJ New
Equidistant Normal 0-086 0-039 0-031
Skewed 0106 0-060 0-051
Platykurtic 0-116 0-070  0-062
Nonegquidistant Normal 0-051 0-040 0-032
Skewed 0-072  0-060 0-053
Platykurtic 0-081 0-071  0-063
Random B(2,2) Normal 0-031  0-041  0-050
Random U{0, 1] Normal 0-032 0-040 0-049

For random designs, the explicit formulae for finite sample mean squared error no
longer work. In the study each case was simulated 400 times, and formulae
E(62)= E{E(&zlxli L ] xn)}’
var (67) = E{var (6*|x,, ..., x,)}+ E[{E(6?|x., ..., x,)}*1-{E(6*)}?
together with (4) and (5) were used to improve efficiency of simulations. The asymptotic
mean squared error was the same for HKT- and GsJ-estimators as in the equidistant case.

The asymptotic mean squared error of the ‘new’ estimator, however, increased by a factor
of about 1-5; see Table 2.

3-4. Conclusions

‘The HKT-estimator should be used only for large sample sizes and flat regression
functions. But many typical applications, for example biostatistical ones, have sample
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sizes n=15 to 100. The problems with bias for the HKT-estimator are in qualitative
accordance with the smoothness assumption p = 1. The ‘new’ estimator behaves well over
a wide range of situations, but may be somewhat inefficient for small sample size and
for irregular and random designs. The Gsi-estimator behaves well in all situations.
Consequently, the Gsi1-estimator is a reasonable compromise.

4. SOME GENERALIZATIONS
4-1. Random designs

The finite sample minimax property of the Gsi-estimator in Theorem 2 essentially
remains for random designs. Let us discuss convenient assumptions. The class of
regression functions now is restricted by (16) to ‘smooth’ ones. The n> p design points
should be distinct with probability 1. Otherwise we can do better (§ 4-2). Some additional
assumption on r(x) and/or the distribution of design points is needed to ensure a bounded
mean squared error of the Gsi-estimator of order m = p. If we assume for simplicity that
the pth derivative of the regression function is uniformly Lipschitz continuous and the

design is on [0, 1], no additional assumption is necessary.

THEOREM 3. Under the above assumptions, the Gsi-estimator of order m=p is the
essentially unique minimax estimator in the class of difference-based estimators (2) of order
m < p satisfying (13) for almost all realizations of the design.

The proof goes along the lines of that of Theorem 2. As a consequence, the mean
squared error of the HKT-estimator is unbounded, while that of the GsJ- and ‘new’
estimators is bounded.

4-2. Multiple measurements

Multiple measurements are a chance for estimation of variance, for only in this situation
is there an unbiased estimator. Gasser et al. (1986) and Hall, Kay & Titterington (1990)
proceed as usual; others, e.g. Buckley et al. (1988), even exclude this situation. Assume
observations y; for j=1,..., n,=1 at different design points x, <...<x,. Let  denote
a cell mean and s” the unbiased analysis-of-variance-estimator of o . For normal errors,
s? is independently distributed of any nonparametric estimator 6 based on j,. Pseudo-
residuals for 7, can be computed as before. Condition (13) is replaced by X di/n.., =
1/(n—m). The mean squared error of 62, = as’+(1—a)é? is minimized for

a = Msge(6?)/{Mse(s?) + Mse(5?)}.

The gain over s’ and &7 can be considerable.

4-3. General weights

The choice of equal weights in (13) is the simplest but not necessarily the natural and
optimal one. Several authors (Kendall, 1946, Problem 30.8; Quenouille, 1953; Anderson,
1971, pp. 73-) discussed corrections. One possibility is to use general weights X d% =
fori=1,..., n—m instead of (13) and find the optimal ones. For an equidistant design,
GsJ-pseudo-residuals for m=2, and n=10; eg we get the weights ¢, =
(0-182, 0-080, 0-129, 0-109, 0-109, 0-129, 0-080, 0-182). The gain of variance is 3% only.
Since the gain is relatively small for the additional amount of work, we recommend the
classical weights, at least for sample size n = 10.
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4-4. Multidimensional designs

Difference-based methods can easily be generalized to multidimensional designs.
Important differences between the one- and higher-dimensional case are the very rich
variety of configurations and the increasing portion of the boundary for growing
dimension. In an as yet unpublished paper, E. Herrmann, M. P. Wand, J. Engel and
T. Gasser generalized the Gsi-estimator for m=2 to the bivariate case. Hall, Kay &
Titterington (1991) generalized the HkT-estimator to bivariate lattice designs and dis-
cussed the problem of different configurations in detail. Further research has to be done
to find optimal configurations.
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