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Summary: Multi-state models are often used for modeling complex event history data. In these models the estima-

tion of the transition probabilities is of particular interest, since they allow for long-term predictions of the process.

These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process

is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with

respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly

violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution

contains the support of the lifetime distribution, which is not often the case. In this paper we propose two new

methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results

are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption

about the censoring support. We explore the finite sample behavior of the estimators through simulations. The

main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing

non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to

progressive processes beyond the three-state illness-death model are discussed.
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1. Introduction

Multi-state models are models for stochastic processes which represent the evolution of an

item (a patient, a device, and so on) along time. The item may visit a number of states along

its progress and, hence, the multi-state model indicates the existing states as long as the

allowed transitions among them. Multi-state models have been widely used in biomedicine

to investigate the progression of patients undergoing a given illness or surgery (Commenges,

1999; Hougaard, 1999, 2000; Andersen et al., 2000; Meira-Machado et al., 2009); usually, the

states represent the occurrence of an event which may be related to survival prognosis, such

as complications after surgery, recurrences, or non-fatal episodes.

In this setting, the estimation of the so-called transition hazards and transition probabilities

is of particular interest. From the transition hazard, it is possible to evaluate the probability

of one event ahead. On the other hand, in order to consider several transitions ahead,

the transition probabilities must be evaluated and, hence, they are essential for long-term

survival prognosis (Hougaard, 2000). The occupation probabilities, often used in practice,

are particular examples of transition probabilities in which the time origin is taken as the

current time.

The standard nonparametric method to estimate a transition probability matrix is the

time-honored Aalen-Johansen estimator (Aalen and Johansen, 1978). This estimator is adapted

to censoring, and it benefits from the assumption of Markovianity on the underlying stochas-

tic process. This assumption states that the relevant information for the future evolution of

the process is provided by its current state, independently of the states previously visited

and the transition times among them. The Markov assumption may be violated in practice;

for example, the arrival time to the current state of the process often influences the transition

hazard, leading to non-Markov structures (e.g. Andersen et al., 2000). See the application

to the colon cancer study in Section 4 for further illustration. Although the Aalen-Johansen
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estimator may be used to consistently estimate occupation probabilities for non-Markov

multi-state models (Datta and Satten, 2001, 2002; Glidden, 2002), in general it provides

biased estimators if the Markov assumption does not hold (Meira-Machado et al., 2006;

Allignol et al., 2014).

Meira-Machado et al. (2006) introduced for the first time fully non-Markov estimators

for the transition probabilities in the progressive illness-death model (see Section 2), which

is a special multi-state model with plenty of applications in biomedicine and other areas.

These authors showed the practical superiority of their estimators relative to the Aalen-

Johansen in situations in which the Markov condition is strongly violated. Meira-Machado

et al. (2006)’s approach was recently revisited by Allignol et al. (2014), who proposed a

closely related non-Markov estimator too. Both Meira-Machado et al. (2006) and Allignol

et al. (2014) proposals have the drawback of requiring that the support of the censoring

distribution contains the support of the lifetime distribution, otherwise they only report valid

estimators for truncated transition probabilities. Unfortunately, this assumption is often not

fulfilled in medical applications due to limitations in the patients’ following-up. A practical

example of this situation is considered in Section 4, where patients with colon cancer have a

maximum follow-up time of about 9 years. In this paper we overcome this issue by introducing

alternative estimators which are consistent regardless the Markov condition and the referred

assumption on the censoring support. Nonparametric estimation of occupancy probabilities

and, more generally, of transition probabilities in the progressive illness-death model and in

more complicated multi-state models has been considered in a number of papers, including

(besides the aforementioned ones) Pepe et al. (1991), Pepe (1991), Andersen et al. (1991),

Borgan (2002), Frydman and Szarek (2009), Lan and Datta (2010), Amorim et al. (2011),

Spitoni et al. (2012), Moreira et al. (2013), Mostajabi and Datta (2013), Frydman et al.

(2013), and Meira-Machado et al. (2013).



Nonparametric Estimation of Transition Probabilities 3

This paper is organized as follows. In Section 2 we revisit Meira-Machado et al. (2006)’s

approach and we introduce a simple modification of their estimators which makes the cen-

soring support condition unnecessary. Some new alternative estimators based on subsamples

are also introduced. The asymptotic properties of the proposed estimators are discussed.

The performance of three sets of estimators is investigated through simulations in Section 3,

while in Section 4 the methods are compared through the re-analysis of medical data from

a clinical trial on colon cancer. Extensions to progressive processes beyond the three-state

illness-death model are discussed in Section 5. The main conclusions of our research are

deferred to Section 6. The technical results on the consistency and asymptotic normality of

the introduced estimators are given in the online supplementary material.

2. Nonparametric Estimators

The non-Markov illness-death model is characterized by the joint distribution of (Z0, T 0),

where Z0 is the sojourn time in the initial state 1 and T 0 is the total survival time (i.e. the

absorption time). Note that (Z0, T 0) falls on a line with a strictly positive probability, since

T 0 = Z0 for those individuals undergoing a direct transition from state 1 to the absorbing

state 3. On the other hand, Z0 < T 0 indicates that the individual visits the intermediate state

2 at some time. Under censoring, only the censored versions of Z0 and T 0, along with their

corresponding censoring indicators, are available. Define Z = min(Z0, C), T = min(T 0, C),

ρ = I(Z0 6 C), and δ = I(T 0 6 C), where C is the potential censoring time, which is

assumed to be independent of (Z0, T 0). Finally, the data are (Zi, Ti, ρi, δi), 1 6 i 6 n, iid

copies of (Z, T, ρ, δ).

The target is each of the five transition probabilities pij(s, t), where 1 6 i 6 j 6 3 and

s < t are two pre-specified time points. As noted by Meira-Machado et al. (2006), these

transition probabilities are functions involving expectations of particular transformations of
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the pair (Z0, T 0); namely,

p11(s, t) =
E [I(Z0 > t)]

E [I(Z0 > s)]
, p12(s, t) =

E [I(s < Z0 6 t < T 0)]

E [I(Z0 > s)]
,

p13(s, t) =
E [I(s < Z0, T 0 6 t)]

E [I(Z0 > s)]
;

and

p22(s, t) =
E [I(Z0 6 s, t < T 0)]

E [I(Z0 6 s < T 0)]
, p23(s, t) =

E [I(Z0 6 s < T 0 6 t)]

E [I(Z0 6 s < T 0)]
.

The transition probability p11(s, t) depends just on the marginal distribution of the sojourn

time in state 1 and, therefore, it may be efficiently estimated from the Kaplan-Meier estimator

of the survival function SZ0(z) = P (Z0 > z), given by ŜZ0(z) = 1 −
∑n

i=1 wiI(Z(i) 6 z) ≡

1− F̂Z0(z), where Z(1) 6 ... 6 Z(n) denotes the ordered Z-sample and

wi =
ρ[i]

n− i+ 1

i−1∏

j=1

[
1− ρ[j]

n− j + 1

]

is the Kaplan-Meier weight attached to Z(i) (i.e. the jump of F̂Z0(z) at z = Z(i)). In the

expression of wi, ρ[i] denotes the i-th concomitant value of the censoring indicator (that

is, ρ[i] = ρj if Z(i) = Zj). Explicitly, p̂11(s, t) = ŜZ0(t)/ŜZ0(s) is a consistent estimator of

p11(s, t) for t 6 τZ ≡ inf {z : FZ(z) = 1}, where FZ stands for the cumulative distribution

function (cdf) of Z. The inconsistency of t 7→ p̂11(s, t) beyond τZ is a consequence of the

complete absence of information on Z0 on the interval (τZ ,∞). Note that this problem

vanishes when the support of C contains the support of Z0. The estimator p̂11(s, t) is just

the Aalen-Johansen estimator as introduced by Aalen and Johansen (1978) for a general

Markov multi-state model; note that the Markov assumption is irrelevant for state 1 (since

there is only one possible past for the individuals in that state) and, consequently, non-

Markov and Markov methods coincide in this case.

The estimation of the other four transition probabilities is more involving, since they

depend on both Z0 and T 0. Meira-Machado et al. (2006) considered the following estimators:

p̂12(s, t) =

∑n
i=1 WiI(s < Z[i] 6 t < T(i))

ŜZ0(s)
, p̂13(s, t) =

∑n
i=1 WiI(s < Z[i], T(i) 6 t)

ŜZ0(s)
;
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and

p̂22(s, t) =

∑n
i=1 WiI(Z[i] 6 s, t < T(i))∑n
i=1 WiI(Z[i] 6 s < T(i))

, p̂23(s, t) =

∑n
i=1 WiI(Z[i] 6 s < T(i) 6 t)∑n

i=1 WiI(Z[i] 6 s < T(i))
.

Here, Wi denotes the Kaplan-Meier weight attached to the i-th ordered T -datum, T(i); and

(
Z[i], δ[i]

)
stands for its concomitant. Explicitly, we have

Wi =
δ[i]

n− i+ 1

i−1∏

j=1

[
1− δ[j]

n− j + 1

]
.

Note that the Kaplan-Meier estimator of ST 0(t) = P (T 0 > t) is given by ŜT 0(t) = 1 −
∑n

i=1 WiI(T(i) 6 t) ≡ 1− F̂T 0(t). The idea of weighting (Zi, Ti) by the marginal weight of T 0
i

works because C is assumed to be independent of the process. The assumption of independent

censoring implies that the identifiability conditions in Stute (1993) for multivariate Kaplan-

Meier integrals hold, where the sojourn time in state 1 plays the role of a covariate. However,

potential inconsistencies at the right tail of T 0 may appear. In order to verify this note that,

in general (cfr. Theorem 1 in Meira-Machado et al., 2006)

n∑

i=1

Wiϕ(Zi, Ti) → E
[
ϕ(Z0, T 0)I(T 0

6 τT )
]

with probability 1, where ϕ stands for any transformation (provided that the limit exists)

and τT is the upper bound of the support of T . Therefore, the estimator p̂13(s, t) is consistent

only for t 6 τT , while there is no hope that p̂12(s, t), p̂22(s, t) and p̂23(s, t) will converge to

their respective targets for any t when the support of C is strictly contained in the support

of T 0. In practice, this means that these transition probabilities may only be intepreted

for the subpopulation of individuals with absorption time smaller than τT , which is hardly

of interest. A similar problem occurs with a closely related estimator recently proposed by

Allignol et al. (2014).

To avoid this issue, alternative estimators may be introduced. First, since E [I(Z0 6 s < T 0)] =

ST 0(s) − SZ0(s), the denominator in the definition of p̂22(s, t) and p̂23(s, t) can be replaced

by ŜT 0(s)− ŜZ0(s), which is consistent for s 6 τZ . Second, p̂12(s, t), p̂22(s, t) and p̂23(s, t) are



6 Biometrics, 000 0000

redefined as

p̂∗12(s, t) = 1− p̂11(s, t)− p̂13(s, t) =

∑n
i=1 wiI(s < Z(i) 6 t)−∑n

i=1 WiI(s < Z[i], T(i) 6 t)

ŜZ0(s)
,

p̂∗22(s, t) = 1− p̂∗23(s, t), and p̂∗23(s, t) =

∑n
i=1 WiI(Z[i] 6 s < T(i) 6 t)

ŜT 0(s)− ŜZ0(s)
,

respectively. In this manner, p̂∗12(s, t), p̂
∗

22(s, t) and p̂∗23(s, t) are consistent when t 6 τZ .

Moreover, p̂∗22(s, t) and p̂∗23(s, t) are consistent for s 6 τZ and t 6 τT . These alternative

estimators can be found in e.g. de Uña-Álvarez (2010). On the other hand, by using the iid

representation for multivariate Kaplan-Meier integrals (Stute, 1996) and the delta method

together with the multivariate CLT, the asymptotic normality of the estimators p̂∗ij(s, t) is

immediately obtained. See the online supplementary material for details.

Another way to introduce nonparametric estimators for the transition probabilities is by

considering specific subsamples or portions of the data at hand. For example, given the time

point s, to estimate p1j(s, t) for j = 1, 2, 3 the analysis can be retricted to the individuals

observed in state 1 at time s. This set is just S1 = {i : Zi > s}. Note that an individual in S1

reports information not only about his/her sojourn time in state 1 (Z0 > s) but also about

the potential censoring time (C > s); however, as long as C is independent of Z0, a subject

in S1 is representative of those individuals for which Z0 exceeds s. On the other hand, for

the subpopulation Z > s, the censoring time C is still independent of the pair (Z0, T 0) and,

therefore, Kaplan-Meier-based estimation will be consistent. The same applies to the analysis

restricted to the individuals observed in state 2 at time s, say S2 = {i : Zi 6 s < Ti}, which

serves to introduce new estimators for p2j(s, t), j = 2, 3.

To formalize things, let n1s be the cardinal of S1, and let Ŝ
(s)

Z0 (z) = 1−
∑n1s

i=1 w
(s)
i I(Z

(s)
(i) 6 z)

and Ŝ
(s)

T 0 (t) = 1−∑n1s

i=1 W
(s)
i I(T

(s)
(i) 6 t) be the Kaplan-Meier survival functions of Z0 and T 0

computed from such a subsample. That is, w
(s)
i and W

(s)
i are defined through

w
(s)
i =

ρ
(s)
[i]

n1s − i+ 1

i−1∏

j=1

[
1−

ρ
(s)
[j]

n1s − j + 1

]
, 1 6 i 6 n1s;
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and

W
(s)
i =

δ
(s)
[i]

n1s − i+ 1

i−1∏

j=1

[
1−

δ
(s)
[j]

n1s − j + 1

]
, 1 6 i 6 n1s,

where
(
Z

(s)
(i) , ρ

(s)
[i]

)
, i = 1, ..., n1s, is the (Z, ρ)-sample in S1 ordered with respect to Z, and

(
T

(s)
(i) , δ

(s)
[i]

)
, i = 1, ..., n1s, is the (T, δ)-sample in S1 ordered with respect to T . Introduce

p̂new11 (s, t) = Ŝ
(s)

Z0 (t), p̂
new
12 (s, t) = 1− p̂new11 (s, t)− p̂new13 (s, t), and p̂new13 (s, t) = 1− Ŝ

(s)

T 0 (t). Note

that p̂new12 (s, t) = Ŝ
(s)

T 0 (t)−Ŝ
(s)

Z0 (t); in a certain sense, p̂new12 (s, t) is a Pepe-type estimator (Pepe,

1991) when conditioning on the individuals observed in state 1 at time s. On the other hand,

p̂new11 (s, t) is just the Aalen-Johansen estimator p̂11(s, t) referred above, as demonstrated in

the online supplementary material.

Similarly, let n2s be the cardinal of S2, and let Ŝ
[s]

T 0(t) = 1 −∑n2s

i=1 W
[s]
i I(T

[s]
(i) 6 t) be the

Kaplan-Meier survival function of T 0 computed from such a subsample. That is,

W
[s]
i =

δ
[s]
[i]

n2s − i+ 1

i−1∏

j=1

[
1−

δ
[s]
[j]

n2s − j + 1

]
, 1 6 i 6 n2s,

where
(
T

[s]
(i) , δ

[s]
[i]

)
, i = 1, ..., n2s, is the (T, δ)-sample in S2 ordered with respect to T . Introduce

p̂new22 (s, t) = Ŝ
[s]

T 0(t) and p̂new23 (s, t) = 1− Ŝ
[s]

T 0(t). The estimators p̂newij (s, t) have the simple form

of a Kaplan-Meier estimator, based on a certain subsample which is determined by the time

point s. An asymptotic analysis of these new estimators is reported in the online supplemen-

tary material; in particular, their asymptotic normality is established, and expressions for

the limit variances are provided.

In practice, estimation of the variance is needed for inference purposes. To this end,

plug-in methods or resampling techniques such as the jackknife or the bootstrap can be

used. Among these, resampling methods are often preferred due to its simplicity and good

relative behavior. In Section 4 we use the bootstrap to evaluate the variance of the estimated

transition probabilities and to construct confidence limits based on the percentile bootstrap

and on the normal approximation. Like in previous papers in the area (Moreira et al., 2013;
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Allignol et al., 2014), the bootstrap provides here a practical solution to the problem of

variance estimation and inference.

3. Simulation Study

In this Section we investigate the performance of the proposed estimators through simula-

tions. More specifically, the estimators for the transition probabilities p12(s, t) and p23(s, t)

introduced in Section 2 are considered.

To simulate the data in the illness-death model, we separately consider the subjects passing

through the intermediate state 2 at some time (that is, those cases with γ = I(Z0 < T 0) = 1),

and those who directly go to the absorbing state 3 (γ = 0). For the first subgroup of

individuals (γ = 1), the successive gap times (Z0, T 0 − Z0) are simulated according to the

bivariate distribution

F12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}]

where the marginal distribution functions F1 and F2 are exponential with rate parameter

1. This corresponds to the so-called Farlie-Gumbel-Morgenstern copula, where the single

parameter θ controls for the amount of dependence between the gap times. The parameter θ

is set to 0 (independent gap times), and also to 1 (0.25 correlation between Z0 and T 0−Z0).

For the second subgroup of individuals (γ = 0), the value of Z0 is simulated according to

an exponential with rate parameter 1. To control the amount of individuals undergoing each

transition (1 → 2 → 3 and 1 → 3) we simulate γ independently of Z0, according to a

Bernoulli distribution with parameter p = 0.7. The simulation procedure is as follows:

(1) V1 ∼ Uniform (0, 1) , V2 ∼ Uniform (0, 1) are independently generated;

(2) U1 = V1, A = θ (2U1 − 1)− 1, B = (1− θ (2U1 − 1))2 + 4θV2 (2U1 − 1);

(3) U2 = 2V2/
(√

B − A
)
;
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(4) Z0 = log (1/ (1− U1));

(5) γ ∼ Bernoulli(p), with p = 0.7;

(6) T 0 = Z0 + γ log (1/ (1− U2)).

This algorithm (scenario 1 in our simulations) can be seen as arising from a latent transition

times approach, in which first the potential transition times 1 → 2 (T12 say) and 1 → 3 (T13)

are generated according to independent exponentials with rate 0.7 and 0.3 respectively, and

then Z0 = min(T12, T13) and γ = I(T12 6 T13) are recorded.

In order to consider a situation with nonhomogeneous transition intensities (scenario 2), we

introduce a frailty term F in the algorithm above, acting multiplicatively on the transition

hazards. Specifically, F is generated according to an exponential model with rate 1, and steps

(4) and (6) above are replaced by Z0 = log(1/(1−U1))/F and T 0 = Z0+γ log(1/(1−U2))/F

respectively. This relates the simulation of a mixed-Markov model as considered in Satten

(1999); indeed, in the independent case (θ = 0), the simulated model is Markov conditionally

on the frailty F . Unconditionally, this algorithm simulates loglogistic times Z0 and T 0−Z0,

leading to a non-constant transition hazards model.

An independent uniform censoring time C is generated, according to models Uniform(0, 4)

and Uniform(0, 3) in scenario 1, and models Uniform(0, 8) and Uniform(0, 5) in scenario

2, to introduce lighter or heavier censoring. To be more specific, in the case θ = 1 the

censoring proportion in the first gap time Z0 is 24%-32% (scenario 1) or 27%-35% (scenario

2), while for the second gap time these percentages increase to 47%-57% (scenario 1) or

35%-48% (scenario 2). Similar censoring proportions hold for θ = 0.

For each simulated setting we derive the analytic expression of p12(s, t) and p23(s, t) for

several (s, t) pairs, corresponding to combinations of the percentiles 20%, 40%, 60% and 80%

of the marginal distributions of the gap times. Sample sizes n = 50, n = 100 and n = 250

are considered. In each simulation, 1000 samples are generated. For each fixed pair (s, t) and
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each of the three estimators we obtain the mean bias, the standard deviation (SD), and the

mean square error (MSE) based on the 1000 Monte Carlo replicates. Tables 1 (scenario 1)

and 2 (scenario 2) report the results for the case with dependent gap times (θ = 1); the

results for the independent case (not shown) are similar.

From Tables 1 and 2 it can be seen that the performance of the methods is poorer at the

right tail (i.e. larger values of s and t) where the censoring effects are stronger. As expected, an

increasing sample size n yields to smaller SD. The SD increases with the censoring percentage,

which was also expected.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

Results in Tables 1 and 2 reveal that the new estimators based on subsamples (p̂new12 (s, t) and

p̂new23 (s, t)) may be much more efficient than other available estimators. This is particularly

clear when comparing these estimators to the original Meira-Machado et al. (2006) estimators

p̂12(s, t) and p̂23(s, t), hereafter referred to as LIDA estimators; the new method achieves much

better results with less bias and less variability. The two methods proposed in this paper

(p̂∗ij(s, t) and p̂newij (s, t)) obtain in all settings a negligible bias (decreasing as n increases),

while the LIDA estimators show a systematic bias which does not decrease with an increasing

sample size. Indeed, for a sample size of n = 250 some cases in which the bias of p̂ij(s, t) has

the order of magnitude of the SD may be found. On the other hand, the variance dominates

the performance of the two estimators proposed in this paper.

The relative efficiency between the new estimator based on subsamples (p̂newij (s, t)) and the

modified LIDA estimator (p̂∗ij(s, t)) can be measured by the ratio between their corresponding

MSEs. Tables 1 and 2 show that p̂∗ij(s, t) is very competitive; this is particularly true for the

transition probability p12(s, t). Even so, the new estimators reported a smaller MSE with



Nonparametric Estimation of Transition Probabilities 11

only a few exceptions, corresponding to small values of s and t. The relative advantages of the

new estimator are apparently greater when estimating the transition probability p23(s, t). For

example, for (s, t) = (0.2231, 1.6094) and n = 250, the relative efficiency of p̂∗ij(s, t) was as

low as 62% in scenario 1 (53% in scenario 2). It can be verified that the MSE ratio decreases

as the target pij(s, t) gets larger, when the estimator based on subsamples provides a clear

improvement over the modified LIDA estimator. There is some (relatively minor) influence

of the sample size on the MSE ratio too, which tends to decrease as n increases. Results for

n = 5000 (not shown) indicate that the asymptotic behavior of both methods is different,

and the limit variance of the one based on subsamples is strictly smaller in most situations.

We have also investigated the influence of the proportion of individuals visiting the in-

termediate state (p) on the results, by repeating the simulations with p = 0.5 in step (5)

of the algorithm. The results (not shown) were roughly the same, with a somehow poorer

performance of each method when estimating the transition probability p23(s, t), according

to the relative smaller sample size in the intermediate state. We have investigated the impact

of possible dependencies between γ and Z0 on the estimators accuracy too. To this end, the

parameter p in step (5) was allowed to depend on the Z0 generated in step (4) through the

equation p(Z0) = exp(aZ0), for the cases a = −1 (50% of visitors for state 2) and a = −3/7

(70% of visitors). The results for a = −3/7 are provided in Table 3, and they are similar

to those in Table 1, with only some slight improvements of all of them in the estimation of

p23(s, t). The results corresponding to the case a = −1 (not shown) were close to those of

the independent setting with p = 0.5.

4. Clinical Trial on Duke’s Stage III Patients

In this Section we re-analyze data of 929 patients from a large clinical trial on Duke’s stage

III patients, affected by colon cancer, that underwent a curative surgery for colo-rectal cancer

(Moertel et al., 1990). In this study, 468 patients developed recurrence and among these 414
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died, while 38 patients died without recurrence. The rest of the patients (423) remained

alive and disease-free up to the end of the follow-up. We use an illness-death multi-state

model, with “recurrence” (local recurrence or distant metastasis) as a transient state and

”death” as absorbing state. We have studied the influence of the intermediate event time on

the mortality transition of recurrent patients using a Cox proportional hazards model. This

model reported a significant coefficient (p-value < 0.001) of negative sign for the recurrence

time, according to an increased risk of death shortly after relapse. This suggests that the

Markov assumption may be unsatisfactory and, therefore, non-Markov estimators may be a

sensible choice to analyze these data. In this section we present plots for the three different

methods to estimate the transition probabilities described in Section 2. As mentioned, none

of these methods require the process to be Markov.

Figure 1 reports estimated transition probabilities for p12(s, t), for fixed values s = 365

and s = 1095 (days), along time t. Hence, this Figure 1 allows for an inspection along time

of the probability of being alive with recurrence for the individuals who are disease free one

year (Figure 1, top) and three years (Figure 1, bottom) after surgery. Since the recurrence

state is transient, this curve is first increasing and then decreasing. It is also evident that

the probabilities for s = 1095 are smaller than those for s = 365. In Figure 1 the estimators

p̂new12 (s, t) and p̂∗12(s, t) (labelled as New and LIDA* respectively) report roughly the same

estimates. However, the values of the original LIDA estimator p̂12(s, t) are systematically

smaller along most of the support of the observed survival time T , which suggests a negative

bias. The reason for this is found in the truncated limits of p̂12(s, t) given in Theorem 1 in

the online supplementary material; since the maximum value for T in the sample is censored

(τ̂T = 3329 days), p̂12(s, t) may be only interpreted as a probability restricted to that value,

thus it underestimates the target of ultimate interest.

Similar conclusions can be obtained from Figure 2, in which the transition probability
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p23(s, t) is estimated through the three methods again for s = 365 and s = 1095. Thus,

these plots report one minus the survival fraction along time, among the individuals in the

recurrence state one year (Figure 2, top) and three years (Figure 2, bottom) after surgery.

The survivorship is smaller for the first group, suggesting a negative impact of an earlier

recurrence time. For this transition probability the bias of the original LIDA estimator

is more visible for the largest value of s. In this case, the estimator p̂23(s, t) provides a

less optimistic prognosis than that of its competitors. This was expected since p̂23(s, t) is

consistent only for the subpopulation dying before time τ̂T . Summarising, it becomes clear

from this application that the proposed methods overcome the bias of Meira-Machado et al.

(2006)’s estimators when the support of the censoring variable is strictly contained in that

of the lifetime variable, which often happens in medical applications due to time limitations

in the follow-up.

In order to evaluate the accuracy of the estimators, Table 4 reports point estimates for

p12(s, t) and p23(s, t) for the three methods, along with bootstrap variance (SD2) and 95%

confidence intervals (CI). We consider s = 365 (Figures 1 and 2, top) and s = 1095 (Figures 1

and 2, bottom) and several specific values for t. The CIs are based on a normal approximation

and on the percentile bootstrap (NCI and PCI, respectively). The values of SD2 in Table

4 indicate that the new estimator and the modified LIDA estimator have roughly the same

accuracy, with some visible differences only for p23(s, t) and large values of t, when the

efficiency of p̂∗23(s, t) relative to the new method p̂new23 (s, t) is ocasionally smaller than 95%. On

the other hand, the variance of the original LIDA estimator is often much larger, particularly

in the right tail of p12(s, t), where it is even one order of magnitude above the variance of

its competitors. This is in agreement with the simulation results in the previous Section.

Accordingly, the 95% CIs of the modified LIDA estimator and of the new method are clearly

narrower than those of the original estimator p̂ij(s, t).
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When comparing the normal approximation method with the percentile method, it is seen

that both methods produce similar CIs and no method dominates the other in the sense of

reporting systematically wider or narrower confidence intervals. For example, for the new

estimator p̂newij (s, t), NCI are narrower than PCI about half of the times (10 out of the 18

cases in Table 4), although the differences between the two methods are small in any case.

Similar comments apply to p̂ij(s, t) and p̂∗ij(s, t), which indicates that the normal distribution

works well when approximating the sampling distribution of the estimators.

[Figure 1 about here.]

[Figure 2 about here.]

[Table 4 about here.]

5. Extension to a General Multi-State Model

The new method p̂newij (s, t) introduced in this paper to estimate the transition probabilities

in a progressive non-Markov illness-death model can be easily extended to a more general

multi-state model. In this Section we explore this possibility and we give the needed details.

Let {X(t), t > 0} be a general multi-state model with state space E , where X(t) denotes

the state occupied by the process at time t, t > 0. Assume that, for two specific states i, j in

E , one is interested in estimating the transition probability pij(s, t) = P (X(t) = j|X(s) = i),

s 6 t. Let Xj be the set of states from which j is reachable, and let Zj and T j denote the

sojourn times in Xj and Xj ∪ {j}, respectively. Like for the progressive illness-death model,

Zj = T j may occur; indeed, this will be the case for the subpopulation not visiting state

j. On the contrary, Zj < T j indicates that the individual is visiting state j at some time.

Moreover, with this notation

pij(s, t) = P (Zj
6 t < T j|X(s) = i).
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Under independent censoring, this probability can be estimated from the subset of indi-

viduals observed to be in state i at time s, say Si = {k : Xk(s) = i, Ck > s}, where Xk(.)

is the trajectory of the k-th individual, and Ck denotes his/her potential censoring time.

Interestingly, since Zj 6 T j, the following decomposition holds:

pij(s, t) = P (Zj
6 t|X(s) = i, C > s)− P (T j

6 t|X(s) = i, C > s).

Both terms at the right-hand side may be consistently estimated from the subsample S i by

computing the Kaplan-Meier estimators corresponding to Zj and T j, respectively, in such

a subsample. Like for the illness-death model, standard software can be used to this end,

once the subset Si is constructed and the observed sojourn times Zj and T j (together with

their corresponding censoring indicators) are computed. On the other hand, the asymptotic

properties of this new estimator, say p̂gij(s, t), are easily derived from the properties of the

Kaplan-Meier curve, similarly as for the progressive illness-death model. In particular, the

estimator is consistent on the support of the censoring time. For particular states i, j,

p̂gij(s, t) actually involves only one Kaplan-Meier estimator. This is the case for example

when j is the initial state of the process; then Xj is empty, and Zj = 0 with probability 1

by convention, from which pij(s, t) = 1−P (T j 6 t|X(s) = i, C > s). The same occurs when

i = j, since in such a case X(s) = i implies Zj = Zi < s and therefore Zj 6 t. Finally,

when the state j is the unique absorbing state of the process, one rather gets T j = ∞ and

pij(s, t) = P (Zj 6 t|X(s) = i, C > s), so again only one Kaplan-Meier estimator is involved

in the estimation of pij(s, t). When j is one out of several possible absorbing states, an

empirical cumulative incidence function based on the subsample Si may be used to estimate

pij(s, t) instead. In the uncensored case, p̂gij(s, t) is just the fraction of individuals in state j

at time t among those being in state i at time s. Also, it is easily seen that p̂gij(s, t) reduces

to the estimator p̂newij (s, t) when the multi-state model is the illness-death progressive model

presented in Section 2; in that case, Zj and T j are respectively the sojourn time in state 1
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and the total survival time if j = 2, while T j is the sojourn time in state 1 and Zj = 0 when

j = 1.

It should be noted that the representation given for pij(s, t) is valid for a general multi-

state model as long as Xj does not contain j itself. If the process allows for more than one

visit to state j, the equality {X(t) = j} = {Zj 6 t < T j} is no longer true; this is the case

for example in the three-state illness-death model with recovery (Hougaard, 2000), where

the individual can go back to the initial state 1 from the intermediate state 2. However, the

given formulation works for a fairly general multi-state model and, in particular, for any

progressive multi-state model one may have in mind. Finally, for consistency purposes it is

assumed that the potential censoring time C is independent of Zj and T j conditionally on

{X(s) = i, C > s}; this holds in particular for every time point s and every pair of states

(i, j) if C is independent of the process.

6. Main Conclusions

In this paper the problem of estimating a transition probability matrix in a non-Markov

illness-death model has been reviewed, and two new sets of estimators have been proposed.

The first one comes from a simple modification of the estimators in Meira-Machado et al.

(2006) and looks for a correction of the ’bias problem’ due to censoring. The second method

proceeds by considering specific subsets of individuals (namely, those observed to be in a

given state at a pre-specified time point s) for which the ordinary Kaplan-Meier survival

function leads to a consistent estimator of the target. The provided simulations suggest that

both approaches are preferable to the original estimators in Meira-Machado et al. (2006),

since they often have less variance and, more importantly, they are able to remove the

systematic bias in heavily censored scenarios. Between the two new methods, the one based

on subsamples is recommended; it may be computed by using standard software (since it

only involves two Kaplan-Meier survival functions) and, for most of the considered simulated
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scenarios, its mean squared error is smaller than that corresponding to the modified Meira-

Machado et al. (2006)’s estimators. More specifically, the relative efficiency of the approach

based on subsamples may be as large as 1.9, depending on the sample size, the censoring

percentage, and the particular target to be estimated.

Asymptotic normality of the proposed estimators has been established. The relative per-

formance of the methods has been evaluated through the analysis of data from a clinical

trial on colon cancer too. In this application, the original estimator in Meira-Machado et al.

(2006) when estimating transition probabilities is clearly biased. The new methods overcome

this issue and provide estimates with smaller variances. To estimate the variance, the simple

bootstrap has been proposed. Besides, confidence intervals for the transition probabilities

based on the normal approximation and on the percentile bootstrap have been provided for

the colon cancer study. Both methods reported similar results.

Finally, the extension of the proposed estimators to multi-state models beyond the pro-

gressive illness-death model has also been discussed. In particular, it has been shown how

the new method based on the computation of Kaplan-Meier curves in subsamples can be

extended to any progressive multi-state model. Due to the good properties and simplicity of

this approach, we believe that it may become a new standard for the estimation of transition

probabilities in non-Markov multi-state models.
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Figure 1. Estimated transition probabilities for p12(s, t), s = 365 (top) and s = 1095
bottom. Colon cancer data.
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Figure 2. Estimated transition probabilities for p23(s, t), s = 365 (top) and s = 1095
bottom. Colon cancer data.
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Table 1

Bias and standard deviation (SD) for the three estimators of pij(s, t). The MSE of p̂new
ij (s, t) relative to p̂∗ij(s, t) is

also given. Scenario 1: correlated exponential gap times, p = 0.7.
p̂12(s, t) p̂∗

12
(s, t) p̂new

12
(s, t)

bias SD bias SD bias SD MSEnew/MSE∗

(s,t)= (.2231,.5108)
n=50 C ∼ U [0, 4] -0.0086 0.0705 -0.0020 0.0577 -0.0021 0.0577 1.0021

C ∼ U [0, 3] -0.0106 0.0791 -0.0025 0.0593 -0.0025 0.0593 1.0006
n=100 C ∼ U [0, 4] -0.0037 0.0506 -0.0012 0.0401 -0.0012 0.0401 1.0019

C ∼ U [0, 3] -0.0115 0.0547 0.0007 0.0429 0.0007 0.0429 1.0011
n=250 C ∼ U [0, 4] -0.0094 0.0325 -0.0001 0.0255 -0.0001 0.0256 1.0031

C ∼ U [0, 3] -0.0106 0.0356 0.0002 0.0260 0.0001 0.0260 1.0030

(s,t)= (.2231,1.6094)
n=50 C ∼ U [0, 4] -0.0396 0.1103 0.0010 0.0820 0.0010 0.0814 0.9859

C ∼ U [0, 3] -0.0726 0.1292 0.0023 0.0925 0.0019 0.0922 0.9936
n=100 C ∼ U [0, 4] -0.0319 0.0816 0.0021 0.0593 0.0019 0.0588 0.9798

C ∼ U [0, 3] -0.0759 0.0933 -0.0011 0.0634 -0.0008 0.0623 0.9662
n=250 C ∼ U [0, 4] -0.0258 0.0557 0.0012 0.0379 0.0012 0.0377 0.9882

C ∼ U [0, 3] -0.0700 0.0644 0.0001 0.0423 0.0001 0.0419 0.9782

(s,t)= (.9163,1.6094)
n=50 C ∼ U [0, 4] -0.0533 0.1697 0.0057 0.1292 0.0057 0.1276 0.9737

C ∼ U [0, 3] -0.1094 0.1842 -0.0051 0.1381 -0.0042 0.1361 0.9706
n=100 C ∼ U [0, 4] -0.0405 0.1275 -0.0023 0.0894 -0.0024 0.0886 0.9814

C ∼ U [0, 3] -0.0902 0.1414 0.0038 0.0954 0.0028 0.0947 0.9843
n=250 C ∼ U [0, 4] -0.0345 0.0678 -0.0001 0.0538 0.0001 0.0531 0.9751

C ∼ U [0, 3] -0.0924 0.0938 -0.0039 0.0574 -0.0038 0.0565 0.9677

p̂23(s, t) p̂∗
23
(s, t) p̂new

23
(s, t)

(s,t)= (.2231,.5108)
n=50 C ∼ U [0, 4] 0.0314 0.2718 -0.0063 0.2471 0.0034 0.2453 0.9850

C ∼ U [0, 3] 0.0331 0.2872 -0.0048 0.2497 -0.0094 0.2471 0.9800
n=100 C ∼ U [0, 4] 0.0134 0.1651 0.0026 0.1651 0.0031 0.1641 0.9179

C ∼ U [0, 3] 0.0188 0.1875 -0.0036 0.1664 -0.0028 0.1639 0.9702
n=250 C ∼ U [0, 4] -0.0013 0.1059 -0.0074 0.1011 -0.0077 0.0995 0.9223

C ∼ U [0, 3] 0.0048 0.1107 -0.0071 0.1029 -0.0075 0.1005 0.9551

(s,t)= (.2231,1.6094)
n=50 C ∼ U [0, 4] 0.0304 0.1551 -0.0429 0.1819 -0.0184 0.1781 0.9882

C ∼ U [0, 3] 0.0399 0.1665 -0.0589 0.2090 -0.0410 0.2099 0.9702
n=100 C ∼ U [0, 4] 0.0180 0.1257 -0.0205 0.1333 -0.0046 0.1176 0.7619

C ∼ U [0, 3] 0.0444 0.1228 -0.0333 0.1481 -0.0129 0.1335 0.7809
n=250 C ∼ U [0, 4] 0.0087 0.0900 -0.0065 0.0871 -0.0013 0.0725 0.8786

C ∼ U [0, 3] 0.0295 0.0933 -0.0079 0.0961 0.0003 0.0760 0.6213

(s,t)= (.9163,1.6094)
n=50 C ∼ U [0, 4] 0.0589 0.2410 -0.0025 0.2087 -0.0045 0.2003 0.9696

C ∼ U [0, 3] 0.1453 0.2738 0.0034 0.2309 0.0082 0.2263 0.9613
n=100 C ∼ U [0, 4] 0.0515 0.1656 0.0079 0.1420 0.0067 0.1331 0.6895

C ∼ U [0, 3] 0.0963 0.2028 0.0019 0.1596 -0.0042 0.1457 0.8332
n=250 C ∼ U [0, 4] 0.0306 0.1078 -0.0015 0.0930 -0.0013 0.0872 0.8793

C ∼ U [0, 3] 0.0856 0.1295 0.0013 0.1023 0.0005 0.0939 0.8416
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Table 2

Bias and standard deviation (SD) for the three estimators of pij(s, t). The MSE of p̂new
ij (s, t) relative to p̂∗ij(s, t) is

also given. Scenario 2: correlated loglogistic gap times, p = 0.7.
p̂12(s, t) p̂∗

12
(s, t) p̂new

12
(s, t)

bias SD bias SD bias SD MSEnew/MSE∗

(s,t)= (.2500,.6667)
n=50 C ∼ U [0, 8] -0.0044 0.0604 -0.0012 0.0538 -0.0012 0.0538 0.9983

C ∼ U [0, 5] -0.0096 0.0652 -0.0016 0.0550 -0.0015 0.0550 0.9974
n=100 C ∼ U [0, 8] -0.0033 0.0462 -0.0007 0.0392 -0.0007 0.0392 1.0000

C ∼ U [0, 5] -0.0076 0.0483 -0.0011 0.0403 -0.0011 0.0403 1.0000
n=250 C ∼ U [0, 8] -0.0025 0.0287 -0.0003 0.0242 -0.0003 0.0242 0.9983

C ∼ U [0, 5] -0.0065 0.0308 0.0006 0.0246 -0.0006 0.0246 1.0000

(s,t)= (.2500,4.0000)
n=50 C ∼ U [0, 8] -0.0385 0.0887 0.0033 0.0731 0.0037 0.0719 0.9695

C ∼ U [0, 5] -0.0992 0.0815 0.0071 0.0969 0.0069 0.0960 0.9823
n=100 C ∼ U [0, 8] -0.0344 0.0673 0.0030 0.0507 0.0029 0.0502 0.9764

C ∼ U [0, 5] -0.0943 0.0682 0.0033 0.0715 0.0033 0.0704 0.9718
n=250 C ∼ U [0, 8] -0.0339 0.0469 0.0012 0.0322 0.0011 0.0318 0.9721

C ∼ U [0, 5] -0.0904 0.0526 0.0013 0.0443 0.0012 0.0438 0.9766

(s,t)= (1.5000,4.0000)
n=50 C ∼ U [0, 8] -0.0579 0.1550 0.0063 0.1204 0.0073 0.1183 0.9671

C ∼ U [0, 5] -0.1505 0.1327 0.0120 0.1641 0.0126 0.1612 0.9664
n=100 C ∼ U [0, 8] -0.0520 0.1221 0.0054 0.0875 0.0056 0.0859 0.9636

C ∼ U [0, 5] -0.1430 0.1143 0.0085 0.1207 0.0078 0.1198 0.9858
n=250 C ∼ U [0, 8] -0.0537 0.0795 0.0021 0.0562 0.0022 0.0554 0.9696

C ∼ U [0, 5] -0.1376 0.0881 0.0025 0.0760 0.0027 0.0748 0.9690

p̂23(s, t) p̂∗
23
(s, t) p̂new

23
(s, t)

(s,t)= (.2500,.6667)
n=50 C ∼ U [0, 8] 0.0148 0.2832 -0.0036 0.2634 -0.0009 0.2661 1.0210

C ∼ U [0, 5] 0.0275 0.2998 -0.0114 0.2668 -0.0041 0.2737 1.0504
n=100 C ∼ U [0, 8] 0.0106 0.1862 0.0013 0.1780 0.0009 0.1769 0.9869

C ∼ U [0, 5] 0.0247 0.1994 0.0000 0.1821 0.0016 0.1822 1.0018
n=250 C ∼ U [0, 8] 0.0056 0.1134 -0.0014 0.1059 -0.0019 0.1042 0.9686

C ∼ U [0, 5] 0.0146 0.1220 -0.0012 0.1098 -0.0017 0.1074 0.9581

(s,t)= (.2500,4.0000)
n=50 C ∼ U [0, 8] 0.0072 0.1083 -0.0560 0.1427 -0.0295 0.1337 0.7977

C ∼ U [0, 5] 0.0138 0.1095 -0.0853 0.1679 -0.0507 0.1597 0.7914
n=100 C ∼ U [0, 8] 0.0118 0.0650 -0.0320 0.0850 -0.0104 0.0714 0.6313

C ∼ U [0, 5] 0.0207 0.0607 -0.0527 0.1115 -0.0288 0.0963 0.6651
n=250 C ∼ U [0, 8] 0.0090 0.0506 -0.0165 0.0546 -0.0044 0.0414 0.5305

C ∼ U [0, 5] 0.0197 0.0513 -0.0271 0.0665 -0.0137 0.0529 0.5792

(s,t)= (1.5000,4.0000)
n=50 C ∼ U [0, 8] 0.0734 0.2131 -0.0350 0.2105 -0.0189 0.2062 0.9413

C ∼ U [0, 5] 0.1285 0.2231 -0.0741 0.2651 -0.0657 0.2632 0.9711
n=100 C ∼ U [0, 8] 0.0596 0.1586 -0.0097 0.1485 -0.0037 0.1350 0.8238

C ∼ U [0, 5] 0.1441 0.1477 -0.0273 0.1900 -0.0178 0.1789 0.8772
n=250 C ∼ U [0, 8] 0.0441 0.1116 -0.0015 0.1005 -0.0009 0.0835 0.6898

C ∼ U [0, 5] 0.1291 0.1223 -0.0067 0.1330 -0.0050 0.1134 0.7263
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Table 3

Bias and standard deviation (SD) for the three estimators of pij(s, t). The MSE of p̂new
ij (s, t) relative to p̂∗ij(s, t) is

also given. Scenario 3: correlated exponential gap times, p(Z0) = exp(−(3/7)Z0).
p̂ij(s, t) p̂∗ij(s, t) p̂new

ij (s, t)

bias SD bias SD bias SD MSEnew/MSE∗

(s,t)= (.2231,.5108)
n=50 C ∼ U [0, 4] -0.0090 0.0741 -0.0010 0.0634 -0.0011 0.0633 0.9985

C ∼ U [0, 3] -0.0106 0.0791 -0.0025 0.0593 -0.0025 0.0593 1.0006
n=100 C ∼ U [0, 4] -0.0065 0.0549 -0.0012 0.0452 -0.0012 0.0452 0.9990

C ∼ U [0, 3] -0.0115 0.0547 0.0007 0.0429 0.0007 0.0429 1.0011
n=250 C ∼ U [0, 4] -0.0057 0.0349 -0.0002 0.0273 -0.0002 0.0273 0.9987

C ∼ U [0, 3] -0.0106 0.0356 0.0002 0.0260 0.0001 0.0260 1.0030

(s,t)= (.2231,1.6094)
n=50 C ∼ U [0, 4] -0.0344 0.1044 0.0036 0.0854 0.0029 0.0846 0.9788

C ∼ U [0, 3] -0.0726 0.1292 0.0023 0.0925 0.0019 0.0922 0.9936
n=100 C ∼ U [0, 4] -0.0295 0.0786 0.0025 0.0602 0.0020 0.0599 0.9887

C ∼ U [0, 3] -0.0759 0.0933 -0.0011 0.0634 -0.0008 0.0623 0.9662
n=250 C ∼ U [0, 4] -0.0257 0.0521 0.0019 0.0386 0.0019 0.0379 0.9618

C ∼ U [0, 3] -0.0700 0.0644 0.0001 0.0423 0.0001 0.0419 0.9782

(s,t)= (.9163,1.6094)
n=50 C ∼ U [0, 4] -0.0403 0.1544 0.0035 0.1230 0.0037 0.1205 0.9604

C ∼ U [0, 3] -0.1094 0.1842 -0.0051 0.1381 -0.0042 0.1361 0.9706
n=100 C ∼ U [0, 4] -0.0327 0.0963 0.0027 0.0849 0.0023 0.0838 0.9734

C ∼ U [0, 3] -0.0902 0.1414 0.0038 0.0954 0.0028 0.0947 0.9843
n=250 C ∼ U [0, 4] -0.0282 0.0632 0.0033 0.0529 0.0038 0.0518 0.9577

C ∼ U [0, 3] -0.0924 0.0938 -0.0039 0.0574 -0.0038 0.0565 0.9677

p̂23(s, t) p̂∗
23
(s, t) p̂new

23
(s, t)

(s,t)= (.2231,.5108)
n=50 C ∼ U [0, 4] 0.0135 0.2241 -0.0045 0.1981 -0.0058 0.1976 0.9950

C ∼ U [0, 3] 0.0230 0.2372 -0.0026 0.2033 -0.0019 0.2056 1.0226
n=100 C ∼ U [0, 4] 0.0045 0.1439 -0.0038 0.1322 -0.0044 0.1301 0.9695

C ∼ U [0, 3] 0.0129 0.1549 -0.0042 0.1361 -0.0042 0.1344 0.9749
n=250 C ∼ U [0, 4] 0.0061 0.0899 0.0013 0.0840 0.0013 0.0831 0.9796

C ∼ U [0, 3] 0.0138 0.0957 0.0011 0.0866 0.0017 0.0853 0.9696

(s,t)= (.2231,1.6094)
n=50 C ∼ U [0, 4] 0.0097 0.1597 -0.0361 0.1565 -0.0201 0.1533 0.9270

C ∼ U [0, 3] 0.0226 0.1664 -0.0441 0.1743 -0.0287 0.1654 0.8722
n=100 C ∼ U [0, 4] 0.0059 0.1144 -0.0184 0.1127 -0.0107 0.1031 0.8236

C ∼ U [0, 3] 0.0207 0.1190 -0.0253 0.1245 -0.0146 0.1103 0.7667
n=250 C ∼ U [0, 4] 0.0055 0.0744 -0.0055 0.0739 -0.0029 0.0606 0.6701

C ∼ U [0, 3] 0.0192 0.0808 -0.0103 0.0818 -0.0051 0.0661 0.6453

(s,t)= (.9163,1.6094)
n=50 C ∼ U [0, 4] 0.0486 0.2174 -0.0050 0.1967 -0.0048 0.1865 0.8988

C ∼ U [0, 3] 0.1158 0.2606 -0.0063 0.2156 -0.0062 0.2044 0.8986
n=100 C ∼ U [0, 4] 0.0441 0.1549 0.0035 0.1382 0.0030 0.1285 0.8638

C ∼ U [0, 3] 0.1047 0.1827 0.0046 0.1518 0.0026 0.1384 0.8306
n=250 C ∼ U [0, 4] 0.0379 0.1001 0.0054 0.0852 -0.0029 0.0606 0.9056

C ∼ U [0, 3] 0.0876 0.1193 0.0049 0.0934 0.0069 0.0881 0.8922
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Table 4

Point estimates for p12(s, t) and p23(s, t) and bootstrap variances (SD2) for the three methods, along with 95%
bootstrap confidence intervals based on the normal approximation (NCI) and the percentile method (PCI). Colon

cancer study.
p̂ij(s, t) NCI p̂∗ij(s, t) NCI p̂new

ij (s, t) NCI

(SD2
× 104) PCI (SD2

× 104) PCI (SD2
× 104) PCI

p12(s, t) s = 365

t = 500 0.0768 [0.0570; 0.0966] 0.0832 [0.0629; 0.1035] 0.0833 [0.0630; 0.1036]
(1.0206) [0.0567; 0.0964] (1.0727) [0.0633; 0.1033] (1.0728) [0.0633; 0.1033]

t = 1000 0.1206 [0.0945; 0.1467] 0.1345 [0.1089; 0.1601] 0.1344 [0.1088; 0.1600]
(1.7733) [0.0937; 0.1482] (1.0706) [0.1098; 0.1616] (1.0709) [0.1098; 0.1016]

t = 1500 0.0703 [0.0481; 0.0925] 0.0994 [0.0768; 0.1220] 0.0993 [0.0767; 0.1219]
(1.2830) [0.0498; 0.0918] (1.3296) [0.0757; 0.1222] (1.3339) [0.0756; 0.1221]

t = 2000 0.0468 [0.0220; 0.0716] 0.0740 [0.0574; 0.0933] 0.0739 [0.0546; 0.0932]
(1.6011) [0.0243; 0.0720] (0.9658) [0.0560; 0.0939] (0.9682) [0.0558; 0.0938]

t = 2500 0.0497 [0.0003; 0.0991] 0.0649 [0.0429; 0.0869] 0.0644 [0.0423; 0.0865]
(6.3530) [0.0088; 0.1084] (1.2599) [0.0429; 0.0871] (1.2702) [0.0427; 0.0867]

p12(s, t) s = 1095

t = 1200 0.0129 [0.0028; 0.0230] 0.0163 [0.0053; 0.0273] 0.0163 [0.0053; 0.0273]
(0.2636) [0.0040; 0.0236] (0.3150) [0.0060; 0.0284] (0.3170) [0.0060; 0.0284]

t = 1500 0.0357 [0.0166; 0.0548] 0.0469 [0.0266; 0.0672] 0.0469 [0.0266; 0.0672]
(0.9497) [0.0181; 0.0567] (1.0727) [0.0284; 0.0693] (1.0732) [0.0284; 0.0693]

t = 2000 0.0508 [0.0207; 0.0809] 0.0595 [0.0374; 0.0816] 0.0593 [0.0372; 0.0814]
(2.3545) [0.0228; 0.0830] (1.2714) [0.0391; 0.0815] (1.2718) [0.0389; 0.0815]

t = 2500 0.0616 [0.0000; 0.1272] 0.0535 [0.0290; 0.0780] 0.0525 [0.0279; 0.0771]
(11.2024) [0.0070; 0.1358] (1.5626) [0.0290; 0.0787] (1.5736) [0.0275; 0.0779]

p23(s, t) s = 365

t = 500 0.2950 [0.2148; 0.3752] 0.2829 [0.2060; 0.3598] 0.2828 [0.2059; 0.3597]
(16.7437) [0.2148; 0.3836] (15.3942) [0.2055; 0.3668] (15.4342) [0.2055; 0.3667]

t = 1000 0.8280 [0.7573; 0.8987] 0.7939 [0.7268; 0.8610] 0.7931 [0.7262; 0.8600]
(13.0120) [0.7558; 0.8935] (11.7206) [0.7218; 0.8561] (11.6508) [0.7214; 0.8542]

t = 1500 0.9288 [0.8740; 0.9836] 0.8906 [0.8408; 0.9404] 0.8897 [0.8400; 0.9394]
(7.8174) [0.8690; 0.9792] (6.4660) [0.8356; 0.9338] (6.4244) [0.8356; 0.9329]

t = 2000 0.9586 [0.9092; 1.0000] 0.9191 [0.8746; 0.9636] 0.9172 [0.8730; 0.9614]
(6.3527) [0.9032; 1.0000] (5.1549) [0.8684; 0.9620] (5.0847) [0.8671; 0.9592]

t = 2500 0.9761 [0.9310; 1.0000] 0.9359 [0.8939; 0.9778] 0.9326 [0.8910; 0.9742]
(5.3549) [0.9228; 1.0000] (4.5840) [0.8871; 0.9734] (4.5050) [0.8852; 0.9696]

p23(s, t) s = 1095

t = 1200 0.2266 [0.1415; 0.3117] 0.1888 [0.1192; 0.2584] 0.1885 [0.1189; 0.2581]
(18.8492) [0.1486; 0.3172] (12.6102) [0.1251; 0.2631] (12.6100) [0.1250; 0.2628]

t = 1500 0.6014 [0.4903; 0.7125] 0.5011 [0.4096; 0.5926] 0.5000 [0.4086; 0.5914]
(32.1316) [0.4818; 0.7104] (21.7945) [0.4094; 0.5922] (21.7468) [0.4071; 0.5918]

t = 2000 0.8737 [0.7699; 0.9775] 0.7279 [0.6432; 0.8126] 0.7222 [0.6384; 0.8060]
(28.0478) [0.7639; 0.9677] (18.6754) [0.6433; 0.8100] (18.2807) [0.6374; 0.8017]

t = 2500 0.9307 [0.8397; 1.0000] 0.7754 [0.6924; 0.8584] 0.7630 [0.6824; 0.8436]
(21.5469) [0.8327; 1.0000] (17.9333) [0.6878; 0.8658] (16.9112) [0.6769; 0.8496]


