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Abstract

In this paper we develop a nonparametric estimation technique for the simultaneous trans-

formation equations systems. Identification and asymptotic properties of our model are also

analysed. Our estimation method is based on writing the conditional moment conditions

by their kernel counterparts so it is very easy to apply and works very well even in very

nonlinear environments. Our contribution to the literature is introducing a nonparametric

component to the right hand side of the transformation model and estimating the equation

nonparametrically. While doing this, we solve the ill-posed inverse problem we run across,

by using the Tikhonov Regularization. In the simulations we made, we saw not only that

our nonparametric estimation gives very good fits, but also that the choice of regularization

parameter together with the bandwidth is very important.
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1 Introduction

Nonparametric econometrics is becoming more and more important. Roehrig (1988)

explaines the usefullness of nonparametric techniques by pointing out the needlessness of

approximations about the parameters. In turns, the results that are independent of these

approximations become more robust. In addition to this, transformation models that are

highly used in applied econometrics and statistics has the form:

H(Y ) = X ′β + U (1)

where H is an unknown function to be estimated. The examples of models like in equation

1 are given in Horowitz (1996). It includes, parametric and semiparametric proportional

hazard models, log-linear regression and accelerated failure time models, the Box Cox model,

etc. These models are generally parametric, and include only a parametric specification on

the right hand side. However, in some cases, it may be not be possible to specify effects of

some explanatory variables with a parametric form, and the economist may need to use a

semiparametric model in the form:

Y = X ′β + ϕ(Z) + U (2)

When the literature is reviewed, it will not be hard to find the papers with this kind of semi

parametric specification. Florens, Johannes, and Van Bellegem (2009) gives its examples

where they study the estimation β in equation 2.

In this paper we introduce a system of equations where each of the equation is a semi-

parametric transformation model, and estimate our equations of interest and the parameter

β with the non parametric instrumental variable estimation defined in Darolles, Florens, and

Renault (2009). We start with a basic system where we normalize the parameters of interest
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to 1:

H1(Y ) = ϕ(Z) +X + U

H2(Z) = ψ(Y ) +W + V

Then we generalize it as:

H1(Y ) = ϕ(Z) +X ′β + U

H2(Z) = ψ(Y ) +W ′γ + V

We study the asyptotics of the estimators under both settings though, in the second setting

the importance was given to show the
√
N convergence rate of β. The estimation of the

systems like in equations above is done with limited information method, in other words, we

estimate them equation by equation and leave the study of estimation with full information

method for the future work. Using the assumption of conditional mean independence, we

can write for the first equation of the first system:

E[U |X,W ] = 0

E[H1(Y )− ϕ(Z)|X,W ] = X

However the solution of the above equation will give us an ill-posed inverse problem which

needs to be regularized. In that step, we use Tikhonov regularization scheme as it is easier to

implement than the other schemes. So, we do not only introduce a very useful nonparametric

estimation method but also show that we can still get consistent results in case of solution

of inverse problems with regularization.

The paper differs from the existing literature in many ways. First of all, it covers the

most general case, as it considers a semiparametric transformation model. In most examples

of transformation models, parametric models are used and the estimations are also done

parametrically. Horowitz (1996) presents semi parametric estimation of equation 1, though
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it makes a parametric specification at the right hand side. On the other hand, Feve and

Florens (2009) estimate the same model with nonparametric instrumental regression. Flo-

rens, Johannes, and Van Bellegem (2009) assumes the partially linear, semiparametric model

as in equation 2. So, when these papers are examined, it is seen that we are covering the

most general case, as well as we are introducing a system of equations. Moreover, we are

not making strong assumptions about the form of our functions, they can all be satisfied

by the economic theory. For this reason, our model is very important for the estimation of

structural equations. When the economic theory is examined it can be seen that the form of

equations we propose to estimate is very common. In other words, simultaneous equations

exist in many fields of economic theory from best-response equations of Cournot game to

the one of the most recent topics, two-sided markets. In the paper, after developing the esti-

mation theory, we give an application example where we adapt the network diffusion models

to the two sided markets, derive the structural equations and explain how to estimate them

with the technique we introduced. In fact, this makes another distinction of our paper from

the others. We introduce the theory and we give a very detailed application example. The

practical implementation of the model, as well as the choice of regularization parameter, is

very well defined.

The econometric model and its estimation is supported by simulations, as well. We

generated samples of different sizes and perform our estimation. We saw that, when the

regularization parameter is chosen optimally, our estimated curves fits very well to the actual

ones. However, in cases where we chose the regularization parameter arbitrarily, we may

have very oscillating or very flat curves as the theory suggests. This result also proves the

importance of selection of regularization parameter in inverse problems which can be ran

across very often in nonparametric estimation.

In the following part of the paper, we will give our simultaneous equations model, derive

its asymptotic properties and present our simulation results. Later, we will give an example

of application of the model we have. In Section 2 we will introduce our model and the
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estimation technique while the asymptotic properties will be developed in Section 3. In

Section 4, we will present our simulation method and simulation results and in Section 5

we will give an application example from two-sided markets. Finally, in Section 6, we will

conclude.

2 A Simultaneous Equations Model and Its Nonpara-

metric Estimation

We have a semiparametric simultaneous equations model in which we have two endo-

geneous variables, Y, Z and two exogeneous variables X,W . These variables generate the

random vector Ξ which has a cumulative distribution function F . Then for each F , we can

define the subspaces of our variables as L2
F (Y ), L2

F (Z), L2
F (W ) and L2

F (X) which belong to

commmon Hilbert space denoted by L2
F .

In the simplest case, the relationship between the variables are given by the following

equations system:

H1(Y ) = ϕ(Z) +X + U (3)

H2(Z) = ψ(Y ) +W + V (4)

where U and V are the error terms and H(i) for i = 1, 2 is a one-to-one monotonic function.

We use the limited information method for simultaneous equations, i.e, we do an equation

by equation estimation, and for the estimation we adopted the nonparametric instrumental

regression of Darolles, Florens, and Renault (2009).
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2.1 Identification

Our conditional independence condition can be written:

E(U |X,W ) = 0

E[H1(Y )− ϕ(Z)−X|X,W ] = 0

Assumption 1 E[U |X,W ] = 0

Assumption 2 (Y, Z) are strongly identified by (X,W ), i.e.:

∀m(Y, Z) ∈ L2, E[m(Y, Z)|X,W ] = 0 ⇒ m(Y, Z) = 0 a.s

Assumption 3 Y and Z are measurably separable:

m(Y ) = l(Z)⇒ m(.) = l(.) = constant

Assumption 4 Normalization :

l(.) = constant⇒ constant = 0

For simplicity, we will assume that ϕ(.) is normalized by the condition E(ϕ(Z)) = 0.

Under this assumption, we consider as parametric space, the space:

E0 = (H,ϕ) ∈ L2
y × L2

z such that E[ϕ] = 0 (5)

Theorem 1 Under the assumptions 1-4, the functions H(Y ) and ϕ(Z) are identified.
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2.2 Estimation

Let us define the operator

T : E0 =
{
L2
Y × L̃2

Z

}
→ L2

X,W : T (H,ϕ) = E(H(Y )− ϕ(Z)|X,W )

where L̃2
Z = {ϕ ∈ L2

Z/E(ϕ) = 0} and the inner product is defined as:

〈(H1, ϕ1), (H2, ϕ2)〉 = 〈H1, H2〉+ 〈ϕ1, ϕ2〉

Then our estimation problem is given by:

T (H,ϕ) = r (6)

where r = E[X|X,W ]. Equation 6 gives us an ill-posed inverse problem as the operator

T has infinite dimensional range and in general it is a compact operator. So, we need to

regularize our problem to get a consistent solution. For this we have chosen the Tikhonov

Regularization as it is easier to work with. Basically, we will control the norm of the solution

by a penalty term, α, which we will call it as regularization parameter. The choice of α is very

important since it charecterizes the balance between the fitting and the smoothing, though

in the following sections we will introduce a data based selection rule for it. So solution is

given by:

(H(Y ), ϕ(Z))′ = (αNI + T ∗T )−1T ∗X (7)

where I is the identity operator in L2
Y × L2

Z .

Remember that the adjoint operator of T satisfies:

〈T (H,ϕ), ψ〉 = 〈(H,ϕ), T ∗ψ〉

for any (H,ϕ) ∈ E and ψ ∈ L2
X,W . From this equality it follows immediately that

T ∗ψ = (E[ψ|Y ],E[ψ|Z])
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However, our parametric space is E0 defined in equation 5. Let us denote the restriction of

T to E0 by T0 (T0 = T|E0) and the projection of E under E0 by P (P (H,ϕ) = (H,ϕ−E(ϕ))).

Then we have the following lemma to characterize tha adjoint operator T ∗ of T :

Lemma 2 Let us define the operator T : E → F with the dual T ∗ : F → E. Moreover, let

us define T0 = T|E0, where E0 ∈ E. Then, T ∗0 = PT ∗ where P is the projection operator on

E0

Proof. Note that, we can write:

x ∈ E0, 〈Tx, y〉 = 〈T0x, y〉

moreover, by using the fact that, for any z1, z2, 〈z1, z2〉 = 〈Pz1, z2〉 :

〈x, T ∗y〉 = 〈x, PT ∗y〉

where PT ∗ ∈ E0 so PT ∗ = T ∗0 .

Then we can write the adjoint operator of T as:

T ∗ =

 E(φ|Y )

PE(φ|Z)


where P is the projection of L2

Z on L2∗
Z (Pϕ = ϕ− E(ϕ)). Although in equation 7 we have

used the same αs for the regularization of different equations, they do not necessarily be the

same. 1 Then, we can solve our equation as follows:

(αNI + T ∗T )(H1, ϕ)′ = T ∗X

 αNH1 + E [E(H1|X,W )− E(ϕ|X,W )|Y ]

−αNϕ+ PE [E(H1|X,W )− E(ϕ|X,W )|Z]

 =

 E(X|Y )

PE(X|Z)


1Infact, in the simualtions we made, we have seen that, for equal values of αs, we can not get good fits.
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 αNH1 + E [E(H1|X,W )|Y ]− E [E(ϕ|X,W )|Y ]

−αNϕ+ PE [E(H1|X,W )|Z]− PE [E(ϕ|X,W )|Z]

 =

 E(X|Y )

PE(X|Z)


As we do not know the true distribution of our variables, we need to estimate them first.

This, in turns, brings about the second source of distortion in our problem. The first one was

due to the regularization parameter, αN and the second one is coming from the bandwidths

of the kernels. One thing should be noted here, as was shown in Darolles, Florens, and

Renault (2009), the dimension of instruments does not have a negative effect on the speed

of convergence, on the contrary, the speed of convergence increases with the dimension of

instruments. So, if we have large number of instruments this will not cause a problem about

the curse of dimensionality, instead it will increse the speed of convergence of our estimator.

Now, let us write the above system of equations in terms of kernels to get the following

system:

αNH1(y)+

∑
i

∑
j H1(yj)Kx

(
xi−xj
hx

)
Kw
(
w−wj
hw

)
∑
j Kx

(
xi−xj
hx

)
Kw
(
w−wj
hw

) Ky

(
y−yi
hy

)
∑

iKy

(
y−yi
hy

) −

∑
i

∑
j ϕ(zj)Kx

(
xi−xj
hx

)
Kw
(
w−wj
hw

)
∑
j Kx

(
xi−xj
hx

)
Kw
(
w−wj
hw

) Ky

(
y−yi
hy

)
∑

iKy

(
y−yi
hy

)

=

∑
i xiKy

(
y−yi
hy

)
∑

iKy

(
y−yi
hy

)
For the second line:

−αNϕ(z)−

∑
i

∑
j ϕ(zj)Kx

(
xi−xj
hx

)
Kw
(
w−wj
hw

)
∑
j Kx

(
xi−xj
hx

)
Kw
(
w−wj
hw

) Kz

(
z−zi
hz

)
∑

iKz

(
z−zi
hz

) +

∑
i

∑
j H1(yj)Kx

(
xi−xj
hx

)
Kw
(
w−wj
hw

)
∑
j Kx

(
xi−xj
hx

)
Kw
(
w−wj
hw

) Kz

(
z−zi
hz

)
∑

iKz

(
z−zi
hz

)

=

∑
i xiKz

(
z−zi
hz

)
∑

iKz

(
z−zi
hz

)
for some bandwidth parameters hy, hz, hw and hx. Note that, T̂ ∗ is not the adjoint of T̂ . One

thing should be noted about the above equation. We wrote it as an empirical counterpart
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of −αNϕ+E [E(H1|X,W )|Z]−E [E(ϕ|X,W )|Z] = E(X|Z), which means that we did not

use the projector. To recover this, after the estimation process ϕ̂ should be transformed to

its final version by the application of the estimator of the projector, P̂ = ϕ̂− 1
N

∑N
i=1 ϕ̂i.

Let Axw(w) be the matrix whose (i,j)th element is:

Axw(w)(i, j) =
Kx

(
xi−xj
hx

)
Kw

(
w−wj
hw

)
∑

jKx

(
xi−xj
hx

)
Kw

(
w−wj
hw

)
Moreover, Ay and Az are the matrices with the (i,j)th elements:

Ay(i, j) =
Ky

(
yi−yj
hy

)
∑

jKy

(
yi−yj
hy

)

Az(i, j) =
Kz

(
zi−zj
zy

)
∑

jKz

(
zi−zj
hz

)
Our estimated functions are the solutions of the following system:

αNĤ1 + AyAxwĤ1 − AyAxwϕ̂

−αN ϕ̂+ AzAxwĤ1 − AzAxwϕ̂

 =

AyX
AzX


Ĥ1

ϕ̂

 =

αNI + AyAxw −AyAxw

+AzAxw −(αNI + AzAxw)


−1AyX

AzX

 (8)

Equation (4) is a system of 2n equations in 2n unknowns which means that we can recover

Ĥ1 and ϕ̂, hence Ŝ1. For the estimation of the second equation in our system the procedure

is exactly the same and Ĥ2 and ψ̂ are given by:

Ĥ2

ψ̂

 =

αNI + AzAxw −AzAxw

AyAxw −(αNI + AyAxw)


−1AzW

AyW
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2.3 Consistency and Rate of Convergence

In our estimation process, we are estimating our functions through the estimation of the

operators. For this reason, to be able to talk about the consistent estimation of the functions

of interest, first we have to estimate the operators T ∗T and T ∗X consistently. To show this,

we are going to make a set of assumptions2.

Assumption 5 Source Condition There exists ν > 0 such that:

∞∑
j=1

〈Φ, φj〉2

λ2ν
j

<∞

where Φ = (H,ϕ), {φj} is the system of functions of E and λj are strictly positive singular

values of T 3

This assumption is to define a regularity space for our functions. In other words, we can say

that our unknown value of Φ0 ∈ Ψν where

Ψν =

{
Φ ∈ E such that

∞∑
j=1

〈Φ, φj〉2

λ2ν
j

<∞

}

In fact, assuming that Φ0 ∈ Ψν just adds a smoothness condition to our functional pa-

rameter of interest. As was pointed out by Carrasco, Florens, and Renault (2007), this

regularity assumption will give us an advantage in calculation the rate of convergence of the

regularization bias.

Assumption 6 There exists s ≥ 2 such that:

•
∥∥∥T̂ − T∥∥∥2

= O
(

1

Nhp+q+1
N

+ h2s
N

)
•
∥∥∥T̂ ∗ − T ∗∥∥∥2

= O
(

1

Nhp+q+1
N

+ h2s
N

)
2In this part we will present our results based on the first equation of our system, everything holds for

the second equation, too
3Moreover, we can write our source condition in a more explicit way as

∑∞
j=1

[〈H,φj1〉+〈ϕ,φj2〉]2
λ2ν
j

<∞}.
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where s is the minimum between the order of the kernel and the order of the differentiability

of f .

Assumption 7 ∥∥∥X − T̂Φ
∥∥∥2

= O

(
1

Nhp+q+1
N

+ h2s
N

)
Assumption 8

lim
N→∞

αN = 0

lim
N→∞

h2s
N

αN
= 0

lim
N→∞

αNNh
p+q+1
N →∞

Theorem 3 Let us define (H1(Y ), ϕ(z)) as Φ. Under assumptions 5 to 8:

•
∥∥∥Φ̂αN

N − Φ
∥∥∥2

= O
(

1
α

(
1

Nhp+q+1
N

+ h2s
N

)
+ 1

α

(
1

Nhp+q+1
N

+ h2s
N

) (
αmin(ν+1,2)

)
+ αβ

)
•
∥∥∥Φ̂αN

N − Φ
∥∥∥→ 0 in probability.

Optimal speed of convergence is obtained by the calculation of optimal α. To do this we

equalize the first and the third term of the rate of convergence above, as the second term is

negligible. Then the optimal bandwidth is given by:

h = N−
1

p+q+1+2s

and the speed of convergence is given by:

∥∥∥Φ̂α − Φ
∥∥∥2

∼ O
(
N−( 2s

2s+p+q+1
)( ν
ν+1

)
)

The asymptotic normality is also attained with the addition of some other assumptions.

For a detailed discussion of this see Darolles, Florens, and Renault (2009) Section 4.3 and

Florens, Johannes, and Van Bellegem (2009) Section 3.2.
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3 Semiparametric Transformation Model: The Gen-

eral Case

In this section, we will generalize the basic model above, and we will show that, in the

semiparametric transformation models with many explanatory variables, we can get
√
N -

consistency for the estimated parameters. In this general case, the new system of equations

is given as:

H1(Y ) = ϕ(Z) +X0 +X ′β + U (9)

H2(Z) = ψ(Y ) +W0 +W ′γ + V (10)

Identification of this general model is not very different from the previous one’s, nonethe-

less we need some additional assumtions.

Assumption 9 (Y,Z,X) are strongly identified by (X,W).

E[g(Y, Z,X)|X,W ] = 0 g(Y, Z,X) = 0 a.s.

Remark: Assumtion 9 may be weakened by considering only the function g(Y, Z,X) satis-

fying:

g(Y, Z,X) = g1(Y ) + g2(Z) + g3(X)

Assumption 10 (Y,Z) and X are measurably separable:

m(Y, Z) = l(X)⇒ m(.) = l(.) = constant

Theorem 4 Under the assumptions 1-4, 9 and 10 the functions H(Y ) and ϕ(Z) and the

parameter β are identified.

Now, we can proceed with the estimation. Let us keep the same our operator T as in

the previous section, and introduce an additional operator TX : Rk → L2
X,W : β 7→ X ′β.
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Equivalently its adjoint is defined T ∗X : L2
X,W → Rk : g 7→ E(Xg(X,W )). Then we can write

the following:

T (H,ϕ)− TXβ = X0 (11)

The normal equations are:

T ∗T (H,ϕ)− T ∗TXβ = T ∗X0 (12)

T ∗XT (H,ϕ)− T ∗XTXβ = T ∗XX0 (13)

From equation 12, we get4 (H,ϕ) = (αnI+T ∗T )−1(T ∗TXβ+T ∗X0) and if we substitute this

into equation13, we obtain an expression for the beta:

β = (T ∗X(Pα − I)TX)−1T ∗X(I − Pα)X0

where Pα = T (αI + T ∗T )−1T ∗. Then the estimator is given by:

β̂ =
(
T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗TX − T̂ ∗XT

)−1 (
TX − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗TX

)
X0

We can continue with the asymptotic properties of the β̂. Let us introduce some additional

assumptions to get the
√
N -consistency of β̂.

Assumption 11 (Source Condition) There exists η > 0 such that:

max
i=1,...,k

∞∑
j=1

〈
φ̃i, φj

〉2

λ2η
j

<∞

where {φ̃i} is system of functions in L2
X,W , {φj} is the system of functions of E and λj are

the strictly positive singular values of T .

This source condition explains the collinearity between (Y, Z) and (X). In other words, as

4α in this generalized version and α in the simple version need not necessarily be the same. We are using
the letter α just to refer regularization parameter.

15



was explained in Florens, Johannes, and Van Bellegem (2009), it means that TX is ”adapted”

to the operator T .

Assumption 12 There exists s ≥ 2 such that:

∥∥∥T̂ ∗TX − T ∗TX∥∥∥2

= O

(
1

NhN
+ h2s

N

)

where s is the minimum between the order of the kernel and the order of the differentiability

of f .

Assumption 13 •
∥∥∥T̂ ∗XTX − T ∗XTX∥∥∥2

= O
(

1
N

)
•
∥∥∥T̂ ∗XT − T ∗XT∥∥∥2

= O
(

1
N

)
Assumption 14

lim
N→∞

αη∧2
N h2s = 0

lim
N→∞

αη∧2
N

Nhp+q+1
→ 0

lim
N→∞

αη∧2
N

N
→ 0

lim
N→∞

h2s

N
→ 0

Now, we can state the our theorem about the
√
N -consistency of β̂.

Theorem 5 Under the assumptions 5, 6, 7, 8, 11, 12, 13, 14:

√
N
∥∥∥β̂ − β∥∥∥ = Op(1)

4 Data Based Selection of α

As we have mentioned before, selection of regularization parameter is crucial. It is of

great importance bacause it characterizes the balance between the fitting and the smoothing.
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In Heinz W. Engl and Neubauer (1996), a heuristic selection rule is proposed based on a

comparison between the residual and the assumed bound for the noise level. Moreover, it

has been proved that the regularization method where α is defined via the aforementioned

rule, namely the discrepency principle is convergent and of optimal order.

Florens and Lestringant (2007) have proposed two adapted methods for the selection

of optimal regularization parameter: Method of residuals and the L-curve method. In this

paper, we introduce the adaptation of method of residuals to our model and we use this one

in our simulations. Nonetheless, as was noted in Florens and Lestringant (2007) as well, the

aim is more to locate α where we could have the optimal solution. The α that is given by the

adaptive selection rule may not be the final value, it can give a clue to work on the optimal

solution.

The method of residuals, where the squared norm of residuals are used, is defined for

a given bandwidth. Since the statistic ‖ε̂α‖ can be proved to reach it minimum at α = 0

and it is an increasing function of α, Florens and Lestringant (2007) has introduced two

modifications: the first one is to calculate the residuals of an estimation obtained by an

iterated Tikhonov regularization of order two. The second modifications is the division of

this norm by α2.

Now, let us adopt this rule to our basic model:

ε̂α(2) =

AyX
AzX

−
AyAxw −AyAxw

AzAxw −AzAxw


Ĥ1,(2)

ϕ̂(2)



where

Ĥ1,(2)

ϕ̂(2)

 are the estimators obtained by using an iterated Tikhonov regularization of

order two, i.e.:

(Ĥ1,(2)ϕ̂(2))
′ = (αNI2N + T̂ ∗T̂ )−1(X + α((Ĥ1,(1)ϕ̂(1))

′)
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And the optimal α is given by:

α∗ = argmin
α

1

α2

∥∥ε̂α(2)

∥∥2
(14)

5 A Simulation Analysis

We made a simulation analysis to see if our method is working well. After simulating

the data we estimated it both parametrically (by GMM) and nonparametrically (by our

method). In the end we showed that, high nonlinearity of the model gives very high mean

squared errors in the parametric estimation, on the other hand, the choice of regularization

parameter α is crucial in the nonparametric estimation.

5.1 Generation of Data

We generated our data according to the models in equations 3 and 4. For Hi(.)
−1 = Si(.)

we have chosen the following form:

Si(x) =
1

1 + kex
i = 1, 2

Moreover, ϕ(.) and ψ(.) were chosen to be:

ϕ(x) = Axa

ψ(x) = Bxb

Then our simultaneous equations system became:

Y =
1

1 + keAZa+X+U
(15)

Z =
1

1 + keBY b+W+V
(16)
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Whose parameters were associated with the following values: k = 0.1, A = 1, a = 2, B = 1

and b = 0.5. (X,W ) were drawn from a joint normal distribution with mean [2, 3] and

covariance

Σ =

 1 0.8

0.8 1


Moreover, u and v were drawn independently from a standard normal distribution. For these

given structure, we solved our two nonlinear equations in two unknowns to get the values of

Y and Z to use in the estimation process5. We generated samples of different sizes also to

control for the effect of sample size on the estimation results.

We first estimated the model by a parametric method to be able to compare it with

the results of nonparametric estimation. For the parametric estimation we used 2-stage

GMM. Moreover we did two different estimations, the difference coming from the moment

conditions6. In the first estimation, the set of moment conditions was composed of the

explanatory variables and their powers while in the second one, we kept the same form of

the moments but increased their number.

As was mentioned before, for nonparametric estimation we used the method we have

presented in this paper.

5.2 Results

The results of GMM estimation are not very satisfactory, since the MSE’s are very large.

Moreover, the efficiency of estimations are not consistent for the two equations. According

to the theory we expect an increase in the efficiency when we increase the number of moment

conditions. So, the most efficient estimation in our case should be the one obtained with the

2nd set of moment conditions while the least should be the one obtained with the 1st set.

However, it is not the result we get for each equation. While for the first equation the most

efficient results are obtained with the 2nd set, for the second equation, 1st set of moment

5Given the sample we have, we used the MATLAB to solve for equilibrium values of Y and Z.
6we give the set of moment conditions in the appendix
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equations gives the best results. We display our result tables in the appendix.

The inconsistent and bad results for GMM estimations can be explained by the high

non-linearity of our problem. In addition to this we can not find any other explanation.

Nonetheless, this suggest us that there is a need for other techniques.

On the contrary, the results of nonparametric estimation are very satisfactory7. We can

get very close to the true values of our estimated functions in the estimation of both equa-

tions. There are a couple of issues to worth noting. Firstly, the estimated functions are very

sensitive both to the regularization parameter and the bandwidth of the kernel estimator.

For example, for a relatively high bandwidth, which gives us very smooth curves, when the

regularization parameter decreases, the consistency of the estimated curves deteriorates. In

other words, the estimated curve from one simulation to the other differs a lot. Moreover, in

this case, it is very hard to optimize in terms of regularization parameter and nearly impos-

sible to reach the true curve. Secondly, as we are estimating two functions simultaneously,

we need two different regularization parameters, which makes the estimation even harder.

In the simulations we made, we saw that Ĥ1(.) is very also sensitive to the regularization

parameter we used for ϕ̂(.). For this reason, we introduced the data based selection of α to

our simulations and to be able to get two different optimal regularization parameters for the

two equations, we used a constant ratio between αH and αϕ. Another point worth noticing

is the change of optimal α parameter with the sample size. In the simulations we made we

saw that, an α∗ which gives very oscillating estimated curves with a sample size of 200, can

give very smooth curve with a sample size of 500. This also supports the theory that the

optimality of the regularization parameter is related with the sample size.

In addition to those, we know that, for the operators whose smallest eigenvalue is close

to 0, we need a strong regularization, i.e., a large regularization parameter. In our case, not

only the smallest eigen value was very close to zero but also the 3rd largest one. In our

simulations, the optimal α for Ĥ1 lies between the ranges [10−2, 100] while the for ϕ̂, it was

7Figures are presented in appendix
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in [102, 101].

By looking at the results of our simulation, we can conclude that, for very nonlinear

models, like the one we have, parametric methods may stay weak. On the other hand,

in nonparametric estimation the choice of bandwidth and regularization parameter is very

important. So, we still need to work on the theory of choice of these parameters, especially

on the simulataneous choice.

6 Application: A Network Diffusion Model for Two

Sided Markets

The topic of two-sided markets is not very old in economics. Nonetheless, lots of works

have been done in terms of theory. In contrast, there are very few papers looking at the

topic from an empirical point of view. In this section we adopt network diffusion models

to the case of two-sided markets and we suggest using the nonparametric method we have

presented to estimate the model.

The main future of a two-sided market is the existence of externalities between the two

sides of the market. In other words, decision of one side to enter the market or not depends on

the decision of the other side. So, the platforms-we can think of them as the suppliers- have to

”‘get both sides on the board”’. There are many examples of such platforms: Magazines and

newspapers, academic journals, television channels, dating agencies, credit cards, shopping

malls, etc. In the case of television channels and magazines for example, firms would like

to give adds to a channel which is watched by a lot of viewer however viewers would like

to watch a channel with fewer adds. In the case of credit cards, a consumer wants to hold

a card which is most widely accepted by the retailers and retailers would like to have the

machine of a card which is most widely used by consumers.

We observe different structures in two-sided markets: The externality to each group

might be of different size relatively, which in turn brings about different pricing structure.
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The pricing can be like fixed fees, per-transaction charges or two-part tariffs. Moreover,

different sides can do single-homing or multi-homing which affects pricing a lot. If an agent

chooses to use only one platform then it is said that it ”single-homes”, such as a reader

buying only one newspaper every day. If an agent uses many platforms then we say that

it ”multi-homes” like companies giving adds to many newspapers. In this case we could

have three different situtations : (i) both sides can do single-homing, (ii) one side can do

single-homing and the other can do multi-homing and (iii) both sides do multihoming. The

interesting case to be examined is the case (ii), which is called ‘competitive bottlenecks’. In

the case of competition, the platforms will have monopoly power over providing access to

their single-homing consumers for the multi-homing sides and thus in the multi-homing side

the prices are going to be higher and there will be too few agents of that side on the platform.

On the other hand, the diffusion model of physics, has been widely used in economics.

Except its heavy use in finance, it was first adopted by Bass (1969) where he developed

a growth model for new consumer durables. Then it was also used in models of network

economics, like in Larribeau (1993) where she derive the demand for telephone in Spain or

in Feve, Florens, Rodriguez, and Soteri (2008), where they derived the demand for mail,

by looking at the growth in internet advertising. So, the fact that network externalities

exist between the two sides of the market in a two-sided market framework makes it seems

reasonable to use a network diffusion model for this topic, too.

Let us first introduce our set-up. We are in a two-sided market with sides i = 1, 2.

Each side decides whether to enter the platform or not by looking at the benefits and costs

of entering that platform. Benefit of entering a platform for side i, is a function of the

platform characteristics Xi, the share of agents of side j on that platform, Ij, and the cost of

entering the platform ci. For the moment we assume that the cost of entering the platform

is exogenous. So, an agent n on side i will enter the platform if her net benefits is higher

than its cost or more precisely:

bn,i ≥ Ai(Xi, Ij, ci)
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where bn,i is the net benefit of entering the platform of agent n. Thus the probability of

entering the platform and hence the share of buyers who enter the platform at time t is

given by:

Ii,t = Si(Ai(Xi,t, Ij,t, ci,t, ut))

where S(.) is the survivor function defined as Pr(θ ≥ t) = S(t) and ut is the error term.

It should be noted that, contrary to many nonparametric studies, we are not using the

additively separable error term. From an intuitive point of view this will mean that the

random term is coming from within our model.

For the sake of simplicity, we are taking prices as exogenous and estimate only the demand

equations as a benchmark model. So our simulataneous equations to be estimated are:

I1,t = S1(A1(X1,t, I2,t, c1,t, ut))

I2,t = S2(A2(X2,t, I1,t, c2,t, vt))

Moreover, we assume that the function A has the form

A1(X1,t, I2,t, c1,t, ut) = ϕ(I2,t) + βX1,t + ut

where in this new form Xt captures both the platform characteristics and the cost. So we

have:

I1 = S1(ϕ(I2) + β′X1 + u) for side one (17)

I2 = S2(ψ(I1) + γ′X2 + v) for side two (18)

We have decided to use long-run equilibrium equation of network diffusion models. For this,

we have two motivations: First, we believe that many of the two sided industries are now

mature industries so it is hard to observe a convergence process. In other words, we believe

that many of the two sided industries have already reached their steady states. Nonetheless,
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in estimation with real data this can be checked by looking at both of the models. Second,

in the adaption of dynamic model we would have lagged variable of the share of people

using the same platform on the other side and we would not have simultaneous equations.

For econometric theory considerations we would like to develop a nonparametric model that

addresses the estimation of simultaneous equations. For the moment, we are leaving the

estimation of dynamic equation to the future work.

7 Conclusion

In this paper, we developed a nonparametric estimation technique for simultaneous equa-

tions with nonseparable error terms and showed that it works well with the simulations we

made. Moreover, we peresented the adoption of network diffusion models to the case of two

sided markets and suggested to estimate it with our new method.

The method itself is very easy to apply as it is based on kernels though simulations

showed that it is very sensitive to the choice of bandwidth and regularization parameters.

Moreover, the model we presented, requires the estimation of two functions simultaneously,

thus leads to the problem of choosing two optimal regularization parameters simultaneously.

We solved this problem by introducing two different regularization parameters and preserving

a constant ratio between the two. Moreover, we think that in the nonparametric estimation

part, methods other than kernels, like splines, polynomials, etc. can be used and an efficiency

comparison can be made as an extension.

A more important extension, can be the full information method rather than following a

limited information approach. In fact, this is a topic that we are still working on and for the

moment we can conclude that this can be done in a very similar way to ours in this paper.

Finally, an estimation which is derived from a structural economic model can be done with

real data and the performance of a parametric and our nonparametric estimation can be

compared.
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Appendices

A Proofs of Theorems

A.1 Theorem 1

Proof. by assumption1

E[H1(Y )− ϕ(Z)−X|X,W ] = 0

Let us recall two more functions H∗1 (Y ) and ϕ∗(Z). By assumption1 again, we can write:

E[H1(Y )− ϕ(Z)−X|X,W ] = 0 E[H∗1 (Y )− ϕ∗(Z)−X|X,W ] = 0

If we take the difference of the two expectations:

E[(H1(Y )−H∗1 (Y ))− (ϕ(Z)− ϕ∗(Z)) + (X −X)|X,W ] = 0

then by assumption2:

(H1(Y )−H∗1 (Y ))− (ϕ(Z)− ϕ∗(Z)) = 0

finally by assumption3

(H1(Y )−H∗1 (Y )) = (ϕ(Z)− ϕ∗(Z)) = c

and by assumption4:

c = 0

then:

H1(Y ) = H∗1 (Y ) and ϕ(Z) = ϕ∗(Z)
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A.2 Theorem 3

Proof. Remember that the solution of our problem was given by

Φ = (αNI + T ∗T )−1T ∗X

For the proof of the first part, we will decompose our equation into three parts as was done

in Darolles, Florens, and Renault (2009) and look at the rates of convergence term by term.

Φ̂α
N − Φ = (αNI + T̂ ∗T̂ )−1T̂ ∗X − (αNI + T̂ ∗T̂ )−1T̂ ∗T̂Φ︸ ︷︷ ︸

I

(αNI + T̂ ∗T̂ )−1T̂ ∗T̂Φ− (αNI + T ∗T )−1T ∗TΦ︸ ︷︷ ︸
II

(αNI + T ∗T )−1T ∗TΦ− Φ︸ ︷︷ ︸
III

The first term (I) is the estimation error about the right hand side (X) of the equation,

the second term (II) is the estimation error coming from the kernels and the third term(III)

is the regularization bias coming from regularization parameter α.

Now, let’s first examine the first term:

I = (αNI + T̂ ∗T̂ )−1T̂ ∗X − (αNI + T̂ ∗T̂ )−1T̂ ∗T̂Φ

I = (αNI + T̂ ∗T̂ )−1T̂ ∗(X − T̂Φ)

‖I‖2 =
∥∥∥(αNI + T̂ ∗T̂ )−1

∥∥∥2 ∥∥∥T̂ ∗X − T̂ ∗T̂Φ
∥∥∥2

where the first term is O
(

1
αN

)
by Feve and Florens (2009) and the second term is

O
(

1

Nhp+q+1
N

+ h2s
N

)
by assumption 7.
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Now, let us look at the second term II:

II = (αNI + T̂ ∗T̂ )−1T̂ ∗T̂Φ− (αNI + T ∗T )−1T ∗TΦ

=
[[
I − (αNI + T̂ ∗T̂ )−1T̂ ∗T̂

]
−
[
I − (αNI + T ∗T )−1T ∗T

]]
Φ

=
[
αN(αNI + T̂ ∗T̂ )−1 − αN(αNI + T ∗T )−1

]
Φ

= (αNI + T̂ ∗T̂ )−1(T̂ ∗T̂ − T ∗T )αN(αNI + T ∗T )−1Φ

‖II‖2 =
∥∥∥(αNI + T̂ ∗T̂ )−1

∥∥∥2 ∥∥∥(T̂ ∗T̂ − T ∗T )
∥∥∥2 ∥∥αN(αNI + T ∗T )−1Φ

∥∥2

The first term in (II) is O( 1
αN

) by Feve and Florens (2009) while the second one is of order

O
(

1

Nhp+q+1
N

+ h2s
N

)
as a result of relation

∥∥∥T̂ ∗T̂ − T ∗T∥∥∥ = O
(
max

∥∥∥T̂ − T∥∥∥ ,∥∥∥T̂ ∗ − T ∗∥∥∥) by

assumption 6 and by Florens, Johannes, and Van Bellegem (2009). Finally, the third is equal

to O(α
min(ν+1,2)
N ) by Darolles, Florens, and Renault (2009).

The third term can be examined more straightforwardly:

III = (αNI + T ∗T )−1T ∗TΦ− Φ

= Φα
N − Φ

and ‖III‖2 = ‖Φα
N − Φ‖2 is O(ανN) by assumption 5. Finally if we combine all what we

have:

∥∥∥Φ̂αN
N − Φ

∥∥∥2

= O

(
1

α

(
1

Nhp+q+1
N

+ h2s
N

)
+

1

α

(
1

Nhp+q+1
N

+ h2s
N

)(
αmin(ν+1,2)

)
+ αnu

)

Now we can continue with the proof of the second part of our theorem. To do this, we

will decompose the estimation error into two as estimation bias and regularization bias:
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∥∥∥Φ̂α
N − Φ

∥∥∥ ≤ ∥∥∥Φ̂α
N − Φα

N

∥∥∥︸ ︷︷ ︸
A

+ ‖Φα
N − Φ‖︸ ︷︷ ︸
B

We know that the regularization bias goes to 0 as αN → 0, so let us examine A:

Φ̂α
N − Φα

N = (αNI + T̂ ∗T̂ )−1T̂ ∗X − (αNI + T ∗T )−1T ∗TΦ

= (αNI + T̂ ∗T̂ )−1(T̂ ∗X − T̂ ∗T̂Φ)︸ ︷︷ ︸
I

= αN

[
(αNI + T̂ ∗T̂ )−1 − (αNI + T ∗T )−1

]
Φ︸ ︷︷ ︸

II

If we look at A term by term:

I =
∥∥∥(αNI + T̂ ∗T̂ )−1T̂ ∗

∥∥∥∥∥∥(X − T̂Φ)
∥∥∥

the first term is of order O( 1√
αN

) by Feve and Florens (2009) and the second term is

of order O( 1√
Nhp+q+1

N

+ hsN) by assumption 7. So the the first term (I) converges to(
1√
αN

(
1√

Nhp+q+1
N

+ hsN

))
.

II = αN

[
(αNIT̂

∗T̂ )−1 − (αNI + T ∗T )−1
]

Φ

‖II‖ =
∥∥αN(αNI + T ∗T )−1Φ

∥∥∥∥∥T̂ ∗T̂ − T ∗T∥∥∥∥∥(αNI + T ∗T )−1
∥∥

The first part is ‖Φ− Φα
N‖ and has zero limit, the second term is of orderO( 1√

Nhp+q+1
N

+hsN) by

assumption 6 and by Florens, Johannes, and Van Bellegem (2009) and the last term is smaller

than O( 1√
αN

). So, the second term (II) of A also converges to

(
1√
αN

(
1√

Nhp+q+1
N

+ hsN

))
.

Then, we can conclude that
∥∥∥Φ̂α

N − Φ
∥∥∥ converges to zero in probability if αN → 0, h2s

αN
→ 0

and 1
Nhp+q+1αN

∼ O(1).
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A.3 Theorem 4

Proof.

H1(Y )− ϕ(Z)−X0 −X ′β = U

E[H1(Y )− ϕ(Z)−X0 −X ′β|X,W ] = 0 by assumption1

Let us recall two more functions H∗1 (Y ), ϕ∗(Z) and β∗ such that:

H∗1 (Y )− ϕ∗(Z)−X0 −X ′β∗ = U

Then, again by assumption1:

E[H∗1 (Y )− ϕ∗(Z)−X0 −X ′β∗|X,W ] = 0 by assumption1

If we take the difference of the two expectations:

E[(H1(Y )−H∗1 (Y ))− (ϕ(Z)− ϕ∗(Z))− (X ′β −X ′β∗)|X,W ] = 0

Then, by assumption9:

(H1(Y )−H∗1 (Y ))− (ϕ(Z)− ϕ∗(Z))− (X ′β −X ′β∗) = 0

By assumtion10:

(H1(Y )−H∗1 (Y ))− (ϕ(Z)− ϕ∗(Z)) = (X ′β −X ′β∗)

Finally by assumptions 3 and 4 we get the identification:

H1(Y ) = H∗1 (Y ) ϕ(Z) = ϕ∗(Z) X ′β = X ′β∗
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A.4 Theorem 5

Proof.

β̂−β = M̂−1
α︸︷︷︸
I

[T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗](X0 − T̂ (H,ϕ) + TXβ)︸ ︷︷ ︸
II

[T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗]T (H,ϕ)︸ ︷︷ ︸
III


(19)

where M̂α = T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗TX − T̂ ∗XTX . To prove our final result, we will show the

following asymptotic convergences:

I =
∥∥∥M̂−1

α −M−1
α

∥∥∥ = Op

(
α
η∧2
2

(
1√
N

+
1√

Nhp+q+1
+ hs +

1

Nh
+ hs

)
+

1√
N

)

II = Op

([
1√
N

(
1 +

1√
α

)(
1√

Nhp+q+1
+ hs

)]

+
1√
α

(
1

Nhp+q+1
+ hs

)
+ α

η∧2
2

(
1

Nhp+q+1
+ hs

)
+ α

η∧2
2

(
1√

Nhp+q+1
+ hs

)

III = Op

(
1√
N

+
√
α

(
1√

Nhp+q+1
+ hs

) ν∧2
2

+ α
1∧(1+ν)

2

)

The assumptions we made to state Theorem 5 ensure that I has the rate op(1) while II and

III have the rate Op(N
−1/2). Let us begin with I.

Proof of I: ∥∥∥M̂−1
α −M−1

α

∥∥∥ ≤ ∥∥M−1
α

∥∥∥∥∥M̂−1
α

∥∥∥∥∥∥M̂α −Mα

∥∥∥
The first term above is bounded and the second term above is bounded in probability so we

need to look at the convergence of the third term.

∥∥∥M̂α −Mα

∥∥∥ =
∥∥∥[T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗TX − T̂ ∗XTX ]− [T ∗XT (αI + T ∗T )−1T ∗TX − T ∗XTX ]

∥∥∥
≤
∥∥∥T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗TX − T ∗XT (αI + T ∗T )−1T ∗TX

∥∥∥
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+
∥∥∥T ∗XTX − T̂ ∗XTX∥∥∥

≤
∥∥∥T̂ ∗XT − T ∗XT∥∥∥∥∥(αI + T ∗T )−1T ∗TX

∥∥︸ ︷︷ ︸
A

+
∥∥∥T ∗XT [(αI + T̂ ∗T̂ )−1 − (αI + T ∗T )−1]T ∗TX

∥∥∥︸ ︷︷ ︸
B

+
∥∥T ∗XT (αI + T ∗T )−1

∥∥∥∥∥T̂ ∗TX − T ∗TX∥∥∥︸ ︷︷ ︸
C

+
∥∥∥T ∗XTX − T̂ ∗XTX∥∥∥︸ ︷︷ ︸

D

• The first term in A is of order O(1/
√
N) by assumption 13 and the second term is

O(α
η∧2
2 ) by Florens, Johannes, and Van Bellegem (2009)

• B can be decomposed as the following:

‖B‖ ≤
∥∥∥T ∗XTX(αI + T̂ ∗T̂ )−1

∥∥∥∥∥∥T ∗T − T̂ ∗T̂∥∥∥∥∥(αI + T ∗T )−1T ∗TX
∥∥

The first term is bounded. The second term is of order O( 1√
Nhp+q+1

+hs) by assumption6

and the third term is of order O(α
(ν∧2)

2 ) again by Florens, Johannes, and Van Bellegem

(2009).

• The first of C is O(α
(ν∧2)

2 ) and the second term is O
(

1√
Nh

+ hs
)

by assumption 12.

• Finally D is of order O
(

1√
N

)
by assumption 13.

Proof of II:

We can denote ê = X0 − T̂ (H,ϕ) + TXβ. Then:

‖ê‖ ≤
∥∥∥T̂ − T∥∥∥

which is of order O( 1√
Nhp+q+1

+ h2s) by assumption 6. Then we can write II as:

[T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗]ê
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=
{

(T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗)− (T ∗X − T ∗XT (αI + T ∗T )−1T ∗)
}
ê

+(T ∗X − T ∗XT (αI + T ∗T )−1T ∗)ê

The first part is of orderOp

([
1√
N

(
1 + 1√

α

)(
1√

Nhp+q+1
+ hs

)]
+ 1√

α

(
1

Nhp+q+1 + hs
)

+ α
η∧2
2

(
1

Nhp+q+1 + hs
))

and the second part is of order O(α
(ν∧2)

2 ( 1√
Nhp+q+1

+ hs)).

Proof of III:

By assumption5 and following Florens, Johannes, and Van Bellegem (2009), we can write:

∥∥∥[T̂ ∗X − T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗]T̂ (H,ϕ)
∥∥∥ ≤ ∥∥∥T̂ ∗XT∥∥∥ (H,ϕ)

+
∥∥∥T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗T̂

∥∥∥∥∥∥(T ∗T )ν/2 − (T̂ ∗T̂ )ν/2
∥∥∥ ‖g‖

+
∥∥∥T̂ ∗XT (αI + T̂ ∗T̂ )−1T̂ ∗T̂ (T̂ ∗T̂ )ν/2

∥∥∥ ‖g‖
The first term is O( 1√

N
), the second is of order O(α1/2). Moreover by Heinz W. Engl and

Neubauer (1996)
∥∥∥(T ∗T )ν/2 − (T̂ ∗T̂ )ν/2

∥∥∥ ≤ ∥∥∥T ∗T − T̂ ∗T̂∥∥∥(ν∧2)/2

. The rate of the last part is

also given by Heinz W. Engl and Neubauer (1996) and is equal to O(α
1∧(1+ν)

2 ).
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B Simulation Results

B.1 GMM estimation

The two instrument set that we used are the following:

1st set :

M1 =
{

1, x, w, x2, w2, xw
}

2nd set

M2 =
{

1, x, w, x2, w2, x3, w3, xw, x2w, xw2
}

First equation

Table 1: Simulation results for the 1st equation with the 1st set of moments

k̂ Â â
Bias -0.0391 0.4914 0.7188
Variance 0.0001 7.4886 4.9070
MSE 0.0016 7.6552 5.3746

Table 2: Simulation results for the 1st equation with the 2nd set of moments

k̂ Â â
Bias -0.0376 0.0989 0.4702
Variance 0.0002 0.2745 0.2618
MSE 0.0016 0.2816 0.4803

Second equation

Table 3: Simulation results for the 2nd equation with the 1st set of moments

k̂ B̂ b̂
Bias -0.0290 -0.0819 0.1449
Variance 0.0007 0.2245 0.0242
MSE 0.0015 0.2289 0.0450
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Table 4: Simulation results for the 2nd equation with the 2nd set of moments

k̂ B̂ b̂
Bias -0.0208 -0.2035 0.1454
Variance 0.0086 2.3614 0.0263
MSE 0.0089 2.3792 0.0471

B.2 Nonparametric estimation

Below, we present the nonparametric estimation results of the first equation of our system.

Figures contain both the Ĥ1 and ϕ̂ for different values αH and αϕ

Figure 1: Estimated functions for α = 7.8x10−4 and c = 100
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Figure 2: Estimated functions for a sample of 200
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Figure 3: Estimated functions for αH = 1 and c = 1
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Figure 4: Estimated functions for αH = 10−5 and c = 1

37



Figure 5: Estimated functions for αH = 10−1 and c = 1
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Figure 6: Monte Carlo simulation
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