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Abstract

This paper presents a simple two-step nonparametric estimator for a triangular

simultaneous equation model. Our approach employs series approximations that exploit the

additive structure of the model. The first step comprises the nonparametric estimation

of the reduced form and the corresponding residuals. The second step is the estimation

of the primary equation via nonparametric regression with the reduced form residuals

included as a regressor. We derive consistency and asymptotic normality results for our

estimator, including optimal convergence rates. Finally we present an empirical example,

based on the relationship between the hourly wage rate and annual hours worked, which
illustrates the utility of our approach.

Keywords: Nonparametric Estimation, Simultaneous Equations, Series Estimation, Two-Step
Estimators.
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1. Introduction

Structural estimation is important in econometrics, because it is needed to account

correctly for endogeneity that comes from individual choice or market equilibrium. Often

structural models do not have tight functional form specifications, so that it is useful

to consider nonparametric structural models and their estimation. This paper proposes

and analyzes one approach to nonparametric structural modeling and estimation. This

approach is different than standard nonparametric regression, because the object of

estimation is the structural model and not just a conditional expectation.

Nonparametric structural models have been previously considered in Roehrig (1988),

Newey and Powell (1989) and Vella (1991). Roehrig (1988) gives identification results

for a system of equations when the errors are independent of the instruments. Newey and

Powell (1989) consider identification and estimation under the weaker condition that the

disturbance has conditional mean zero given the instruments. The results of this paper

are complementary to these previous results. The model we consider is more restrictive

in some ways than Newey and Powell (1989), but is easier to estimate.

The model we consider is a triangular nonparametric simultaneous equations model

where

y = or (x Z ) + G

(1.1)
° ^

, E[e|u,z] = E[e|u], E[u|z] = 0,

X = n (z) + u

X is a d X 1 vector of endogenous variables, z is a d x 1 vector of instrumental

variables that includes z, as a d,, x 1 subvector, n„(z) is a d x 1 vector of
1 11 X

functions of the instruments z, and u is a d x 1 vector of disturbances. Equation

(1.1) generalizes the limited information simultaneous equations model to allow for a

nonparametric relationship g (x,z ) between the variables y and (x,z ) and a

nonparametric reduced form Ilf^(z).

The conditional mean restriction in equation (1.1) is one conditional mean version



2
of the usual orthogonality condition for a linear model. Equation (1.1) is a more

general assumption than requiring that (e,u) be independent of z and that E[u] = 0.

This added generality may be important for some econometric models, because it allows for

conditional heteroskedasticity in the disturbances. For example, in some separable

demand models y can be purchases of a commodity and x expenditures on a subgroup of

commodities. Endogeneity results from expenditure on a commodity subset being a choice

variable. Also, heteroskedasticity often results from individual heterogeneity in demand

functions, as pointed out by Brown and Walker (1989). Assumption (1.1) allows for both

endogeneity and heteroskedasticity.

An alternative model, considered by Newey and Powell (1989), requires only that

E[c|z] = 0. Strictly speaking, neither model is stronger than the other, because

3
equation (1.1) does not imply that E[e|z] = 0. The additive separability of x

into a reduced form and a residual u satisfying equation (1.1) is a strong restriction.

One benefit of such a condition is that it leads to a straightforward estimation

approach, as will be further discussed below. In this sense, the model of equation (1.1)

is a convenient one for applications where its restrictions are palatable. In contrast,

estimation is very difficult if only the conditional mean assumption E[e|z] = is

4
satisfied, as discussed in Newey and Powell (1989).

We propose a two-step nonparametric estimator of this model. The first step

consists of the construction of a residual vector u from the nonparametric regression

of X on z. The second step is the nonparametric regression of y on x, z , and

2
If n (z) were linear in z and the conditional expectations were replaced by

population regressions, then the third condition implies that z is orthogonal to u,

and the second condition that z is orthogonal to e.

3
If equation (1.1) is satisfied, u is independent of z, and E[e] = 0, then E[e|z]

= E[E[e|u,z]|z] = E[E[e|u]|z] = E[E[e|u]] = E[e] = 0.

4
The mapping from the reduced form E[y|z] to the structure g-(x,z ) turns out to be

discontinuous, making it difficult to construct a consistent estimator.



u. Two-step nonparametric kernel estimation has previously been considered in Ahn

(1994). Our results concern series estimators, which are convenient for imposing the

additive structure implied by equation (1.1). We derive optimal mean-square convergence

rates and asymptotic normality results that account for the first step estimation and

allow for v'n-consistency of mean-square continuous functionals of the estimator.

Section 2 of the paper considers identification, presenting straightforward

sufficient conditions. Section 3 describes the estimator and Section 4 derives

convergence rates. Section 5 gives conditions for asymptotic normality and inference,

including consistent standard error formulae. Section 6 describes an extension of the

model and estimators to semiparametric models. Section 7 contains an empirical example

and Monte Carlo results illustrating the utility of our approach.

Identification

An implication of our model is that for '^(-v(u) = E[c|u],

(2.1) E[y|x,z] =
gQ^^-^i^

+ E[g|x,2] = Eq(->^,z^) + E[e|u,z]

= ggfx.z^) + Aq(u) = hQ(w). w = (x', z'^. u')',

Thus, the function of interest, g (x,z ), is one component of an additive regression of

y on (x,z ) and u. Equation (2.1) also implies that E[e|u,z] = E[y-g-^(x,z ) lu.z] =

E[X (u)+{y-E[y|x,z]>|u,z] = ^^(u) only depends on u, which implies E[e|u,z] = E[e|u],

as specified in equation (1.1). Thus, the additive structure of equation (2.1) is

equivalent to the conditional mean restriction of equation (1.1). Furthermore, u is

identified, so that the identification of g_^ under equation (1.1) is the same as the

identification of this additive component in equation (2.1).

To analyze identification of g (x,z ), note that a conditional expectation is

unique with probability one, so that any other additive function g(x,z )+X(u)



satisfying equation (2.1) must have Prob(g(x,z )+A(u) = g (x,z )+A (u)) = 1. Therefore,

identification is equivalent to equality of conditional expectations implying equality of

the additive components, up to a constant. Equivalently, working with the difference of

two conditional expectations, identification is equivalent to the statement that a zero

additive function must have only constant components. To be precise we have

Theorem. 2.1: gJx.z) is identified, up to an additive constant, if and only if

Prob(8(x,zJ + "xCu) - 0) = 1 implies there is a constant c with Prob(8(x,z,) = c )
1 gig

There is a straightforward interpretation of this result that leads to a simple

sufficient condition for identification. Suppose that identification fails. Then by

Theorem 2.1, there are 5(x,z ) and ^'(u) with 5(x,z ) + g-Cu) = and 5(x,z )

nonconstant. Intuitively, this implies a functional relationship between u and

(x,z ), a degeneracy in the joint distribution of these two random variables. For

instance, if 2'(u) were a one-to-one function of a subvector u of u, then u =

Tf (5(x,z )). More generally, 6(x,z ) + 3'(u) = implies an exact relationship between

the random vectors (x,z ) and u. Consequently, the absence of an exact relationship

will imply identification.

To formalize these ideas it is helpful to be precise about what we mean by existence

of a functional relationship.

Definition: There is a functional relationship between Cx,zJ and u if and only if

there exists h(x,z ,u) and a set 11 such that ProbCU.) >0, Prob(h(x.z ,u) = 0) = 1

and Prob(h(x,z ,u) = 0) < 1 for all fixed u e 11.

This condition says that the pair of vectors (x,z ) and u solve a nontrivial implicit

equation. Thus, the functional relationship of this definition is an implicit one. As

previously noted, nonidentification implies existence of such an implicit relationship.

Therefore, the contrapositive statement leads to the following sufficiency result for



identification.

Theorem 2.2: If there is no functional relationship between (x,z ) and u then

g (x,z ) is identified up to an additive constant.

Although it is a sufficient condition, nonexistence of a functional relationship between

(x,z ) and u is not a necessary condition for identification. By Theorem 2.1, it is

nonexistence of an additive functional relationship that is necessary and sufficient

condition. Thus, identification may still occur when there is an exact, nonadditive

functional relationship.

The additive structure in equation (2.1) is so strong that the model may be

identified even when the usual order condition is not satisfied, i.e. even though z has

smaller dimension than (x,z ). For example, suppose x is two dimensional, z is not

present, z is a scalar, n(z) = (z,e ), and g(-)(x) and '^^((u) are restricted to be

differentiable. In this example there is only one instrument although there are two

endogenous variables. The reduced form x = n(z) + u implies a nonlinear, nonadditive

relationship between x and u of the form x -u = exp(x -u ). Consider an additive

function 6{x) + zM satisfying

(2.2) = 5(x) + ^(u) = 5(x^,exp(x^-u^)+U2) + ^'("^.^2) = 0-

The restriction that gp,(x) and A. (u) are differentiable means that 5(x) and 2r(u)

must also be differentiable. Let numerical subscripts denote partial derivatives with

respect to corresponding arguments. Then equation (2.2) implies

5^(x) + 52(x)exp(x^-u^) = 0, -52(x)exp(x -u ) + rAu) = 0, 5 (x) + y^^") = 0.

Combining the last two equations gives

ZAu) = -y (u)exp(u -X ).



Assuming that support of x conditional on u contains more than one point with

probability one, so that x can vary for given u, it follows from this equation that

with probability one r,(u) = 7^M = 0. Then the second and first equations imply

5 (x) = 5 (x) = 0, implying that both 5 and y are constant functions. Thus,

equation (2.2) implies that 5(x) is a constant function, and hence g(-,(x) is

identified, up to a constant, by Theorem 2.1.

There is a simple sufficient condition for identification that generalizes the rank

condition for identification in a linear simultaneous equations system. Suppose that z

is partitioned as z = (z ,z ). Let x, u, 1, and 2 subscripts denote

differentiation with respect to x, u, z , and z respectively.

Theorem 2.3: If g(x,z ), -XCu), and Tl(z) are differentiable, the boundary of the

support of (z,u) has zero probability, and with probability one rankCTl (z)) - d ,

then g^(x,z ) is identified.

If n(z) were linear in z then rankdl (z)) = d is precisely the condition for

identification of one equation of a linear simultaneous system, in terms of the reduced

form coefficients. Thus, this condition is a nonlinear, nonparametric generalization of

the rank condition.

It is interesting to note, as pointed out by a referee, that this condition leads to

an explicit formula for the structure. Note that h(x,z) = E[y|x,z] = g(x,z. ) +

A(x-n(z)). Differentiating gives

h^(z,x) = gj^(x,z^) + \iu), h^(x,z^) = g^(x.z^) - n^(z)'A^(u),

h^Cx.z) = -n2(z)'A^(u),

Then, if rank(n (z)) = d for almost all z, multiplying h (x,z) by D(z) =

[IT (z)n (z)' ] n (z) and solving gives A (u) = -D(z)h (x,z). Plugging this result into

the other terms gives



(2.3) g^(x,z^) = h^(x.z) - U^{z)'D{z)h^{x,z),

g (x,z,) = h (x,z) + D(z)h„(x,z).
^x 1 X 2

This formula gives an explicit equation for the derivatives of the structural function g

in terms of the identified conditional expectations IT(z) and h(x,z).

So far we have only considered identification of g (x,z ) up to an additive

constant. This is sufficient for many purposes, such as comparing g {x,z ) at

different values of (x,z ). In other cases, such as forecasting demand quantity, it is

also desirable to know the level of g (x,z ), which can be identified if a location

restriction is imposed on the distribution of e. For example, suppose that it is

assumed that E[c] = 0, so that E[y] = E[g (x,z )]. Then from equation (2.2) it

follows that if t(u) is some function with J'T(u)du = 1,

(2.4) jE[yIx,z^,u]T(u)du - E[jE[y |x,z^,u]T(u)du] + E[y]

= gQ(x,z^) - E[gQ(x,z^)] + E[y] = g^{x,z^).

Thus, under the familiar restriction E[e] = the conditions for identification of

g^(x,z ) up to a constant, as in equation (2.2), also serve to identify the level of

go(x.z^).

Another approach to identifying the constant term is to place restrictions on

X^(u). For example, the restriction /V (0) = is a generalization of a condition that

holds in the linear simultaneous equations model because, in the linear model where

g^(x,z ) and IKz) are linear and equation (1.1) holds with population regressions

replacing conditional expectations, the regression of y on (x,z ) and u will be

linear in u. More generally, we will consider imposing the restriction '^(-.(u) = A for

some known u and A. In this case

(2.5) E[y|x,z^,u] - A = gQ(x,z^) + Aq(u) - A = g^i-x.,z^).



Thus, under the restriction -^f^tu) = A, there is a simple, explicit formula for the

structural function in terms of h. The constant will be identified under other types of

restrictions as well, but this will suffice for many purposes.

3. Estimation

Equation (2.1) can be estimated in two steps by combining estimation of the residual

u with estimation of the additive regression in equation (2.1). The first step of this

procedure is formation of nonparametrically estimated residuals u. = w.-II(z.),

(i = 1 n). The second step is estimation of the additive regression in equation

(2.1), using the estimated residuals u. in place of the true ones. An estimator of

the structural function g (x,z ) can then be recovered by pulling out the component

that depends on those variables.

Estimation of additive regression models has previously been considered in the

literature, and we can apply those results for our second step estimation. There are at

least two general approaches to estimation of an additive component of a nonparametric

regression. One is to use an estimator that imposes additivity and then pull out the

component of interest. This approach for kernel estimators has been considered by

Breiman and Friedman (1985), Hastie and Tibshirani (1991), and others. Series estimators

are particularly convenient for imposing additivity, by simply excluding interaction

terms, as in Stone (1985) and Andrews and Whang (1990).

Another approach to estimating the additive component g (x,z ) of the conditional

expectation is to use the fact that, for a function t(u) such that jT(u)du = 1,

jElylx.z ,u]T(u)du = g (x,z ) + AQ(u)T(u)du.

Then g (x,z) can be estimated by integrating, over u, an unrestricted estimator of



the conditional expectation. This partial means approach to estimating additive models

has been proposed by Newey (1994), Tjostheim and Auestad (1994), and Linton and Nielsen

(1995). It is computationally convenient for kernel estimators, although it is less

asymptotically efficient than imposing additivity for estimation of v^-consistent

functionals of additive models when the disturbance is homoskedastic.

In this paper we focus on series estimators because of their computational

convenience and high efficiency in imposing additivity. To describe the two-step series

estimator we initially consider the first step. For each positive integer L let r (z)

= (r . (z),...,rj . (z))' be a vector of approximating functions. In this paper we will

consider in detail polynomial and spline approximating functions, that will be further

discussed below. Let an i subscript index the observations, and let n be the total

number of observations. Let IT(z) be the predicted value from a regression of x. on

r. = r (z.),
1 1

(3.1) mz) = rhz)'y, r = (R'R)~^R'(x, x)'. R = [r,,...,r ]'

.

In In
To form the second step, let p (w) = (p (w),...,p (w))' be a vector of approximating

IK. KK.

functions of w = (x',z' u')' such that each p (w) depends either on (x,z ) or on

u, but not both. Exclusion of the interaction terms will mean that any linear

combination of the approximating functions has the same additive structure as in equation

(2.1), i.e. that additivity is imposed. Also, let 1(d) denote the indicator function

for the event d, and t(w) denote a function of the form

d+d
(3.2) t(w) = n. ,'^ l(a. £ w. s b.)

J=l J J J

where a . and b . are finite constants, w . is the jth component of w, and d = d

+ d is the dimension of (x,z ). This t(w) is a trimming function to be further

discussed below. Let u. = x. - n(z.), w. = (x'. ,z' .,u'. )', where an i subscript for11 1 1 1 li 1
^

w refers to the observation, and t. = t(w.). The second step is obtained by regressing

y. on p. = p (w.) for each observation where t. = 1, giving

10



(3.3) h(w) = p^(w)'p, p - (P'P) ^P'Y

P = fVi -^nPn^'-
Y =

(y,.....yJ'.

The trimming function t(w) is convenient for the asymptotic theory. It can also

be used to exclude large values of w that might lead to outliers in the case of

polynomial regression. Although we assume that the trimming function is nonrandom, some

results would extend to the case where the limits a . and b . are estimated. In
J J

particular, if these limits are estimated from independent data (e.g. a subsample that is

not otherwise used in estimation), then the results described here will still hold.

The estimator h(w) can be used to construct an estimator of the structural

function g (x,z ) and of '^^.(u) by collecting those terms that depend only on (x,z )

and those that depend only on u, respectively. Suppose that p (w) = 1 is the
IK

constant, that p (w) depends only on (x,z ) for the next K terms, and that the

remaining terms depend only on u. Then the estimators can be formed as

K +1

(3.4) g(x,z^) = c^+ l.^^ ^.p.{x,z^), A(u) = c^+ Ij^j^ +2^jP/"^' ^g ^
^X

=
^V

These estimators are uniquely defined except for the constant terms c and c .

To complete the definition of this estimator the constant terms should be specified.

For many objects of estimation, such as predicting how g(x,z ) changes as x or z

shifts, the constants are not important. For example, if g(x,z ) represents log-demand

and x includes the log of price, a constant is not needed for estimation of

elasticities (i.e. derivatives of g). In other cases the constant is important. For

example, knowing the level of demand is important for predicting tax receipts.

Because of the trimming we cannot use the most familiar condition that E[e] = to

estimate the constants. However, the condition that '^p>(u) = A, which generalizes the

linear model, can easily be used to estimate the constants. Choosing c^ = X -
A

Y,--v j^oP-P-(u) and c = p, - c^ leads to an estimator satisfying A(u) = X and
J-*^p+'i J J g 1 A

11



equation (3.4). In this case it will follow that the estimator of the individual

components are

(3.6) g(x,z ) = h(x,2 ,u) - A, A(u) = h(x,z ,u) - h(x,z ,u) + A.

We consider two specific types of series estimators corresponding to polynomial and

spline approximating functions. To describe these let /i = (ji ,...,/i )' denote a

' d^

vector of nonnegative integers, i.e. a multi-index, with norm |fi| = I]._,fx., and let z

= IT. (z.) ". For a sequence (i-i(^))o_i °^ distinct such vectors, a power series

approximation for the first stage is given by

rhz)^U^^'^ z^^^V.

To describe a power series in the second stage, let (m^^)) denote a sequence of

multi-indices with dimension the same as w, and such that for each k, w depends

only on (x,z ) or u, but not both. This feature can be incorporated by making sure

that the first d components of |i(k) are zero if any of the last d components are

nonzero, and vice versa. Then for the second stage a power series approximation can be

obtained as

K, , , fid) m(k)w
p (w) = (w'^ .-••.w'^ ) .

For the asymptotic theory it will be assumed that each multi-index sequence is ordered

with degree |;i| increasing in i or k, and that all terms of a particular order are

included before increasing the order.

The theory to follow uses orthonormal polynomials, which may also have computational

advantages. For the first step, replacing each power z by the product of univariate

polynomials of the same order, where the univariate polynomials are orthonormal with

respect to some distribution, may lead to reduced collinearity. The estimator will be

numerically invariant to such a replacement, because | ^lU) I
is monotonically

12



increasing. An analogous replacement could also be used in the second step.

Regression splines are smooth piecewise polynomials with fixed knots (join points).

They have been considered in the statistics literature by Agarwal and Studden (1980).

They are different than smoothing splines. For regression splines the smoothing

parameter is the number of knots. They have attractive features relative to power series

in that they are less sensitive to outliers and to bad approximations over small regions.

The theory here requires that the knots be placed in the support of z., which therefore

must be known, and that the knots be evenly spaced. It should be possible to generalize

results to allow the boundary of the support to be estimated and the knots not evenly

spaced, but these generalizations lead to further technicalities that we leave to future

research.

To describe regression splines it is convenient to assume that a. = -1, b. = 1,

and that the support of z is a cartesian product of the interval [-1,1]. For a scalar

c let (c) = l(c > 0)«c. An m degree spline with J-1 evenly spaced knots on

[-1,1] is a linear combination of

1 < ^ < m+1.

p.,(u) = .

^ M[u + 1 - 2(;^-m-l)/J]}™, m+2 ^ ^ s m+J

In this paper we take m fixed but will allow J to increase with sample size. For a

set of multi-indices {fx(£)}, with fi.(£) ^ m+J for each j and £, the approximating

functions for z will be products of univariate splines. In particular, if the number

of knots for the jth component of z is J ., then the approximating functions could

be formed as

(3.7) rj^(z) =
d

nj=; '^M/io.j/^j)'
^'^ = '' ••^^'

Throughout the paper it will be assumed that J. depends on K in such a way that the

ratio of numbers of knots for each pair of elements of z is bounded above and away from

13



zero. Spline approximating functions in the second step could be formed in the analogous

way, from products of univariate splines, with additivity imposed by only including terms

that depend only on one of (x,z ) or u.

The theory to follow uses B-splines, which are a linear transformations of the above

functions that have lower multicollinearity. The low multicoUinearity of B-splines and

recursive formula for calculation also lead to computational advantages; e.g. see Powell

(1981).

4. Convergence Rates

In this Section we derive mean-square error and uniform convergence rates. To

obtain results it is important to impose some regularity conditions. Let X = (x,z), tj

1/2
= y - h (w), and u = x - TT (z). Also, for a matrix D let IIDII = [trace(D'D)]

V 1/v
for a random matrix Y, IIYII = {E[IIYir]r , v < oo, and IIYII the infimum of

V 00

constants C such that Prob( IIYII < C) = 1.

Assumption 1: {(y.,x.,z.)}, (i = 1, 2, ...) is i.i.d. and Var(x|z) and Var(y|X)

are bounded.

The bounded second conditional moment assumption is quite common in the series estimation

literature (e.g. Stone, 1985). Relaxing it would lead to complications that we wish to

avoid.

Next, we impose the following requirement. Let W = {w : t(w) = 1>.

Assumption 2: z is continuously distributed with density that is bounded away from zero

on its support, and the support of z is a cartesian product of compact, connected

intervals. Also, w is continuously distributed and the density of w is bounded away

from zero on W, and W is contained in the interior of the support of w.

14



This assumption is useful for deriving the properties of series estimators like those

considered here (e.g. see Newey, 1997). It allows us to bound below the eigenvalues of

the second moment matrix of the approximating functions. Also, an identification

condition like those discussed in Section 2 is embodied in this assumption. The density

of w being bounded away from zero means that there is no functional relationship

between (x,z ) and u, so that by Theorem 2.2 identification holds. This assumption,

along with smoothness conditions discussed below, imply that the dimension of z must be

at least as large as the dimension of (x,z ), a familiar order condition for

identification.

To see why Assumption 2 implies the order condition, note that the density of w

is bounded away from zero on an open set. Then, because w is a one-to-one function of

x, z , and IKz), the density of (z ,IT(z)) must be bounded away from zero on an open

set. But (z ,n(z)) is a vector function of z that will be smooth under assumptions

given below, so its range must be confined to a manifold of smaller dimension than

(z ,n(z)) unless z has at least as many components as (z ,n(z)). Since the dimension

of n(z) and x are the same, z must have as many components as (x,z ).

Some discreteness in the components of z can be allowed for without affecting the

results. In particular. Assumption 2 can be weakened to hold only for some component of

the distribution of z. Also, one could allow some components of z to be discretely

distributed, as long as they have finite support. On the other hand, it is not easy to

extend our results to the case where there are discrete instruments that take on an

infinite number of values.

Some smoothness conditions are useful for controlling the bias of the series

estimators.

Assumption 3: ^ (z) is continuously differentiable of order s on the support of z

and g (x,z ) and /V (u) are Lipschitz and continuously differentiable of order s on

W.

15



The derivative orders s and s control the rate at which polynomials or splines

approximate the function. In particular, the rate of approximation for g (x.z ) and

-s/d
A.(u), and hence also for h (w), will be 0(K ), where d is the dimension of

(x.Zj^).

The last regularity condition restricts the rate of growth of the number of terms K

and L. Recall that d denotes the dimension of z.

Assumption 4: Either a) for power series, (K + K L)[(L/n) +L i i) —> 0; or b)

for splines. (K^ + KL^^^)[(L/n)^''^+L"^/^il -^ 0.

For example, for splines, if K and L grow at the same rate then this condition

requires that they grow slower than n , and that s > 2d .

As a preliminary step it is helpful to derive convergence rates for the conditional

expectation estimator h(w). Let F denote the distribution function of w.

Lemma 4.1: If Assumptions 1-4 are satisfied then

ST(w)[h(w)-hJw)]^dFJw) = (K/n + K~^^^^ + L/n + L~^^/^i).
p

Also, for q = 1/2 for splines, and q = 1 for power series,

sup ,.Ah(w) - hJw)\ = (k'^KKM)^^^ + K^^^ + (L/n)^^^ + L~^/^i]).w&W p

This and all subsequent proofs are given in the Appendix.

This result leads to convergence rates for the structural estimator g(x,z ) given

in equation (3.4). We will treat the constant term a little differently for the mean

square and uniform convergence rates, so it is helpful to state and discuss them

separately. For mean square convergence we give a result for mean-square convergence of

the de-meaned difference between the estimator and the truth. Let t = E[t(w)].
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Theorem 4.2: If Assumptions 1-4 are satisfied then for h(x,z ) = g(x,z )-g (x,z )

ST(w)[kx,z^)-ST(w)l(x,z^)Fj:dw)/xl^FQ(dw) = (K/n + k"^^''^ + L/n + L~^^/\).

The convergence rate is the sum of two terms, depending on the number L of

approximating functions in the first step and the number K in the second step. Each of

these two terms has a form analogous that derived in Stone (1985), which would attain the

optimal mean-square convergence rate for estimating a conditional expectation if K and

L were chosen appropriately. In particular, if K is chosen proportional to n

and L proportional to n i i i , and Assumption 4 is satisfied, then the

conclusion of Theorem 4.2 is

(4.1) ST(w)Lkx,zJ-ST(w)kx.zJFJ:dw)/TfFJdw) = {max{n~^^^^'^^^^\ n~^^/^V^^l^).
1 10 p

From Stone (1982) it follows that the convergence rates in this expression are optimal

for their respective steps, i.e. n would be optimal for estimation of

g-^(x,z ) if u did not have to be estimated in the first step. Thus, when K and L

are chosen appropriately, the mean square error convergence rate of the second step

estimator is the slower of the optimal rate for the first step and the optimal rate for

the second step that would obtain if the first step did not have to be estimated.

An important feature of this result is that the second step convergence rate

n is the optimal one for a function of a d-dimensional variable rather than

the slower rate that would be optimal for estimation of a general function of w, where

additivity was not imposed. This occurs because the additivity of h-^(w) is used in

estimation. It is essentially the exclusion of interaction terms that leads to this

result, as discussed in Andrews and Whang (1990).

Although a full derivation of bounds on the rate of convergence of estimators of
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g (x,z ) is beyond the scope of this paper, something can be said. It is known from

Stone (1982) that n is the best attainable mean-square error (MSE) rate for

estimation of g (x,z ) when u is known. Since the best rate when u is unknown

cannot be better than the best rate when u is known, g must attain the best rate when

the rate is n . Therefore, for the ranges of d , s , d, s where this rate is

attained we know that it is the best one (and that the estimator has the best rate).

o ... ,, J , . u ^- , ^ *u * d/(d+2s) , d /(d +2s ) ,, ^
Setting K and L to be proportional to the rates n and nil i that

minimize each component of the mean-square error it follows that the optimal second stage

rate will be attained for splines when s/d ^ ^i/d. and s/d > 2. For power series the

side conditions of Assumption 4 are even stronger and would narrow the range of s/d and

s/d where the estimator could attain the best convergence rate for the second step.

The condition s/d ^ s/d means that the second stage is at least as smooth

(relative to its dimension) as the first stage. We do not know what the optimal

convergence rate would be when the first stage is less smooth than the second stage,

although in that case we know that the first stage convergence rate would dominate the

mean-square error of our estimator if K and L are chosen to minimize the mean-square

error in Theorem 4.1 or 4.2. Our estimator could conceivably be suboptimal in that case.

Also, the side conditions in Assumption 4 are quite strong and rule out any possibility

of optimality of our estimator when neither the first or the second stage is very smooth

(e.g. when s/d ^ 1).

It is interesting to note that the convergence rates in equation (4.1) are only

relevant for the function itself and not for derivatives. Because u is plugged into

h(w), one might think that convergence rates for derivatives are also important, as in a

Taylor expansion of h(u) around h(u). The reason that they are not is that u

depends only on the conditioning variables x and z in equation (2.1), a feature that

We thank a referee for pointing this out and for giving a slightly more general version
of the following discussion of optimality.
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allows us to work with a Taylor expansion of h (w) rather than h(w) in the proofs.

Theorem 4.2 gives convergence rates that are net of the constant term. It would also

be interesting to know if similar results hold when the constant term is included. That

will depend on the identifying assumption for the constant term. With the trimming the

usual restriction E[e] = does not identify the constant. Also, the restriction

A (u) = A is a pointwise one, so it does not lead to mean-square error convergence

rates. It would be possible to obtain mean-square rates that include the constant term

by specifying a restriction E[t(w)c] = 0, but this condition does not seem to be well

motivated in the model and so will not be considered.

It is straightforward to obtain uniform convergence rates for g(x,z ) from the

uniform convergence rates for h(w) in Lemma 4.1. In particular, note that g(x,z ) can

be recovered from h(w), up to the constant term, by just fixing u at some value (in

W), so that uniform rates follow immediately. Furthermore, as long as the restriction

on 'Vp,(u) used to identify the constant term is continuous in the supremum norm on W,

uniform rates for g will also follow from Lemma 4.1. In particular, when the

identification restriction '^p)(u) = X is imposed leading to an estimator as in equation

(3.6), uniform convergence rates for g follow immediately from those for h.

Specifically, for W equal to the coordinate projection of W on values of (x,z ),

Theorem 4.3: If g(x,z ) = h(x,z ,u) - A,
^f^(^)

= ^> ^i^d Assumptions 1-4 are satisfied

then for q = 1/2 for splines, and q = 1 for power series,

^^P(xz)&-W ^S(x,z^) - gQ(x,zp\ = 0^(K'^[(K/n)^^^ + k"^^"* + (L/n)^^^ + L^/\]).

This uniform convergence rate cannot be made equal to Stone's (1982) bounds for either

the first or second steps, due to the leading K term. Nevertheless, these uniform

rates improve on some in the literature, e.g. on Cox (1988), as noted in Newey (1997).

Apparently, it is not yet known whether series estimators can attain the optimal uniform

convergence rates.

The uniform convergence rate for polynomial regression estimators is slower and the
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conditions on K and L more stringent for power series than splines. Nevertheless we

retain the results for polynomials because they have some appealing practical features.

They are often used for increased flexibility in functional form. Also polynomials do

not require knot placement, and hence are simpler to use in practice.

We could also derive convergence rates for A(u), and obtain convergence rates

identical to those in Theorems 4.2 and 4.3. We omit these results for brevity.

5. Inference

Large sample confidence intervals are useful for inference. We focus on pointwise

confidence intervals rather than uniform ones, as in much of the literature. For this

purpose let h denote a possible true function h (w), where the w argument is

suppressed for convenience. That is, the symbol h represents the entire function. We

consider all linear functionals of h, which turn out to include the value of the

function g (x,z ) at a point. We construct confidence intervals using standard errors

that account for the nonparametric first step estimation.

To describe the standard errors and associated confidence intervals it is useful to

consider a general framework. For this purpose let h denote a possible true function

h (w), where the w argument is suppressed for convenience. That is, the symbol h

represents the entire function. Let a(h) be a particular number associated with h.

As a function of h, a(h) represents a mapping from possible functions of h to the

real line, i.e. a functional. The object of interest will be assumed to be the value

G = aCh^) of the functional at h . In this Section we develop standard errors for the

estimator Q = a(h) of G and give asymptotic normality results that allow formation

of large sample confidence intervals.

This framework is general enough to include many objects of interest, such as the

value of g at a point. For example, under the restriction '^f^(u) = X discussed
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earlier, the value of g (x,z ) at a point (x,z ) can be represented as

(5.1) g (x.z ) = a(h ), a(h) = h(x,z u) - X.

A general inference procedure for linear functionals will apply to the functional of this

equation, i.e. can be used in the construction of large sample confidence intervals for

the value of g at a point.

Another example is a weighted average derivative of g (x,z ). This object is

particularly interesting when g is an index model that depends on w = (x,z ) only

through a linear combination w 2^, say g (w ) = t(w 3') where t(q) is a

differentiable function with derivative t (q). Then for any v(w) such that

v(w)t (w' ?-} is integrable,

(5.2) J"v(w)[ah„(w)/aw,]dw = [ft (w,^)v(w)dw]3',
1 q 1

so that the weighted average derivative is proportional to j. This is also a linear

functional of h , where a(h) = Xv(w)[5h(w)/9w ]dw. This functional may also be useful

for summarizing the slope of g/^(w ) over some range, as discussed in Section 7. Unlike

the value of g (w ) or 9g (w )/5w at a point, the weighted average derivative

functional will be ^^-consistent under regularity conditions discussed below.

We can derive standard errors for linear functionals of h, which is a class

general enough to include many important examples, such as the value of g at a ppint or

a weighted average derivative. The estimator Q = a(h) of 6 = a(h^) is a natural,

"plug-in" estimator. For example, the value of g at a point could be estimated by

applying the functional in equation (5.1) to obtain g(x,z ) = a(h) = h(x,z ,u) - X. In

general, linearity of a(h) implies that

(5.3) G = AP, A = (a(p^j^) a(pj^j^)).

Because G is a linear combination of the two-step least squares coefficients p, a

natural estimator of the variance can be obtained by applying the formula for parametric
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two step estimators (see Newey 1984). As for other series estimators, such as in Newey

(1997), this should lead to correct inference asymptotically, because it accounts

properly for the variability of the estimator. Let © denote the Kronecker product and

(5.4) Q = P'P/n, t = y.",T.p.p'.[y.-h(w.)]^/n, Q = I ®(R'R/n),
^1=1 111 11 1 d-k

1

E, = 7.",(u.u'.)®(r.r'.)/n, H = y. ,T.[Sh(w.)/5u]'®p.r'./n.
1 ^1=1 11 11 ^1=1 1 1 11

The variance estimate for a(h) is then

(5.5) V = AQ ht + HQ^^Z^Q^^H' ]Q ^A'

,

This estimator is like that suggested by Newey (1984) for parametric two-step

regressions. It is equal to a term AQ ZQ A' , that is the standard heteroskedasticity

consistent variance estimator, plus an additional nonnegative definite term that accounts

for the presence of u. It has this additive form, where the variance of the two-step

estimator is larger than the first, because the second step conditions on the first step

dependent variables, making the second and first steps orthogonal.

/-V-1/2 '' d
We will show that under certain regularity conditions vnV (0-9 ) —> N(0,1).

Thus doing inference as if 9 were distributed normally with mean 9 cind variance V/n

will be a correct large sample approximation. This extends large sample inference

results of Andrews (1991) and Newey (1997) to account for an estimated first step.

However, as in this previous work, such results do not specify the convergence rate of

a(h). That rate will depend on how fast V goes to infinity. To date there is still

not a complete characterization of the convergence rate of a series estimator available

in the literature, although it is known when v^-consistency occurs (see Newey, 1997).

Those results can be extended to obtain \^-consistency of functionals of the two-step

estimators developed here. Let II
•

II = (E[t(w)(-) J/t) denote a trimmed mean-square

norm and P denote the set of functions that can be approximated arbitrarily well in

K
this norm by a linear combination of p (w) for large enough K. It is well known, for
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p (w) corresponding to power series or splines, that T includes all additive functions

in (x,z ) and u where the individual components have finite II • II norm. The

critical condition for \^-consistency is that there is i'(w) e T such that

(5.6) a(h) = E[T(w)i;{w)h(w)],

for any h(w) G T. Essentially this means that a(h) can be represented as an expected

product of h(w) with a function p(w) that is in the same space as h. By the Riesz

representation theorem, this is the same as the functional a(h) being continuous with

2 —
respect to the mean square error E[t(w)(*) ]/t. In this case VnCe - 6 ) will be

asymptotically normal, and its asymptotic variance can be given an explicit expression.

To describe the asymptotic variance in the v^-consistent case, let p(z) =

E[T(w)y(w)5h (w)/9u' |z]. The asymptotic variance of the estimator can then be expressed

as:

(5.7) V = E[T(w)i^(w)p(w)'Var(y|X)] + E[p(z)Var(x|z)p(z)' ].

For example, for the weighted average derivative in equation (5.2), if v(w) is

zero where t(w) is zero, so t(w)v(w) = v(w), then integration by parts shows that

equation (5.6) is satisfied with i'(w) = -Proj(f (w) Sv(w)/5x|7'), where fp,(w) is the

density of w and Proj( •
| y) denotes the mean-square projection on the space of

functions that are additive in w and x. The presence of Proj('|?') is necessary to

make t'(w) lie in the space spanned by p (w) for large K, that is the set of

functions that are additive in w and x. Then

p(z) = -E[T{w){Proj(fQ(w)"Ww)/5x|?')}ahQ(w)/5u' |z],

and the asymptotic variance will be V from equation (5.7).

To state precisely results on asymptotic normality it is helpful to introduce some

regularity conditions. Recall that t} = y-h (w).
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2 4
Assumption 5: cr (X) = Var(y|X) is bounded away from zero, E[t) |X] is bounded, and

4
E[llull |X] is bounded. Also, h (w) is twice continuously differentiable in u with

bounded first and second derivatives.

This condition strengthens the bounded conditional second moment condition to boundedness

of the fourth conditional moment and the conditional variance being bounded away from

zero.

The next assumption is the key condition for v^-consistency of the estimator. It

requires that the functional a(h) have a representation as an expected product form, at

least for the truth h and the approximating functions.

2
Assumption 6: There exists- vCw) and (3 such that ElxtwjIlt'Cw)!! ] < oo, a(h ) =

K O

E[T(w)y(w)h„(w)], a{p, ^) = E[t(w)i;(w)p, ^(w)], E[T(w)lly(w)-P-^p'^(w)ll^] ^ as K ^ co.
kK kK K

This condition also requires that uCw) can be approximated well by a linear combination

p (w) for large K, which is important for the precise form that v(w) must take. For

example, with the average derivative this condition leads v{w) to be the projection of

f (w) 5v(w)/5x on functions that are additive in w and u.

The next condition is complementary to Assumption 6. For d = d + d and a

d

d x 1 vector fi of nonnegative integers let \y.\ = E-_iM- 5Ti(w) =

8 h(w)/Sw • • • 3w . Also let 5 denote a nonnegative integer and
I
h

I s
=

w

max , . ^jSup ... I
a^h(w) |

.

I
/I

I
£5 w€M'

Assumption 7: a(h) is a scalar, | a(h) |
s

| h | _ for some 5^0, and there exists P^
o K.

K K 2
such that as K —> oo, a(p 'P ) is bounded away from zero while E[t(w){p (w)'p„} ] —> 0.

This assumption says that functional a(h) is continuous in |h|_, but not in mean
o

square error. The lack of mean-square continuity will imply that the estimator a(h) is

not \^-consistent, and is also a useful regularity condition. Another restriction

imposed is that a(h) is a scalar, which is general enough to cover many cases of
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interest. When a(h) is a vector, asymptotic normality with an estimated covariance

matrix would follow from Assumption J iii) of Andrews (1991). That assumption of Andrews

(1991) is difficult to verify. In contrast, Assumption 7 is a primitive condition, that

is relatively easy to verify. This condition and Assumption 6 are mutually exclusive,

and general enough to include many cases of interest. For example, as noted above,

Assumption 6 includes the weighted average derivative. For another example, Assumption 7

obviously applies to the functional a(h) = h(x,z ,u) - A from equation (5.1), which is

continuous with respect to the supremum norm and where it is straightforward to show that

ji^ _
there is (3 such that p (x,z ,u)'p - X is bounded away from zero but

K. IK
E[T(w){p^(w)'pj^}^] -^ 0.

The next condition restricts the allowed rates of growth for K and L.

/-^^~s/d ^ /-u -s /d ^ i- . /,,9, ,^8, 2 ,,6, 3
Assumption 8: vnK —> 0, vnL i i —> 0, for power series, (KL + KL +KL +

K^L^)/n -^ 0, and for splines (K^L + k'^L^ + K^^L"^ + KL'^)/n —> 0.

One can show that this condition requires that s/d > 5/2 and s /d > 2, as was

pointed out by a referee. It also limits the growth rate of K and L so that if each

grows at the same rate they can grow no faster than n for splines and n for

power series. These conditions are stronger than for single step series estimators

discussed in Newey (1997), because of complications due to the multistage nature of the

estimation problem.

The next condition is useful for the estimator V of the asymptotic variance to

have the right properties.

Assumption 9: Either a) x is univciriate, if a spline is used it is at least a

1—

s

K
quadratic one, and v^TK —> 0; b) x is multivariate, p (w) is a power series,

h (w) is differentiable of all orders, there is a constant C with the absolute value

of the jth derivative bounded above by C(C) , and v^iK —> for some e > 0.

This assumption helps guarantee that -^^(u) and its derivative can be approximated by
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p (w), which is important for consistency of the covariance matrix estimator. These

conditions are not very general, but more general ones would require series approximation

rates for derivatives, which are not available in the literature. This assumption is at

least useful for showing that the asymptotic -variance estimator will be consistent under

some set of regularity conditions.

Next, for the nonnegative integer 5 of Assumption 7, let C,AK) =
o

u K
max, . -sup„iJ5^p i.w)\\.

Theorem 5.1: If Assumptions 1-3, 5, either 6 or 7, and 8 and 9 are satisfied, then Q =

Qn + (C,JK)/Vn) and
p 6

Vnv^^'^<e - e^) -^ N(o,i), Vnv'^''(e-e^) -^ n(o,i).

Furthermore, if Assumption 6 is satisfied.

Vn(e - e^) -^ N(0,V), 7-^1^.

In addition to the asymptotic normality needed for large sample confidence intervals this

results gives convergence rate bounds and, when Assumption 6 holds, •v^-consistency.

Bounds on the convergence rate can also be derived from the results shown in Newey (1997)

that for power series ^^.(K) ^ CK and for splines C^-^K) ^ CK ,where C is a
o o

generic positive constant. Thus, for example, when a(h) = h(x,z ,u) - A, where 5 = 0,

an upper bound on the convergence rate for power series would be K/\^ and for splines

would be VK/Vn.

When Assumption 9 b) is satisfied, so that h (w) has derivatives of all orders,

and n (z) also satisfies the same condition, the convergence rate can be made close to

1/v^ by letting K grow slowly enough. In particular, h (w) and n^(z) are

continuously differentiable of order s for every s > 0, so that if K = Cn cind L =

Cn for some positive, small e, all of the conditions will be satisfied. Then the

the convergence rate for a(h) = h(x,z ,u) - X for power series will then be n ~ *
,
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which will be close to l/Vn for € small enough.

The centering of the limiting distribution at zero in this result is a reflection of

"over fitting" that is present, meaning that the bias of these estimators shrinks faster.

than the variance. This over fitting is implied by Assumption 8. The order of the bias

-s/d
of the estimator is K , so that Assumption 8 requires that the bias shrink faster

than 1/v^. Since 1/v^ is generally the fastest the standard deviation of

estimators can shrink (such as the sample mean), overfitting is present.

This feature of the asymptotic normality result that is shared by other theorems for

series estimators, as in Andrews (1991) and Newey (1997). When combined with the

(X

condition that K go to infinity slower than n for < a < 1, the bias shrinking

faster than 1/Vn! means that the convergence rate for the estimator is bounded away from

the optimal rate. This is different than asymptotic normality results for other types of

nonparametric estimators, such as kernel regression. It would be good to relax this

condition, but that is an extension that is beyond the scope of this paper.

6. Additive Semiparametric Models

In economic applications there is often a large number of covariates thereby making

nonparametric estimation problematic. The well known curse of dimensionality can make

the estimation of large dimensional nonparametric models difficult. One approach to this

problem is to restrict the model in some way while retaining some nonparametric features.

The single index model discussed earlier is one example of such a restricted model.

Another example is a model that is additive in some components and a parametric in

others. This type of model has received much attention in the literature as an approach

to dimension reduction. Furthermore, it is particularly easy to estimate using a series

estimator, by simply imposing restrictions on the approximating functions.

To describe this type of model, let w = (x,z ) as before, and let w .,
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(j = 0,1,..., J), denote J+1 subvectors of w . A semiparametric additive model is

(6.1) go(w^) = w^^^' + IjIigj^w^J.

I'

This model can be estimated by specifying that the functions of x included in p (w)

consist of the elements of w and power series or splines in w (j=l,...,J). One

could also impose similar restrictions on A(u) and the reduced form, by specifying that

they depend on a linear combination plus some additive components. For example, one

could specify a partially linear reduced form as TT„(z) = z'lr^ + V ,11 (z ). This^ '^m=l m m

restriction could be imposed in estimation by specifying r (z) to include the elements

of z„ and power series or splines in each z .m

The coefficients z of equation (6.1) are examples of functionals of h(w) =

gp^(w ) + A (u) that are mean-square continuous functionals of h, so that a series

estimator will be VlT-consistent under the conditions of Section 5. Let q(w) be the

residual from the mean-square projection of w on functions of the form

y. ,g.(w, .) + A„(u), for the probability measure where P{d) = E[T(w)l(w6i4)]/E[T(w)].
J=l J Ij

Assume that E[T(w)q(w)q(w)' ] is nonsingular, an identification condition for -y. Then

(6.2) r = E[T(w)y(w)h(w)], i;(w) = (E[T(w)q(w)q(w)' ])~^q(w).

Hence, \^-consistency and asymptotic normality of the series estimator for y will

follow from the results of Section 5. Robinson (1988) also gave some instrumental

variable estimators for a semiparametric model that is linear in endogenous variables.

The regularity conditions of Section 5 can be weakened somewhat for this model.

Basically, only the nonparametric part of the model need satisfy these conditions so

that, for example, w need not be continuously distributed.
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7. Empirical Example

To illustrate our approach we investigate the empirical relationship between the

hourly wage rate and the number of annual hours worked. While early examinations treated

the hourly wage rate as independent of the number of hours worked recent studies have

incorporated an endogenous wage rate, (see, for example, Moffitt 1984, Biddle and Zarkin

1989, and Vella 1993), and have uncovered a non-linear relationship between the wage rate

and annual hours. The theoretical underpinnings of this relationship can be assigned to

an increasing importance of labor when it is involved in a greater number of hours (see Oi

1962). Alternatively Barzel (1973) argues that labor is relatively unproductive at low

hours of work due to related start up costs. Moreover, at high hours of work Barzel

argues that fatigue decreases labor productivity. These forces will generate hourly wage

rates that initially increase but subsequently decrease as daily hours work increase.

Finally, the taxation/labor supply literature argues that a non-linear relationship may

exist due to the progressive nature of taxation rates. Thus the non-linear relationship

between hours and wage rates is potentially the outcome of many influences and we capture

it in the following model:

(7.1) y. = z;./3 H- g2o(x.) + e., x. = z'.r + u..

where y. is the log of the hourly wage rate of individual i, z . is a vector of

individual characteristics, x. is annual hours worked, z. is a vector of exogenous

variables that includes z ., p and z are parameters, g„_ is an unknown function,

and e. and u. are zero mean error terms such that E[e|u] * 0. This is a

semiparametric version of equation (1.1), like that discussed in Section 6, with a

parametric reduced form. We use this specification because there are many individual

characteristics in z., so that it would be difficult to apply fully nonparametric

estimation due to the curse of dimensionality. We estimate this model using data on

males from the 1989 wave of the Michigan Panel Survey Of Income Dynamics. To preserve
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comparability with previous empirical studies we follow similar data exclusions to those

in Biddle and Zarkin (1989). Accordingly, we only include males aged between 22 and 55

who had worked between 1000 and 3500 hours in the previous year. This produced a sample

of 1314 observations. Our measures of hours and wages are annual hours worked and the

hourly wage rate respectively.

We first estimate the wage equation by linear OLS and report the relevant parameters

in column 1 of Table 1. The hour effect is small and not significantly different from

zero. Adjusting for the endogeneity of hours via linear two stage least squares (2SLS),

however, indicates that the impact of hours is statistically significant although the

effect is small. The results in column 2, on the basis of the t-statistic for the

residuals, suggests hours are endogenous to wages.

To allow the g function to be non-linear we employed alternative specifications

for g and various approximations for the manner in which we account for the

endogeneity of hours. We also allow for some non-linearities in the reduced form by

including non-linear terms for the experience and tenure variables. We first choose the

number of non-linear terms in the first step and then, by employing the associated

residuals from the chosen specification, we determine the number of approximating terms

in the primary equation. We discriminate between alternative specifications on the basis

of cross validation (CV) criterion. The CV criterion is well known to minimize

asymptotic mean-square error when the first estimation is not present so we are hopeful

that it will lead to estimates with good properties here. Below we consider its

properties in a Monte Carlo study, and find that CV performs well.

Because the theory requires over fitting, where the bias is smaller than the

variance asymptotically, it seems prudent to consider specifications with more terms than

those that CV gives, particularly for inference. Accordingly, for both steps we identify

the number of terms that minimizes the CV criterion and then add an additional term. For

example, while the approximation which minimized the CV criterion for the first step was

a fourth order polynomial in tenure and experience we generate the residuals from a model
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which includes a fifth order polynomial in these variables. Note that to enable

comparisons, these were the residuals which were included in column 2 discussed above.

The CV values for a subset of the second step specifications examined are reported

in Table 2. Although we also experimented with splines, in each step, we found that the

specifications involving polynomial approximations appeared to dominate. The preferred

specification is a fourth order polynomial in hours while accounting for the endogeneity

through a third order polynomial in the residuals. The CV criterion for this

specification is 182.643. The fourth column of Table 1 reports the estimates of the

hours profile employing these approximations. The third column presents the hours

coefficients while excluding the residuals. Due to the over fitting requirement we now

take as a base case the specification with a fifth order polynomial in hours and a fourth

order polynomial in the residual. We will also check the sensitivity of some results to

this choice.

While Table 1 suggests the non-linearity and endogeneity are statistically important

it is useful to examine their respective roles in determining the hours profile. For

comparison purposes Figure 1 plots the change in the log of the hourly wage rate as

annual hours increase, where the nonparametric specification is the over fitted case with

h = 5 and r = 4. To facilitate comparisons each function has been centered at its mean

over the observations, and the graph shows the deviation of the function from its mean.

As annual hours affect the log of the hourly wage rate in an additive manner we simply

plot the impact of hours on the log of the hourly wage rate. In Figure 1 we plot the

quadratic 2SLS estimates like those of Biddle and Zarkin (1989) and the profile is very

similar to theirs. In Figure 1 we also plot the predicted relationship between hours and

wages for these data with and without the adjustment for endogeneity using our base

specification. It indicates the relationship is highly non-linear. Furthermore, failing

to adjust for the endogeneity leads to incorrect inferences regarding the overall impact

of hours on wages and, more specifically, the value of the turning points.

Although we found that the polynomial approximations appeared to best fit the data
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we also identified the best fitting spline approximations. We employ cubic splines and

the parameters we allow to be chosen by the data are the number of join points. We do

this for the first and second steps and in this instance. we over fit the data by

including an additional join point, in each step, above what is determined on the basis

of the CV values. Note that the best fitting approximation involved 1 join points in the

reduced form and a primary specification of 1 join point in the hours function and 1 join

points for the residuals. In Figure 2 we plot the predicted relationship between hours

and the wage rate from the over fitted spline approximation. This predicted relationship

looks remarkably similar to that in Figure 1. Furthermore, the points noted above

related to the failure to account for the endogeneity are similar.

Figures 1 and 2 indicate that at high numbers of hours the implied decrease in the

wage rate is sufficient to decrease total earnings. This may be due to the small number

of observations in this area of the profile and the associated large standard errors.

Figures 3 and 4 explore this issue by plotting the 95 percent confidence intervals for

our adjusted nonparametric estimates of the wage hours profile. It confirms that the

estimated standard errors are large at the upper end of the hours range.

To quantify an average measure of the effect of hours on wages we consider the

weighted average derivative of the estimated g function. We estimated the derivative

over the range where the function is shown to be upward sloping in Figures 1 and 2. This

region, 1300 to 2500 hours, represents 81 percent of the total sample. There were

only 125 observations above 2500, so that not very many were excluded by ignoring the

upper tail. The average derivative for the 1300-2500 part of the hours profile from

the polynomial approximation, based on h = 5 and r = 4, is .000513 with a standard

error of .000155. The corresponding estimate from our spline approximation of the

weighted average derivative is .000505 with a standard error of .000147. These

estimates are quite different than the linear 2SLS estimate reported in Table 1 which is

consistent with the presence of nonlinearity. Furthermore, for the quadratic 2SLS in

Figure 1 the average derivative is .000350 with a standard error of .000142, which is

32



also quite different than the average derivative for the nonparametric estimators. This

difference is present despite the relatively wide pointwise confidence bands in Figures 3

and 4. Thus, in our example the average wage change for most of the individuals in the

sample is found to be substantially larger for our nonparametric approach than by linear

or quadratic 2SLS.

Before proceeding we examined the robustness of these estimates of the average

derivative to the specification of the reduced form and the alternative specifications of

the reduced form and alternative approximations of the wage hours profile. First, we

reduced the number of approximating terms in the reduced form. While we found that the

CV criteria for each step increased with the exclusion of these terms in the reduced form

we found that there was virtually no impact on the total profile and a very minor effect

on our estimate of the average derivative of the profile for the region discussed above.

For example, consider the estimates from the polynomial approximation. When we included

only linear terms in the reduced form the estimated average derivative is .000515 with

a standard error of .0000175. The corresponding values for the specification including

quadratic terms is .000546 with a standard error of .000174. Finally, the addition of

cubic terms resulted in an estimate of .000522 with a standard error of .000153.

Changes in the specification of the model based on the spline approximations produced

similarly small differences.

We also explored the sensitivity of the average derivative estimate to the number of

terms in the series approximation. Both the average derivative and its standard error

were relatively unaffected by increasing the number of terms in the approximations. For

example, with an 8th order polynomial in hours and 7th order polynomial in the residual

the average derivative estimate was .000519 with a standard error of .000156.

Finally we examine whether we are able to reject the additive structure implied by

our model. We do this by including an interaction term capturing the product of hours

and the residuals in our preferred specification. The t-statistic on this included

variable is .231. The CV value for this specification is 182.924 while that for our
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preferred specification plus this interaction term and the term capturing the product of

hours squared and the residual squared is 183.188. On the basis of these results we

conclude there is no evidence against the additive structure of the model.

In addition to this empirical evidence we provide simulation evidence featuring the

data examined above. The objective of this exercise is to explore the ability of our

procedure to accurately estimate the unknown function in the empirical setting we

examined above. We simulate the endogenous variable through the exogenous variables and

parameter estimates from each of the polynomial and spline approximations reported above.

We generate the hours variable by simulating the reduced form and incorporating a random

component drawn from the reduced form empirical residual vector. From this reduced form

we estimate the residuals and from the simulated hours vector we generate the higher

order terms for hours. We then simulate wages by employing the simulated values of hours

and residuals, along with the true exogenous variables, and the parameter estimates

discussed above. The random component is drawn from the distribution of the empirical

wage equation residuals. As we employ the parameter vector from the over fitted models

in the empirical the polynomial model has a fifth order polynomial in the reduced form

while the wage equation has a 5th order polynomial in hours and a fourth order polynomial

in the residuals. The spline approximation employs a cubic spline with 2 join points

in the reduced form while the wage equation has 2 join points for hours and 2 join

points for the residuals. We examine the performance of our procedure for 3000

replications of the model.

In order to relax the parametric assumptions of the model we use the CV criterion in

each step of the estimation. That is, for the model which employs the polynomial

approximation we first choose the number of terms in the reduced form. Then on the basis

of the residuals from the over fit reduced form we then choose the number of

approximating terms in the wage equation. For the model generated by the spline

approximation we do the same except we employ a cubic spline and choose the number of

join points. For both approximations we trim the bottom and top two and a half percent

34



observations, on the basis of the hours residuals, from the data for which we estimate

the wage equation.

An important aspect of our procedure is the ability of the CV method to correctly

identify the correct specification. To examine this we computed the CV criteria for the

polynomial model for all 25 specifications of the wage equation combining up to a fifth

order polynomial in hours and fifth order polynomial in residuals. As there was also 5

choices in the reduced form this generated 125 possibilities. For the spline model we

examined up to 3 join points in the reduced form and then 3 each for hours and

residuals in the wage equation. This produced 27 possible specifications.

From the Monte Carlo results we can evaluate the performance of an average

derivative estimator like that we applied to the actual data. Once again we over fit the

data such that we computed the estimator by choosing the number of terms that minimizes

the CV criterion, plus one additional term, and computed standard errors for the same

specification. First consider the results from the polynomial model. The mean of the

average derivative estimates, across the Monte Carlo replications, was .000456, which

represents a bias of 8.9 percent. The standard error across the replications was

.000153, while the average of the estimated standard errors was .000152. Therefore the

estimated standard errors accurately reflect the variability of the estimator in this

experiment. For the spline approximation the average estimate was .000442 which

represents a bias of 11.1 percent. The standard error across the replications was

.000145, while the average of the estimated standard errors was .000144.

We also computed rejection frequencies for tests that the average derivative was

equal to its true value. For the polynomial model the rejection rates at the nominal 5,

10 and 20 percent significance levels were 6.5, 11.8 and 22.5 percent

respectively. The corresponding figures for the spline model were 7.4, 13.1 and 24.0

percent. Thus, asymptotic inference procedures turned out to be quite accurate in this

experiment, lending some credence to our inference in the empirical example.
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Appendix

We will first prove one of the results on identification.

Proof of Theorem 2.3: Consider differentiable functions 6(x,z ) and rtu), and

suppose that

= 5(x,z ) + ^(u) = 5(n(z)+u,z ) + t(u),

identically in z and u. Differentiating then gives

= n (z)'5 (x,z ) + 5 (x,z ), = 6 (x,z ) + ^ (u), = H (z)'5 (x,z ).

J, J^ i. J. i. J'L J. LI ^ j^ 1,

If IT (z) is full rank it follows from the last equation that that 5 (x.z ) = 0. It

then follows from the first two equations that 5,(x,z, ) = and y (u) = 0. Now, to11 u

show identification we will use Theorem 2.1. By differentiability of g and A

it suffices to consider 5(x,z ) and y{u) that are differentiable. Also, if

6(x,zJ+ytu) = with probability one, then by continuity of the functions and the

boundary having zero probability, this equality holds identically on the interior of the

support of (u,z). Then, as above, all the partial derivatives of 6(x,z ) and y{u)

are zero with probability one, implying they are constant. Identification then follows

by Theorem 2.1. QED.

To avoid repetition, it useful to prove consistency and asymptotic normality lemmas

for a general two-step weighted least squares estimator. To state the Lemmas some

notation is needed. Throughout the appendix C will denote a generic positive constant,

that may be different in different uses. Let X be a vector of variables that includes

X and z among its components and w(X,7r) a vector of functions of X and ti, where

n represents a possible value of n (z) = E[x|z]. Then for w = w(X,n (z)), it will be

assumed that
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(A.l) E[y|X] = h^Cw), E[x|z] = Tl^U).

Also, let ti. = 0(X.) be a scalar, nonnegative function of X., n(z) and t. be as in11 1 1

the body of the paper, and

(A.2) h(w) = p^(w)'p, p = (P'Pr^P'Y, P =
t^i'/'iPi-'-.^n'^nPn^'' P^ = P^^^.).

Let W = {w : t(w) = 1>, and for 5 a nonnegative integer, let |h|_ =
o

max, ,^5,sup ,.^|5'^h(w)|.

Assumption Al: i) 0(X) is bounded and w(X,7r) is Lipschitz in tt; ii) each

component w.(X,7r) either does not depend on ti or w.(X,n (z)) is continuously

distributed with bounded density; iii) For each K and L there are nonsingular

K K L L
matrices B and B such that for P (w) = Bp (w) and R (z) = Br (z),

2 K K L L
E[t(w)(/»(X) P (w)P (w)'] and E[R (z)R (z)' ] have smallest eigenvalues that are

bounded away from zero, uniformly in K and L; iv) For each nonnegative integer 5

there is C,JK) with, max,
,

^sup,,,ll5^P^(w)ll < C^AK) and sup^-IIR^z)!! r< ^(L); v)

K —cc
There exists 5, a, a, > and p^ and z, such that |h„-p 'P^l- ^ CK and

1 K. L U K o

sup^\\Tl^{z)-y^rHz)\\ s CL~"i.

2Lemma Al: If Assumptions 1 and Al are satisfied for d = 0, C,^(K) K/n —> 0, and

[K^^^C,^(K) + (:^(K)^^(L)][(L/n)^^^ + 1'°"!] -^ 0, then

ST(w)iJj(X)^[h(w)-hJw)fdFjX) = (K/n + k"^" + L/n + L^\).

If Assumptions 1 and Al are satisfied for some nonnegative integer d, then

|h - h-l , = O a:jK)[(K/n)^^^ + k"" + (L/n)^^^ + l\]).
u a p a

Proof of Lemma Al: Note that the value of h is unchanged if a nonsingular constant

K L
linear treinsformation of p (w) and/or r (z) is used, so that it can be assumed that

p'^(w) = P^(w) and rhz) = R^(z). Let t. = t(w.), p. = p^(w.), Q = Elx.^^^p.p'. ]. By
1 1 1 1
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Assumption Al, the smallest eigenvalue of Q is bounded away from zero, so that the

largest eigenvalue of Q is bounded. Consider replacing p (w) by p (w) =

—1/Z K
Q p (w). By the Cauchy-Schwartz inequality there is a constant C such that

u~K
113 p (w)ll £ CCi |(K), so that the hypotheses and the conclusion will be satisfied with

2~K ~K
this replacement. Since E[t(w)i/'(X) p (w)p (w)'] = I by construction, it suffices to

prove the results with Q = I. By analogous reasoning, it suffices to prove the result

for Q^ = E[rhz)rhz)'] = I.

Next, let A = L /Vn' + L i, H. = iKz.), and IT. = TT„(z.). Also, suppose for
71 11 1 1

' ft-

notational simplicity that that n(z) is a scalar function. Note that for y from

Assumption Al,

X;.!l,iin.-n.ii^/n £ c(f-r, )'Q,(?-r, ) + c^;." iin.-?- rhz.)ii^/n

£ Cj'[n(z)-3-j^rhz)]^dF(z) + C|(y-?'j^)'(Q^-IKr-9'JI + 0(K"^"i)

^ Cj-[n(z)-n^(z)]^dF(z) + CJ-lnCz)-?-, rhz)]^dF(z) + Clly-r, ll^o (1) + 0(K"^"i)
L L p

^ O(A^) + CWr-Tf, ll^o (1),
Tt L p

where the last inequality follows by Theorem 1 of Newey (1997). Also, by eq. (A. 2) of

2 2
the Appendix in Newey (1997), it follows that llr-y. II = (A ), so that by eq. (A.7a),

(A.3) y.^Am-HAl^/n = (A^).
^1=1 1 1 P TT

Also, by Theorem 1 of Newey (1997),

(A.3a) max.^ Ilft.-n.l! = (e(L)A ).
i^n 11 p ^ TT

Therefore, by Assumption Al ii) and Lemma A3,

(A.4) l.^.\i.-T.\/n = O (?(L)A ).
1=1 11 p 71

Let P = [TjI/'jPj
"^n^nPn^' ^"^ ^ ^ P'P/n. Note that E[IIQ-I!I^] ^
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implying IIQ-Ill —^ 0. Also, by W convex and a mean value expansion in w, and

w(X,7r) Lipschitz in ti, T.x.llp.-p.ll :£ C^(K)llw.-w.ll ^ C<^(K)lin.-n.ll. Also, by the

Markov inequality, Y. ,T.0.llp.ll /n = (K). Then by x. = x., x. = x., and i/i.^ •" ^1=1 ri ^1 p 1111 ^1

bounded,

(A.5) IIQ-QII £ lir.",x.x.^//^(p.p'. - p.p'.)/nll + CllX;.",(x.x.-x.)p.p'./nll
^1=1 1 r 1 ^r 1 ^r 1 ^i=l i i i '^I'^i

+ Clir.^Jx.x.-xJp.p'./nll s cy;.",x.x.(llp.-p.ll^ + Z^.llp.mip.-p.lD/n + Cr (K)^.", |fi.-i/r. |/n
^1=1 1 1 1 11 ^1=1 11 11 1 1 1 1 ^1=1^1 ^1

s C<,(K)\.",lllt.-n.ll^/n + C(r.",x.i/(^llp.ll^/n)^^^(y.",x.x.llp.-p.ll^/n)^
1 ^1=1 1 1 ^1=1 11 1 ^1=1 1111

a/2

+ O (C^(K)^^(L)A ) = O (C,(K)^A^ + K^^^<,(K)A + <^(K)^C(L)A ) = o (1).

P ^0 71 p ^1 TT ^1 71 ^0 ^
71 p

Let r). = i//.[y.-h (w.)], t) = (t) tj ), and X = (X ,...,X ). Then by independence

of the observations E[^.y. |X] = 0.E[y. |X] = ^.h^(w.), so E[t].|X1 = 0. Furthermore,
11 1 1 1 1 1

2 ~
E[t}.IX] is bounded by ip. and Var(y. |X) = Var(y|X.) bounded, and by independence of

the observations, E[-r].Tj.|X] = E[tj.t) .|X.,X.] = E[t}.E[t).17).,X.,X.] |X.,X.] =

E[tj.E[t).|X.]|X.,X.] =0 for i ^ j. Then by P depending only on X,

(A.6) E[ll(P-P)'7)/nll^|X] :£ Cn~^.",0^1lx.p.-x.p.ll^ < Cn'V.'^, |x.-x. | (llp.ll^+llp.ll^)/n^1=1 1 11 11 ^1=1 111 '^i

+ Cn't",-^.T.IIp.-p.ll^/n = (n"^[<^(K)^?(L)A + r{K)hh) = o (n"^),
^^1=1 1111 P TT 1 71 P

where the second to last equality follows similarly to eq. (A.5). Then, since a standard

result is that Y = (A ) if E[|Y ||X] = O (A ), it follows that ll(P-P)'T?/nll^
n p n n P n

= o (1/n). Also, EdlP'Vnll^] = E[E[IIP'7)ll^/n|X]] = E(y;.",x?i/»'*p'.p. Var(y. |X.)/n^] £
p ^1=1 r 1*^1*^1

1 1

2
CElx.i//.p'p.]/n = Ctr(Q)/n = Ctr(I)/n = CK/n. Therefore, by the triangle inequality,

(A.7) llP'Vnll^ ^ C[ll(P-P)'Tj/nll^ + llP'-rj/nll^] = o (1) + O (K/n) = (K/n).
P P P

Then by eqs. (A.5) and (A.7) and the smallest eigenvalue of Q bounded away from zero

with probability approaching one, for M = P(P'P)~ P' , T)'MT)/n = (T)'P/n)Q~ (P'Vn) ^
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(DIIP'Tj/nll^ = O (K/n). Let h. = x .\jjMw .) , h. = x.iJj.hAw.), h. = T.0.h_(w.), and
p p 1 111 1 11 1 1 1 1 1

h, h, and h be jthe corresponding n x 1 vectors (i.e. h = (h ,...,h )'). Let (B

K -oc ~
be such that sup,,,|h^(w)-p (w)'p| = 0(K ). Then by M and M-I idempotent, (M-I)h

o o
(M-I)(h-Pe), h^<w) Lipschitz. and J]- Jin--IT.« /n = O (A ), for A^, = VK/Vn + K~" +

1=1 11 P TT h

Hh-h«^/n ^ mv + M(h-h) + <M-i)hll^/n £ C(T]'MT)/n + y;.",T.i/»^[h^(w.)-h„(w.)]^/n
^1=1 1 1 1 1

+ y.",T.^A^[h„(w.)-p'.p]^/n £ (K/n) + C^.", Ilfi.-n.ll^/n + 0(K"^") - O (A?).
^1=1 11 Gil p ^1=1 11 p h

It then follows by the smallest eigenvalue of Q bounded av^ay from zero with probability

approaching one that, for h = P/3 and y = (x i/» y ,...,t \p y )',

llp-/3ll^ s (l)(p-p)'Q(p-/3) = (l)(y-h)'M(y-h)/n ^ (l)[T)'M7]/n + (h-h)'M(h-h)

+ (h-E3'M(h-h)]/n s (K/d) + (DY." £.i//^[h^(w.)-h„(w.)]^/n
p p ^^1=1 r 1 1 1

+ O (l)j:.",T.0^[h^(w.)-p'.p]^/n = {Ah.
p ^1=1 1 1 1 1 P h

Then by the triangle inequality,

UT(w)!/»(X)^[h(w)-hQ(w)]^dFj^(X)}^''^ ^ {jT{w).//(X)^[p^(w)' (p-/3)]^dFQ(X)>^^^

+ {jT(w)0(X)V(w)'l3-hQ(w)]^dF(w)}^'^^ - lip-pll + 0{K"") s (Aj^),

giving the first conclusion. Also, by the triangle inequality,

|h(w)-hQ(w)|g s |p^(w)'p-hQ(w)|g + |p^(w)'(p-i3)|^

^ 0(K ") + Cg(K)llp-pll = «g(K)Aj^). QED.

To state Lemma A2, some additional notation is needed. Let Z , S , Q , and Q be

K L
as given in the body of the paper. Also, let p. = p (w.), r. = p (z.),
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± = y.",T.i/»^p.p'.[y.-h(w.)]^/n, 2 = E[T.t//^p.p'.Var(y. IXJI,^1=1 1111 1 1 r r r 1 -^i i

Q = P'P/n, Q = E[T.^^p.p'. ],1111

H = y.",T.i//.p.{[Sh(w.)/5w]'aw(X.,fT.)/57r®r'. }/n,
^1=1 111 1 11 1

H = E[T.^/(.p.<[5h„(w.)/aw]'5w(X.,n.)/aTr®r'.>].ill 1 11 1

V = AQ~^(f: + HQ~^f^Q^^H' )Q"^A' , V = AQ"^Z + HQ^^Z^Q^^H' )Q"^A' .

For notational convenience, K and L subscripts for V are suppressed.

Assumption A2: i) lla(h)ll ^ C|h|„; ii) h^(w) and w(X,Tt) are twice continuously
o U

differentiable in w and ir respectively, and the first and second derivatives are

2
bounded; iii) either a) there are v(w), p such that a(h ) = E[T(v^r)^//(X) vCwjh (w)],

K. U U

a(pj^j^) = E[t(w).//(X)^i'(w)Pj^j^(w)], and E[T(w)t/((X)^lli^(w)-/3j^p^(w)ll^] -^ 0, or; b) a(h) is

~ K ~ Z
a scalar and there exists (^ ) such that for h (w) - p (w)'p , E[h (w) ] —> 0, and

a(h ) is bounded away from zero.
K.

Under iii) b), let d(X) = [ah (w)/aw]'5w(X,n (z))/a7t, recall the definition of £ as

the set of limit points of r {z)'y , and let p(z) be the matrix of projections of

elements of T(w)^(X)y(w)d(X) on £, and

V = E[T(w)0(X)^i^(w)i^{w)'Var(y|X)] + E[p(z)Var(x|z)p{z)' ].
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Lemma A2: If Assumptions Al and A2 are satisfied, Var(y \ X) is bounded away from zero,

^(L) and C,JK) are bounded away from zero as L and K grow, and each of the

following go to zero as n —^ m.- VnK , VnL i, C,JK) K /n, (K L+L KXK) /n,

KLi^Q(Kf^(L)^/n, L^C,Q(K)^^(Lf/n, and C,^(K)^i^^(K)^(LK+L^)/n, then 6 = 6^ +

(CXK)/Vn) and
p ^d

VnV^'^^Ce - e^) -^ N(O.I), ^^^(Q-B^) -^ N(0,I).

Furthermore, if Assumption A2, Hi) a) is satisfied,

VR(Q - Qq) -U N(0,V), V -^V.

Proof of Lemma A2: First, let

A = L^'^^/v/n + l""i, A^ = K^^^/V^ + K""' + A . A^, = ?(L)L^^^/;/n.
TT n 71 Ql

Aq = [K^^^q(K) + Co(K)^C(L)]A^ + Co(K)K^^^/v^.

A„ = [L^''^C,(K) + Cn(K)C(L)^]A + K^^^^{L)/V^.
li 1 U 71

Note that by VnK"" -^ and vQc""i ^ 0, A = (L^''^/V^)(l + L"^^^vQ.~"i) =
7r

1/2 1/2 1/2
0(L /Vn) and A, = 0(K /Vn + L /Vn). Therefore, it follows from the convergence

2 2
rate conditions and Cs-(K) and ^(L) bounded away from zero that ^(L) L /n ^

o

CL^CQ(K)^?(L)Vn -> 0, and

(A.8) K^''% = 0([KCj(K) + K^''^Co(K)^^(L)]L^''^/^n + Cq^^JK/V^)

= 0({k\Ci(K)^ + KLCqCKj'^CCL)^ + K^Co(K)^}^''^/v^) -> 0.

L^^^Ajj = 0([LCj(K) + L^''^Co(K)C(L)^]L^^^/v^ + L^'^\^^^^(L)/Vn)

VnC^CKjA^ = 0(CQ(K)L/yn) -^ 0,
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Cq(k)l^''^Cj(k)a^ = o({Cq(k)^lc^(k)^(k+l)}^''^/v^) -^ o.

1/2
It also follows from these results that L A -^ 0, Cq(K)A —> and C,(K)A -^ 0.

For simplicity the remainder of the proof will be given for the scalar . IT (z) case.

K K
Also, as in the proof of Lemma Al it suffices to show the result with p (w) = P (w),

r (z) = R (z), and Q and Q equal to identity matrices. In this case, V =

-1 2
A[Z + HS H']A'. Let F be a symmetric square root of V . By cr (X) = Var(y|X)

bounded away from zero and Q = I, Z - CI is positive semidefinite. Therefore,

{A.9) IIFAll = {tr[FAA'F']}^'^^ s {tr[CFASA'F' ]>^^^ £ tr{CFVF'
}^'^^ = C.

2 K
Suppose that Assumption A2,- iii), a) is satisfied. Then A = E[t(w)i/»(X) u'{w)p (w)' ].

Let v^{w) = Ap^(w). By Q = I, E[T(w)i/»(X)^lly(w)-i'-,(w)ll^] ^ E[T(w)i/((X)^lli;(w)-p-,p^(w)ll^]

-^ 0. Also let d(X) = [ah-(w)/5w]'aw(X,n-(z))/5jr, b^, (z) =
U (J K.l_,

E[T(w)i//(X)d(X)yj.(w)rhz)']r^(z), and b, (z) = E[T(w)i//(X)d(X)y(w)rhz)' ]rhz). Since the

mean square error (MSE) of a least squares projection is no greater than the MSE of the

2 2 2 2
random variable being projected, E[llb (z)-b (z)ll ] :s E[t(w)i/((X) d(X) Up (w)-t'(w)ll ] s

K.L L K.

2 2
CE[t(w)i//(X) Up (wj-i/'fw)!! ] —> as K —> oo. Furthermore, by Assumption A2, ii), b),

K.

2 2
E[llb (z)-p(z)ll ] —> as L —> co. Then by boundedness of cr (X) = Var(y|X) and

Var(x|z), and by the fact that MSE convergence implies convergence of second moments,

it follows that

(A.IO) V = E[T(w)(^(X)^yj^{w)yj^(w)V^(X)] + E[bj^^(z)Var(x|z)bj^^(z)'] -^ V.

This shows that F is bounded. Suppose that Assumption A2, iii) b) is satisfied. Then

~ ~ 2 1/2
by the Cauchy-Schwartz inequality, |a(h-,)| = |Ap^| s |IAIIIip„ll = IIAII(E[h„(x) ]) . so

K. K. K. K.

2
that IIAII —> 00. Also, V > ASA' ^ CIIAII , so F is also bounded under Assumption 5.

Next, by the proof of Lemma Al,
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(A.ll) IIQ-III = (A_) = o (1), IIQ -III = (A_,) = o (1).
p Q P 1 p Ql p

Further, for H = T. ,T.i//.p.d(X.)r'./n, similarly to Lemma Al,
^1=1 111 11

(A.12) IIH-HII = (A„) = o (1),
p H p

Now, IIQ-III -^ implies that the smallest eigenvalue of Q is bounded away from zero

with probability approaching one, implying that the largest eigenvalue of Q is

O (1), impl3dng IIBQ~'^II £ IIBIIO (1) for any matrix B. Therefore,

(A.13) IIFA{Q~^-I)II ^ IIFA(I-Q)Q~-^II ^ IIFAIIIIQ-IIIO (1) -^ 0.

Also, IIFAQ'^'^^II^ = tr(FAQ"^A'F') ^ CO (l)IIFAII^ = (1).
P P

Next, let p be such that Ip'^C-)'^ - h^(-)U = O (K"°'). Then
U o p

(A.14) IIV^a(p'^'p - h^)ll £ Cv^llFII|p^(-)'3 - h^(-)k = (V^"") = o (1).
(J U o p p

Also, for h. = T.i/».h-(w.) and h = (h,,...,h )',
1 1 1 1 In

(A.15) IIFAQ"^' (h-Pp)/Vnll s Cv/KiiFAQ~^P'/V^llsup,,,|p^(w)'^ - h^(w)
|

^ CV^[tr(FAQ"^A'F')]^'^^0(K~°^) = (t/iiK"") = o (1).

P P

Then by Ap = a(p 'p), a(h) = A3, eqs. {A.14) and (A.15), and the triangle inequality,

for h. = T.iA.h^(w.) and h = (h,,...,h )',
1 1 1 1 In

(A.16) v^[a(h)-a(h-)] = FAQ"^P'VV^ + FAQ"^P' (h-h)/\/n + o (1).

p

Let IT = (n n )', u. = x.-n., U = (u ,...,u )', y be such that

sup_|n (z)-r {z)'2r\ = 0(L i), and d. = d(X.). By a second order mean-value expansion

of each h(w.) around w., and by eq. (B.O),
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(A.17) FAQ ^P'(h-h)/v^ = FAQ ^Y.-^^i.ip.p.d.[-n.-Tl.]/^/R + p = FAQ^^Hq/r' U/^n^1=1 111 111 1

+ FAQ~-^HQ7^R' (n-R' j-VV^ + FAQ~V.",T.i/».p.d.[r'.y-n.l/Vn + p
1 ^1=1 111 111 '^

ll^ll < C^IIFAQ~^''^IICn(K)I.'',lin.-n.ll^/n = O (/SCn(K)A^) = o (1),f ^0 ^1=1 11 p 71 p

Also, by d. bounded and nHQ H' equal to the matrix sum of squares from the

^ yv — -^"l

—

n ^ 2,^ '^ 2 '^

multivariate regression of T.i/>.p.d. on r., HQ, H :^ Y. .x.ip .p.p'.d./n ^ CQ.Ill 1 1 1 ^1=1 1111 1

Therefore,

(A.18) llFAQ~^HQ~^R'(n-R'3')/v^ll ^ IIFAQ'^HQ'^R'/'/nllV^-sup^lnQCzj-rhz)'?'!

< [trace(FAQ"^HQ~^Q^Q^^H'Q"^A'F')]^''^0(/nL~"i) ^ CIIFAQ"^^^IIQ(^/riL~"i)

= (v/nL""i) = o (1).

Similarly,

(A.19) IIFAQ~V.",T.i/».p.d.[r'.3'-n.]/v/n II s CIIFAQ~^''^IIO(VnL~"i) = o (1).
^1=1 111 ill p

Next, note that E[IIR'U/V^II^] = tr(Z^) £ Ctr(Ij^) ^ L by E[u^|z] bounded, so by

the Markov inequality,

1 /7
(A.20) IIR'U/V?ill = O (L ).

P

Also, note that IIFAQ'^HQT^H ^ (1)IIFAQ~-^''^II = (1). Therefore,
1 p p

(A.21) IIFAQ~%(Q7^-I)R'U/\/nll :s IIFAQ"^Hq7^IIIQ -IIIIIR'U/V^II = O (L^'^^A^,) = o (1).
1 11 p Ql p

By similar reasoning, and by eq. (A. 8),

(A.22) IIFAQ ^(H-H)R'U/Vnll ^ IIFAQ ^IIIIH-HIIIIR'U/Vnll = (A„L^^^) = o (1).
p H p

Noting also that HH' is the population matrix mean-square of the regression of
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T.0.p.d. on r., so that HH' s CI, it follows that E[I1HR' U/Vnll^] = tr(HZ,H') < CK.
r i*^! 1 1 1

1/2
Therefore, IIHR'U/\/nll = (K ), and

(A.23) IIFA(Q"^-I)HR'U/V^II ^ IIFAQ"^II ll(I-Q)ll IIHR' U/ZSlI = (A^K^'^^) = o (1).
P Q P

Combining eqs. (A.16)-(A.23) and the triangle inequality gives

(A.24) FAQ~-^P' (h-h)/v^ = FAUR'V/Vn + o (1).

Next, it follows as in the proof of Lemma Al that IIQ (P-PJ'tj/VTTiI =

(Cq(K)^C(L)A^ + <:^(K)^A^) = o (1), implying

(A.25) IIFAQ"^(P-P)'t]/v^II ^ IIFAQ~^'^^IIIIQ~^'^^(P-P)'-n/V^II = o (1).
P

Also, by E[7)|X] = 0,

(A.26) E[IIFA(Q~^-I)P't7/v^II^|X] = tr(FA(I-Q)Q~^ZQ~^(I-Q)A'F'

)

:£ IIFA(I-Q)Q~^II^ s II FA 11^ II I-Q 11^0 (1),

so that IIFA(Q~ -DP'V/nll -^ 0. Then combining eqs. (A.25)-(A.26) with eq. (A.16) and

the triangle inequality gives

(A.27) v^[a(h)-a(h^)] = FA{P' n/VR + HR'U/v^) + o (1).

p

Next, for any vector <p with II0II = 1 let </i'FA[T.i/».p.T}. + Hr.u.]/V^ = Z. .Ill 1 11 in

Note that Z. are i.i.d. across i for a given n, E[Z. ] = 0, and Var(Z. ) = 1/n.
in ''in in

Furthermore, for any e > 0, IIFAII £ C and IIFAHII £ CIIFAII £ C by CI-HH' positive

semidefinite, so that

nEUdZ.
I > e)Z^ ] = n6^E[l(|Z. | > e){Z. /e)^] £ ne"^E[lZ. l"^]in in in in in

£ Cne"^li0ll^E[llT.p.ll\[7)||X.]] + E[llr.ll'^E[ut |z.]]}/n^
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£ Cn ^{Cq(K)^E[IIt.i/».p.II^] + C(L)^E[llr.ll^]} = 0([Cq(K)^K+ ^{L)\]/n) = o(l).

Therefore, /nF(9-0 ) —> N(0,I) follows by the Lindbergh-Feller theorem and equation

(A.27).

2
As previously noted, CI - HZH' is positive semi-definite, so that V £ CIIAII .

Suppose a(h) is a scalar. It follows from the above proof that A ^^ for all n

large enough. Note that for any IS, the Cauchy-Schwartz inequality implies |p 'p| ^
o

CJK)II/3II, so that IIAII^ = latAp'^)! ^ \Ap^\ ^ ^ C,AK)\\A\\. Dividing by IIAII then gives
o o o

9 9 „ r/9
IIAII :£ CtK) . Therefore, 9-6^ = O (V /Vn) = (C^(K)/\/n). This result for the

5 Op P "

scalar a(h) covers the case of Assumption A2, iii), b). In the other case it follows

from V ^ V that 9-6^ = (1/V^) = {C.JK)/Vn).
. p P 5

Next, by Lemma Al, max. |h.-h. |
= (C„(K)A, ) = o (1). Also, it follows by

i:sn 1 1 p h p

Theorem 1 of Newey (1997) that max. III.-IT. |
= (f(L)A ) = o (1), so that by h„(w)

i£n 11 p 71 p

and w(X,7i) Lipschitz in w and tt respectively, max.^|h.-h.| = o (1). Hence, by the

triangle inequality, max. |h.-h. |
= o (1). Note that by x. = x., x.(7}.-t).) =

i:£n 11 p 1 1111
x.[-27j.(h.-h.)+(h.-h.)^] = v.. Also, for D = FAQ~^P'diag{l+|T7,

| I+Itj |
}PQ"^A'F'/n.111111 1

b
1^ ' ' ' 'n

E[D|X] £ CFAQ~^A'F = (1). Let Z = y'.",x.p.p'.-n^/n. Then
p '-'1=1 111 1

IIFAQ~^(Z-S)Q~^A'F'II = IIFAQ~^P'diag{i^ v }PQ"U'F'/nll

£ Ctr{D)max.^ |h.-h.| = (l)o (1) = o (1).
i^n 11 P P P

Also, by E[t)^|X] uniformly bounded, E[J]." tj^It.-x. |/n|X] :s CJ^." |x.-t. |/n and

E(y;.",T}^llw.-w.ll^/n|X] £ cy.",llw.-w.ll^/n, so that T.^.tj^Ix.-x. |/n = (^(L)A ) and
^1=1 1 1 1 ^1=1 1 1 ^1=1 1 11 p^ 71

y. ,7).llw.-w.ll /n = (A ). Then similarly to the proof of IIQ-III = (A„),
^1=1 111 P TT p Q

iiz-zii £ iiy;.",(x.p.p'.-x.p.p'.)T}^/nii + iiy;.",T.p.p'.T)^/n - zii
^1=1 r r 1 i^r 1 i ^i=l ri^i i

4 4 1/? 9
= (A^) + O ({E[x.llp.irE[7}^|X.]]/nr ) = (A^ + C^(K)^K/n) = o (1).pQpii 11 pQ^O p

Therefore, IIFAQ~^(Z-S)Q"^A'F' II s IIFAQ"^II^IIZ-ZII -^0. Furthermore, IIBSII s
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CIIBII for any matrix B, by CI - E positive semi-definite, so that

IIFA(Q~^EQ~^-Z)A'F'I1 < IIFA(Q~^-I)SQ~^A' F' II + IIFAZ(q"^-1)A' F' II < IIFAQ"^II^II(I-Q)ZII +

IIFAZIIIII-QIIIIFAQ~^II £ O (l)III-QII + IIFAIIo (1)0 (1) = o (1). Then by the triangle
P P P P

inequality, it suffices to show that FA(Q~^HQ~^Z^Q^^H'Q"^ - HE^H')A'F' -^ 0.

To show this last result, note first that it follows similarly to the argument for

JIE-ZII -^ that IIZ -Z,ll -^ 0. Let d. = {[ah{w.)/dw]' av/(X.,fi.)/dn and d. = d(X.).11 1 1 11 11
Then by the conclusion of Lemma Al, 3w(X,7r)/57r bounded,

^ii^i'V^i'^^".^
C(sup^|h-hQ|2 + l.^^\\fl.-Tl//n) = (q(K)2A^).

Therefore,

IIH-HII ^ C(X.",T.llp.ll^lir.ll^/n)^^^(I.",T.|d.-d.|^/n)^^^= (C^(K)L^''^C{K)A^) = o (1).
^1=1 1 1 1 ^1=1 111 P 1 h p

Hence, by eq. (A. 12) and the triangle inequality, IIH-HII —> 0. The conclusion then

follows similarly to previous arguments. For example, by logic like that above,

IIFAQ~^HQ~^f: -Z )Q~^H'Q~^A'F'II ^ IIFAQ~^HQ~^II^I1Z -E II

:£ tr(FAQ~'^HQ7^H'Q~^A'F')o (1) = o (1).
1 p p

It then follows by similar arguments and the triangle inequality that FVF' —^ I. In

the case of Assumption A2, iii, b), where a(h) is a scalar, it follows by taking a

square root that that v"^'^^/V~^'^^ -^ 1, so that VnV'^^he-Q ) =

(V /V )\^nV
(^"^n^

—^ N(0,I). In the other case the last conclusion follows

—^1/2
similarly from F —> V . QED.

Lemma A3: If v. is i.i.d. and continuously distributed with bounded density and

max.^ Iv.-v. I
= (5 ), 6 -^ 0. then Y.'^AKasv .^b)-l(ar^v .:^b)\/n = (S ).

i^n 11 P n n ^i=2 i i P n

Proof: By the density of v. bounded, for any A > 0, A —> 0, by the Markov
1 n n

inequality.
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y.",[l(|v.-a|£A )+l(|v.-b|^A )]/n = (Prob(| v.-a| <A )+Prob( | v.-b|<A )) = (A ).
^1=1 1 n 1 n p in in p n

We also use the well known result that Y = (1) if and only if e Y -^ for all
n p n n

positive sequences with c —> slowly enough. Consider any positive sequence e

2 -1/2 1/2
such that c goes to zero slower than 8 , i.e. (e ) 5 —> 0. Then v = (e )

n n n n n n

—> 0, so V max. Iv.-v. |/5 —^ 0. It follows that max. |v.-v. |
^ 5 /v with

n i^n 1 1 n i^n i i n n

probability approaching one (w.p.a.l) as n —> oo. Then w.p.a.l,

c 7.", |l{a<v.£b)-l(a:£v.<b)|/5 n = e 7.",
| l(a£v.+[v.-v.]<b)-l(a<v.£b) |/5 n

n^i=l 1 in n^i=l i i i i n

s c y.^JKIv.-alrsS /v )+l(|v.-b|<5 /v )]/8 n = e d~^0 (5 /v ) = O (y ) = o (1). QED.
n^i=l 1 nn i nnn nnpnn pn p

Proof of Lemma 4.1: Because series estimators are invariant to nonsingular linear

transformations of the approximating functions, a location and scale shift allows us to

assume that W = [0,1] and Z = [0,1] i. Also, in the polynomial case, the component

powers can be replaced by polynomials of the same order that are orthonormal with respect

to the uniform distribution on [0,1], and in the spline case by a B-spline basis. In

both cases the resulting vector of functions is a nonsingular linear combination of the

original vector, because of the assumption that the order of the multi-index is

increasing. Also, assume that the same operation is carried out on the first step

approximating functions r (z). For any nonnegative integer j,

<.(K) = max. , .sup ~J\d p (w)ll, f .(L) = max,
,

.sup .^115 p (z)ll.

Then it follows from Newey (1997) that in the polynomial case,

<IK) ^ CK^'^^J, C(L) £ CL.

and in the spline case that
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It follows from these inequalities and Assumption 4 that

[Cq(K)C^(K) + Co(K)^?q(L)]A^ ^0. A^ = (L/n)^^^ + L V^^i,

so the conclusion follows by Lemma Al. QED.

Proof of Theorem 4.2: Without changing the notation let F"f,(w) denote the conditional

distribution of w given t(w) = 1, let A(u) - A(u) - jA(u)dF (u), and ^^(u) = ^Au)

- JA (u)dF (u). For w = (x,z ), note also that g(w ) = g(w )-J'g(w )dF (w ) and

g„(w ) = g„(wJ-J'g (wJdF (w ). Also by the density of w being bounded and bounded

away from zero, so is the conditional density on W, and the corresponding marginals.

Therefore, for A = J{h(w)-h (w)}dF (w)

J[h(w)-hQ(w)]^dFQ(w) > Cj'[i(w^)+A(u)-gQ(w^)-AQ(u)]^dFQ(w^)dFQ(u)

= CSlg(vf^)-g^iw^) + A(u)-Aq(u) + A]^dFQ(w^)dFQ(u)

= Cj-[i(w^)-iQ(w^)]^dFQ(w^) + Cj'[A(u)-AQ(u)]^dFQ(u) + CA^

i Cmax{J[i(w^)-iQ(w^)]^dFQ(w^), J-[A(u)-AQ{u)]^dFQ{u), A^>

where the product terms drop out by the construction of g(u), etc., e.g. S

J[g(w^)-iQ(w^)][A(u)-AQ(u)]dFQ(w^)dFQ(u) = X[g(w^)-gQ(w^)]dFQ(w^)- J[A(u)-AQ(u)]dFQ(u) =

0. QED.

Proof of Theorem 4.3: Follows from Lemma 4.1 by fixing the value of u at any point in

W. QED.

Proof of Theorem 5.1: For power series, using the inequalities in the proof of Theorem

4.1, it follows that

Cq(K)^K^ s Ck"^, (K^L+L^)C^(K)^ £ C(k\+L^)K^, KLCq(K)'^C{L)^ ^ CK^L^,

L^CqCKJ^^CL)"^ £ Ck\^, Co(K)^Ci(K)^(LK+L^) ^ CK^(KL + L^).

«^n



and for splines that

It then follows from the rate conditions of Theorem 4.2 that the rate conditions of Lemma

A2 are satisfied. The conclusion then follows from Lemma A2, similarly to the proof of

Theorem 4.L QED.
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OLS
.000017

(.5597)

2sls

.000387

(2.7447)

Table 1:

Estimate
NP
-.0094

(2.5513)

7.01516-6

(2.6363)

-2.1707e-9

(2.6304)

2.3692e-13

(2.5537)

NPIV
-.01097

(2.9170)

7.4577e-6

(2.7986)

-2.0250e-9
(2.4640)

1.89296-13

(2.0311)

-.000384

(2.6732)

-.0005

(2.7643)

r -6.64646-8

(.5211)

r^ 3.49786-10

(2.7516)

Notes:i) h denotes hours worked and r is the reduced form residual.

ii) The regressors in the wage equation included education dummies, union status, tenure,

full-time work experience, black dummy and regional variables.

iii) The variables included in Z which are excluded from X are marital status, health

status, presence of young children, rural dummy and non-labor income.

iv) Absolute value of t-statistics are reported in parentheses.

Specification
h=0; r=0
h=l; r=l

h=2; r=2
h=3; r=3
h=4; r=4
h=5; r=5

Table 2:

Cross Validation Value
185.567

183.158

183.738

182.899

182.882

183.128
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Estimote of Woge/Hours Profile from Polynomial Approximation
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Estimate of Wage/Hours Profile from Spline Approximation
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95Z Confidence Interval for Wage/Hours Profile from Polynomial
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95% Confidence Interval for Wage/Hours Profile from Spline
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