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Abstract— We develop and analyze a nonparametric
method for estimating the class of f -divergence functionals,
and the density ratio of two probability distributions.
Our method is based on a non-asymptotic variational
characterization of the f -divergence, which allows us to
cast the problem of estimating divergences in terms of
risk minimization. We thus obtain an M -estimator for
divergences, based on a convex and differentiable opti-
mization problem that can be solved efficiently We analyze
the consistency and convergence rates for this M -estimator
given conditions only on the ratio of densities.

I. INTRODUCTION

Given samples from two (multivariate) probability

distributions P and Q, it is frequently of interest to

estimate the values of functionals measuring the diver-

gence between the unknown P and Q. Of particular

interest is the Kullback-Leibler (KL) divergence, but

the approach of this paper applies to the more general

class of Ali-Silvey or f -divergences [1], [7]. An f -

divergence, to be defined formally in the sequel, is of the

form Dφ(P, Q) =
∫

φ(dQ/dP)dP, where φ is a convex

function of the likelihood ratio.

These divergences play fundamental roles in statis-

tics and information theory. In particular, divergences

are often used as measures of discrimination in binary

hypothesis testing and classification applications. Ex-

amples include signal selection [12] and decentralized

detection [15], where f -divergences are used to solve

experimental design problems. The Shannon mutual

information (a particular type of KL divergence), in

addition to its role in coding theorems, is often used as a

measure of independence to be extremized in dimension-

ality reduction and feature selection. In all of these cases,

if divergences are to be used as objective functionals, one

has to be able to estimate them efficiently from data.

There are two ways in which divergences are typically

characterized. The classical characterization is an asymp-

totic one; for example, the KL divergence emerges as the

asymptotic rate of the probability of error in Neyman-

Pearson binary hypothesis testing (a result known as

Stein’s lemma). But it is also possible to provide non-

asymptotic characterizations of the divergences; in par-

ticular, Fano’s lemma shows that KL divergence provides

a lower bound on the error probability for decoding

error [6]. This paper presents a method for divergence

estimation, motivated by a non-asymptotic characteriza-

tion of f -divergence, in the spirit of Fano’s lemma, first

explicated in our earlier work [15]. This characterization

states that that there is an one-to-one correspondence

between the family of f -divergences and the family

of “surrogate loss functions”, such that the (optimum)

Bayes risk is equal to the negative of the divergence.

In other words, any negative f -divergence can serve

as a lower bound of a risk minimization problem.

This variational characterization of divergence, stated

formally in Lemma 1, allows us estimate a divergence

Dφ(P, Q) by solving a binary decision problem. Not

surprisingly, we show how the problem of estimating f -

divergence is intrinsically linked to that of estimating the

likelihood ratio g0 = dP/dQ. Overall, we obtain an M -

estimator, whose optimal value estimates the divergence

and optimizing argument estimates the likelihood ratio.

Our estimator is nonparametric, in that it imposes no

strong assumptions on the form of the densities for P and

Q. We establish consistency of this estimator by exploit-

ing analysis techniques for M -estimators in the setting

of nonparametric density estimation and regression [19],

[21]. At a high level, the key to the proof is suitable

control on the modulus of continuity of the suprema

of two empirical processes, one for each of P and Q,

with respect to a metric defined over density ratios.

This metric turns out to be a surrogate lower bound

of a Bregman divergence defined on a pair of density

ratios. In this way, we not only establish consistency of



our estimator, but also obtain convergence rates. As one

concrete example, when the likehood ratio g0 lies in a

function class G of smoothness α with α > d/2, where

d is the number of data dimensions, our estimator of

the likelihood ratio achieves the optimal minimax rate

n−α/(2α+d) according to the Hellinger metric, while the

divergence estimator achieves the rate n−2α/(2α+d).

In abstract terms, an f -divergence can be viewed as

an integral functional of a pair of densities. While there

relatively little work focusing on integral functionals for

pairs of densities (such as the f -divergences of interest

here), there is an extensive literature on the estimation of

an integral functionals of the form
∫

φ(p)p, where p the

density of an unknown probability distribution. Work on

this topic dates back to the 1970s [10], [14]; see also [3],

[4], [13] and the references therein. There are also a

number of papers that focus specifically on the entropy

functional (see, e.g., [8], [11], [9]).

In a separate line of work, Wang et al. [22] proposed

a histogram-based KL estimator. Their method is based

on the estimation of the likelihood ratio by building

partitions of equivalent (empirical) Q-measure. The esti-

mator is easy to implement, and was empirically shown

to outperform direct plug-in methods, but no theoretical

convergence rate analysis was given. A concern with

histogram-based methods are their possibly inefficiency,

in both statistical and computational terms, when applied

to higher dimensional data. Our preliminary experi-

mental results [16] suggest that our estimator exhibits

comparable or superior convergence rates in a number

of examples.

The remainder of this paper is organized as follows. In

Section II, we describe a general variational character-

ization of f -divergence, and derive an M -estimator for

the KL divergence and the likelihood ratio. Section III is

devoted to the analysis of consistency and convergence

rates. In Section IV we briefly discuss how our analysis

extends to general f -divergences. Additional results and

complete proofs of all theorems can be be found in the

technical report [16].

II. M -ESTIMATOR FORMULATION

We begin by describing how the estimation of KL

divergence and the density ratio can be formulated as an

M -estimator.

A. Variational characterization of f -divergence

Let X1, . . . , Xn be n i.i.d. random variables drawn

from an unknown distribution P; similarly, let Y1, . . . , Yn

be n random variables drawn from an unknown distribu-

tion Q. We assume that both are absolutely continuous

with respect to Lebesgue measure µ, with positive den-

sities p0 and q0, respectively, on some compact domain

X ⊂ Rd. The KL divergence between P and Q is defined

as:

DK(P, Q) =

∫

p0 log(p0/q0) dµ.

The KL divergence is a special case of a broader

class of divergences known as Ali-Silvey distances, or

f -divergences [7], [1]:

Dφ(P, Q) =

∫

p0φ(q0/p0) dµ,

where φ : R → R̄ is a convex function. Different choices

of φ result in many divergences that play important

roles in information theory and statistics, including the

variational distance, Hellinger distance, KL divergence

and so on (see, e.g., [18]).

Since φ is a convex function, by Legendre-Fenchel

convex duality [17] we can write:

φ(u) = sup
v∈R

(uv − φ∗(v)),

where φ∗ is the convex conjugate of φ. As a result,

Dφ(P, Q) =

∫

p0 sup
f

(fq0/p0 − φ∗(f)) dµ

= sup
f

(
∫

f dQ −

∫

φ∗(f) dP

)

,

where the supremum is taken over all measurable func-

tions f : X → R, and
∫

f dP denotes the expectation

of f under distribution P. It is easy to see that equality

in the supremum is attained for functions f such that

q0/p0 ∈ ∂φ∗(f), where q0, p0 and f are evaluated at any

x ∈ X . By convex duality, this is true if f ∈ ∂φ(q0/p0)
for any x ∈ X . Thus, we have proved the following

lemma:

Lemma 1. Letting F be any function class in X → R,
there holds:

Dφ(P, Q) ≥ sup
f∈F

∫

f dQ − φ∗(f) dP. (1)

Furthermore, equality holds if F ∩ ∂φ(q0/p0) 6= ∅.

B. An M -estimator of density ratio and KL divergence

Returning to the KL divergence, φ has the form

φ(u) = − log(u) for u > 0 and +∞ for u ≤ 0.

The convex dual of φ is φ∗(v) = supu(uv − φ(u)) =
−1−log(−v) if u < 0 and +∞ otherwise. By Lemma 1,

DK(P, Q) = sup
f<0

∫

f dQ −

∫

(−1 − log(−f)) dP

= sup
g>0

∫

log g dP −

∫

gdQ + 1. (2)
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In addition, the supremum is attained at g0 = p0/q0. This

motivates the following estimator of the KL divergence:

Let G be a function class of X → R+, and
∫

dPn and
∫

dQn denote the expectation under empirical measures

Pn and Qn, respectively, and consider the following

optimization problem:

D̂K = sup
g∈G

∫

log g dPn −

∫

gdQn + 1. (3)

In practice we generally choose G to be a convex

function class. In this case it turns out that the problem

can be posed as a convex optimization problem that can

be solved efficiently [16]. Suppose that the supremum is

attained at ĝn. Then ĝn is an M -estimator of the density

ratio g0 = p0/q0.

In the case of KL divergence estimation, we need to

analyze the behavior of |D̂K − DK(P, Q)| as n → ∞.

In the case of density ratio estimation, we also need a

performance measure. Since g0 = p0/q0 can be viewed

as a density function with respect to Q measure, a natural

metric is the Hellinger distance:

h2
Q(g, g0) :=

1

2

∫

(g1/2 − g
1/2
0 )2 dQ. (4)

As we shall see, this distance measure is weaker than

|D̂K −DK(P, Q)|, with the advantage of allowing us to

obtain guarantees under milder assumptions.

III. CONSISTENCY AND CONVERGENCE RATES

In this section we shall present consistency results and

obtain convergence rates for our estimators. Throughout

the paper, we impose the following conditions on the

distributions P, Q and the function class G.

(i) DK(P, Q) < ∞; and

(ii) G is sufficiently rich so that g0 ∈ G.

In order to analyze the overall error, we define the

approximation error E0(G) and estimation error E1(G)
as follows:

E0(G) = DK(P, Q) − sup
g∈G

∫

(log g dP − g dQ + 1) ≥ 0

E1(G) = sup
g∈G

∣

∣

∣

∣

∫

log g d(Pn − P) − gd(Qn − Q)

∣

∣

∣

∣

.

Combining with (2) and (3) it is easy to see that:

−E1(G) − E0(G) ≤ D̂K − DK(P, Q) ≤ E1(G).

Since we have imposed condition (ii), the approximation

error E0(F) vanishes, so that this paper focuses on

estimation error E1(G) only. Note that if (ii) does not

hold, we obtain instead a lower bound on the KL

divergence.

A. Set-up and some basic inequalities

We begin by stating a few basic inequalities used

throughout our analysis of consistency and convergence

rates. We bound E1(G) in terms of the following empir-

ical processes:

vn(G) = sup
g∈G

∣

∣

∣

∣

∫

log
g

g0
d(Pn−P)−

∫

(g−g0)d(Qn−Q)

∣

∣

∣

∣

.

wn(g0) =

∣

∣

∣

∣

∫

log g0 d(Pn − P) − g0d(Qn − Q)

∣

∣

∣

∣

.

Note that by construction, we have:

E1(G) ≤ vn(G) + wn(g0). (5)

Our first lemma deals with the term wn:

Lemma 2. We have the almost-sure convergence
wn(g0)

a.s.
−→ 0.

Note that in this lemma and other theorems, all “a.s.

convergence” statements can be understood with respect

to either P or Q because of the mutual absolute conti-

nuity. Next, we relate vn(G) to the Hellinger distance.

This link is made via an intermediate term that is also a

(pseudo) distance between g0 and g:

d(g0, g) =

∫

(g − g0)dQ −

∫

log
g

g0
dP. (6)

Lemma 3. (i) d(g0, g) ≥ 2h2
Q(g, g0) for any g ∈ G.

(ii) If ĝn is the estimate of g0, then d(g0, ĝn) ≤ vn(G).

Lemma 3 asserts that the Hellinger distance between

ĝn and g0 is bounded by the suprema of empirical

processes vn(G). One difficulty with the function class

{log(g/g0)} is that it can be unbounded when g takes

value ∞ or 0. The following lemma borrows an idea due

to Birgé and Massart (cf. [19]), considering functions

log g0+g
2g0

, which are always bounded from below. We

have:

Lemma 4. If ĝn is the estimate of g0, then:

1

8
h2

Q(g0, ĝn) ≤ 2h2
Q(g0,

g0 + ĝn

2
) ≤

−

∫

ĝn − g0

2
d(Qn −Q) +

∫

log
ĝn + g0

2g0
d(Pn −P).

B. Consistency results

Our analysis relies on results from empirical process

theory. We first introduce several standard notions of

entropy of a function class [21]. For each δ > 0, a

covering for function class G using metric Lr(Q) is a

collection of functions which cover entire G using Lr(Q)
balls of radius δ. Let Nδ(G, Lr(Q)) be the smallest
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cardinality of such a covering, then Hδ(G, Lr(Q)) :=
log Nδ(G, Lr(Q)) is called the entropy for G using

Lr(Q) metric. A related notion is entropy with brack-
eting. Let NB

δ (G, Lr(Q)) be the smallest value of N for

which there exist N pairs of functions {gL
j , gU

j } such that

‖gU
j −gL

j ‖Lr(Q) ≤ δ, and such that for each g ∈ G there

is a j such that gL
j ≤ g ≤ gL

j . Then HB
δ (G, Lr(Q)) :=

log NB
δ (G, Lr(Q)) is called the entropy with bracketing

of G. Define the envelope functions:

G0(x) = sup
g∈G

|g(x)|; G1(x) = sup
g∈G

| log
g(x)

g0(x)
|.

Proposition 5. Assume the envelope conditions

(a)

∫

G0dQ < ∞, and (b)

∫

G1dP < ∞, (7)

and suppose that for all δ > 0 there holds:

1

n
Hδ(G − g0, L1(Qn))

Q
−→ 0, (8a)

1

n
Hδ(log G/g0, L1(Pn))

P
−→ 0. (8b)

Then, vn(G)
a.s.
−→ 0. As a result, E1(G)

a.s.
−→ 0, and

hQ(g0, ĝn)
a.s.
−→ 0.

Envelope condition (7)(a) is quite severe, because

it essentially requires all functions in G be bounded

from both above and below. To ensure the Hellinger

consistency of the estimation for g0, however, we can

essentially drop envelope condition (7)(a) and replace

entropy condition (8)(a) by a milder entropy condition.

Proposition 6. Assume that (7)(b) and (8a) hold, and

1

n
Hδ(log

G + g0

2g0
, L1(Pn))

P
−→ 0, (9)

then hQ(g0, ĝn)
a.s.
−→ 0.

It can be shown that both entropy conditions (8a)

and (9) can be deduced from a single condition—namely,

that for all δ > 0, the bracketing entropy is bounded as

HB
δ (G, L1(Q)) < ∞.

As a concrete illustration, let us consider a particular

function class:

Example: (Sobolev classes Wα
2 ) For x ∈ Rd, and a d-

dimensional multi-index κ = (κ1, . . . , κd) (all κi are

natural numbers), write xκ =
∏d

i=1 xκi

i , and |κ| =
∑d

i=1 κi. Let Dκ denote the differential operator:

Dκg(x) =
∂|κ|

∂xκ1

1 . . . ∂xκd

d

g(x1, . . . , xd).

Let Wα
2 (X ) denote the Sobolev space of functions f :

X → R, where ||f ||2Lα

2
(X ) =

∑

|κ|=α

∫

|Dκf(x)|2 dx

is bounded by a constant M2. If G is restricted to a

subspace of Wα
2 (X ) such that G is uniformly bounded

from above, then all conditions required in Prop. 6 can

be easily shown to hold. If, in addition, all functions

in G is also bounded from below, then all conditions in

Prop. 5 hold.

C. Convergence rate of density ratio estimation

We can obtain the convergence rate of our estimator

ĝn using the Hellinger metric. Our result is based on

Lemma 4, which bounds the Hellinger metric in terms of

the supremum of empirical processes, and the modulus

of continuity of this supremum. We shall assume that:

sup
g∈G

‖g‖∞ < K2, (10)

in addition to an entropy condition on the function class

Ḡ := {((g +g0)/2)1/2, g ∈ G}: In particular, we assume

that for some constant 0 < γḠ < 2, there holds for any

δ > 0,

HB
δ (Ḡ, L2(Q)) = O(δ−γḠ ). (11)

Theorem 7. Under conditions (10) and (11), then
hQ(g0, ĝn) = OP(n−1/(γḠ+2)), where OP is with respect
to P.

Remarks: To follow up on our earlier example, if G is

a Sobolev class with smoothness α, and g0 is bounded

from below, then it is known [5] that γḠ = d/α. In

this particular case, we obtain the rate n−α/(2α+d). It is

worthwhile comparing to the optimal minimax rates with

respect to Hellinger metric. More precisely, the minimax

rate is defined as:

rn := inf
ĝn∈G

sup
P,Q

EPhQ(g0, ĝn).

Here the infimum is taken with respect to all estimators

ĝn ∈ G, where G is a Sobolev class with smoothness α.

First, note that rn ≥ inf ĝn∈G supP Ehµ(g0, ĝn), where

we have fixed = µ as the Lebesgue measure on X .

Thus, we have lower bounded the minimax rate by that

of a nonparametric density estimation problem.1 Thus,

we obtain the following:

Proposition 8. When the likelihood ratio lies in the
Sobolev class of smoothness α, the optimal minimax rate
rn = Ω(n−α/(2α+d)) is achieved by our estimator.

1There is a small technical aspect here: the space G ranges
over smooth functions that need not be valid probability densities.
Nonetheless, a standard hypercube argument is still directly applicable.
(See [20], Sec. 24.3, for such an argument).
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D. Convergence rates of divergence estimation

We now turn to the convergence rate of our estimator

for the KL divergence, i.e., ‖D̂K − DK(P, Q)‖. We

assume that all functions in G are bounded from above

and below:

0 < K1 ≤ ‖g‖∞ ≤ K2 for all g ∈ G. (12)

Theorem 9. Under conditions (12) and (11), we have
∣

∣

∣
D̂K − DK(P, Q)

∣

∣

∣
= OP(n−1/(γḠ+2)).

Proof: We provide only a sketch here. From

equations (2) and (3), we can bound |D̂K − DK(P, Q)|
from above by the sum A+B+C of three terms, where

A :=
˛

˛

Z

log ĝn/g0d(Pn − P) −

Z

(ĝn − g0)d(Qn − Q)
˛

˛

B :=

˛

˛

˛

˛

Z

log ĝn/g0dP −

Z

(ĝn − g0)dQ

˛

˛

˛

˛

C :=

˛

˛

˛

˛

Z

log g0d(Pn − P) −

Z

g0d(Qn − Q)

˛

˛

˛

˛

.

We have C = OP (n−1/2) by the central limit theorem.

Using assumption (12),

B ≤

∫

|ĝn − g0|
K2

K1
dQ| +

∫

|ĝn − g0|dQ

≤ (K2/K1 + 1)‖ĝn − g0‖L2(Q)

≤ (K2/K1 + 1)K
1/2
2 4hQ(g0, ĝn)

(a)
= OP(n−1/(2+γḠ)),

where equality (a) is due to Theorem 7.

Finally, to bound A, we apply a modulus of continuity

result on the suprema of empirical processes with respect

to function (g − g0) and (log g − log g0). From equa-

tion (12), the bracket entropy for both function classes

G and log G has the same order as that of Ḡ, as given

in (11). Applying Lemma 5.13 from van de Geer [19],

we obtain that for δn = n−1/(2+γḠ), there holds:

A = OP(n−1/2‖ĝn−g0‖
1−γḠ/2

L2(Q) ∨δ2
n) = OP(n−2/(2+γḠ)).

Overall, we have established that the sum A + B + C is

upper bounded by OP(n−2/(2+γḠ)).

IV. OTHER RESULTS

In [16], we provide several further results that cannot

be presented here due to space limitations. At a high

level, these results include the following:

M -estimation of Dφ and ∂φ(q0/p0): Although we

have focused primarily here on the KL divergence,

our approach is applicable to the estimation of any f -

divergence Dφ and subgradient ∂φ(q0/p0). In general,

the estimator of Dφ takes the following form:

D̂φ := sup
f∈F

∫

f dQn −

∫

φ∗(f) dPn,

where the supremum is attained at an estimate of

∂φ(q0/p0). The convergence analysis hinges on the

modulus of continuity of the suprema of appropriate

empirical processes with respect to the following Breg-

man divergence (a special case of which was defined in

Eq. (6)):

dφ(f0, f) =

∫

(φ∗(f) − φ∗(f0) −
∂φ∗

∂f

∣

∣

∣

∣

f0

(f − f0) dP.

Implementation and experimental results: In practice,

we implement our estimator by taking G to be the

reproducing kernel Hilbert space induced by a Gaussian

kernel. Doing so yields a convex optimization problem

that can be solved efficiently [16]. Our experiment

results [16] demonstrate the practical viability of such

estimators, which complements the theoretical analysis

of consistency and convergence rates that we have re-

ported here.
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