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1 Introduction

One of the most important theoretical advances in the economics of investment under uncer-
tainty is the time-state preference model of Arrow (1964) and Debreu (1959) in which they
introduce elementary securities each paying $1 in one specific state of nature and nothing
in any other state. Now known as “Arrow-Debreu” securities, they are the fundamental
building blocks from which we have derived much of our current understanding of economic
equilibrium in an uncertain environment. In a continuum of states, the prices of Arrow-
Debreu securities are defined by the “state-price density” [SPD], which gives for each state
z the price of a security paying $1 if the state falls between z and z + dz.

The existence and characterization of an SPD can be obtained either in preference-based
equilibrium models, e.g., Lucas (1978), Rubinstein (1976), or in the arbitrage-based models
pioneered by Black and Scholes (1973) and Merton (1973). Both strands of the literature have
adopted a different lexicon to denote closely related concepts. In the equilibrium framework,
the SPD can be expressed in terms of a stochastic discount factor or pricing kernel such that
asset prices are martingales under the actual distribution of aggregate consumption after
multiplication by the stochastic discount factor [see, for example, Hansen and Jagannathan
(1991) and Hansen and Richard (1987)].

In the no-arbitrage models, the SPD is often called the risk-neutral density based on the
analysis of Cox and Ross (1976), who first observed that the Black-Scholes formula could be
obtained by assuming that every investor were risk-neutral and consequently every asset in
such a world must yield an expected return equal to the risk-free rate of interest. The SPD
also uniquely characterizes the equivalent martingale measure under which all asset prices
discounted at the risk-free rate of interest are martingales [see Harrison and Kreps (1979)].
Duffie (1992) uses the terminology state-price deflator.

Given the enormous informational content that Arrow-Debreu prices possess and the
great simplification they provide for pricing complex state-contingent securities such as op-
tions and other derivatives, it is unfortunate that true Arrow-Debreu securities are not

yet traded on any organized exchange and hence their prices are not directly observable.!

IThis may change in the future with the advent of “supershares”, first proposed by Garman (1978) and



However, Arrow-Debreu prices may be estimated or approximated from the prices of traded
financial securities, as suggested by Banz and Miller (1978), Breeden and Litzenberger (1978)
and Ross (1976). Three related approaches have been used in the literature. In the first, suf-
ficiently strong assumptions are made on the underlying asset price dynamics for the SPD to
be obtained in closed form. For example, if the asset prices follow geometric Brownian motion
and the risk-free rate is constant, the SPD is log-normal—this is the Black-Scholes/Merton
case. Most often the SPD cannot be computed in closed-form and numerically intensive
methods must be used.? In the second line of research, the SPD is specified directly in some
parametric form.® In the third approach, a prior parametric distribution is specified as a
candidate SPD, typically the Black-Scholes log-normal density. The SPD is then estimated
by minimizing its distance to the prior parametric distribution under the constraints that it
correctly prices a selected set of derivative securities.*

In this paper, we propose an alternative to these three approaches in which the SPD is
estimated nonparametrically, that is, with no parametric restrictions on either the underlying
asset’s price dynamics or the family of distributions that the SPD belongs to, and no need for
choosing any prior distribution for the SPD.5 While the parametric approaches are clearly
preferable when the underlying asset’s price process satisfies typical parametric assumptions,
e.g., geometric Brownian motion, nonparametric methods are robust to violations of these

assumptions. And since there is some empirical evidence that casts doubt on some of the

Hakansson (1976, 1977).

2See for example Goldenberg (1991) for formula in integral form in the case of diffusions other than
geometric Brownian motion, Hull and White (1987), and Heston (1993) for an implicit characterization of
the SPD in a stochastic volatility model, and Bates (1995) in a model of stochastic volatility and jumps.

3See Jarrow and Rudd (1982), Shimko (1993), Longstaff (1992, 1994), and Madan and Milne (1994).

4See Rubinstein (1994) and Jackwerth and Rubinstein (1995) who experiment with different distance
criterions.

®In several other contexts the potential benefits of nonparametric methods for asset pricing applications
have recently begun to be explored. Ait-Sahalia (1992) constructs nonparametric estimators of the diffusion
process followed by the underlying asset return, as a basis to price interest rate derivatives nonparametrically.
Ait- Sahalia (1994) tests parametric specifications of the spot interest rate process against a nonparametric
alternative. The estimators all use discrete data, and require no discrete approximation even though the
estimated model is in continuous-time. Hutchinson, Lo, and Poggio (1994) show how a neural network can
approximate the Black-Scholes formula and other derivative pricing models. Boudoukh et al. (1995) price
mortgages while Stutzer (1995) estimates the empirical distribution of stock returns.



6 a nonparametric SPD

more popular parametric specifications, at least for stock indexes,
estimator may be more appropriate.

In particular, our nonparametric SPD estimator can yield valuable insights in at least
four contexts. First, it provides us with an arbitrage-free method of pricing new, more
complex, or less liquid securities, e.g., OTC derivatives or non-traded flexible options, given
a subset of observed and liquid “fundamental” prices, e.g., basic call option prices, that we
use to estimate the SPD.”

Second, our nonparametric estimator captures those features of the data that are most
salient from an asset-pricing perspective and which ought to be incorporated into any suc-
cessful parametric model. On the other hand, it also helps us understand what features
are missed by tightly parametrized models. For example, in our empirical application to
S&P 500 index options, the nonparametric SPD estimator naturally captures the so-called
“volatility smile” [see Figure 2] because this is a prominent feature of the data. But we also
document changes in the shape of the volatility smile over different maturities which para-
metric models so far have not incorporated. The nonparametric SPD estimator also exhibits
persistent negative skewness and excess kurtosis [see Figure 7] because these too are features
of the data. Indeed, a nonparametric analysis can often be advocated as a prerequisite to the
construction of any parsimonious parametric model, precisely because important features of
the data are unlikely to be missed by nonparametric estimators. -

Third, and perhaps most importantly, the nonparametric estimator highlights the empir-
ical features of the data in a way that is robust to the classical “joint hypothesis” problem
that every parametric model in this literature suffers from. Owur estimator is free of the
typical joint hypotheses on asset price dynamics and risk premia that are typical of para-
metric arbitrage models, or on preferences in the equilibrium approach to derivative pricing.
Of course, nonparametric techniques do require certain assumptions on the data-generating

process itself, but these are typically weaker than those of parametric models and are less

5See, for example, Mandelbrot (1963), Fama (1965), and Lo and MacKinlay (1988).

7Of course, markets must be dynamically complete for such prices to be meaningful—see, for example,
Constantinides (1982), and Duffie and Huang (1985). This assumption is almost always adopted, either
explicitly or implicitly, in parametric derivative pricing models, and we shall adopt it here as well.



likely to be violated in practice.

Fourth, if we make the additional assumption that underlying asset prices follow a diffu-
sion process, we show how our estimator of the SPD can be used to estimate nonparamet-
rically the instantaneous volatility function of the underlying asset return process.® Thus
if we restrict attention to diffusions, we obtain the continuous-state analog to the implied
binomial trees proposed by Rubinstein (1994) [see also Derman and Kani (1994) and Dupire
(1994)].

In Section 2 we review the relation between SPDs and the pricing of derivative securities,
in both an equilibrium and a no-arbitrage framework. Our nonparametric SPD estimator
is introduced in Section 3. We present the results of extensive Monte Carlo simulation
experiments in Section 4 in which we generate simulated price data under the Black-Scholes
assumptions and show that our SPD estimator can successfully approximate the Black-
Scholes SPD. In Section 5, we apply our SPD estimator to the pricing and delta-hedging
of S&P 500 index options. Options with different times to expiration yield the family of
SPDs over different horizons. We document several empirical features of the SPD over time,
including the term structures of mean returns, volatility, skewness and kurtosis that are
implied by these distributions. Moreover, unlike many parametric option pricing models,
we show that the SPD-generated option pricing formula is capable of capturing persistent
volatility “smiles” and other empirical features of market prices. We conclude in Section 6,
and give technical results and details in the Appendix, including the asymptotic distribution

that provides a measure of our estimator’s accuracy.

2 SPDs and Derivative Securities

Since our nonparametric approach relies heavily on SPDs and their relation to both dynamic

equilibrium and no-arbitrage pricing models, we start with a brief review of these results.

8This complements the approach in Ait-Sahalia (1992) where a nonparametric estimator of the same
volatility function was obtained from the time series of the underlying asset returns. We show here how to
estimate the volatility function from derivative prices. In particular, Girsanov’s Theorem implies that they
should be the same, which is a testable implication of the no-arbitrage pricing paradigm.



Readers familiar with this literature should proceed directly to Section 3.

2.1 SPDs and Dynamic Equilibria

We begin with a standard dynamic exchange economy [see Lucas (1978) and Rubinstein
(1976)] in which there is a single consumption good and a representative agent who seeks to
maximize his expected utility E, [ftT U, (C,) dT] at each date t, subject to the usual budget
constraints. Under suitable assumptions for preferences and endowment shocks, it is well-
known that the date-t equilibrium price S; of a security with a single date-T' liquidating
payoff of ¥(Cr) that is a function of aggregate consumption Cr is given by:

Ur(Cr)
U{(Ct)

Sy = E [zj)(CT)Mt,T] ) M, (2.1)

where M, r 1s a stochastic discount factor.
Assuming that the conditional distribution of future consumption has a density repre-

sentation p;(-), we can rewrite (2.1) as:

E, [¢(CT)M,,T] = [Twen (?]];Egj)) p(C7)dCr (2.2)
= e /0 ~ w(Cr)pr(Cr)dCr (2.3)
= TE(Cr)] (2.4)
where 7 =T — t and
" — Mt,Tpt(CT)
pt (CT) - f(;)o Mt,Tpt(CT)dCT (25)

and r;, is the continuously-compounded net rate of return between t and T = ¢ + 7 of
a riskless cash account asset promising one unit of consumption at T. This version of the
Euler equation shows that an asset’s current price can be expressed as its discounted expected
payoff, discounted at the riskless rate of interest. However, the expectation is taken with
respect to the SPD p*, a marginal-rate-of-substitution-weighted probability density function,

not the original probability density function p of future consumption.



In this equilibrium framework, SPDs contain much information about preferences and
asset price dynamics. For example, if parametric restrictions are imposed on the data-
generating process of asset prices, e.g., geometric Brownian motion, the SPD estimator
may be used to infer the preferences of the representative agent in an equilibrium model
of asset prices [see, for example, Bick (1990) and He and Leland (1993)]. Alternatively, if
specific preferences are imposed, e.g., logarithmic utility, the SPD may be used to infer the
data-generating process of asset prices. Indeed, Rubinstein (1994) observes that any two

of the following implies the third: (1) the representative agent’s preferences; (2) asset price

dynamics; and (3) the SPD.

2.2 SPDs in No-Arbitrage Models

In additional to the theoretical insights offered by the dynamic equilibrium framework of
Section 2.1, the practical relevance of SPDs for derivative pricing and hedging applications
has become apparent in “no-arbitrage” or “dynamically complete markets” models where a
set of observed asset prices plays the role of state variables. For example, suppose that we
observe a set of n; asset prices following It6 diffusions driven by n, independent Brownian

motions:
dSt = [Ltdt + O'tth (26)

with n; > n,, and suppose that there exists a riskless asset with instantaneous rate of
return r. Then path-independent derivative securities on such an asset with payoff function
¢ (St) are spanned by certain dynamic trading strategies, i.e., derivatives are redundant
assets hence they may be priced by arbitrage.® In such applications the asset price dynamics
are specified explicitly and conditions are imposed to ensure the existence of an SPD and
dynamic completeness of markets [see Harrison and Kreps (1979), Duffie and Huang (1985)
and Duffie (1992)].

9 Additional assumptions are, of course, required such as frictionless markets, unlimited riskless borrowing
and lending opportunities at the same instantaneous rate r, a known diffusion coefficient, etc. See Merton
(1973, 1992) for further discussion.



In this example, the system of asset prices S in (2.6) supports an SPD if and only if
the system of linear equations o, - A\; = u, admits at every date a solution \; such that
exp [ftT A A, dT/2] has finite expectation, and exp [— ftT A dW, — ftT Ar A, dT/2] has fi-
nite variance. In the presence of an SPD, markets are complete if and only if rank(o;) = n,
almost everywhere. Then the SPD can be characterized explicitly without reference to pref-
erences.

In our nonparametric approach, we do not need to assume that asset prices follow a
diffusion and provide this example only as an illustrative case where primitive necessary
and sufficient conditions can be given for (z) the existence of an SPD, and (7¢) dynamic
completeness of markets. Instead we assume (i) and (#2) directly. Denote by S; the price of an
underlying asset, &, its dividend rate between ¢t and T' = ¢t + 7, and let p*(S;, S, 7,7¢+, 8:.7)
be the SPD of the asset price St, conditioned on the current price S;. Consider now a
European-style derivative security with a single liquidating payoff ¥(S7). In order to rule
out arbitrage opportunities among the asset, the derivative and a risk-free cash account, the

price of the derivative at ¢ must be equal to:

+o0
e_”'”/o  (S1) p*(Sty 747, 7.0+ 60, )dST. (2.7)

For example, a European call option with maturity date T and strike price X has a payoff

function ¥(S7) = max(St — X,0) hence its date-t price is simply:
+00
H(S, X, 7, ery60s) = e / max (St — K,0) p*(Se, S7, 7, 700160, )dST.  (2.8)
0

Even the most complex path-independent derivative security can be priced and hedged ac-
cording to (2.7).
We propose to identify and estimate the SPD p* from a collection of observed call option

prices H. A direct computation shows that:

oH +oo

ﬁ(st,X,T,m,T,&,T) = e"”’”{——/

-

(S K, 7o 5,,,)dST} . (2.9)



Differentiate a second time to obtain:

82H —Tp T % <
m (St,X, T, Tt,-,—,ét,‘,—) = € T p (St,]X’T, Tt,-,—,ét,‘,—) . (210)

Therefore the second derivative of the call-pricing function H with respect to the strike price

X, evaluated at X = St gives us the SPD:

0*H
0X?

Tt,rT

p*(St’ST,T’ 7"t,‘r’ét.r) = € (St’ST’T, Tt,‘r)&i.‘r)' (211)

An alternative derivation of this result may be more revealing. As suggested by Bree-
den and Litzenberger (1978), consider a portfolio constructed by buying two call options
struck at X and selling one struck at X —e and one at X +e. Consider 1/(2¢) shares of
the portfolio—a “butterfly” spread, given the shape of its payoff function ¢ (Sr). Indeed
this butterfly pays nothing outside the interval [X —¢, X +¢|. Letting € tend to zero, the
payoff function of the butterfly tends to a Dirac delta function with mass at X, i.e., in the
limit the butterfly becomes an elementary Arrow-Debreu security paying $1 if S7 = X and
nothing otherwise. The limit of its price as € tends to zero should therefore be equal to

e~ " p*(Sy, ST, T, 71,7, 61,7). By definition of the butterfly, its price is:
1
2_{2H(St>X, TyTtrs 6t,‘r) - H(ShX"'fa TsTtrs 5t,~r) - H(St, X+e,7,7 7, 5t,~r)} .
€

The limit of this expression is simply:

0*H
m(st, X, T, Tt,-,—, 6t,‘,—)

hence the result follows.
For example, consider the Black-Scholes formula, corresponding to the case where S,
follows a geometric Brownian motion with constant volatility o and the interest rate and

dividend yield are also constant:

HBS(St’X> T, Tt,‘r’ét,‘r;a) = StQ(dl) e XG—Tt'TTQ(dQ) (212)



where:

log(St/X) + (rt,,’_ — 6.+ %02)7_
NG

log(S:/X) + (ri,; — 610 — %02)7_
o

(2.13)

d2

(2.14)

The corresponding SPD is the log-normal distribution with mean ((r . — 6, .) — 30?)(T — t)

and variance o%(T — t):
1 log(ST/St)~(rt,r =8t,r =%/ 2)7)?

pES (STa StaTv Tt,‘r;(st,‘r;o-) = ———¢€ 2027 (215)

StV2ro?r

3 Nonparametric Estimation of SPDs

We propose to estimate the SPD using (2.11). We therefore require a call option pricing
formula H(-) that can be differentiated at least twice. Instead of relying on a particular
parametric formula based on assumptions that may not be satisfied, we use observed call

option prices to construct a nonparametric estimator of H(-).

3.1 Nonparametric Estimation of the Option Pricing Function

The specification of the typical parametric option pricing model H (S, X, 7,74 ,,6:,;0) con-
tains a vector of unknown parameter values # which must be estimated [see, for example,
Lo (1986, 1988)]. If, for example, H(-) is the Black-Scholes formula (2.12), é contains
only one element, the unknown volatility parameter 0. In Merton’s (1976) jump-diffusion
formula, 6 contains four parameters.!® To implement such parametric models, § must be
estimated either directly from observations of the underlying asset prices or indirectly from
option prices themselves. For example, using option prices H; and option characteristics

Zi=| Sy Xi 7 rys bi,. | we would typically estimate the parameter vector 8,

Gpecifically, # =[ ¢ g ¥ A ] where ¢ is the coefficient of the diffusion term, A is the Poisson jump
intensity, and p and v are the mean and standard deviation, respectively, of the jump magnitude.



which takes values in the finite-dimensional parameter space ©, by solving the nonlinear
least squares problem:

lglel@n ; [Hl - H(St“,X,',Th Tt;‘,Tl‘,étg,‘r"; 9)]2 (3.1)

However, since we do not wish to impose parametric assumptions on the data, we are
faced with the more ambitious task of estimating the entire function H given price data for
the options and their characteristics. The problem to be solved is analogous to the nonlinear
least squares approach, with the major difference that the minimization is over all functions

H(-) in a space of functions I, e.g., the space of twice continuously differentiable functions:

1 Hz_H S‘,Xi’ 1y 'T"6’T' 2 3.2
Hl'?)lélrlz:;[ (S TisTtomis 010,77 (3.2)

It is well known that the solution is given by the conditional expectation of H given Z.
To estimate this conditional expectation, we appeal to a statistical technique called “non-
parametric kernel regression”. Nonparametric kernel regression produces an estimator of the
conditional expectation of H, conditioned on Z, without assuming that the function H(-)

can be summarized by some parameter vector §:
IA{(St,X, T, Tt‘q-,étﬂ—) = E[H'St,X, T, Tt‘-,-,ét,-,-] (33)

Kernel regression requires no assumptions other than smoothness of the function to be es-
timated and regularity of the data used to estimate it, and is robust to the potential mis-
specification of any given parametric call pricing formula. On the other hand, it tends to be
data-intensive. Financial applications are a natural outlet for kernel regression since typical
parametric assumptions, e.g., normality or geometric Brownian motion, have been rejected
by the data, and at the same time large sample sizes of high quality data are not uncommon.

A second motivation for kernel regression, one which is particularly insightful, is the local

averaging or “smoothing” interpretation. Suppose that we wish to estimate the relation

10



between two variables Z; and H; which satisfy the following nonlinear relation:
H, = H(Z) + e , 1=1,...,n

where H(-) is an unknown but fixed nonlinear function and {¢;} is white noise. Now consider

estimating H(-) at a specific point Z;, = 2, and suppose for this one particular observation
(9)

Hi(? . In

of Z;, we are able to obtain repeated observations of the variable H; , say H,-(ol), ey

this case, a natural estimator of the function H(:) at the point 2o is simply:

- 1 & 6 1 &
H(z) = 5ZH§5) = H(z) + 5243)
j=1

i=1

1 q

and by the law of large numbers, : el?)

i_1¢€; becomes negligible for large g.

Of course, if {H;} is a time series, we do not have the luxury of repeated observations
for a given Z;, = zo. However, if we assume that the function H(-) is smooth, then for time
series observations Z; near the value zg, the corresponding values of H; should be close to
H(z). In other words, if H(-) is smooth, then in a small neighborhood around zy, H(zo) will
be nearly constant and may be estimated by taking an average of the H;s that correspond
to those Z;s near zg. The closer the Z;s are to the value zy, the closer an average of the
corresponding H;s will be to H(zp). This argues for a weighted average of the H;s, where
the weights decline as the Z;s get farther away from the point z5. Such a weighted average
must be computed for each value of z in the domain of H(-) to estimate the entire function,
hence computational considerations become important.

This weighted average procedure of estimating H(z) is the essence of smoothing. To
implement such a procedure, we must define what we mean by “near” and “far”. If we
choose too large a neighborhood around z to compute the average, the weighted average will
be too smooth and will not exhibit the genuine nonlinearities of H(-). If we choose too small
a neighborhood around z, the weighted average will be too variable, reflecting noise as well as
the variations in H(-). Therefore, the weights must be chosen carefully to balance these two
considerations. The choice of weighting function—typically given by a probability density

function [since such functions integrate to one], though the particular density function plays

11



no probabilistic role here—determine the degree of local averaging.!!
To specify a particular kernel regression model, we start with the natural assumption

that the option pricing formula H we seek to estimate is a function of a vector of option

characteristics or “explanatory” variables, Z = [ S; X 7 ry; 6., | so that each
option price H;, ¢ = 1,...,n, contained in our dataset is paired with the vector Z; =
[ S, Xi 7 ryn 6,r |. Since we have d = 5 explanatory variables, we select a

five-dimensional weighting or “kernel” function K(Z) which integrates to one.

The density K(Z — Z;), as a function of Z, has a certain spread around the data point
Z;. We can change the spread of the kernel K around Z using a “bandwidth” h, to form
the new density function (1/R)K((Z — Z;)/h). The closer h is to zero, the more peaked is
this new density function around Z;, and hence more weight is given to realizations of the
random variable Z; that are close to Z. An estimator (3.3) of the conditional expectation of
H conditioned on Z is then given by the following expression, called the “Nadaraya-Watson”

kernel estimator, where h becomes smaller as the sample size n grows:

i1 K((Z — Z:)/h)H,

H(Zz) = E[H|Z] = " K((Z - Z:)/h)

(3.4)

Intuitively, the estimate of the conditional expectation at a point Z, i.e., the price of an
option with characteristics Z, is given by a weighted average of the observed prices H;s with
more weight given to the options whose characteristics Z;s are closer to the characteristics

Z of the option to be priced.

3.2 Practical Considerations: Dimension Reduction

We show in the Appendix that obtaining accurate estimates of the regression function is
more difficult when the number of regressors is large [here d = 5], and when high-order
derivatives need to be computed: recall that to obtain the SPD we differentiate the call

pricing function twice.?

"1See Hardle (1990) and Wand and Jones (1995) for a more detailed discussion of nonparametric regression.

12As the sample size increases, the estimator (3.4, as well as its derivatives with respect to Z, converge to
the true function H(-) and its derivatives at every point. Therefore, when the true function satisfies certain
shape restrictions, e.g., monotonicity and convexity with respect to certain variables, the estimator H(-)

12



To be fully nonparametric, all d = 5 regressors in Z = S; X 7 r, &, | must be
included in the kernel regression (3.4) of call option prices H on Z. To reduce the number
of regressors, we examine the following possibilities.

First, we could assume that the option pricing formula [and hence the SPD] is not a
function of the asset price Sy, the riskfree rate r;, and the dividend yield é;, separately, but
only depends on these three variables through the futures price F;, = S;e{rt7=%7)7 and the
riskfree rate. By no-arbitrage, the mean of the SPD depends only on—and, in fact, is equal
to—F; . and the assumption here would be that the entire distribution has this property. It is
satisfied by the Black-Scholes SPD (2.15). Under this assumption, the number of regressors
is reduced from d = 5 to d = 4.

In the second alternative, we could assume that the option pricing function is homoge-
neous of degree one in S; and X, as in the Black-Scholes formula. This assumption would
also reduce the number of regressors from d = 5 to d = 4. Combining this assumption with
the previous one, the dimension of the problem would be further reduced to d = 3. It can be
shown however that the call pricing function is homogeneous of degree one in the asset price
and the strike price when the distribution of the returns is independent of the level of the
asset price.’> An example of a pricing formula satisfying the homogeneity property would
be the one generated by a stochastic volatility model where the drift and diffusion functions
of the stochastic volatility process depend on the volatility itself but not on the asset price.
While this assumption may not be too restrictive in practice, this is nevertheless the type of
assumption on the asset price dynamics that we wish to avoid in the first place by using a
nonparametric estimator.

Our third proposed approach to dimension reduction is semiparametric. Suppose that

will also have these properties. However, since the asymptotic convergence of the higher-order derivatives
may in practice be slow, it can be useful in small samples to modify the estimator to force it to satisfy
these restrictions. One simple way to enforce monotonicity is to run an isotonic regression after the kernel
regression; this guarantees that the resulting estimator H(-) is monotonic [for a description of isotonic
regression, see Barlow et al. (1972), and for the properties of the kernel estimator after isotonization see
Mammen (1991)]. To enforce convexity in small samples, we suggest extending this procedure one step
further: differentiate the isotonic kernel estimator to obtain H’(-), and then run an isotonic regression on
H'(-). By doing so, we are guaranteed that H'(-) also is monotonic, and hence H(-) is convex.

13Gee Theorem 9 in Merton (1973). Merton (1973) also provides a counterexample showing that the
homogeneity property can fail if the distribution of the returns is not independent of S;.

13



the call pricing function is given by the parametric Black-Scholes formula (2.12) except that

the volatility parameter for that option is a nonparametric function o(S;, X, 7):
H(StaXa T, rt,ra(st,’r) = HBS(SHX, T, rt,ﬂ(st,r;o-(st,X,T)) (35)

In this semiparametric model, we would only need to compute the three-dimensional kernel
regression of implied volatilities on asset price, strike and time-to-expiration to estimate
E[o|Si, X,7]. Thus d = 3 and the rest of the call pricing function H(S;, X,7,7;,,6:,) is
parametric, thereby considerably reducing the sample size n required to achieve the same

degree of accuracy as the full nonparametric estimator.

3.3 The Nonparametric SPD Estimator and Its Properties

Given the observed data { H;, S;;, X;, 7i, 74,7, 61, 1, }, we construct the fully nonparametric call

pricing function as:
H(Si, X, 7,r00,800) = E[H|S, X, 7,707, 805] (3.6)
using in (3.4) a multivariate kernel K, formed as a product of d = 5 univariate kernels:

H(S, X, 7,1402,600) =

tr_6¢ Ty H,
]

T ks (Tt ki (XX 25 i (G Y (P T e

S lks(——L)k (ﬂl)k (ﬂ)kr(" EiniTEA (6” oEs

(3.7)

We discuss the selection of the kernel functions and bandwidths in the Appendix. In the
reduced-dimension cases, we substitute the appropriate list of regressors for (S, X, 7,7+, 6¢.7)

n (3.7). In the semiparametric model, we form the three-dimensional kernel estimator of

Elo|S:, X, 7] as:

n oy ks(Z2t ki (XKa )k, (Z8) oy

&S, X, 1) = = hx r (3.8)
m oy ks( P kg (XK )k, (25

where o; is the volatility implied by the price H;. We then estimate the call pricing function

14



as:

A

H(St,X, T, rt,T,6t,T) = HBS(Si7X7T’ rt,T?5t,T;&(St?X’T)) (39)

In either case, the option’s delta and the SPD estimators follow by taking the appropriate

partial derivatives of H:

~

: OH(S:, X, 7,r4r,60r
A(StaX’ 7, rtra5t‘r) = ( L D rt, . ) (310)
) y ast
H (S, X, 7,707,611
ﬁ*(St,ST,T, T't,T,5t,‘r) = e”"T ( b 6;;; rt, t ) . (311)

X=Sr

3.4 Inferring Risk-Neutral Dynamics

So far, we have not assumed that the underlying asset price process S; belonged to the class
of continuous-time It6 diffusions. If we now make this additional assumption, we can derive
the dynamics of the underlying asset price S; that are compatible with our estimated SPD.

In other words, we construct the risk-neutral diffusion:
dSt = (T‘t - 5t)5tdt + U(St)stth (312)

that would have generated the SPD that we estimated. Here r; is the instantaneous spot
interest rate [the limit of r;, as 7 approaches zero|, é; the instantaneous dividend yield
[defined similarly] and o(-) is positive and twice-continuously-differentiable on [0, c0). Zero
is an entrance barrier for the price. We assume that the interest rate and dividend yield
processes, and the function o?(-), are such that the stochastic differential equation (3.12)
admits a unique strong solution.

Constructing the risk-neutral diffusion is useful for many reasons. First, it is difficult
to price American-style derivatives using the Feynman-Kac characterizatién (2.7) of their
prices. We would need to compute the maximum value under every possible exercise policy,
taking into account the potential payoffs to exercising at any date. It is often easier to price

American derivatives by one of two methods.
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In the first method, one constructs a binomial tree which approximates the continuous
risk-neutral dynamics (3.12). Cox, Ross and Rubinstein (1979) pioneered this method for
the Black-Scholes case. Nelson and Ramaswamy (1990) give a general way of constructing
trees that will approximate a given diffusion. Derman and Kani (1994) build a tree which
prices correctly a set of options. Rubinstein (1994) proposes a binomial tree which is not
constructed form the diffusion but instead from the SPD. Our estimator of the SPD can be
used directly as the SPD input of Rubinstein’s tree.

The second method involves the numerical solution of a partial differential equation with
free boundary to account for the possibility of early exercise. In this case as well we need
the risk-neutral diffusion, since the function o?(-) appears as the parabolic coefficient of the

partial differential equation:

oH oH 10*H
Er Rl I P

S%6%(S) — rH (3.13)

Either one of these two methods requires that we estimate the risk-neutral dynamics of
the asset, that is the volatility function o(-). The function ¢?(-) can immediately be inferred
from the call pricing function [and its derivatives]:

oH _SH.S(r—é6)+rH

o*(S) = & TG : (3.14)

2882

We have seen earlier how to estimate the second partial derivative of the call pricing function
with respect to the strike price. This formula uses other partial derivatives. They can
be estimated similarly by differentiating our nonparametric estimator of the call pricing

function.

4 Monte Carlo Analysis

To examine the practical performance of the nonparametric SPD estimator, we perform
severa] Monte Carlo simulation experiments under the assumption that call option prices

are truly determined by the Black-Scholes formula. Our nonparametric approach should
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be able to approximate Black-Scholes prices, from which the SPD may be extracted ac-
cording to (2.11). The nonparametric pricing formula and SPD may then be compared to
the Black-Scholes formula and theoretical SPD, respectively, to gauge the accuracy of the
nonparametric approach.

Naturally, the advantage of our nonparametric approach lies in its robustness. If the
options were priced by another formula, the nonparametric approach should be able to
approximate it as well since, by definition, it does not rely on any parametric specification for
the underlying asset’s price process. Therefore, similar Monte Carlo simulation experiments
can be performed for alternative option pricing models. However, we choose to perform the
simulation experiments under the Black-Scholes assumptions since this is the leading case

from which most applications and extensions are derived.

4.1 Calibrating the Simulations

Since our empirical application involves S&P 500 index options, we perform Monte Carlo
simulation experiments to match the basic features of our dataset (see Section 5 and Table
1 for further details). We start by simulating one year, i.e., 252 days, of daily index prices
generated by a geometric Brownian motion with constant drift and diffusion parameters that
match the moments of the data. Specifically, the values of the initial index level, the interest
rate, and the index return mean and standard deviation are fixed at 455, 3%, 7.95%, and
10.28%, respectively.!

At the start of this one-year sample of simulated daily prices, we create call options
with strike prices and times-to-maturity that follow the Chicago Board Options Exchange
[CBOE] conventions for introducing options to the market. As the index price changes
from one simulated day to the next, existing options may expire and new options may be
introduced, again according to CBOE conventions, with strike prices that bracket the index
in 5-point increments. Therefore, on any given simulated day, the number of options is an

endogenous function of the prior sample path of the index price—there are approximately

4 Throughout this study we follow the common convention of reporting returns and their means and
standard deviations at an annual frequency. For purposes of calculating option prices, annual parameter
values are converted to a daily frequency by dividing by 365 for interest rates and returns, and by v/252 for
standard deviations.
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80 different call options on any one simulation day, including both existing and new ones.

We then price these options by the Black-Scholes formula using the actual index volatility,
and add a small white noise term to those prices. By doing so, we seek to reflect the existence
in real data of a bid-ask spread and other possible sources of error in the recorded prices.!®
Since by construction the option prices in the simulation satisfy the Black-Scholes formula on
average, when we apply our nonparametric pricing function to the simulated data, we should
be able to “recover” the Black-Scholes formula. By this, we mean that ﬂ(St,X, Ty Tty Otr)
in (3.3) should approximate the Black-Scholes formula (2.12) numerically, not necessarily
algebraically—in practice, the functional form of H may be quite different from the Black-
Scholes formula (2.12), but both expressions will produce similar prices over the range of
input values in the data. The two objectives of our simulation experiments is to determine
how close H is to (2.12), and how close the corresponding nonparametric SPD is to the
theoretical SPD (2.15).

Specifically, we take the Black-Scholes prices in the simulated dataset and the option
characteristics as the inputs {H;, S, Xi, Tiy 74, } of our procedure, and then compute the
smooth nonparametric call pricing function of Section 3.3. We then construct the non-
parametric option delta estimator A and SPD estimator p* according to (3.10) and (3.11),
respectively.

For each simulated sample path of index and options prices, we calculate several perfor-
mance measures described below, and this entire procedure is repeated 5,000 times. This
yields the sampling distribution for each of the performance measures and provides an indi-

cation of the accuracy of our nonparametric approach.

4.2 Accuracy of Prices, Deltas, and SPDs

To assess the performance of nonparametric option pricing formula and its corresponding
delta and SPD, we first consider the percentage differences between the nonparametric op-
tion pricing formula, delta, and SPD and their theoretical Black-Scholes counterparts, re-

spectively. In Figure 1, the theoretical values for prices, deltas, and SPDs are plotted on

!5The white noise term is Gaussian with standard deviation equal to either one or two price ticks, depending
upon whether the option characteristics made it a high- or low-volume option.
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the left, and the average differences between the theoretical values and the nonparametric
ones, averaged over the 5,000 replications, are plotted on the right. The figures show that
the nonparametric quantities are within one percent of their theoretical counterparts—the
estimators are virtually free of any bias. The dispersion of the estimates across the simu-
lation runs yields the sampling distribution of the estimator. We confirmed the accuracy
of the asymptotic distribution derived in the Appendix for the sample size relevant for our

empirical study in Section 5.

4.3 Delta-Hedging Tracking Errors

The second measure of performance is the delta-hedging “tracking error” measure proposed
by Hutchinson et al. (1994), which consists of the end-of-period dollar-values of various
replicating portfolios, portfolios designed to delta-hedge an option position using the non-
parametric pricing function to calculate the hedge ratios or deltas.

In particular, the measure is computed by constructing the following portfolio: sell one
option at date 0 and undertake the usual dynamic trading strategy in stocks and bonds to
hedge this option during its life. If the option pricing model on which the delta-hedging is
based is correct, and if hedging is costless and continuous, then at expiration the combined
value of the stock and bond positions should exactly offset the value of the option. The
difference between the terminal value of the option and the combined terminal values of the
stock and bond positions then serves as a measure of the accuracy of the option pricing
model. Of course, since it is impossible to hedge continuously in practice, there will always
be some tracking error due to discreteness [see Boyle and Emanuel (1980) and Leland (1985)
for example], therefore the SPD tracking error must be compared with the tracking error

obtained from discretely-hedging with the exact Black-Scholes formula.!®

18Formally, let V; denote the dollar value of the replicating portfolio at date t and V;, = Vitr + Vip + Vo
where V, ; is the dollar value of the underlying asset, V}; , is the dollar value of bonds, and V., is the dollar
value of call options held in the portfolio at date ¢. The initial composition of this portfolio at date 0 is:
Vio = Svo, Ao = aHgSS'=°, Veo = —His =0, Vs,0 = —(V, 0+ V. o) where Hpg is the Black-Scholes call
option pricing formula and H is its nonparametric estimator. Since the purchase of the underlying asset is
wholly financed by the combination of riskless borrowing and proceeds from the sale of the call option, the
initial value of the replicating portfolio is identically zero, that is Vo = 0. Prior to expiration, and at discrete
and regular intervals of length ¢, positions in the underlying asset and bonds in the replicating portfolio will be
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We use the same simulated sample paths as in the Section 4.2. Each simulated arbitrage
portfolio begins with a single 252-day call option, and stock and bond holdings that yield a
zero net investment for the portfolio. Portfolios are rebalanced every 5 days to delta-hedge
the option [according to either the nonparametric delta or the Black-Scholes delta], and the
tracking errors Vr are recorded for each of the 5,000 sample paths. Three independent sets
of such simulations are performed, for strike prices of 415, 455, and 495, respectively.

Table 1 reports four performance measures based on the tracking errors Vr: the present
value of the average tracking error, e "TE[Vr], the present value of the average absolute
tracking error, e~"TE[|Vz|], and the same two measures expressed as percentages of the
initial Black- Scholes call price Hgsp. The largest tracking errors occur for the out-of-
the-money call, yielding an average absolute tracking error of 22.4% for the nonparametric
option pricing formula. However, in this case the Black-Scholes formula yields a slightly
higher average absolute tracking error, 22.7%! The fact that the Black-Scholes formula can
be less accurate than the nonparametric formula may seem surprising, but recall that we are
delta-hedging only once every 5 days. Despite the fact that the Black-Scholes assumptions
are satisfied, there is no guarantee that delta-hedging at discrete intervals according to the
Black- Scholes formula will yield smaller tracking errors than other methods.

Overall, the tracking errors of the nonparametric option pricing formulae are comparable
to those of the Black-Scholes model. Of course, these results are sensitive to the parameters
of the simulations and may not generalize to other parameter values. Nevertheless, these
findings suggest that the nonparametric SPD estimator is reasonably accurate for the sample

sizes considered in this study.

5 Extracting SPDs From S&P 500 Options

To assess the empirical relevance of our nonparametric option pricing formula and the corre-

sponding SPD estimator, we present an application to the pricing and hedging of S&P 500

rebalanced so as to satisfy the following relations: V; ; = .S}At, At = aa—g‘, Vg =€ Vyi_e —St(At - At—c)
where t = ge < T for some integer q. The tracking error of the replicating portfolio is then defined to be the
value of the replicating portfolio Vr at expiration date 7.
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index options using data obtained from the CBOE for the sample period from January 4,
1993 to December 31, 1993.

5.1 The Data

Table 2 describes the main features of our dataset. This sample contains a total of 16,923
pairs of call- and put-option prices—we take averages of bid- and ask-prices as our raw data.
Observations with time-to-maturity less than one day, implied volatility greater than 70%,
and price less than 1/8 are dropped, which yields a final sample of 14,431 observations and
this is the starting point for our empirical analysis.

During 1993, the mean and standard deviation of continuously-compounded daily returns
of the S&P 500 index was 7.95% and 10.28%, respectively [see footnote 14]. Short-term
interest rates during the period exhibited little variation: they ranged from 2.85% to 3.21%.
The options in our sample varied considerably in price and terms—for example, the time-to-
maturity varied from 1 day to 350 days, with a median time-to-maturity of 66 days. Given
the volatility and movement in the index during this period and CBOE rules for introducing
new options to the market, our sample contains a fairly broad cross-section of options.

S&P 500 Index Options [symbol: SPX] are among the most actively financial derivatives
in the world. Average total daily volume during the sample period was 65,476 contracts.
The minimum tick for series trading below 3 is 1/16 and for all other series 1/8. Strike price
intervals are 5 points, and 25 for far months. The expiration months are the three near-term
months followed by three additional months from the March quarterly cycle [March, June,
September, December|. The options are European, and the underlying asset is an index, the
most likely case for which a lognormal assumption [with continuous dividend stream] can be
justified. In other words, this market is as close as one can get to satisfying the assumptions
of the Black-Scholes model. This is, therefore, a particularly promising application to test
our approach: how different is our estimated SPD from the Black-Scholes SPD?

Even though the options are European and do not have a wildcard feature, the raw data
present three challenges that must be addressed. First, because in-the-money options are

very infrequently traded relative to at- and out-of-the-money options, in-the-money option
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prices are notoriously unreliable. For example, the average daily volume for puts that are
20 points out-of-the-money is 2,767 contracts; in contrast, the volume for puts that are 20
points in-the-money is 14 contracts. This reflects the strong demand by portfolio managers
for protective puts [a phenomenon which started in late 1987 for obvious reasons].

Second, it is difficult to observe the underlying index price at the exact times that the
option prices are recorded. In particular there is no guarantee that the closing index value
reported is recorded at the same time as the closing transaction for each option. In particular,
S&P 500 index futures are traded on the Chicago Mercantile Exchange [CME], not the
CBOE, and time-stamped reported quotes may not necessarily be perfectly synchronized
across the two markets. Even slight mismatches can lead to economically significant but
spurious pricing anomalies.

Third, the index typically pays a dividend and the future rate of dividend payment is
difficult, if not impossible, to determine. Standard and Poor’s does provide daily dividend
payments on the S&P500, but by nature these data are backward-looking, and there is no
reason to assume that the actual dividends recorded ex-post correctly reflect the expected
future dividends at the time the option is priced.

We propose to address these three problems by the following procedure. Since all option
prices are recorded at the same time on each day, we require only one temporally-matched
index price per day. To circumvent the unobservability of the dividend rate 4, ., we infer
the futures price F} ; for each maturity 7. By the spot- futures parity, F; . and S, are linked
through:

Fpr = Spelrr=dn)r (5.1)

To derive the implied futures, we use the put-call parity relation which must hold if arbitrage
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opportunities are to be avoided, independently of any parametric option pricing model:!?
H(St,X, T, rt,.,,5m) + Xe™ ™7 = G(St,X, T, T't'-,-,(stn-) + Ftvre"”'” . (52)

where G denotes the put price. To infer the futures price F; ; from this expression, we require
reliable call and put prices—prices of actively traded options—at the same strike price X
and time-to-expiration 7. To obtain such reliable pairs, we must use calls and puts that
are closest to at-the-money [recall that in-the-money options are illiquid relative to out-the-
money ones, hence any matched pair that is not at-the-money would have one potentially
unreliable price]. The average daily volume for at-the-money calls and puts is 4,360 contracts
and we are therefore very confident in both prices. On every day ¢, we do this for all available
maturities 7 to obtain for each maturity the implied futures price from put-call parity.
Given the derived futures price F; ;, we then replace the prices of all illiquid options, i.e.,
in-the-money options, with the price implied by put-call parity at the relevant strike prices.
Specifically, we replace the price of each in-the- money call option with G(S;, X, 7,7y, 6 -) +
Fy.e7"7 — Xe™ ™77 where, by construction, the put with price G(S, X, 7,7¢ 7, 6¢,5) is out-of-
the-money and therefore liquid. After this procedure, all the information contained in liquid
put prices has been extracted and resides in corresponding call prices via put-call parity,

therefore put prices may now be discarded without any loss of reliable information.

5.2 A Nonparametric S&P 500 Index Option Pricing Formula

We use price data on every option traded during 1993, for a total of n=14,431 options
after applying the filters described in the previous section. This sample size is sufficiently
large to enable us to use the full nonparametric estimator as we have shown by Monte

Carlo experiments. We estimated the SPD using each of the dimension reduction techniques

17Since any violation of put-call parity would give rise to a pure arbitrage opportunity, it can be expected
to hold with some degree of confidence. CBOE floor traders of S&P 500 options have confirmed that put-
call parity is almost never violated in practice. See also Bhattacharya (1983), Black and Scholes (1972),
Chiras and Manaster (1978), Day and Lewis (1988), Galai (1977, 1978), Gould and Galai (1974), Harvey
and Whaley (1992), Klemkosky and Resnick (1979, 1980), Nisbet (1992), Phillips and Smith (1980), and
Rubinstein (1985).
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discussed in Section 3.2.'® The results we report below are for the semiparametric model
with the kernel and bandwidth choices given in Table 3.

In Figure 2 we plot the corresponding implied volatility curves for four maturities: 1, 2,
4, and 6 months. The nonparametric approach generates a strong “smile” with respect to
moneyness. We follow this market’s convention of quoting [and hedging] the options in terms
of the futures rather than the cash index and therefore define moneyness as the ratio of strike
X to futures prices F;,. The implied volatility at a fixed maturity is a decreasing nonlinear
function of moneyness. Note in particular that our estimated smile is strongly asymmetric,
pointing to the anecdotal evidence that out-of-money put prices have been consistently bid
up since the crash of 1987 by investment managers looking for protection against future
downward index movements. By contrast stochastic volatility models, which is the class of
models most commonly used to generate smile effects, typically produce symmetric smiles
[see Renault (1995)).

A further result of our approach is the changing shape of the smile as time-to-maturity
increases. The one-month smile is the steepest. We find that the implied volatility curves
are generally flatter for longer times-to-maturity, but we document a persistence in the smile
over longer maturities that is not captured by existing stochastic volatility models. In a
typical such model, mean reversion in stochastic volatility induces a rapid disappearance
of the smile. Our results therefore suggest that modeling long-term memory in stochastic
volatility along the lines of Harvey (1995) could be a promising approach empirically.

Note also that the curves for all maturities intersect at approximately the same level of
moneyness [0.975]. In other words, options with moneyness of 0.975 are priced at about
the same volatility for all maturities. At-the-money options [moneyness=1] have an implied
volatility which increases slightly with maturity. The implied volatility of out-of-the-money
puts [calls] decreases [increases] with maturity. This suggests that it may be misleading to

focus on the term structure of at-the-money volatilities as a way of fitting the Black-Scholes

!8Note from Table 2 that the recorded interest rate data exhibited little significant variation during 1993
and thus we could reasonably have excluded r; , from the regressor list—that is, treating it as constant—given
our sample. This would have further reduced the dimensionality of the regression. Naturally a different time
period where interest rates are more volatile would require that r; , be kept in Z for the full nonparametric
model.
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model to the data for different maturities. Our nonparametric approach documents that the
small differences in at-the-money implied volatilities across maturities, where all the curves
are close together, understate the overall variation of implied volatilities over the full range
of traded strikes. We plot in Figure 3 the three-dimensional implied volatility surface as a
function of moneyness and time-to-maturity.

We report in Table 4 the nonparametric prices and deltas [with respect to the futures'?]
for a sample of calls and puts for maturities of one, two, four and six months, priced for a
current futures price of 455. We give the price of every option with a delta greater or equal to
0.05 in absolute value, and the prices of the butterflies over five-point strike spreads, which
by (2.11) and (2.2) give a discrete approximation to the value of the SPD at that strike
level. Not surprisingly, compared to Black-Scholes prices, our prices are consistent with the
features of actual market prices. Between months, we find one empirical regularity that
Black-Scholes prices do not capture: the price of horizontal at-the-money straddles varies
little throughout the sample. This reflects “between-month consistency” where prices for a
given expiration month can vary widely, but they do so in an almost constant relation to
the prices for other months. Currently we have no theoretical explanation for this empirical

regularity.

5.3 S&P 500 Index Option SPDs

In Figure 4 the nonparametric SPDs for all four maturities are plotted on he same scale,
emphasizing the changing shape of the distribution as maturity increases. In Figure 5 the
nonparametric SPDs are overlayed with the corresponding Black-Scholes SPDs at the same
maturities [the Black-Scholes log-normal SPDs are evaluated at the at-the-money implied
volatility for that maturity]. Figure 5 also reports the 95% confidence intervals around each
estimated SPD. The confidence interval is constructed from the asymptotic distribution
theory derived in the Appendix. A simple specification test of the null hypothesis that the
nonparametric family of SPDs could have been generated by the Black-Scholes model, based

on the integrated squared distance between the densities, is rejected at the 5% confidence

19To compute deltas with respect to the stock, note that 8H/3F = (0H/8S)(8S/OF) = (8H [3S)e (r—5)7,
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level.
Figure 6 shows the estimated nonparametric distribution of the log-returns, log(Sr/5S:),
that is compatible with our nonparametric SPD estimator. We compute the density of

log-returns by noting that:

S Sgeu
Prob (log (%) < u) = Prob(Sr < 5e*) = / p" (ST, S, 7, 7r40,60.)dST  (5.3)
0

t

The density of log-returns equivalent to the SPD for prices is then:

19} S
—Prob (log (—T> < u) = S.e"p* (Sie”, Sty Ty Tery 60r) (5.4)
ou St

We compare this density to the Gaussian Black-Scholes density N( (ry,~&;,—0?/2)7 , o%r)
for each maturity. Not surprisingly, the differences in the log-returns distributions are quite
similar to those of the estimated SPDs for prices in Figure 5. However, computing the
densities for returns allows us to illustrate the magnitude of the differences by plotting in
Figure 7 the term structures of implied mean, standard deviation, skewness, and kurtosis of
the SPD-generated log-return distributions along with their Black-Scholes counterparts. All
the moments of the log-returns are annualized.

Figure 7 and Table 5 highlight the differences between the nonparametric and Black-
Scholes SPDs. Although the nonparametric SPDs have comparable standard deviations to
those obtained from the Black-Scholes formula since we estimated the Black-Scholes SPD at
the actual at-the-money implied volatility, they exhibit considerably different skewness and
kurtosis. Specifically, for all four maturities the nonparametric SPDs have slightly higher
means, are negatively skewed, have fatter tails and the amount of skewness and kurtosis
both increase with maturity.

These results point to important differences between the nonparametric SPD and the
Black-Scholes SPD, which implies correspondingly important differences in the pricing im-

plications of the two.
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6 Conclusion

We have developed a nonparametric technique for estimating state-price densities based
on the relation between state-price densities and option prices. Although this approach is
highly data-intensive, generally requiring several thousand datapoints for a reasonable level
of accuracy, it offers a promising alternative to standard parametric pricing models when
parametric restrictions fail.

This trade-off between parametric restrictions and data requirements lies at the heart of
the nonparametric approach—while parametric formulae are surely preferable to nonpara-
metric ones when the underlying asset’s price dynamics are well-understood, this is rarely
the case in practice. Since they do not rely on restrictive parametric assumptions such as
lognormality or sample-path continuity, nonparametric alternatives are robust to the spec-
ification errors that plague parametric models. A nonparametric approach is particularly
valuable in such applications since the typical parametric restrictions have been shown to
fail, sometimes dramatically. For example, Figure 7 shows that the primary failure of the
Black-Scholes model in pricing S&P 500 index options is its inability to account for the
skewness and kurtosis apparent in the nonparametric estimates of the returns distribution,
and even more so for longer-maturity options. Parametric extensions of the Black-Scholes
model should focus on capturing these empirical facts. The amount of persistence in the
smile is such that parametric models incorporating long-term memory in stochastic volatility
may be the most promising.

Also, by their very nature nonparametric methods are adaptive, responding to structural
shifts in the data-generating processes in ways that parametric models do not. And finally,
they are flexible enough to encompass a wide range of derivative securities and fundamental

asset price dynamics, yet relatively simple and computationally efficient to implement.
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Appendix

In this Appendix we describe in more detail our procedure for selecting the kernel functions
and the bandwidths in our option-pricing context. We also discuss the rate of convergence
of our kernel estimator of the call pricing function to the true function, its partial derivative
with respect to the asset price to the true option delta and its second derivative with respect

to the strike price to the true SPD.

Kernel and Bandwidth Selection

We have to choose both the univariate kernel function k and the bandwidth parameters in A
for each regressor. We will differentiate twice the right-hand-side of (3.4) with respect to the
strike price X to obtain an estimate of 3?H/3X?, and once with respect to S; to estimate
the option delta. We therefore require that kx [ks] be at least twice [once] continuously-
differentiable.

Four elements determine the choice of the kernel and bandwidth: the sample size n,
i.e., the number of options used to construct the estimator f](), the total number d of
regressors included in the nonparametric regression, the number p; of existing continuous
partial derivatives of the true option pricing function H(-) with respect to the j-th regressor
Z; and finally the order m; of the partial derivative with respect to the j-th regressor that we
wish to estimate [with the convention that m; = 0 when no partial differentiation is required
with respect to Z;].

We naturally assume that the call pricing function H(-) to be estimated is sufficiently
smooth, i.e., p; > m; for all y = 1,...,d. In our problem, the highest derivative that we will
estimate is the second partial derivatives of the call price with respect to the strike price.
We assume that the function H(-) admits four continuous derivatives with respect to each

of its regressors, that isp; =p=4forall j=1,...,d.2°

201t is possible to make primitive assumptions on the data-generating process which imply the necessary
smoothness of the true call-pricing function. In particular, if we assumed that the underlying asset price
followed a stochastic differential equation with diffusion function ¢ which admitted at least p continuous
derivatives, p > 2, then the call pricing function would also admit at least p continuous derivatives. This
follows by writing the call pricing function as the solution of the generalized Black-Scholes partial differential
equation derived from using the standard dynamic replicating strategy {see Merton (1973)]. It is a parabolic
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Define the order s of a kernel function k as the even integer that satisfies the following
relation: [z'k(z)du=0forl=1,...,5—1, and [ |z|°k(z)du < oo. For example, the popular

Gaussian kernel:

1
kP (z) = e~/ (A.1)

is of order s = 2, while the following kernel is of order s = 4:

(4) 3 2 —22/2

Using higher order kernels has the effect of accelerating the speed of convergence of the
estimate to the true function as the sample size increases, in a mean-squared sense. We set
the order of the kernel for each regressor j to be s; = p — m; [if even, s; = p—m; — 1
otherwise].?! However higher order kernels can be cumbersome to use in practice- —they are
no longer uniformly positive for example. Experience suggests that it is desirable to limit
the choice to kernels of orders no larger than s = 4.

Therefore, to estimate the call pricing function where m; = 0 for each regressor we set
in the full nonparametric model kx = ks = k, = k, = ks = k®_ and in the semiparametric
model (3.5), kx = ks = k., = k®. To estimate the option delta where m; = 0 for each
regressor except S; for which m; = 1: in the full nonparametric model, we set kx = k, =
k, = ks = k™ and ks = k®, and in the semiparametric model, kx = k, = k® and kg = k(?,
Finally, to estimate the SPD where m; = 0 for each regressor except X for which m; = 2:
in the full nonparametric model, we set kg = k, = k, = ks = k(* and kx = k?), and in the
semiparametric model, ks = k, = k® and kx = k(®,

Monte Carlo evidence in Section 4 shows that for the choices of kernel functions above,

differential equation satisfying all the hypotheses in Friedman (1964, Chapter I) whose solution is then known
to have at least p derivatives.

2IWhen estimating the m;-th partial derivative of H(-) with respect to the j-th regressor, we obtain a
bias term of order hf_m’ and a variance term of order 1/(nh(.2m’+d)). We are minimizing the mean-squared
error of the estimate, which consists of the sum of the squared bias and variance terms. Since the bandwidth
h; goes to zero as the sample size n grows, the larger the order of the kernel, the lower the bias term [the
curve fit improves] but the larger the variance term [the curve estimate becomes noisier]. Our choice of the

bandwidth given in (A.3) optimally balances these two effects.

29



A

H(-) is very accurate for the typically large sample size n considered in our empirical appli-
cation.

Provided that the correct order of the kernel for each regressor is determined, the choice
of the function k over a large set of reasonable candidates has little influence on the estimator
of H(.). However the bandwidth choice is crucial. The larger the bandwidth, the smoother
the curve estimate as a function of the regressors. Deciding how much to smooth, i.e., how
fast to decrease the bandwidth to zero as a function of the sample size, is the essential
component of nonparametric regression analysis.

For each of the d regressors in Z, we set the corresponding bandwidth parameter £,

according to the relation:
hJ‘ = CjO'(Zj)n_I/(d+2p) (A3)

where o(Z;) is the unconditional standard deviation of the regressor Z;, j =1,...,d and ¢;
a fixed constant. This bandwidth choice is such that our estimator H() achieves the optimal

rate of convergence in the mean-squared sense among all possible nonparametric estimators

of H("):

p(p—m)/(d+2p) (A.4)

where m = 2(1‘:1 m;.

Rules to choose the constant ¢; in (A.3) can be found in Hardle (1990, pp. 161-162). c;
depends on the choice of the kernel and the function to be estimated. c¢; is typically of the
order of one and small deviations from the exact value have no large effects. In practice, we
select the constant ¢; by cross-validation [see Hardle (1990) for example], a technique which
ensures that we minimize the mean-squared error of our estimator ().

Note from (A.4) that the lower the dimensionality d of the regression function, i.e., the
smaller the number of regressors in Z, the faster the convergence of the estimator fI(Z) =
E[H|Z] and its derivatives to the true function [see (A.4)]. This is the technical motivation

for our proposed approaches to dimension direction in Section 3.2.
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Note also from (A.4) that higher-order derivatives converge at a slower speeds, hence
the SPD estimator [for which m = 2] converges slower than the delta estimator [for which
m = 1], which in turn converges slower than the price estimator [for which m = 0]. One
additional order of differentiation slows down the rate of convergence as much as two ad-
ditional regressors, i.e., the “curse of differentiation” [the decrease in rate of convergence
as m increases] is twice as damning as the “curse of dimensionality” [the decrease in rate
of convergence as d increases]. As a theoretical matter, we can still get arbitrarily close to

1/2

the parametric rate of convergence n'/? if the call pricing function has enough continuous

derivatives, and we use a kernel of sufficiently high order p — m: as p increases, the rate of

convergence n(p—m)/(2p+d) converges to the parametric rate nl/?,

Asymptotic Distributions

Using the kernel and bandwidth selections just described, we obtain the following from the

general results in Ajt-Sahalia (1993), where precise regularity conditions are stated:

np/(2p+4)[H(St,X,T,rt,T,(St,T)—H(St,X,T,rt,T,(St,T) L N(©0,0%) (A5)

n(p_l)/(2p+4)[ A(St,X, T, Tt,ra(st,‘r) — A(St,X, T, Tt,T,ét,T) "(L N(O,OJA) (AG)
n(p—2)/(2p+4)[ ﬁ*(St,STaTa Tt,T, 6t,7’) —P*(St, ST,Ta Tt,n 6t,7’) '2' N(O,Ug) (A7)
where e = H(Sy, X, 7,14r,6:.) — E[H|S:, X, 7,707, 6: ;] and
4
B[]S, X, 7, ors 5t,,]( ol k?(w)dw)
2 =
UC - ﬂ'(St,X, T, Tt,r,(st,r) (A8)
3
BIe?]S, X, 7, 7o, ) 250K ()P (125, K2 () )
ol = (A.9)
W(Sb X, 7, Tt,‘r, 6t,‘r)
3
E[e2(S0, X, 7,700, 0r] fff,o[k"(w)]?dw( ol k"-(w)dw)
2 =
Up N W(St,X, 7, Tt,n(st,‘r) (Alo)
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and 7(S¢, X, 7,747, 0,) is the joint density function of the variables S;, X, 7, r;, and §,,.
These asymptotic distributions give immediately the relevant confidence intervals for the

nonparametric estimators of the call pricing function, delta, and SPD respectively.
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Table 1

Monte Carlo simulation of tracking errors for delta-hedged arbitrage portfolios using a nonparamet-
ric kernel option-pricing formula and the Black-Scholes formula, under the Black-Scholes assump-
tions. At inception, each simulated arbitrage portfolio contains a single 252-day call option, and
stock and bond holdings that yield a zero net investment for the portfolio. Portfolios are rebalanced
every 5 days to delta-hedge the option, and the terminal values V7 of the portfolios are used to
measure the tracking error of the delta-hedging strategies over the course of 252-day sample paths.
The values of the initial index level, the interest rate, and the index return mean and standard
deviation are fixed at 455, 3%, 7.95%, and 10.28% respectively. Each strike price column reports
the results of 5,000 independent replications. Standard errors are reported in parentheses.

Tracking Error Strike = 415 Strike = 455 Strike = 495
Measure Kernel BS Kernel BS Kernel BS
e"TE[VT] 0.045 0.037 0.051 0.027 0.135 0.040
(0.038)  (0.034) | (0.052)  (0.045) | (0.085)  (0.070)
e~ TE[|Vi|] 0.620 0.662 1.442 1.475 1.628 1.651
(0.030)  (0.027) | (0.035)  (0.030) | (0.059)  (0.047)
100 x e~"TE[Vir ]/Cas.o 0.089 0.073 0.224 0.120 1.856 0.547
(0.076)  (0.067) | (0.229)  (0.198) | (1.165)  (0.969)
100 x e="TE[|Vr{]/Css.0 1.219 1.300 6.368 6.515 | 22.388  22.702
(0.060)  (0.053) | (0.153)  (0.134) | (0.802)  (0.651)




Table 2

Summary statistics for the sample of all traded CBOE daily call and put option prices on the S&P 500 index from January 4,
1993 to December 31, 1993 (14,431 observations). “Implied ¢” denotes the implied volatility of the option, and “Implied ATM
o” denotes the implied volatility of at-the-money options. During this period, the sample daily mean and standard deviation of
continuously-compounded returns of the S&P 500 index was 7.95% (annualized with a 365-day year) and 10.28% (annualized with
a 252-day year), respectively.

Variable Mean S.D. Min Percentiles Max
5% 10% 50% 90% 95%

Call Price H ($) 24.23 25.41 0.13 0.32 0.76 16.68 60.08 74.50 121.93
Put Price G ($) 9.75 12.57 0.13 0.30 0.54 4.73 25.50 33.32 102.08
Implied o (%) 11.36 3.29 5.07 7.44 7.82 10.71 15.66 17.41 36.43
Implied ATM o (%) 9.37 0.86 6.10 7.96 8.28 9.36 10.38 10.65 16.47
7 (Days) 86.64 72.32 1.00 11.00 21.00 66.00 196.00 | 259.00 350.00
X (Index Points) 440.80 33.02 350.00 | 390.00 | 400.00 | 440.00 | 480.00 | 490.00 | 550.00
F (Index Points) 455.42 10.26 428.70 436.13 441.33 457.82 467.46 | 469.11 474.44
r (%) 3.07 0.08 2.85 2.96 2.97 3.08 3.18 3.19 3.21




Table 3

Optimal bandwidth selection for SPD estimation with kernels ks, kx, and k, according to the
relation h; = Cjojn‘l/[2p+d] for regressor j, where n is the sample size, p is the number of continuous
derivatives of the function to be estimated, d is the number of regressors, o; is the unconditional
variance of the regressor, and ¢; is a constant which depends on the particular regressor and is
determined by cross-validation. m; is the order of the partial derivative with respect to the regressor
that we wish to estimate, and s; is the order of the corresponding kernel [see the Appendix for
further details]. As a measure of the goodness-of-fit of our nonparametric kernel regression, we
compute the coefficient of determination R? = 0.86.

Kernel s; p m; d ¢; o; h;
ks = k& 4 3 2.040 10.265 8.767
ky =k® 2 3  1.260 33.018 17.418
k, =k® 4 4 3  0.1014 72.324 3.071




Table 4

Estimated nonparametric call option, put option, and butterfly-spread prices on the S&P 500 index
for one-, two-, four- and six-month maturities and strike prices with deltas greater than or equal
to 0.05 in absolute value, priced for a current index value of 455.00. The nonparametric kernel
estimator is based on a sample of 14,431 CBOE daily call and put option prices on the S&P 500
index from January 4, 1993 to December 31, 1993 [see Table 2 for further details]. Prices for
horizontal at-the-money straddles [strike price 455.00] are: $3.831 for the 42-day/21-day straddle,
$6.625 for the 84-day/42-day straddle, and $5.506 for the 126-day/84-day straddle. Option deltas
are computed with respect to the futures price, not the spot price.

Strike Call Call Put Put Implied Butterfly
Price Price | Delta | Price | Delta | Volatility Price

Futures: $455.4843, Interest Rate: 2.9%, Time-to-Maturity: 21 Days

435 21.21 0.94 0.76 | —0.05 12.48 0.17
440 16.68 0.90 1.22 | -0.10 11.75 0.28
445 12.42 0.83 1.95 | -0.17 11.07 0.44
450 8.61 0.72 3.13 | -0.28 10.44 0.63
455 5.42 0.57 494 | -0.43 9.89 0.79
460 3.03 0.40 7.54 | —0.60 9.43 0.83
465 1.46 0.24 10.96 | —0.76 9.05 0.70
470 0.60 0.12 15.09 | —0.88 8.74 0.47

Futures: $456.0209, Interest Rate: 3.00%, Time-to-Maturity: 42 Days

430 27.18 0.93 1.25 | —0.07 12.11 0.14
435 22.70 0.90 1.75 { —0.10 11.56 0.20
440 18.40 0.85 244 | -0.14 11.02 0.28
445 14.39 0.79 341 | —-0.21 10.50 0.38
450 10.75 0.70 4.75 | —0.30 10.02 0.49
455 7.61 0.58 6.59 | —0.41 9.58 0.58
460 5.04 0.46 9.01 | —0.54 9.21 0.63
465 3.11 0.33 12.05 | —-0.67 8.89 0.60
470 1.76 0.21 1570 | —~0.78 8.63 0.50
475 0.92 0.12 19.83 | —0.87 8.42 0.36

480 0.44 0.06 24.34 | —-0.93 8.25 0.23




Table 4 (continued)

Strike Call Call Put Put Implied Butterfly
Price Price | Delta | Price | Delta | Volatility Price
Futures: $457.0963, Interest Rate: 3.05%, Time-to-Maturity: 84 Days
420 38.73 0.91 1.89 | -0.08 12.56 0.10
425 34.27 0.89 240 | —0.11 12.18 0.13
430 29.94 0.85 3.03 | -0.14 11.80 0.16
435 25.76 | 0.81 382 | —0.18 11.42 0.19
440 21.78 0.77 4.81 | —0.23 11.04 0.24
445 18.04 0.71 6.02 | —0.28 10.67 0.28
450 14.57 0.65 7.53 | —0.35 10.30 0.34
455 11.45 | 0.57 9.37 | —-0.42 9.95 0.39
460 8.71 0.49 11.60 { —-0.50 9.62 0.42
465 6.40 0.40 14.25 | -0.59 9.32 0.44
470 4.52 0.32 17.34 | -0.67 9.06 0.42
475 3.07 0.24 20.85 | —0.75 8.82 0.38
480 1.99 0.17 24.74 —0.82 8.62 0.32
485 1.24 0.11 28.95 | —0.88 8.44 0.25
490 0.74 0.07 33.41 —0.92 8.30 0.18
Futures: $458.2245, Interest Rate: 3.10%, Time-to-Maturity: 126 Days
420 41.12 0.93 331 | —0.06 12.53 0.10
425 36.85 0.91 3.98 | —0.08 12.20 0.13
430 32.70 0.88 4.77 | -0.11 11.87 0.15
435 28.70 0.84 5.72 —0.15 11.55 0.18
440 24.88 | 0.80 6.85 | —0.19 11.22 0.21
445 21.26 | 0.75 8.18 | —0.24 10.91 0.23
450 17.88 0.69 9.74 | —0.30 10.59 0.26
455 14.76 0.63 11.57 | —0.36 10.28 0.29
460 11.92 0.57 13.68 | —0.42 9.98 0.32
465 9.41 0.50 16.11 —0.49 9.69 0.35
470 7.24 0.44 18.89 | —0.55 9.42 0.36
475 5.44 0.37 22.03 | —0.62 9.18 0.35
480 3.98 0.30 25.52 | —0.69 8.97 0.32
485 2.84 0.24 29.33 | —0.75 8.80 0.28
490 1.98 0.18 33.42 -0.81 8.65 0.23
495 1.35 0.14 37.73 | —-0.85 8.53 0.18
500 0.90 0.10 42,23 | —0.89 8.42 0.14
505 0.58 0.07 | 46.86 | —0.92 8.34 0.10




Table 5

Moments of nonparametric and Black-Scholes log-returns density estimators based on a sample
of 14,431 CBOE daily call and put option prices on the S&P 500 index from January 4, 1993 to
December 31, 1993 [see Table 2 for further details].

SPD St )
.P Mean al}daxl,rd Skewness Kurtosis
Estimator Deviation

Time-to-Maturity: 21 Days

Nonparametric | 0.0233 0.0991 —0.1972 0.0741
Black-Scholes | 0.0136 0.0991 0.0000 0.0000

Time-to-Maturity: 42 Days

Nonparametric | 0.0183 0.0981 —0.3381 0.2154
Black-Scholes 0.0149 0.0952 0.0000 0.0000

Time-to-Maturity: 84 Days

Nonparametric | 0.0179 0.0995 —0.4337 0.2170
Black-Scholes | 0.0152 0.0981 0.0000 0.0000

Time-to-Maturity: 126 Days

Nonparametric | 0.0225 0.0993 —0.5051 0.2798
Black-Scholes | 0.0154 0.1001 0.0000 0.0000
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SPX Estimated Implied Volatilities
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Figure 3
SPX Estimated implied Volatility Surface
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SPX Estimated Nonparametric State-Price Densities
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