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ABSTRACT In this paper, we propose nonparametric hierarchical Bayesian models based on two inverted
Dirichlet-based distributions and Pitman–Yor process for positive data features clustering. The choice of the
inverted Dirichlet and the generalized inverted Dirichlet distributions is motivated by their flexibility and
modeling capabilities when dealing with this kind of data, while deploying the Pitman–Yor process prior is
justified by its power-law behavior, which makes it a natural choice in real-life application compared with
Dirichlet processes for instance. The inference for the resulting models takes into account the challenging
problem of feature weighting/selection and is conducted under a Bayesian setting by means of the recently
proposed stochastic variational Bayes technique. The efficacy and merits of the proposed approaches are
examined using the synthetic data and a challenging real-life application that concerns video background
subtraction.

INDEX TERMS Clustering, mixture models, inverted Dirichlet, nonparametric Bayesian model, stochastic
variational inference.

I. INTRODUCTION

In recent years, the accelerated growth of digital collec-
tions, with increased computing power and electronic storage
capacity, has established the need for the development of
strong machine learning and data mining techniques. Among
these techniques, finitemixturemodels are being increasingly
used in image processing and computer vision applications.
Indeed, they can be fitted easily to extracted visual features
via both frequentist and Bayesian approaches. Thus, they
have continued to receive special attention over the years
as technically sound formal approach for visual descriptors
clustering [1], [2]. A challenging problem when deploying
mixture-based approaches is model selection which consists
of determining automatically the model’s complexity. It is
a crucial task since considering an inappropriate number
of mixture component leads to poor generalization capa-
bilities (i.e. under- or over-fitting problems) [3]. Normally,
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this issue is addressed using the maximum likelihood (ML)
method in which a model selection criterion is included, such
as Akaike information criterion (AIC) [4], Bayes informa-
tion criterion (BIC) [4], minimum message length (MML)
[5], or exact integrated completed likelihood (ICL) [6]. Nev-
ertheless, these approaches are time-consuming due to the
fact that they have to evaluate the given selection criterion for
multiple numbers of mixture components in order to discover
the optimal one.

Recently, nonparametric Bayesian approaches, especially
Dirichlet process mixture models have become very popu-
lar to tackle the model selection problem by assuming an
infinite number of components which avoids the need of
deploying tedious selection criteria [2], [7]. In one of our
earlier works, we have construed a Dirichlet process mixture
of generalized inverted Dirichlet Distributions with feature
selection for spatio-temporal video modeling and segmenta-
tion [8]. A technically sound alternative to Dirichlet process is
Pitman-Yor process which can be viewed as a generalization
to the Dirichlet process prior for nonparametric Bayesian
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modeling [9]. The Pitman-Yor process allows to produce a
large number of populated clusters while reducing the number
of sparsely populated ones, which is crucial for several real-
life applications [7], [10], [11].
A challenging problem when considering mixture models

within nonparametric Bayesian frameworks in general and
with a Pitman-Yor process prior in particular is the choice of
the per-components data distributions. Gaussian distribution
has enjoyed great popularity and has been widely used in
several image processing applications. Despite its success and
usefulness in many application domains, it suffers from some
limitations when dealing with positive data vectors which
is generally the case of extracted visual features [12]. In an
effort to obtain improved modeling performance and capa-
bility when dealing with this kind of features, we propose the
consideration of inverted Dirichlet-based distributions [12],
[13] within a Pitman-Yor process-based framework. Indeed,
we focus on tackling the problem of model-based clustering
of grouped positive data using a nonparametric hierarchical
Bayesian model namely the hierarchical Pitman-Yor (HPY)
process mixture model [7], [10]. In our approach, the data
are assumed to be subdivided into a set of groups, where each
observation within a group follows a mixture model with an
unknown number of components, and where mixture compo-
nents, represented by inverted Dirichlet-based distributions,
are shared among these groups. Within the same group, each
observation is drawn independently from a mixture model,
and the number of observations within each group may be
different. The dependencies among groups are caused by the
assumption that the mixture models in different groups may
share mixture components. Under the settings of hierarchical
modeling [14], parameters are shared among groups, and the
randomness of the parameters induces dependencies among
different groups. Another crucial problem when dealing with
vectors of visual descriptors, that we take into account within
our nonparametric Bayesian framework, is feature selection.
Indeed, we perform simultaneously clustering and feature
selection by adapting a feature selection scheme [15] to our
approach. The inference for the resultingmodels is conducted
under a Bayesian setting by means of a stochastic variational
Bayes technique namely stochastic variational inference [16].
It exploits natural gradients and is able to handle stream-
ing or large-scale data sets.
The contributions of this work can summarized as follows:

we propose two nonparametric hierarchical Bayesian mod-
els based on Pitman-Yor process mixture model with both
inverted Dirichlet (ID) and generalized inverted Dirichlet
(GID) mixture models. We integrate an unsupervised features
selection scheme into the proposed nonparametric hierarchi-
cal GIDmixturemodels in order to improve clustering perfor-
mance. We develop efficient learning algorithms to estimate
both model parameters and feature saliencies through the
framework of stochastic variational inference. The proposed
nonparametric hierarchical Bayesian models and the learning
algorithms are validated using synthetic data and a real-life
application namely video background subtraction.

It is noteworthy that this work can be considered as an
extension to our previous work [8]. Compared with [8] in
which a hierarchical Dirichlet process (HDP) mixture of GID
distributions was proposed for video modeling and segmenta-
tion, this work proposes two nonparametric Bayesian models
based on HPY process mixture model with both ID and
GID distributions. Moreover, different from [8] in which the
conventional variational inference was used to learn model
parameters, more efficient model learning algorithms based
on stochastic variational inference are developed in this work
to learn the proposed nonparametric hierarchical Bayesian
models. Another related work to the current work is [11]
where a HPY process mixture model of generalized Dirich-
let (GD) distributions with online variational inference was
proposed for clustering proportional data (i.e. normalized
vectors) and was applied for scene recognition and video
segmentation. In contrast to [11], the current work focusing
on clustering positive data based on HPY process mixture
models of both ID and GID distributions with stochastic
variational inference.

The rest of the paper is organized as follows: Section 2
describes the hierarchical Pitman-Yor mixture model.
In Section 3, we develop hierarchical Pitman-Yor mix-
ture models based on inverted Dirichlet-based distribu-
tions. The learning of these models is tackled in Section 4.
Section 5 reports the experimental results. In Section 6,
we end the paper by presenting some concluding remarks.

II. THE HIERARCHICAL PITMAN-YOR PROCESS MIXTURE

The HPY process, which is based on the Pitman-Yor pro-
cess (also known as the two-parameter Poisson-Dirichlet pro-
cess) [9], defines a global random probability measureG0 and
an indexed set of random probability measures {Gj}, one for
each group:

G0 ∼ PY(a, b,H ),

Gj ∼ PY(a′, b′,G0), for each j ∈ {1, . . . ,M} (1)

where G0 is the common base (i.e., global-level) measure
shared across the different Pitman-Yor processes Gj, and is
itself distributed according to a Pitman-Yor process prior.

We can build the HPY process model by applying the stick-
breaking construction [17], [18] for the base measure G0 and
the group-level measure Gj, respectively. The stick-breaking
construction for G0 is defined as

G0 =

∞∑

k=1

̟kδ3k (2)

where

̟k =̟ ′
k

k−1∏

s=1

(1−̟ ′
s), ̟ ′

k ∼ Beta(1−a, ak+b), 3k ∼ H

(3)

where {3k} is a set of independent random variables drawn
from H , δ3k is an atom centered at 3k , and̟k are the stick-
breaking proportions with the constraint that

∑∞
k=1̟k = 1.
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Notice that since G0 is the base measure of Gj, the atoms 3k

are shared among all Gj with different proportions.
The stick-breaking construction for group-level Pitman-

Yor process Gj is defined as

Gj =

∞∑

t=1

πjtδ�jt (4)

where we have

πjt = π ′
jt

t−1∏

s=1

(1 − π ′
js), �jt ∼ G0, (5)

π ′
jt ∼Beta(1 − a′, a′t + b′) (6)

where πjt are the stick-breaking proportions, and each group-
level atom �jt maps to a global-level atom 3k based on
the distribution defined by G0. Then, we introduce a binary
indicator variable Wjtk such that Wjtk = 1 if �jt maps to
the global-level atom 3k ; otherwise, Wjtk = 0. As a result,

we have �jt = 3
Wjtk

k . The probability distribution of the
indicator variable EW = (Wjt1,Wjt2, . . .) is given by

p( EW ) =

M∏

j=1

∞∏

t=1

∞∏

k=1

[
̟ ′
k

k−1∏

s=1

(1 −̟ ′
s)

]Wjtk

(7)

The HPY process can be used in the grouped mixture
model setting by considering a HPY process as the prior
distribution over the parameters for grouped data. Let F(θji)
denotes the distribution of the data pointXji given the parame-
ter θji, where the index ji indicates the i-th observation within
j-th group. LetGj represents a HPY process prior distribution
for the parameters Eθj = (θj1, θj2, . . .) associated with group j.
Then, the HPY process mixture model can be defined as

θji|Gj ∼ Gj, Xji|θji ∼ F(θji) (8)

For the HPY process mixture model, we introduce another
binary indicator variable Zjit , such that Zjit = 1 if θji is
associated with the t-th component and maps to the group-
level atom �jt ; otherwise, Zjit = 0. Then, we have θji =

�
Zjit
jt . The probability distribution of the indicator variable

EZ = (Zji1,Zji2, . . .) is given by

p(EZ ) =

M∏

j=1

Nj∏

i=1

∞∏

t=1

[
π ′
jt

t−1∏

s=1

(1 − π ′
js)

]Zjit
(9)

where Nj denotes the number of observations within group j.

III. THE HPY PROCESS MIXTURE MODEL WITH

INVERTED DIRICHLET-BASED DISTRIBUTIONS

In this section, we propose two related nonparametric hier-
archical Bayesian models based on the HPY process mix-
ture model with two inverted Dirichlet-based distributions,
namely the inverted Dirichlet and the generalized inverted
Dirichlet distributions. We also incorporate an unsupervised
feature selection scheme into the developed HPY process
mixture model, and thus form a unified framework for both
grouped data modeling and feature selection.

FIGURE 1. Graphical model of the HPY process mixture model with
ID distributions. Each node in the graph is associated with a random
variable, where shading denotes an observed variable. Plates denote the
replication, in which the number of replications is shown in the bottom
right corner.

A. THE HPY PROCESS MIXTURE MODEL WITH

ID DISTRIBUTIONS

Recently, the inverted Dirichlet (ID) mixture model has
shown promising performance in modeling positive vectors
and has been applied in various applications, such as object
detection, visual scenes analysis and classification [13], [19].
The ID distribution has considerable flexibility which
allows both multiple symmetric and asymmetric modes.
If a D-dimensional random vector EX = (X1, . . . ,XD) follows
a ID distribution with parameter Eα = (α1, . . . , αD+1), then
its probability density function (pdf) is given by [20]:

ID(EX |Eα) =
Ŵ(

∑D+1
l=1 αl)∏D+1

l=1 Ŵ(αl)

D∏

l=1

X
αl−1
l

(
1 +

D∑

l=1

Xl

)−
∑D+1

l=1 αl

(10)

where Ŵ(·) is the gamma function, Xl > 0 for l = 1, . . . ,D,
and αl > 0 for l = 1, . . . ,D+ 1.
Given a data set X that is partitioned into M groups,

if each D-dimensional data vector EXji = (Xji1, . . . ,XjiD) is
distributed according to a HPY process mixture model with
ID distributions, then its likelihood function is defined by

p(X ) =

M∏

j=1

Nj∏

i=1

∞∏

t=1

∞∏

k=1

[
ID(EXji|Eαk )

]ZjitWjtk (11)

where j and i denote the indices for the group and the data
vector, respectively.
In this nonparametric hierarchical Bayesian model, since

the parameter Eα is positive, a Gamma prior G(·) is adopted as

p(Eα) =

∞∏

k=1

D+1∏

l=1

G(αkl |ukl, vkl) (12)

where both ukl and vkl are positive hyperparameters.
A graphical model representation of the HPY process mix-

ture model with ID distributions is shown in Fig. 1.
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B. THE HPY PROCESS MIXTURE MODEL WITH GID

DISTRIBUTIONS WITH FEATURE SELECTION

Although the ID distribution is a powerful tool for mod-
eling positive vectors, it has a very restrictive covariance
structure (i.e. can only be positive) that limits its applica-
bility in real-life applications. Since in real practical cases,
the correlation of data may also be negative and then the
ID distribution becomes an inappropriate choice. Thus, in this
subsection, we propose another nonparametric hierarchical
Bayesian model which is based on HPY process mixture
model and the generalized inverted Dirichlet distribution
(GID) distributions. The GID distribution has a more general
covariance structure (can be either positive or negative) than
the ID, which therefore may provide more flexibility and
better modeling capability [12], [21].
If a D-dimensional random vector EY = (Y1, . . . ,YD)

follows a GID distribution with parameters Eα = (α1, . . . , αD)
and Eβ = (β1, . . . , βD), then its pdf is given by [21]

GID(EY |Eα, Eβ)=
D∏

l=1

Ŵ(αl+βl)

Ŵ(αl)Ŵ(βl)

Y
αl−1
l

(1+
∑D

l=1 Yl)
αl+βl−βl+1

(13)

where βD+1 = 0.
Then, we can build the HPY process mixture model

with GID distributions for modeling grouped data. Given
an observed data set Y that contains N D-dimensional ran-
dom vectors and is divided into M groups, where each vec-
tor in one group EYji = (Yji1, . . . ,YjiD) is sampled from a
HPY process mixture model with GID distributions. Then,
the likelihood function of this model with latent variables can
be defined as

p(Y) =

M∏

j=1

Nj∏

i=1

∞∏

t=1

∞∏

k=1

[
GID(EYji|Eαk , Eβk )

]ZjitWjtk

(14)

As we may notice, the above HPY process mixture model
assumes that all features have the same weight and therefore
are equally significant for the clustering task. However, this
assumption is not realistic in practice when high-dimensional
data is encountered, since some of the features might be
irrelevant and then degrade the clustering performance. This
fact motivated us to incorporate a feature selection scheme
into the proposed nonparametric hierarchical mixture model
to take into account this critical issue.
In order to perform feature selection, we adopt an interest-

ing and useful property of the GID distribution as discussed
in [21], such that the estimation of a D-dimensional GID
distribution may be transformed to D estimations of one-
dimensional inverted Beta distributions (also known as Beta
prime distributions) with independent features as

GID(EY |Eα, Eβ) =

D∏

l=1

IB(Xl |αl, βl) (15)

where the data vector EY is geometrically transformed into
another D-dimensional data point EX as: X1 = Y1 and
Xl = Yl/(1+

∑l−1
s=1 Ys) for l > 1. IB(Xl |αl, βl) is an inverted

Beta distribution with parameters {αl, βl} and its pdf is given
by

IB(Xl |αl, βl) =
Ŵ(αl + βl)

Ŵ(αl)Ŵ(βl)
X
αl−1
l (1 + Xl)

−(αl+βl ) (16)

This transformation is well-suited for feature selection. Since
the independence between features now becomes a fact
rather than an assumption as considered in Gaussian mixture
models with unsupervised feature selection [15]. Then, the
HPY process mixture model with GID distributions as
defined in Eq. (13) is equivalent to the following model with
inverted Beta distributions

p(X ) =

M∏

j=1

Nj∏

i=1

∞∏

t=1

∞∏

k=1

[ D∏

l=1

IB(Xjil |αkl, βkl)

]ZjitWjtk

(17)

In our work, we exploit an unsupervised feature selection
scheme as introduced in [15], so that an irrelevant feature is
defined as the one having a common distribution independent
from class labels. Thus, the probability distribution of each
feature Xjil in our model is defined as

p(Xjil) = IB(Xjil |αkl, βkl)
φjil IB(Xjil |α

′
l, β

′
l )
1−φjil (18)

where φjil is a binary variable that indicates the feature rele-
vancy. When φjil equals 0, it indicates that the feature l of the
i-th data point with the j-th group is irrelevant, and follows
an inverted Beta distribution with parameters α′

l and β
′
l ) that

are common to all clusters. When φjil equals 1, it indicates
that the feature Xjil is relevant, and is distributed according to
IB(Xjil |αkl, βkl). The marginal distribution of Eφ is defined as

p( Eφ|Eǫ) =

M∏

j=1

Nj∏

i=1

D∏

l=1

ǫ
φjil
l (1 − ǫl)

1−φjil (19)

where Eǫ = (ǫ1, . . . , ǫD) represent feature weights (i.e.,
the probabilities that the features are relevant).
The prior distribution of Eǫ is a Dirichlet distribution param-

eterized by Eζ = (ζ1, ζ2) with (ζ1, ζ2) > 0 in the form of

p(Eǫ) =

D∏

l=1

Dir(ǫl |Eζ ) =

D∏

l=1

Ŵ(ζ1 + ζ2)

Ŵ(ζ1)Ŵ(ζ2)
ǫ
ζ1−1
l (1 − ǫl)

ζ2−1

(20)

Then, the likelihood function of our HPY process mixture
model with unsupervised feature selection can be written as

p(X |EZ , EW , Eθ, Eφ) =

M∏

j=1

Nj∏

i=1

∞∏

t=1

∞∏

k=1

[ D∏

l=1

IB(Xjil |αkl, βkl)
φjil

×IB(Xjil |α
′
l |β

′
l )
(1−φjil )

]ZjitWjtk

(21)

where Eθ = {Eα, Eβ, Eα′, Eβ ′}. Gamma priors G(·) are used for
parameters Eα, Eβ, Eα′ and Eβ ′:

p(Eα)= G(Eα|Eu, Ev), p( Eβ) = G( Eβ|Eg, Eh) (22)

p(Eα′)= G(Eα′|Eu′, Ev′), p( Eβ ′) = G( Eβ ′|Eg′, Eh′) (23)
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FIGURE 2. Graphical model of the HPY process mixture model with GID
distributions with feature selection. Each node in the graph is associated
with a random variable, where shading denotes an observed variable.
Plates denote the replication, in which the number of replications is
shown in the bottom right corner.

A graphical model representation of the HPY process mix-
ture model with GID distributions with feature selection is
shown in Fig. 2.

IV. MODEL LEARNING

A. STOCHASTIC VARIATIONAL INFERENCE

Variational inference is a well-defined deterministic approach
to approximate posterior distributions through optimiza-
tion [3], [22], [23]. It finds a variational distribution q(2) to
approximate the posterior p(2|X ) of a model with parame-
ter 2 by minimizing the Kullback-Leibler (KL) divergence
between q(2) and p(2|X ). This calculation is equivalent
to the maximization of the evidence lower bound (ELBO),
which is a lower bound on the logarithm of the model
evidence log p(X ). The ELBO is equal to the negative
KL divergence up to an additive constant and is defined by

ELBO(q) = 〈ln p(X ,2)〉 − 〈ln q(2)〉 (24)

where 〈·〉 denotes the calculation of expectation. The vari-
ational solutions are obtained by maximizing the ELBO
through coordinate ascent, where each variational parameter
is iteratively optimized while holding other parameters fixed.
Although variational inference is continuously gaining

popularity in Bayesian inference, it is inefficient for large data
sets. This is due to the reason that it requires iterating through
the entire data set at each iteration. The computational cost
becomesmore expensive as the size of data set grows. In order
to cope with large-scale data sets, we develop an efficient
learning algorithm to learn the proposed HPY process mix-
ture model with inverted Dirichlet-based distributions based
on stochastic variational inference [16].
The main idea of stochastic variational inference is to

optimize the ELBO with noisy estimates of its natural gradi-
ent through stochastic optimization (also known as Robbins-
Monro algorithm) [24]. In stochastic variational inference,
the ELBO as described in Eq. (24) can be decomposed into a

global term and a sum of local term as

ELBO(q) =
[
〈ln p(ϒ)〉 − 〈ln q(ϒ)〉

]

+

N∑

i=1

[
〈ln p(EXi,Zi|ϒ)〉 − 〈lnZi)〉

]
(25)

where ϒ is the set of global variables (i.e., variables that
are coupled to the entire set of observations), Zi denotes
the set of local variables (i.e., variables correspond to each
observation EXi). Stochastic variational approach optimized
the maximized ELBO by subsampling the data to form noisy
estimates of the natural gradient. Now assume that a single
observation indexed by n is sampled uniformly at random
with n ∼ Unif(1, . . . ,N ) (i.e. EXn is sampled uniformly from
the data set { EX1, . . . , EXN }). Then, we can form a data set by S
replicates of observation (EXn and local variables Zn), and the
corresponding ELBO is calculated by

ELBOn(q) = 〈ln p(ϒ)〉 − 〈ln q(ϒ)〉

+ S[〈ln p(EXn, EZn|ϒ)〉 − 〈ln q(EZn)〉
]

(26)

As explained in [16], the expected value of ELBOn(q) is
equal to ELBO(q), so the natural gradient of ELBOn(q) with
respect to each global variational parameter is a noisy but
unbiased estimate of the natural gradient of ELBO(q) [16].
Therefore, stochastic variational inference does not need to
analyze whole data set but only requires computation about
one single local context at each iteration, which is much
more computationally efficient than conventional variational
inference. Since stochastic variational inference is based on
subsampling the training data and performs online param-
eter updates by using each time a single data point or a
small ‘‘mini-batch’’, it is analogous to other online learning
algorithms. Moreover, we apply the truncation technique as
in [25] to truncate the variational distributions of G0 and Gj
at levels K and T , respectively

̟ ′
K = 1,

K∑

k=1

̟k = 1, ̟k = 0 when k > K (27)

π ′
jT = 1,

T∑

t=1

πjt = 1, πjt = 0 when t > T (28)

where the truncation levels K and T will be inferred automat-
ically during the learning process.

B. LEARNING OF HPY PROCESS MIXTURE WITH

ID DISTRIBUTIONS

In this part, we propose an algorithm to learn the HPY process
mixture model with ID distributions through stochastic vari-
ational inference. In order to obtain closed-form solutions,
the mean-field assumption [3] is adopted to factorize the
variational posterior distribution q(2) into disjoint factors as

q(2) = q(EZ )q( EW )q(Eπ ′)q( E̟ ′)q(Eα) (29)

where 2 = {Z, EW , Eπ ′, E̟ ′, Eα} is the set of latent and
unknown random variables in our model. Suppose an
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observed data set X = EX1:N is partitioned into M groups.
At iteration r , a point EXjn in group j is randomly sampled
with n ∼ Unif(1, . . . ,Nj), where Nj indicates the number
of data points in group j. Then, the local variational distri-
bution q(EZjn) is optimized while holding global variational
distributions at their values at the (r − 1)th iteration. As a
result, the variational solution to q(EZn) can be calculated by
(See A for details)

q(EZjn) =

T∏

t=1

ρ
Zjnt
jnt (30)

The next step is to optimize the global variational distri-
butions q( EW ), q(Eπ ′), q( E̟ ′) and q(Eα) for the current iteration
(Details are provided in A). The parametric form of q( EW ) at
the r th iteration is given by

q(r)( EW ) =

M∏

j=1

T∏

t=1

K∏

k=1

(ϑ (r)
jtk )

W
(r)
jtk (31)

where the hyperparameter ϑ (r)
jtk can be calculated by leverag-

ing the noisy natural gradient of the ELBO (with step-size λr )
as

ϑ
(r)
jtk = ϑ

(r−1)
jtk + λr∂ϑ

(r)
jtk , (32)

where ∂ϑ (r)
jtk denotes the noisy natural gradient of the ELBO

with respect to ϑjtk at the r th iteration.
The global variational distributions q(Eπ ′), q( E̟ ′) and q(Eα)

for the r th iteration can be obtained by

q(r)(Eπ ′)=
M∏

j=1

T∏

t=1

Beta(π ′(r)
jt |c

′(r)
jt , d

′(r)
jt ) (33)

q(r)( E̟ ′)=
K∏

k=1

Beta(̟ ′(r)
k |c

(r)
k , d

(r)
k ) (34)

q(r)(Eα)=
K∏

k=1

D+1∏

l=1

G(α(r)kl |u
∗(r)
kl , v

∗(r)
kl ) (35)

where the hyperparameters of the above global variational
distributions are given by

c
′(r)
jt = c

′(r−1)
jt + λr∂c

′(r)
jt , d

′(r)
jt = d

′(r−1)
jt + λr∂d

′(r)
jt (36)

c
(r)
k = c

(r−1)
k + λr∂c

(r)
k , d

(r)
k = d

(r−1)
k + λr∂d

(r)
k (37)

u
∗(r)
kl = u

∗(r−1)
kl + λr∂u

∗(r)
kl , v

∗(r)
kl = v

∗(r−1)
kl +λr∂v

∗(r)
kl (38)

In above equations, the step size λr at iteration r is defined
by

λr = (η + r)−ς (39)

where ς ∈ (0.5, 1] denotes the forgetting rate and is used to
control the forgetting speed in the earlier stage of learning;
η ≥ 0 represents the delay factor to down-weight early
iterations. The stochastic variational inference is guaranteed

to converge to a local optimum of the ELBO if the step size
satisfies the following conditions [16]:

∑

r

λr = ∞ ,
∑

r

λ2r < ∞. (40)

The stochastic variational inference of the HPY process
mixture with ID distributions is summarized in Algorithm 1.

Algorithm 1 Stochastic Variational Inference of the HPY
Process Mixture with ID Distributions
1: Choose the initial truncation level K and T .
2: Initialize the parameters of the prior distributions: ak , bk ,
a′
jt , b

′
jt , ukl and vkl .

3: Set the step-size λr as λr = (η + r)−ς .
4: while TRUE do

5: Sample a data point EXjn uniformly from the j-th group
of the data set: n ∼ Unif(1, . . . ,Nj).

6: Update the local variational distribution q(EZjn) using
Eq.(30).

7: Update the current estimate of the global variational
distributions using Eqs.(31), (33) ∼(35).

8: end while

C. LEARNING OF HPY PROCESS MIXTURE MODEL WITH

GID DISTRIBUTIONS WITH FEATURE SELECTION

This subsection is devoted to learn the HPY process mix-
ture model with GID distributions with stochastic variational
inference. First, the variational posterior distribution q(2) is
factorized into the products of independent factors by the
mean-field assumption as

q(2) = q(EZ )q( EW )q( Eφ)q(Eπ ′)q( E̟ ′)q(Eα)q( Eβ)q(Eα′)q( Eβ ′)q(Eǫ)

(41)

where 2 = {EZ , EW , Eφ, Eπ ′, E̟ ′, Eα, Eβ, Eα′, Eβ ′, Eǫ} is the set of
latent and random variables in the model. Given a data set
X = EX1:N that is divided into M groups. At the r th iter-
ation, we uniformly sample a data instance EXjn with n ∼
Unif(1, . . . ,Nj) in group j. Then, we can update the varia-
tional solutions to the local variational distributions q(EZjn) and
q( Eφjn) while the global variational distributions remain fixed
to their values at the (r − 1)th iteration as (See B for details)

q(EZjn)=
T∏

t=1

ρ
Zjnt
jnt , (42)

q( Eφjn)=
D∏

l=1

ϕ
φjnl
jnl (1 − ϕjnl)

1−φjnl (43)

In the following step, the global variational distributions
q( EW ), q(Eǫ), q(Eπ ′), q( E̟ ′), q(Eα), q( Eβ), q(Eα′) and q( Eβ ′) are
updated for the current r-th iteration as

q(r)( EW )=
M∏

j=1

T∏

t=1

K∏

k=1

(ϑ (r)
jtk )

W
(r)
jtk (44)
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q(r)(Eǫ)=
D∏

l=1

Dir(ǫ(r)l |Eζ ∗(r)) (45)

q(r)(Eπ ′)=
M∏

j=1

T∏

t=1

Beta(π ′(r)
jt |c

′(r)
jt , d

′(r)
jt ) (46)

q(r)( E̟ ′)=
K∏

k=1

Beta(̟ ′(r)
k |c

(r)
k , d

(r)
k ) (47)

q(r)(Eα)=
K∏

k=1

D∏

l=1

G(α(r)kl |ũ
(r)
kl , ṽ

(r)
kl ) (48)

q(r)(Eα′)=
D∏

l=1

G(α′(r)
l |ũ

′(r)
l , ṽ

′(r)
l ) (49)

q(r)( Eβ)=
K∏

k=1

D∏

l=1

G(β(r)kl |g̃
(r)
kl , h̃

(r)
kl ) (50)

q(r)( Eβ ′)=
D∏

l=1

G(β ′(r)
l |g̃

′(r)
l , h̃

′(r)
l ) (51)

where the hyperparameters of the above global variational
distributions at the r th iteration can be calculated by

ϑ
(r)
jtk = ϑ

(r−1)
jtk + λr∂ϑ

(r)
jtk ,

Eζ ∗(r)=Eζ ∗(r−1)+λr∂Eζ ∗(r) (52)

c
′(r)
jt = c

′(r−1)
jt + λr∂c

′(r)
jt , d

′(r)
jt = d

′(r−1)
jt + λr∂d

′(r)
jt (53)

c
(r)
k = c

(r−1)
k + λr∂c

(r)
k , d

(r)
k = d

(r−1)
k + λr∂d

(r)
k (54)

ũ
(r)
kl = ũ

(r−1)
kl + λr∂ ũ

(r)
kl , ṽ

(r)
kl = ṽ

(r−1)
kl + λr∂v

(r)
kl (55)

ũ
′(r)
l = ũ

′(r−1)
l + λr∂ ũ

′(r)
l , ṽ

′(r)
l = ṽ

′(r−1)
l + λr∂v

′(r)
l (56)

g̃
(r)
kl = g̃

(r−1)
kl + λr∂ g̃

(r)
kl , h̃

(r)
kl = h̃

(r−1)
kl + λr∂h

(r)
kl (57)

g̃
′(r)
l = g̃

′(r−1)
l + λr∂ g̃

′(r)
l , h̃

′(r)
l = h̃

′(r−1)
l + λr∂h

′(r)
l (58)

where we adopt the same step size λr as defined in Eq.(39)
with constraints that are described in Eq.(40). The stochastic
variational inference of the HPY process mixture model with
GID distributions is summarized in Algorithm 2.

Algorithm 2 Stochastic Variational Inference of the HPY
Process Mixture with GID Distributions
1: Choose the initial truncation levels K and T .
2: Initialize the parameters of the prior distributions: ak , bk ,
a′
jt , b

′
jt , ukl , vkl , gkl , hkl , u

′
l , v

′
l , g

′
l and h

′
l .

3: Set the step-size λr as λr = (η + r)−ς .
4: while TRUE do

5: Sample a data point EXjn uniformly from the jth group
of the data set: n ∼ Unif(1, . . . ,Nj).

6: Update the local variational distributions q(EZjn) and
q( Eφjn) using Eqs.(42) and (43).

7: Update the current estimate of the global variational
distributions using Eqs.(44)∼(51).

8: end while

V. EXPERIMENTAL RESULTS

In this section, we first validate the proposed two HPY
process mixture models with stochastic variational inference

TABLE 1. True parameters for generating the synthetic data set. N

denotes the total number of elements, Nk denotes the number of
elements in cluster k and πk indicates the mixing proportion for cluster k .

learning through synthetic data sets. Then, we apply our
models to a challenging application namely video back-
ground subtraction. The goal of the synthetic data is to
investigate the accuracy of the stochastic variational infer-
ence for learning these two models, in terms of parame-
ters estimation. In the real application of video background
subtraction, the proposed approach is compared with other
well-defined mixture modeling based background subtrac-
tion approaches to show its advantages. Since the HPY
process mixture model can be considered as a hierarchical
infinite mixture model, the developed HPY process mixture
model with ID distributions can be referred to as the hier-
archical infinite ID mixture model (HIn-IDMM), whereas
the HPY process mixture of GID distributions with feature
selection can be referred to as the hierarchical infinite GID
mixture model with feature selection (HIn-GIDMM). In our
experiments, for both HIn-IDMM and HIn-GIDMM, we ini-
tialize the global truncation level K and the group trunca-
tion level T as 120 and 60, respectively. The parameters ς
and η of the learning rate are set to 0.80 and 64, respec-
tively. The hyperparameters of the stick-breaking weights
are initialized as: (a′

jt , b
′
jt , ak , bk ) = (0.1, 0.5, 0.1, 0.5).

For HIn-IDMM, we initialize its hyperparameters ukl
and vkl as 0.1 and 0.05, respectively. For HIn-GIDMM,
its hyperparameters are initialized as (ukl, vkl, gkl, hkl, u′

l,

v′l, g
′
l, h

′
l) = (0.1, 0.05, 0.1, 0.05, 0.1, 0.05, 0.1, 0.05). The

hyperparameters ξ1 and ξ2 of the feature saliency are both
initialized to 0.5.

A. SYNTHETIC DATA SETS

1) SYNTHETIC ID MIXTURES

To validate the proposed variational inference method for
learning HIn-IDMM, we generate a two-dimensional syn-
thetic data set that can be divided into two groups. The first
group contains two clusters (C11 and C12) of data points
that are randomly sampled from two ID distributions with
different parameters. The second group has three clusters
(C21, C22 and C23) of data points that are generated based
on three different ID distributions. In order to link these two
groups statistically, the data points inC12 andC22 are sampled
according to the same ID density (i.e., the ID distribution
with same parameters). The detailed setting of parameters for
generating this synthetic data set can be viewed in Table 1.

The two groups of synthetic data can be viewed in Fig. 3.
The results of parameter estimation for each group of the
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FIGURE 3. The scatter plot of data points of the synthetic data sets. Group 1: Two clusters;
Group 2: Three clusters.

FIGURE 4. The resulting mixture model learned by HIn-IDMM.

synthetic data set are shown in Table 2, based on the stochas-
tic variational inference learning algorithm as developed in
Section IV-B. According to this table, the proposed learning
algorithm is able to effectively learn HIn-IDMM with esti-
mated values of parameters that are very close to the true ones.
The resulting mixture models with estimated parameters for
each group are shown in Fig. 4.

Since we have truncated the number of mixture com-
ponents to 60 within each group in the initialization step,
the proposed HIn-IDMM estimated the correct number of
mixture components by removing the redundant components
with very small mixing coefficients. In the proposed frame-
work, the number of mixture components in each group was
identified by removing the components with the estimated
mixing coefficients π̂k that were close to 0 (less than 10−4).
As we can observe from Table 2, our algorithm has detected
the correct number of mixture components for each group
with accurate mixing proportions.

Furthermore, another experiment was performed to test
the effectiveness of the proposed stochastic variational algo-
rithm for learning HIn-IDMM with a larger data set that
contains 6 million data points in total as described in Table 3.
The estimated values of the parameters for generating this
data set is given in Table 4. By comparing the results
shown in this table with the true parameters as provided
in Table 3, it is clear that the proposed stochastic variational

TABLE 2. Average estimated parameters of the synthetic data set
in 15 runs by the proposed stochastic variational inference method.
Values are rounded to two digits after the decimal point. The numbers in
parenthesis are the standard deviation of the corresponding quantities.

algorithm can learn HIn-IDMM accurately for large-scale
data set.

2) SYNTHETIC GID MIXTURES

In this part, to evaluate the effectiveness of the proposed
learning algorithm in terms of both parameter estimation
and feature selection, we sample a 10-dimensional synthetic
data set from HIn-GIDMM with two relevant features and
eight irrelevant features. Please notice that, the geometric
transformation is performed as described in Section III-B,
in order to generate data with indecent features. Thus, the two
relevant features of our data are generated in the transformed
space from a mixture of inverted Beta distributions, whereas
the eight irrelevant features are generated according to a
common inverted Beta distribution IB(2, 5). This synthetic
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FIGURE 5. The resulting mixture model learned by HIn-GIDMM.

TABLE 3. True parameters for generating the large-scale data set. N

denotes the total number of elements, Nk denotes the number of
elements in cluster k and πk indicates the mixing proportion for cluster k .

TABLE 4. Average estimated parameters of the large-scale data set
in 15 runs by the proposed stochastic variational inference method.
The numbers in parenthesis are the standard deviation of the
corresponding quantities.

TABLE 5. True parameters for generating the synthetic data set. N

denotes the total number of elements, Nk denotes the number of
elements in cluster k and πk indicates the mixing proportion for cluster k .

data set contains 3,000 data points from four different clusters
and can be divided into two groups. The first group includes
1,000 data points from two clusters. The second group has
2,000 data points in total from three clusters. The second
cluster in both groups are generated using the GID density
function with same parameters.
Table 5 shows the parameters of the distributions repre-

senting the relevant features for generating this data set. The
estimated parameters for each group of the synthetic data
set are illustrated in Table 6, using the proposed stochastic

FIGURE 6. Average feature saliency obtained by HIn-GIDMM.

TABLE 6. Average estimated parameters of the synthetic data set
in 15 runs by the proposed stochastic variational inference
method. The numbers in parenthesis are the standard
deviation of the corresponding quantities.

variational inference algorithm. Based on this table, we can
observe that the proposed learning algorithm can accurately
estimate the parameters of the model representing relevant
features, and its mixing coefficients. The resulting mixture
models with estimated parameters for each group are shown
in Fig. 5. The average results of the estimated features
saliencies of all 10 features for the synthetic data set are
shown in Fig. 6, based on 15 runs. It obviously shows that
features 1 and 2 have been assigned a high degree of relevance
(greater than 0.9), which matches the ground-truth.

B. VIDEO BACKGROUND SUBTRACTION

Video background subtraction is the process of discriminat-
ing foreground subjects from the background in a sequence
of video frames with static cameras. It is a critical problem
in video analysis and has been applied as an interest detector
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FIGURE 7. Sample frames from each video sequence.

in various higher level problems, such as video surveillance,
human motion analysis, object tracking and traffic monitor-
ing [26]–[28]. Among various approaches that have been pro-
posed for video background subtraction in the past, the ones
based onmixturemodels have shown their merits and promis-
ing performance [1], [2], [29]–[31]. In mixture modeling
approaches, each pixel is represented by a mixture of den-
sity functions, and the goal is to differentiate whether the
testing pixel belongs to the background or some foreground
objects. Thus, background subtraction approaches based on
mixture models are considered as pixel-level evaluations, and
they are more robust and able to handle multi-modal back-
ground distributions in contrast to other approaches. In this
experiment, we apply the proposed HIn-IDMM and HIn-
GIDMM to video background subtraction using a statistical
framework.

1) METHODOLOGY

Suppose that we have observed a sequence of M frames
X 1, . . . ,XM , where each frame X contains N pixels X =
{EX1, . . . , EXN }. In our approach, each frame can be considered
as a group, thus each pixel in the frame can be modeled as
a mixture of infinite ID or GID distributions, where mix-
ture components are shared among groups (i.e., frames).
This setting satisfies the construction of the HPY process
mixture model. Another factor that impacts the performance
of back subtraction is the choice of features for represent-
ing each pixel. Among various types of features, color fea-
tures are invariant with respect to brightness changes, and
therefore illumination changes and shadows. Although the
RGB color space is a popular choice in background subtrac-
tion [29], [31], [32], other color spaces such as HSV [33] or
YCbCr [34] are also exploited. In our case, we adopt the
combination of 9 individual color components, taken from
the 3 color spaces (RGB, HSV and YCbCr) to build the
background model, where each color component falls into

the range [0, 255]. After computing color features for each
pixel in the given frame, the background model is learned
using the proposed HPY process mixture models through
stochastic variational inference as developed in Section IV.
In our mixture model, some of the mixture components are
used to model background whereas other components are
exploited to model foreground objects. Therefore, the last
step in our approach is to determine whether the pixel EXi
belongs to foreground or background. Here, we adopt the
assumption that a mixture component belongs background if
it occurs more frequently (high mixing probability πk ) and
does not vary significantly (low standard deviation σk ) [29].
Based on this assumption, all estimated components are
ranked according to the ratio πk/‖σk‖ and the first B com-
ponents are chosen as background components, where B is
obtained by

B = argmin
s

s∑

k=1

πk > H (59)

whereH is the threshold that represents the minimum portion
of the data that is accounted for the background. Thus, we can
perform background subtraction for an observed frame by
determining if the testing pixel EXi belongs to one of the
components in set B. In our experiments, different values of
H were tested, promising performance was obtained when
H was set to [0.75, 0.8] for different tested video sequences.
The background model would normally be unimodal if we set
H to a very small value. If a higher value of H was chosen,
a multimodal distribution caused by repeated background
motion may lead to multiple colors in the background model,
then a transparent effect may be obtained which allows the
background to accept two or more individual colors.

2) DATA SETS

The performance of the proposed background subtraction
approach is evaluated through six publicly available video
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sequences that have been used previously in [35], [36].
These video sequences have different characteristics and are
selected to assess the effectiveness of our approach under
various scenarios, such as: illumination changes, dynamic
backgrounds, etc. The description of each video sequence is
listed as following:

• S1: In this video sequence, it shows some vehicles driv-
ing in the rain;

• S2: In this video sequence, a plastic drum is floating on
the surface of sea;

• S3: A person is walking on a beach in this video
sequence;

• S4: A person is walking in front of swaying trees in this
video sequence;

• S5: In this video sequence, people enter and leave a room
with light switches on and off;

• S6: The video sequence consists of several minutes of
an overhead view of a cafeteria.

The size of each frame in these video sequences is
160×120 and sample frames can be viewed in Fig. 7.

3) EXPERIMENTAL RESULTS

Since the performance of our background subtraction
approach is evaluated on pixel-level, it is straightforward
to consider the detection of foreground objects as a binary
classification problem for each pixel. In our experiment,
the threshold H is set to [0.75, 0.8] for different videos. Rep-
resentative results of our background subtraction approaches
through HIn-IDMM and HIn-GIDMM can be visualized
in Fig. 8, in terms of foreground masks. As illustrated in
this figure, both HIn-GIDMM and HIn-IDMM are able to
obtain promising results for all sequences, which demonstrate
the effectiveness of using hierarchical Pitman-Yor process
mixture models to the problem of background subtraction.
Even though both HIn-GIDMM and HIn-IDMM can iden-
tify foreground objects clearly as demonstrated in Fig. 8,
as we may visually notice, HIn-GIDMM has acquired bet-
ter performance than HIn-IDMM does, in terms of better
robustness against noise, particularly for sequences S1 ∼ S4

due to dynamic backgrounds. This fact shows the ability
of the proposed approach to model dynamic backgrounds,
and also demonstrate the advantages of using HIn-GIDMM
together with a feature selection scheme to model back-
grounds compared to HIn-IDMM in which all features are
used. Nevertheless, HIn-IDMM is more computational effec-
tive than HIn-GIDMM, since no extra computational source
is required for HIn-IDMM to spend on the feature selection
process. Furthermore, the appealing results of video sequence
S5 obtained by both HIn-GIDMM and HIn-IDMM demon-
strate the robustness of our approach against illumination
changes.
We also evaluate the performance of our back-

ground subtraction approach quantitatively in terms of
F-Measure, which is computed through both recall and

FIGURE 8. Foreground masks obtained by HIn-GIDMM and HIn-IDMM for
each video sequence.

precision as

Recall

=
number of correctly identified foreground pixels

number of foreground pixels in ground truth
Precision

=
number of correctly identified foreground pixels

number of foreground pixels detected
F-measure

= 2
Recall · Precision

Recall + Precision

The F-measure is the harmonic average of the precision and
recall, where the F-measure reaches its best value at 1 (i.e.,
perfect precision and recall) andworst at 0. In our experiment,
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TABLE 7. The average results of background subtraction of each
approach, in terms of F-measures.

the results of recall and precision are calculated based on the
averages over all measured frames for each video sequence.
For comparison, we have also applied other three mixture-

based background subtraction approaches: the Gaussian mix-
ture model (GMM) [30], the infinite Gaussian mixture model
(In-GMM) [2], and the infinite Dirichlet mixture model
(In-DMM) [31]. The hyperparameters associated with each
tested background subtraction approach were initialized to
the same values as in their original works. The threshold H
was set to the same value for all tested approaches for the sake
of fair comparison.

The comparison results obtained by the testing approaches
for each video sequence are shown Table 7, in terms of
F-measures. According to the results shown in this table,
both the proposed HIn-IDMM and HIn-GIDMM have pro-
vided better performance than other tested approaches for
most video sequences with higher F scores. It demon-
strates the advantages of using the HPY process mixtures
to model backgrounds. Comparably worse performance has
obtained by both HIn-IDMM and HIn-GIDMM for the video
sequence S5, with lower F scores compared to the results
for other video sequences. This fact shows that the pro-
posed background subtraction approach has sort of limita-
tions in dealing with videos that contain light switch. Even
though In-GMM has obtained better result than HIn-IDMM,
and comparable performance to HIn-GIDMM for the video
sequence S5, HIn-GIDMM is still able to provide the highest
F score among all tested approaches.

VI. CONCLUSION

In this paper, we proposed a unified nonparametric Bayesian
framework for simultaneous clustering and feature selection
in the case of positive vectors of visual descriptors. Our
statistical framework is based on inverted Dirichlet-based
distributions as parent densities to describe the data and the
consideration of hierarchical Pitman-Yor process prior as an
alternative to the widely used Dirichlet process. We derived
elegant efficient inference algorithms using the recently pro-
posed stochastic variational Bayes learning approach, and
we examined the merits of our models using both syn-
thetic histograms and a real application namely video back-
ground subtraction. The experimental results suggest that our
nonparametric Bayesian framework is promising and offers
significant advantages if we take into account comparable

mixture-based techniques especially when integrating feature
selection to improve generalization capabilities.

APPENDIX A

STOCHASTIC VARIATIONAL INFERENCE OF THE HPY

PROCESS MIXTURE MODEL WITH ID DISTRIBUTIONS

A. THE OPTIMIZATION OF LOCAL VARIATIONAL

DISTRIBUTION

To update the local variational distribution q(EZjn) after sam-
pling the data point EXjn, the global variational distributions
are remained to their values at the (r − 1)th iteration. The
variational solution to q(EZjn) can be calculated by

q(EZjn) =

T∏

t=1

ρ
Zjnt
jnt (60)

where we have

ρjnt =
exp(ρ̃jnt )∑T
s=1 exp(ρ̃jns)

(61)

and

ρ̃jnt =

K∑

k=1

〈W
(r−1)
jtk 〉[R̃(r−1)

k +

D∑

l=1

(ᾱ(r−1)
kl − 1) lnXjnl

+

t−1∑

s=1

〈ln(1 − π
′(r−1)
js )〉 + 〈lnπ ′(r−1)

jt 〉

−(
D+1∑

l=1

ᾱ
(r−1)
kl ) ln(1 +

D∑

l=1

Xjnl)] (62)

where R̃k =

〈
ln
Ŵ(

∑D+1
l=1 ᾱkl )∏D+1

l=1 Ŵ(ᾱkl )

〉
is intractable and thus no

closed-form solution can be found. Therefore, a second-order
Taylor expansion is used to approximate its value.

B. THE OPTIMIZATION OF GLOBAL VARIATIONAL

DISTRIBUTIONS

The following step is to optimize the global variational dis-
tributions q(r)(Eπ ′), q(r)( EW ), q(r)( E̟ ′) and q(r)(Eα) for the cur-
rent iteration. First, we need to calculate intermediate global
variational solutions based on Nj replicates of the sampled
data EXjn in group j. As a result, the intermediate variational
hyperparameters of the global variational variables are

ϑ̂jtk =
exp(ϑ̃jtk )∑K
s=1 exp(ϑ̃jts)

(63)

ϑ̃jtk =Nj〈Zjnt 〉

[
R̃k −

( D+1∑

l=1

ᾱkl

)
ln

(
1 +

D∑

l=1

Xjnl

)

+

D∑

l=1

(ᾱkl − 1) lnXjnl

]
+ 〈ln̟ ′

k 〉 +

k−1∑

s=1

〈ln(1 −̟ ′
s)〉

(64)

ĉ′jt=1+Nj〈Zjnt 〉 − a′
jt , ĉk = 1+

M∑

j=1

T∑

t=1

〈Wjtk 〉 − ak (65)

VOLUME 7, 2019 83611



W. Fan, N. Bouguila: Nonparametric Hierarchical Bayesian Models for Positive Data Clustering

d̂ ′
jt = b′

jt + ta′
jt + Nj

T∑

s=t+1

〈Zjns〉 (66)

d̂k = bk + kak +

M∑

j=1

T∑

t=1

K∑

s=k+1

〈Wjts〉 (67)

û∗
kl = ukl + Nj

M∑

j=1

T∑

t=1

〈Wjtk 〉〈Zjnt 〉

[
ψ(

D+1∑

l=1

ᾱkl) − ψ(ᾱkl)

+

D+1∑

s 6=l

ᾱksψ
′(
D+1∑

l=1

ᾱkl)(
〈
lnαks

〉
− ln ᾱks)

]
ᾱkl (68)

v̂∗kl=vkl − Nj

M∑

j=1

T∑

t=1

〈Wjtk 〉〈Zjnt 〉[lnXjnl−ln(1 +

D∑

l=1

Xjnl)]

(69)

where ψ(·) is the digamma function.
Then, we can obtain the noisy but unbiased natural gradient

of the ELBO with respect to each hyperparameter as

∂ϑ
(r)
jtk = ϑ̂

(r)
jtk − ϑ

(r−1)
jtk (70)

∂c
′(r)
jt = ĉ

′(r)
jt − c

′(r−1)
jt , ∂d

′(r)
jt = d̂

′(r)
jt − d

′(r−1)
jt (71)

∂c
(r)
k = ĉ

(r)
k − c

(r−1)
k , ∂d

(r)
k = d̂

(r)
k − d

(r−1)
k (72)

∂u
∗(r)
kl = û

∗(r)
kl − u

∗(r−1)
kl , ∂v

∗(r)
kl = v̂

∗(r)
kl −v

∗(r−1)
kl (73)

By substituting these natural gradients into (32), (36)∼(38),
we then obtain the required hyperparameters for updating the
global variational distributions as in (31), (33)∼(35).

APPENDIX B

STOCHASTIC VARIATIONAL INFERENCE OF THE HPY

PROCESS MIXTURE MODEL WITH GID DISTRIBUTIONS

A. THE OPTIMIZATION OF LOCAL VARIATIONAL

DISTRIBUTIONS

The first step to learn the HPY process mixture model with
feature selection using stochastic variational inference is to
optimize local variational distributions q( Eφjn) and q(EZjn) after
sampling the data instance EXjn at the r th iteration, while the
global variational dilutions are fixed to their values at the
(r − 1)th iteration. Then, we have

q( Eφjn)=
D∏

l=1

ϕ
φjnl
jnl (1 − ϕjnl)

1−φjnl (74)

q(EZjn)=
T∏

t=1

ρ
Zjnt
jnt , (75)

where the associated hyperparameters are updated as follows

ϕjnl =
exp(ϕ̃jnl)

exp(ϕ̃jnl) + exp(ϕ̂jnl)
(76)

ϕ̃jnl = 〈ln ǫ(r−1)
l1

〉 +

T∑

t=1

K∑

k=1

[
R̃

(r−1)
kl + (ᾱ(r−1)

kl − 1) lnXjnl

− (ᾱ(r−1)
kl + β̄

(r−1)
kl ) ln(1 + Xjnl)

]
〈Zjnt 〉〈W

(r−1)
jtk 〉 (77)

ϕ̂jnl = (ᾱ′(r−1)
l − 1) lnXjnl + 〈ln ǫ(r−1)

l2
〉 + R̃

′(r−1)
l

− (ᾱ′(r−1)
l + β̄

′(r−1)
l ) ln(1 + Xjnl) (78)

ρjnt =
exp(ρ̃jnt )∑T
s=1 exp(ρ̃jns)

(79)

ρ̃jnt = 〈lnπ ′(r−1)
jt 〉 +

K∑

k=1

〈W
(r−1)
jtk 〉

D∑

l=1

〈φjnl〉[R̃
(r−1)
kl

+ (ᾱ(r−1)
kl − 1) lnXjnl − (ᾱ(r−1)

kl + β̄
(r−1)
kl )

× ln(1 + Xjnl)] +

t−1∑

s=1

〈ln(1 − π
′(r−1)
js )〉 (80)

where R̃kl =
〈
ln Ŵ(αkl+βkl )
Ŵ(αkl )Ŵ(βkl )

〉
and R̃′

l =
〈
ln

Ŵ(α′
l+β

′
l )

Ŵ(α′
l )Ŵ(β

′
l )

〉
are

intractable and we use second-order Taylor expansion to
approximate their values.

B. THE OPTIMIZATION OF GLOBAL VARIATIONAL

DISTRIBUTIONS

Then, we need to optimize the global variational distributions
q(r)(Eǫ), q(r)(Eπ ′), q(r)( EW ), q(r)( E̟ ′) and q(r)(Eα), q(r)(Eα′), q(r)( Eβ)
and q(r)( Eβ ′) for the current r th iteration. The intermediate
variational hyperparameters of the global variational vari-
ables are obtained based on Nj replicates of the sampled data
EXjn in group j as

ϑ̂jtk =
exp(ϑ̃jtk )∑K
s=1 exp(ϑ̃jts)

(81)

σ̃jtk =Nj〈Zjnt 〉

D∑

l=1

〈φjnl〉[R̃kl + (ᾱkl − 1) lnXjnl

− (ᾱkl + β̄kl) ln(1 + Xjnl)] +

k−1∑

s=1

〈ln(1 −̟ ′
s)〉

+ 〈ln̟ ′
k 〉 (82)

ζ̂ ∗
1 = ζ1 + Nj

M∑

j=1

〈φjnl〉, ζ̂ ∗
2 = ζ2 + Nj

M∑

j=1

〈1 − φjnl〉 (83)

ĉ′jt = 1 + Nj〈Zjnt 〉 − a′
jt , ĉk = 1 +

M∑

j=1

T∑

t=1

〈Wjtk 〉 − ak

(84)

d̂ ′
jt = b′

jt + ta′
jt + Nj

T∑

s=t+1

〈Zjns〉 (85)

d̂k = bk + kak +

M∑

j=1

T∑

t=1

K∑

s=k+1

〈Wjts〉 (86)

ˆ̃ukl = ukl + Nj

M∑

j=1

T∑

t=1

〈Wjtk 〉〈Zjnt 〉〈φjnl〉ᾱkl
[
ψ(ᾱkl + β̄kl)

−ψ(ᾱkl) + β̄klψ
′(ᾱkl + β̄kl)(〈lnβkl〉 − ln β̄kl)

]
(87)

ˆ̃vkl = vkl − Nj

M∑

j=1

T∑

t=1

〈Wjtk 〉〈Zjnt 〉〈φjnl〉 ln
Xjnl

1 + Xjnl
(88)
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ˆ̃gkl = gkl + Nj

M∑

j=1

T∑

t=1

〈Wjtk 〉〈Zjnt 〉〈φjnl〉β̄kl
[
ψ(ᾱkl + β̄kl)

−ψ(β̄kl) + ᾱklψ
′(ᾱkl + β̄kl)(〈lnαkl〉 − ln ᾱkl)

]
(89)

ˆ̃
hkl = hkl − Nj

M∑

j=1

T∑

t=1

〈Wjtk 〉〈Zjnt 〉〈φjnl〉 ln
1

1 + Xjnl
(90)

ˆ̃u′
l = u′

l + Nj

M∑

j=1

〈1 − φjnl〉ᾱ
′
l

[
ψ(ᾱ′

l + β̄ ′
l ) − ψ(ᾱ′

l)

+ β̄ ′
lψ

′(ᾱ′
l + β̄ ′

l )(〈lnβ
′
l 〉 − ln β̄ ′

l )
]

(91)

ˆ̃v′l = v′l − Nj

M∑

j=1

〈1 − φjnl〉 ln
Xjnl

1 + Xjnl
(92)

ˆ̃g′
l = g′

l + Nj

M∑

j=1

〈1 − φjnl〉β̄
′
l

[
ψ(ᾱ′

l + β̄ ′
l ) − ψ(β̄ ′

l )

+ ᾱ′
lψ

′(ᾱ′
l + β̄ ′

l )(〈lnα
′
l〉 − ln ᾱ′

l)
]

(93)

ˆ̃
h′
l = h′

l − Nj

M∑

j=1

〈1 − φjnl〉 ln
1

1 + Xjnl
(94)

Then, the noisy but unbiased natural gradients of the ELBO
with respect to the hyperparameters of the global variational
distributions can be calculated by

∂ϑ
(r)
jtk = ϑ̂

(r)
jtk − ϑ

(r−1)
jtk , ∂Eζ ∗(r) = Ê

ζ ∗(r) − Eζ ∗(r−1) (95)

∂c
′(r)
jt = ĉ

′(r)
jt − c

′(r−1)
jt , ∂d

′(r)
jt = d̂

′(r)
jt − d

′(r−1)
jt (96)

∂c
(r)
k = ĉ

(r)
k − c

(r−1)
k , ∂d

(r)
k = d̂

(r)
k − d

(r−1)
k (97)

∂ ũ
(r)
kl = ˆ̃u

(r)
kl − ũ

(r−1)
kl , ∂ ṽ

(r)
kl = ˆ̃v

(r)
kl − ṽ

(r−1)
kl (98)

∂ ũ
′(r)
l = ˆ̃u

′(r)
l − ũ

′(r−1)
l , ∂ ṽ

′(r)
l = ˆ̃v

′(r)
l − ṽ

′(r−1)
l (99)

∂ g̃
(r)
kl = ˆ̃g

(r)
kl − g̃

(r−1)
kl , ∂ h̃

(r)
kl = ˆ̃

h
(r)
kl − h̃

(r−1)
kl (100)

∂ g̃
′(r)
l = ˆ̃g

′(r)
l − g̃

′(r−1)
l , ∂ h̃

′(r)
l = ˆ̃

h
′(r)
l − h̃

′(r−1)
l (101)

Thus, the hyperparameters for updating the global variational
distributions as in (44)∼(51) are obtained by substituting the
natural gradients into (52)∼(58).
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