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NONPARAMETRIC ESTIMATION OF THE GENERALIZED VARIANCE

By Bimal K. Sinha*
and

Pranab Kumar Sen

University of Pittsburgh,
University of Maryland Baltimore County

and University of North Carolina

Summary:

For multivariate distributions with finite second order moments, a

nonparametric symmetric, unbiased estimator of the generalized variance is

considered, and it. is shown to be (nonparametric) optimal for the class of

distributions having finite fourth order moments. A jackknifed version of the

* sample generalized variance is also considered as a contender; it is

computationally more convenient and asymptotically equivalent to the former.

SIt is also shown that the second estimator performs quite well (in large

sample) relative to the optimal normal theory estimators under several loss

functions. .
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I. INTRODUCTION

Let x,,...,xn be n independent and identically distributed random vectors

(i.i.d.r.v.) with a distribution function (d.f.) F defined on the p(-l-)

dimensional Euclidean space EP. We assume that F E Y = (F: fIxiIdF(x) )

The parameter of interest (8) is the generalized variance IW-i, where

- EFf{(x - Ex)(x - Ex)') and 1.[ stands for the determinant. A good amount of

work has been done on the estimation of e when F is assumed to be a

multinormal d.f.; the approach has mainly been decision theoretic and the main

result states that the best multiple of the sample generalized variance can be

improved on (in terms of risk) by using testimators [c.f. Stein (1964),

Shorrock and Zidek (1976), Sinha (1976), Sinha and Ghosh (1986), and others],

*. although the amoung of improvement is marginal in most cases.

An alternative nonparametric approach to the estimation of e is

considered here. In Section 2, a symmetric, unbiased nonparametric estimator

is derived and its optimality is established through the use of Hoeffding's

(1948) U-statistics theory. A second estimator based on jackknifing on the

* sample generalized variance is found to be computationally more convenient

.1,,_ and asymptotically equivalent to the former nonparametric estimator of 8. Like

the other (improved) parametric estimators, the second nonparametric estimator

also comes out as a multiple of the sample generalized variance, and it

performs quite well (at least, for large samples) compared to the optimal

normal theory estimators under several loss functions (vide Section 3). Thus,

the jackknifed estimator seems to enjoy the parametric affinity and

nonparametric robustness in broad setup. The former nonparametric estimator

is, however, somewhat computationally involved .(particularly, for large n).

Finally, in Section 4, some concluding remarks about estimation of II /P are

made.

2. MAIN RESULTS

Let xi,...,Xri be n independent and identically distributed i.i.d.) random

vectors (r.v.) with a distribution function (d.f.) F, defined on EP, for some

@4
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p 1 1. It is assumed that

F r Y = {F: f Ix1 2dF(x) z (2.1)

where 1'1 stands for the Euclidean norm. Our goal is to estimate the

functional (the generalized variance)

8(j) = ((F) IEF((x - Ex)(x - Ex)'}I, (2.2)

where IAI stands for the determinant of the matrix A. Note that when F is a

\1' multinormal d.f. with unknown mean vector p and dispersion matrix . then

O(F) = IF[ is typically estimated by 9n I n1, where
n i n

-.. n.-1 7n

S =n- 1) i (x. - x )(x. - x )' and x n - (2.3)nl i~1 1 nl 1 n n n i:' x.

To motivate a nonparametric estimator of e(F), first, we may note that

.(F) E (x ,x), v F L Y, (2.4)

where

*o(xx) = (x - x )(x - x )' v x,,x Ep . (2.5)

Further, we may note that

*(nJ-i Z *(Xx., S ,V n 1 2. (2.6)
2 1Lj~n 0 VJ n

Thus, Sn is an optimal (symmetric, unbiased and minimum risk) nonparametric

* estimator of F(F), F -. Y. However, O(F) is a polynomial function (of degree p)

in the elements of .(F), and hence, it is easy to show that iSni = 4n is not

unbiased for 0(F), although, the bias of en is typically of the order n'. Our

first goal is to consider a symmetric and unbiased nonparametric estimator of

SM().

Let xj = (xlj,...,Xpj), j l,...,2p be 2p vectors and define

* 'x ,...,x 2= (2.7)

)IN -, ,x -x X -x )( x .. --(, -)I.

-, 12 I 2 2 2:1 24 " 4 . p2p-- pap 2p-1 2P

p. Note that for the matrix (of order p x p) in the determinant in (2.7), the jth

@4
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column depends only on x. x.i, for j l,...,p. Thus, for *(x ,...,x ),

the p columns of this matrix are stochastically independent. Hence, using the

standard expansion for the determinant, it readily follows that

E x ,...,x 2 ,...a F V F 3, (2.8)
F Ip

-. where a. : a ..... a .)' stands for the jth column vector of X(F), for

j = 1,...,p. Thus, O(x ... x) is a kernel of degre 2p (although, it is

not a symmetric one), and, hence, following the steps in Hoeffing (1948), a

symmetric, unbiased estimator of 8(F) is obtained (for n k 2p) as

U = n- -pj 40(x . ....x , (2.9)
n Ij =i 2 !6n 1 11 " = 2p

where

", , 'l-[p3 (np] -1
nr " = n...,,n - 2p + 1): n [ = (n ) . (2.10)

Being a U-statistic, U n shares the nonparametric unbiasedness and

optimality (minimum variance/minimum risk with convey loss functions)

properties when F is allowed to vary over a subclass of - for which the
.1"> variance or the risk of U n is properly defined (viz., F .7*, where

{* = (F: fIIxIIdF(x) U ). Un is a symmetric function of xi,...,xn.

It is interesting to note that for p N 1, Un = ISn I = n, and

moreover, unlike en, Un is not a sole function of the elements of Sn.

Thus, in the normal theory case (for F), whereas it is possible to choose a

positive constant Cn,p (depending on n and p (n , p)), such that cn,pen is

* * - unbiased for @(F) (and a symmetric function of the sample observations

too), cn,p n may not be unbiased for @(F) when F is not normal and p it 2.

On the other hand, the proposed nonparametric estimator U n in (2.9), for p
S 2, involves the matrix S n as well as some other statistics (having smaller

contributions). To make this point clear, consider the simplest case of p

2. We have then

. 7Un ±Z xi , ,x2 ,xi ) (2.11)
U n - 1 4 ( -

'n-2)(n-3) n n 3 n

4-"%
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* where

R n 14i= &xx Xj,xi ,xk  (2.12)

S(x - x .t (x - x k)(X 2i Xk

4 xz~ =ijk4 n2 ( X Y - " .( x i -x . ) ( x - 2

1 ' 21 2j 2i 2k

Note that R is not a sole function of S . A very similar treatment holdsn n

for general p 1 2. Whereas for EISnI, we need that E FIIXH for

E Un(=0(F)), the second moment suffices.

To explore the relationship between U n and ;n, we note that the vor

Mises' (1947) functional corresponding to the kernel in (2.7) is given by

V = f...f 'x ... x )dF (x )...dF (x ( (2.13)D 1 2 p n I n 2p

n 2p n n

= n 0 i ,...x
I = 2p 1 2p

where F (x) = n-' I(x. - x), x E Ep is the sample d.f. Using the
'' n 1 1

identity that

n n n
, .I (x. - x.)(x. - x.) 2n . (x. - x )( - x ) , (2.14)iJ .-1 J j i 1= I n x n

we immediately obtain from (2.7) and (2.13) that

v = PlSnl = (1 - n')P; (2.15)

, Further, S nn -' p} is a reversed martingale, so that noting that ISnI

is a convex function of Sn, we claim that

n - p t I is a nonnegative reversed sub--martingale. (2.16)

As such, using the reversed submartingale convergence theorem, we

immediately conclude that On - IE(F) I O(F) a.s., as n - 0, and hence

IVn -nI = 0(nI) a.s., as n (2.17)

On the other hand, if we assume that

S2Px . . z ,,, 1 l - i i - p, (2.1)

'I'.

'p.
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then using the results in Section 3.2 [viz. (3.2.9)] of Sen (1981), it follows that

u In - V I = 0(n-') a.s., as n - -. (2.19)n n

Combining (2.17) and (2.19), we obtain that under :2.18),

,r nIvnu e I = 0(n ) a.s., as n - w. (2.20)

Also, by the reversed martingale property of U-statistics, we conclude that

{U , n 2p) is a reversed martingale. (2.21)

Thus, writing 0 = Un + (4n - U n ), we conclude that Un represents the

reversed martingale component of e while the sub-martingale component

(0 - U ) is 0(n-) a.s. This can be interpreted as the asymptotic optimality:...n n
robustness of 0n(=ISnl) for estimating 0(F), for possibly non-normal F. This

decomposition along with (2.20) may also be utilized in the motivation of a

jackknifed version of en, which would reduce the bias without compromising

the (first order) asymptotic ortimality.

To pose this jackknifed version (en) of On, we define

S (n-l-(x x n(i )(x x i)
S(n-1) Z ( - - (2.22)"n-t " a=* c n--i cc n- '

.- ix (n - 1) c. x, for i = 1,...,n (2.23)

(i) = Si)I, for i = 1,...,n (2.24)
n-i In-i'

.S . = n4 - (n - 1);('), i = 1 ..,n. (2.25)
n,i n n-i

Then
, n n-i n -(i)

* n . = n-+ - . (2.26)
i=, n,i n n i= n n-i

Using the results in Sen (1977), it readily follows that

EF(0* - e(F)) = o(n-I). (2.27)

We may consider * as a competing nonparametric estimator of 0(1').

-
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Note that by definition

(n-1)S (n-2)S + - -x )(x - x . (2.28)n n-i n-i, n n n n

so that

Is(n), = n-1  - (x x )(x x ), (2.29)n- n-2 n (n-1)(n-2) n n n n

n (x-x2( x x2
= -2 n (n-l)2 (xn n ) (x n  n

PIS If, - (x - -'s-

n-2 (n-)2 n -n n (xn - xn)

Thus, if we define

(x. -x )'S-'(x. - x ), i 1,... ,n (2.30)
i I n n 1 n

(and note that

n n - . -
- (x. - x S1 (x. - x)

ni i= 1 n n I n

Tr(S (x. - x )(x. - x
n i 1 n 1 n

= (n- 1)p,

for every n 2), we obtain from (2.26) and (2.29)-(2.31) that

n•-n ( n 2 p n
n n n n n (n-1 ni n (2.32)

. ] -(n-) P+' n n= 1 .) + n -
n n(n-2)p i(1 (n-i) ni

" (n-i) n- lp + n-S{ (n-2 )P + 
p  n -2

(n- 1)P(n-l-P.)

= n fn -
(n-2)P

e 1 l + (n-1)[ -n---p "P1 1 p 1 -1

n n-2 n- I

' cp n say.

.p..

.10
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Note that for p 1, c -- 1 while for p 2, I, 1

Thus we have

Ie* - ; =I Oin- a.s., as n (2.33)

This jackknifed estimator- (*) belongs to the class ,"- trn} of adjustc]
.4n n, p

estimators which have been studied extensively by Sinha and others ([H], [5],

[6]). It may be of interest to compare this jackknifed estimator with some of

the other ones (in terms of the (asymptotic) mean squares) when F is normal.

This will cast light on the (near) optimality of 8, for normal F. Details appear

in Section 3.

Recall that by (2.25), (2.26) and (2.29),

I - - (2.34)
n,i n--i n j., n-i

- n l n -2n n .n- D[. , n r %n... pnj

n-i n--2 n.

Therefore, we have
l n 2

E ,0 - On)
n-1 i=, n,ji

n "n--)2p 2 n n-l 2,

n--i)' n--2 I=1 n] n

.n 2 n-1 2 - 2 1 'n n--I 2

n--2) n-i - ni n
2 2p-2 2 1 n 2 2

n_) 2 p P 1 n ' , - p
n-2 n--I ni n

21 n 2 2
I ,

(2.32) and (2.35) can be used to construct an asymptotic ncprar'ametric
.-

confidence interval for, 8(F).

%!
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3. COMPARISON WITH OPTIMAL NORMAL THEORY ESTIMATORS

When F is normal, best estimators of 121 of the form Cn,p ri are known

for various loss functions. For example, the optimum choice of cn, , is

(n-p)!(n-l)P/n! = I + p(p-3)/2n + 0 (n-') for each of the three losses:

L,(lij, liZ) =(lIj - ixI)2 , L2(IjI, 1x1) =(ixi/lXl- 1)2 and L3(lIj, lx1)
(Iji/II) - ln(IlI/1Ij) - 1. The risk of Cn,p ;n under L, () is easily

computed as

(3.1)

r( 1 2  , 2 pp- C2 2
- 1) -c p(p-3 /n + c p(p-1)/n + (p) /n 2 

+ C (p)/nn,p np n,p np n,p 2

+ ofn 2  "i 2

:p) and (p) depend on p. Comparing the rises of pt..- where -v ps ond cri

n np* none gets2 
p

Irisk difference under L,(')I 2 + o(n )JiE1 2  (3.2)
n

The result under L(') is obtained from (3.2) by dropping the term lxi For

the loss function L,(-), the risk of cn,pen is obtained as

c '1 - p ~p-l)/2n) - In c c ' (p)!n * n (p,n) + o(n 2 ) (3.3)

where ,(p) depends on p and P,(p,n) depends on both p and n. A

comparison of the risks of c and * immediately givesn,p n n
2 -2

"risk difference under I,3(-)I p /2n2 + o(n2 ) (3.4)

It follows from (3.2) and (3.4) that ln performs quite well for normal F even

for moderate values of p.

It is clear from (2.9) that the genuine nonparametric unbiased estimator

U n of R(F) is somewhat difficult for computation. However, the other

competing asymptotically unbiased (up to o(n-')) nonparametric estimator A* is

easy to work with.

*I 0

-::
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4. CONCLUDING REMARKS

It is interestin i t,) po)int out what happens if we consider the problem of

estimation of - (say) under the nonparametric setup. First, it is

clear that, unlike in the previous problem, here a kernel which can be used to

construct an unbiased, symmetric, nonparametric estimator of 0 is not

A" available. This observation automatically justifies the obvious utility of

jackknifed estimators. Second, one may proceed to work with the jackknifed

version of ;n = L n  where Un is the symmetric, unbiased estimator of

defined in (2.9). Various asymptotic properties of this nonpararnetric estimator

are readily avaiitblh in the form of general functions of U-statistics

c-ontaining Ur as a special case, in Sen 19771 , Sect ion 3. Third, it is

also pssible to use the .jackknifed version of the parametric estimator

1' Isnl' P. Using the relations (2.29)-(2.31), it is easy to verify that this

* version results in !Snl' p  itself at least for- large n. Finally,

we note that, computationally nSnI' i p much simpler than the jackknifed

version of -n

4.

I..- .
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