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NONPARAMETRIC IDENTIFICATION OF FINITE MIXTURE
MODELS OF DYNAMIC DISCRETE CHOICES

BY HIROYUKI KASAHARA AND KATSUMI SHIMOTSU1

In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an
important issue, and finite mixture models provide flexible ways to account for it. This
paper studies nonparametric identifiability of type probabilities and type-specific com-
ponent distributions in finite mixture models of dynamic discrete choices. We derive
sufficient conditions for nonparametric identification for various finite mixture mod-
els of dynamic discrete choices used in applied work under different assumptions on
the Markov property, stationarity, and type-invariance in the transition process. Three
elements emerge as the important determinants of identification: the time-dimension
of panel data, the number of values the covariates can take, and the heterogeneity of
the response of different types to changes in the covariates. For example, in a simple
case where the transition function is type-invariant, a time-dimension of T = 3 is suf-
ficient for identification, provided that the number of values the covariates can take is
no smaller than the number of types and that the changes in the covariates induce suffi-
ciently heterogeneous variations in the choice probabilities across types. Identification
is achieved even when state dependence is present if a model is stationary first-order
Markovian and the panel has a moderate time-dimension (T ≥ 6).

KEYWORDS: Dynamic discrete choice models, finite mixture, nonparametric identi-
fication, panel data, unobserved heterogeneity.

1. INTRODUCTION

IN DYNAMIC DISCRETE CHOICE ANALYSIS, controlling for unobserved hetero-
geneity is an important issue. Finite mixture models, which are commonly used
in empirical analyses, provide flexible ways to account for it. To date, however,
the conditions under which finite mixture dynamic discrete choice models are
nonparametrically identified are not well understood. This paper studies non-
parametric identifiability of finite mixture models of dynamic discrete choices
when a researcher has access to panel data.

Finite mixtures have been used in numerous applications, especially in es-
timating dynamic models. In empirical industrial organization, Crawford and
Shum (2005) used finite mixtures to control for patient-level unobserved het-
erogeneity in estimating a dynamic matching model of pharmaceutical de-
mand. Gowrisankaran, Mitchell, and Moro (2005) estimated a dynamic model
of voter behavior with finite mixtures. In labor economics, finite mixtures are
a popular choice for controlling for unobserved person-specific effects when
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dynamic discrete choice models are estimated (e.g., Keane and Wolpin (1997),
Cameron and Heckman (1998)). Heckman and Singer (1984) used finite mix-
tures to approximate more general mixture models in the context of duration
models with unobserved heterogeneity.

In most applications of finite mixture models, the components of the mixture
distribution are assumed to belong to a parametric family. The nonparamet-
ric maximum likelihood estimator (NPMLE) of Heckman and Singer (1984)
treats the distribution of unobservables nonparametrically but assumes para-
metric component distributions. Most existing theoretical work on identifica-
tion of finite mixture models either treats component distributions parametri-
cally or uses training data that are from known component distributions (e.g.,
Titterington, Smith, and Makov (1985), Rao (1992)). As Hall and Zhou (2003)
stated, “very little is known of the potential for consistent nonparametric in-
ference in mixtures without training data.”

This paper studies nonparametric identifiability of type probabilities and
type-specific component distributions in finite mixture dynamic discrete choice
models. Specifically, we assess the identifiability of type probabilities and type-
specific component distributions when no parametric assumption is imposed
on them. Our point of departure is the work of Hall and Zhou (2003), who
proved nonparametric identifiability of two-type mixture models with indepen-
dent marginals:

F(y)= π

T∏
t=1

F 1
t (yt)+ (1 −π)

T∏
t=1

F 2
t (yt)�(1)

where F(y) is the distribution function of a T -dimensional variable Y , and
F

j
t (yt) is the distribution function of the tth element of Y conditional on type j.

Hall and Zhou showed that the type probability π and the type-specific compo-
nents Fj

t are nonparametrically identifiable from F(y) and its marginals when
T ≥ 3, while they are not when T = 2. The intuition behind their result is as fol-
lows. Integrating out different elements of y from (1) gives lower-dimensional
submodels,

F
(
yi1� yi2� � � � � yil

) = π

l∏
s=1

F 1
is

(
yis

) + (1 −π)

l∏
s=1

F 2
is

(
yis

)
�(2)

where 1 ≤ l ≤ T , 1 ≤ i1 < · · · < il ≤ T , and F(yi1� yi2� � � � � yil ) is the l-variate
marginal distribution of F(y). Each lower-dimensional submodel implies a dif-
ferent restriction on the unknown elements, that is, π and the F

j
t ’s. F and

its marginals imply 2T − 1 restrictions, while there are 2T + 1 unknown ele-
ments. When T = 3, the number of restrictions is the same as the number of
unknowns, and one can solve these restrictions to uniquely determine π and
the F

j
t ’s.
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While Hall and Zhou’s analysis provides the insight that lower-dimensional
submodels (2) provide important restrictions for identification, it has limited
applicability to the finite mixture models of dynamic discrete choices in eco-
nomic applications. First, it is difficult to generalize their analysis to three or
more types.2 Second, their model (1) does not have any covariates, while most
empirical models in economics involve covariates. Third, the assumption that
elements of y are independent in (1) is not realistic in dynamic discrete choice
models.

This paper provides sufficient conditions for nonparametric identification
for various finite mixture models of dynamic discrete choices used in applied
work. Three elements emerge as the important determinants of identification:
the time-dimension of panel data, the number of the values the covariates can
take, and the heterogeneity of the response of different types to changes in
the covariates. For example, in a simple case where the transition function is
type-invariant, a time-dimension of T = 3 is sufficient for identification, pro-
vided that the number of values the covariates can take is no smaller than the
number of types and that the changes in the covariates induce sufficiently het-
erogeneous variations in the choice probabilities across types.

The key insight is that, in models with covariates, different sequences of co-
variates imply different identifying restrictions in the lower-dimensional sub-
models; in fact, if d is the number of support points of the covariates and T
is the time-dimension, then the number of restrictions becomes on the order
of dT . As a result, the presence of covariates provides a powerful source of
identification in panel data even with a moderate time-dimension T .

We study a variety of finite mixture dynamic discrete choice models un-
der different assumptions on the Markov property, stationarity, and type-
invariance in the transition process. Under a type-invariant transition func-
tion and conditional independence, we analyze the nonstationary case that
conditional choice probabilities change over time because time-specific aggre-
gate shocks are present or agents are finitely lived. We also examine the case
where state dependence is present (for instance, when the lagged choice af-
fects the current choice and/or the transition function of state variables is dif-
ferent across types), and show that identification is possible when a model is
stationary first-order Markovian and the panel has a moderate time-dimension
T ≥ 6. This result is important since distinguishing unobserved heterogeneity
and state dependence often motivates the use of finite mixture models in em-
pirical studies. On the other hand, our approach has a limitation in that it does
not simultaneously allow for both state dependence and nonstationarity.

2When the number of types, M , is more than three, Hall, Neeman, Pakyari, and Elmore (2005)
showed that for any number of types, M , there exists TM such that type probabilities and type-
specific component distributions are nonparametrically identifiable when T ≥ TM , and that TM is
no larger than (1 + o(1))6M ln(M) as M increases. However, such a TM is too large for typical
panel data sets.



138 H. KASAHARA AND K. SHIMOTSU

We also study nonparametric identifiability of the number of types, M . Un-
der the assumptions on the Markov property, stationarity, and type-invariance
used in this paper, we show that the lower bound of M is identifiable and, fur-
thermore, M itself is identified if the changes in covariates provide sufficient
variation in the choice probabilities across types.

Nonparametric identification and estimation of finite mixture dynamic dis-
crete choice models are relevant and useful in practical applications for, at
least, the following reasons. First, choosing a parametric family for the com-
ponent distributions is often difficult because of a lack of guidance from eco-
nomic theory; nonparametric estimation provides a flexible way to reveal the
structure hidden in the data. Furthermore, even when theory offers guidance,
comparing parametric and nonparametric estimates allows us to examine the
validity of the restrictions imposed by the underlying theoretical model.

Second, analyzing nonparametric identification helps us understand the
identification of parametric or semiparametric finite mixture models of dy-
namic discrete choices. Understanding identification is not a simple task for
finite mixture models even with parametric component distributions, and for-
mal identification analysis is rarely provided in empirical applications. Once
type probabilities and component distributions are nonparametrically identi-
fied, the identification analysis of parametric finite mixture models often be-
comes transparent as it is reduced to the analysis of models without unobserved
heterogeneity. As we demonstrate through examples, our nonparametric iden-
tification results can be applied to check the identifiability of some parametric
finite mixture models.

Third, the identification results of this paper will open the door to apply-
ing semiparametric estimators for structural dynamic models to models with
unobserved heterogeneity. Recently, by building on the seminal work by Hotz
and Miller (1993), computationally attractive semiparametric estimators for
structural dynamic models have been developed (Aguirregabiria and Mira
(2002), Kasahara and Shimotsu (2008a)), and a number of papers in empirical
industrial organization have proposed two-/multistep estimators for dynamic
games (e.g., Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry
(2007), Pesendorfer and Schmidt-Dengler (2008), Bajari and Hong (2006), and
Aguirregabiria and Mira (2007)). To date, however, few of these semiparamet-
ric estimators have been extended to accommodate unobserved heterogeneity.
This is because these estimators often require an initial nonparametric con-
sistent estimate of type-specific component distributions, but it has not been
known whether one can obtain a consistent nonparametric estimate in finite
mixture models.3 The identification results of this paper provide an apparatus

3It is believed that it is not possible to obtain a consistent estimate of choice probabilities.
For instance, Aguirregabiria and Mira (2007) proposed a pseudo maximum likelihood estima-
tion algorithm for models with unobserved heterogeneity, but stated that (p. 15) “for [models
with unobservable market characteristics] it is not possible to obtain consistent nonparametric
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that enables researchers to apply these semiparametric estimators to the mod-
els with unobserved heterogeneity. This is important since it is often crucial to
control for unobserved heterogeneity in dynamic models (see Aguirregabiria
and Mira (2007)).

In a closely related paper, Kitamura (2004) examined nonparametric iden-
tifiability of finite mixture models with covariates. Our paper shares his in-
sight that the variation in covariates may provide a source of identification;
however, the setting as well as the issues we consider are different from Kita-
mura’s. We study discrete choice models in a dynamic setting with panel data,
while Kitamura considered regression models with continuous dependent vari-
ables with cross-sectional data. We address various issues specific to dynamic
discrete choice models, including identification in the presence of state depen-
dence and type-dependent transition probabilities for endogenous explanatory
variables.

Our work provides yet another angle for analysis that relates current and
previous work on dynamic discrete choice models. Honoré and Tamer (2006)
studied identification of dynamic discrete choice models, including the initial
conditions problem, and suggested methods to calculate the identified sets.
Rust (1994), Magnac and Thesmar (2002), and Aguirregabiria (2006) studied
the identification of structural dynamic discrete choice models. Our analysis
is also related to an extensive literature on identification of duration models
(e.g., Elbers and Ridder (1982), Heckman and Singer (1984), Ridder (1990),
and Van den Berg (2001)).

The rest of the paper is organized as follows. Section 2 discusses our ap-
proach to identification and provides the identification results using a simple
“baseline” model. Section 3 extends the identification analysis of Section 2, and
studies a variety of finite mixture dynamic discrete choice models. Section 4
concludes. The proofs are collected in the Appendix.

2. NONPARAMETRIC IDENTIFICATION OF FINITE MIXTURE MODELS OF
DYNAMIC DISCRETE CHOICES

Every period, each individual makes a choice at from the discrete and finite
set A, conditioning on (xt� xt−1� at−1) ∈ X × X × A, where xt is observable
individual characteristics that may change over time and the lagged choice at−1

is included as one of the conditioning variables. Each individual belongs to one
of M types, and his/her type attribute is unknown. The probability of belonging
to type m is πm, where the πm’s are positive and sum to 1.

Throughout this paper, we impose a first-order Markov property on the con-
ditional choice probability of at and denote type m’s conditional choice prob-
ability by Pm(at |xt�xt−1� at−1). The initial distribution of (x1� a1) and the tran-
sition probability function of xt are also different across types. For each type

estimates of [choice probabilities].” Furthermore, Geweke and Keane (2001, p. 3490) wrote that
“the [Hotz and Miller] methods cannot accommodate unobserved state variables.”
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m, we denote them by p∗m(x1� a1) and fm
t (xt |{xτ�aτ}t−1

τ=1), respectively. With a
slight abuse of notation, we let p∗m(x1� a1) and fm

t (xt |{xτ�aτ}t−1
τ=1) denote the

density of the continuously distributed elements of xt and the probability mass
function of the discretely distributed elements of xt .

Suppose we have a panel data set with time-dimension equal to T . Each
individual observation, wi = {ait� xit}Tt=1, is drawn randomly from an M-term
mixture distribution,

P({at�xt}Tt=1)(3)

=
M∑

m=1

πmp∗m(x1� a1)

T∏
t=2

fm
t (xt |{xτ�aτ}t−1

τ=1)P
m
t (at |xt� {xτ�aτ}t−1

τ=1)

=
M∑

m=1

πmp∗m(x1� a1)

T∏
t=2

fm
t (xt |{xτ�aτ}t−1

τ=1)P
m
t (at |xt�xt−1� at−1)�

where the first equality presents a general mixture model, while the second
equality imposes the Markovian assumption on the conditional choice proba-
bilities, Pm

t (at |xt� {xτ�aτ}t−1
τ=1) = Pm

t (at |xt�xt−1� at−1). This is the key identifying
assumption of this paper. The left-hand side of (3) is the distribution function
of the observable data, while the right-hand side of the second equality con-
tains the objects we would like the data to inform us about.

REMARK 1: In models where at and xt follow a stationary first-order Markov
process, it is sometimes assumed that the choice of the distribution of the initial
observation, p∗m(x1� a1), is the stationary distribution that satisfies the fixed
point constraint

p∗m(x1� a1)=
∑
x′∈X

∑
a′∈A

Pm(a1|x1�x
′� a′)fm(x1|x′� a′)p∗m(x′� a′)�(4)

when all the components of x have finite support. When x is continuously dis-
tributed, we replace the summation over x′ with integration. Our identification
result does not rely on the stationarity assumption of the initial conditions.

The model (3) includes the following examples as special cases.

EXAMPLE 1—Dynamic Discrete Choice Model With Heterogeneous Coef-
ficients: Denote a parameter vector specific to type m’s individual by θm =
(βm′�ρm)′. Consider a dynamic binary choice model for individual i who be-
longs to type m:

Pm(ait = 1|xit� {xiτ� aiτ}t−1
τ=1) = Pm(ait = 1|xit� ai�t−1)(5)

= Φ(x′
itβ

m + ρmai�t−1)�
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where the first equality imposes the Markovian assumption and the second
follows from the parametric restriction with Φ(·) denoting the standard normal
cumulative distribution function (c.d.f.). The distribution of xit conditional on
(xi�t−1� ai�t−1) is specific to the value of θm. Since the evolution of (xit� ait) in
the presample period is not independent of random coefficient θm, the initial
distribution of (xi1� ai1) depends on the value of θm (cf. Heckman (1981)).

Browning and Carro (2007) estimated a continuous mixture version of (5)
for the purchase of milk using a Danish consumer “long” panel (T ≥ 100),
and provided evidence for heterogeneity in coefficients. Their study illustrates
that allowing for such heterogeneity can make a significant difference for out-
comes of interest such as the marginal dynamic effect. In practice however,
researchers quite often only have access to a short panel. The results of this
paper are therefore useful to understand the extent to which unobserved het-
erogeneity in coefficients is identified in such a situation.

Our identification results are not applicable, however, to a parametric dy-
namic discrete choice model with serially correlated idiosyncratic shocks; for
example, ait = 1(x′

itβ
m + ρmai�t−1 + εit), where εit is serially correlated.

EXAMPLE 2—Structural Dynamic Discrete Choice Models: Type m’s agent
maximizes the expected discounted sum of utilities, E[∑∞

j=0 β
j{u(xt+j� at+j;

θm)+ εt+j(at+j)}|at�xt;θm], where xt is an observable state variable and εt(at)
is a state variable that are known to the agent but not to the researcher. The
Bellman equation for this dynamic optimization problem is

V (x) =
∫

max
a∈A

{
u(x�a;θm)+ ε(a)+β

∑
x′∈X

V (x′)f (x′|x�a;θm)

}
(6)

× g(dε|x)�
where g(ε|x) is the joint distribution of ε = {ε(j) : j ∈ A} and f (x′|x�a;θm) is
a type-specific transition function. The conditional choice probability is

Pθm(a|x) =
∫

1
{
a = arg max

j∈A

[
u(x� j;θm)+ ε(j)(7)

+β
∑
x′∈X

Vθm(x
′)f (x′|x� j;θm)

]}

× g(dε|x)�
where Vθm is the fixed point of (6). Let Pm

t (at |xt�xt−1� at−1) = Pθm(at |xt)
and fm

t (xt |{xτ�aτ}t−1
τ=1) = f (xt |xt−1� at−1;θm) in (3). The initial distribution of

(x1� a1) is given by the stationary distribution (4). Then the likelihood function
for {at�xt}Tt=1 is given by (3) with (4).
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We study the nonparametric identifiability of the type probabilities, the
initial distribution, the type-specific conditional choice probabilities, and the
type-specific transition function in equation (3), which we denote by θ =
{πm�p∗m(·)� {Pm

t (·|·)� fm
t (·|·)}Tt=2}Mm=1. Following the standard definition of non-

parametric identifiability, θ is said to be nonparametrically identified (or iden-
tifiable) if it is uniquely determined by the distribution function P({at�xt}Tt=1),
without making any parametric assumption about the elements of θ. Because
the order of the component distributions can be changed, θ is identified only
up to a permutation of the components. If no two of the π’s are identical, we
may uniquely determine the components by assuming π1 <π2 < · · ·<πM .

2.1. Our Approach and Identification of the Baseline Model

The finite mixture models studied by Hall and Zhou (2003) have no covari-
ates as discussed in the Introduction. In this subsection, we show that the pres-
ence of covariates in our model creates a powerful source of identification.

First, we impose the following simplifying assumptions on the general model
(3) and analyze the nonparametric identifiability of the resulting “baseline
model.” Analyzing the baseline model helps elucidate the basic idea of our
approach and clarifies the logic behind our main results. In the subsequent
sections, we relax Assumption 1 in various ways and study how it affects the
identifiability of the resulting models.

ASSUMPTION 1: (a) The choice probability of at does not depend on time.
(b) The choice probability of at is independent of the lagged variable (xt−1� at−1)
conditional on xt . (c) fm

t (xt |{xτ�aτ}t−1
τ=1) > 0 for all (xt� {xτ�aτ}t−1

τ=1) ∈ Xt ×
At−1 and for all m. (d) The transition function is common across types;
fm
t (xt |{xτ�aτ}t−1

τ=1) = ft(xt |{xτ�aτ}t−1
τ=1) for all m. (e) The transition function is

stationary; ft(xt |{xτ�aτ}t−1
τ=1)= f (xt |xt−1� at−1) for all m.

Under Assumptions 1(a) and (b), the choice probabilities are written as
Pm
t (at |xt�xt−1� at−1) = Pm(at |xt), where at−1 is not one of the elements of xt .

Under Assumption 1(b), the lagged variable (xt−1� at−1) affects the current
choice at only through its effect on xt via fm

t (xt |{xτ�aτ}t−1
τ=1). Assumption 1(c)

implies that, starting from any combinations of the past state and action, any
state x′ ∈X is reached in the next period with positive probability.

With Assumption 1 imposed, the baseline model is

P({at�xt}Tt=1)=
M∑

m=1

πmp∗m(x1� a1)

T∏
t=2

f (xt |xt−1� at−1)P
m(at |xt)�(8)

Since f (xt |xt−1� at−1) is nonparametrically identified directly from the observed
data (cf. Rust (1987)), we may assume f (xt |xt−1� at−1) is known without af-
fecting the other parts of the argument. Divide P({at�xt}Tt=1) by the transition
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functions and define

P̃({at�xt}Tt=1) = P({at�xt}Tt=1)
T∏
t=2

f (xt |xt−1� at−1)

(9)

=
M∑

m=1

πmp∗m(x1� a1)

T∏
t=2

Pm(at |xt)�

which can be computed from the observed data. Assumption 1 guarantees that
P̃({at�xt}Tt=1) is well defined for any possible sequence of {at�xt}Tt=1 ∈ (A×X)T .

Let I = {i1� � � � � il} be a subset of the time indices, so that I ⊆ {1� � � � �T },
where 1 ≤ l ≤ T and 1 ≤ i1 < · · · < il ≤ T . Integrating out different elements
from (9) gives the l-variate marginal version of P̃({at�xt}Tt=1), which we call
lower-dimensional submodels

P̃
({
ais � xis

}
is∈I

) =
M∑

m=1

πmp∗m(
x1� a1

) l∏
s=2

Pm(ais |xis )� when {1} ∈ I�(10)

and

P̃
({
ais � xis

}
is∈I

) =
M∑

m=1

πm

l∏
s=1

Pm
(
ais |xis

)
� when {1} /∈ I�(11)

In model (9), a powerful source of identification is provided by the difference
in each type’s response patterns to the variation of the covariate (x1� � � � � xT ).
The key insight is that for each different value of (x1� � � � � xT ), (10) and (11)
imply different restrictions on the type probabilities and conditional choice
probabilities. Let |X| denote the number of elements in X . The variation of
(x1� � � � � xT ) generates different versions of (10) and (11), providing restric-
tions whose number is on the order of |X|T , while the number of the parame-
ters {πm�p∗m(a�x)�Pm(a|x) : (a�x) ∈ A × X}Mm=1 is on the order of |X|. This
identification approach is much more effective than one without covariates, in
particular, when T is small.4

In what follows, we assume that the support of the state variables is discrete
and known. This is assumed for the sake of clarity: our identification results are
easier to understand in the context of a discrete state space, although they hold
more generally. We also focus on the case where A = {0�1} to simplify nota-
tion. It is straightforward to extend our analysis to the case with a multinomial

4For example, when T = 3 and A = {0�1}, (10) and (11) imply at least
(|X|+2

3

)
different restric-

tions while there are 3M|X| − 1 parameters.
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choice of a, but with heavier notation. Note also that Chandra (1977) shows
that a multivariate finite mixture model is identified if all the marginal models
are identified.

It is convenient to collect notation first. Define, for ξ ∈ X ,

λ∗m
ξ = p∗m((a1�x1)= (1� ξ)) and λm

ξ = Pm(a = 1|x= ξ)�(12)

Let ξj , j = 1� � � � �M − 1, be elements of X . Let k be an element of X . Define
a matrix of type-specific distribution functions and type probabilities as

L
(M×M)

=
⎡
⎢⎣

1 λ1
ξ1

· · · λ1
ξM−1

���
���

� � �
���

1 λM
ξ1

· · · λM
ξM−1

⎤
⎥⎦ �(13)

Dk = diag(λ∗1
k � � � � � λ

∗M
k )� V = diag(π1� � � � �πM)�

The elements of L, Dk, and V are parameters of the underlying mixture models
to be identified.

Now we collect notation for matrices of observables. Fix at = 1 for all t in
P̃({at�xt}3

t=1), and define the resulting function as

F∗
x1�x2�x3

= P̃({1�xt}3
t=1)=

M∑
m=1

πmλ∗m
x1
λm
x2
λm
x3
�(14)

where λ∗m
x and λm

x are defined in (12). Next, integrate out (a1�x1) from
P̃({at�xt}3

t=1), fix a2 = a3 = 1, and define the resulting function as

Fx2�x3 = P̃({1�xt}3
t=2)=

M∑
m=1

πmλm
x2
λm
x3
�(15)

Similarly, define the following “marginals” by integrating out other elements
from P̃({at�xt}3

t=1) and setting at = 1:

F∗
x1�x2

= P̃({1�xt}2
t=1)=

M∑
m=1

πmλ∗m
x1
λm
x2
�(16)

F∗
x1�x3

= P̃({1�x1�1�x3}) =
M∑

m=1

πmλ∗m
x1
λm
x3
�

F∗
x1

= P̃({1�x1})=
M∑

m=1

πmλ∗m
x1
�
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Fx2 = P̃({1�x2}) =
M∑

m=1

πmλm
x2
�

Fx3 = P̃({1�x3}) =
M∑

m=1

πmλm
x3
�

Note that F∗
· involves (a1�x1) while F· does not contain (a1�x1). In fact,

F∗
x1�x2

= F∗
x1�x3

if x2 = x3 because Pm(a|x) does not depend on t, but we keep
separate notation for the two because later we analyze the case where the
choice probability depends on t. Evaluate F∗

x1�x2�x3
�Fx2�x3 , and their marginals

at x1 = k, x2 = ξ1� � � � � ξM−1, and x3 = ξ1� � � � � ξM−1, and arrange them into two
M ×M matrices:

P =

⎡
⎢⎢⎢⎣

1 Fξ1 · · · FξM−1

Fξ1 Fξ1�ξ1 · · · Fξ1�ξM−1

���
���

� � �
���

FξM−1 FξM−1�ξ1 · · · FξM−1�ξM−1

⎤
⎥⎥⎥⎦ �(17)

Pk =

⎡
⎢⎢⎢⎣

F∗
k F∗

k�ξ1
· · · F∗

k�ξM−1

F∗
k�ξ1

F∗
k�ξ1�ξ1

· · · F∗
k�ξ1�ξM−1

���
���

� � �
���

F∗
k�ξM−1

F∗
k�ξM−1�ξ1

· · · F∗
k�ξM−1�ξM−1

⎤
⎥⎥⎥⎦ �

The following proposition and corollary provide simple and intuitive suffi-
cient conditions for identification under Assumption 1. Proposition 1 extends
the idea of the proof of nonparametric identifiability of finite mixture models
from Anderson (1954) and Gibson (1955) to models with covariates.5 Proposi-
tion 1 gives a sufficient condition for identification in terms of the rank of the
matrix L and the type-specific choice probabilities evaluated at k. In practice,
however, it may be difficult to check this rank condition because the elements
of L are functions of the component distributions. Corollary 1 provides a suffi-
cient condition in terms of the observable quantities P and Pk. The proofs are
constructive.

PROPOSITION 1: Suppose that Assumption 1 holds and assume T ≥ 3. Suppose
further that there exist some {ξ1� � � � � ξM−1} such that L is nonsingular and that
there exists k ∈X such that λ∗m

k > 0 for all m and λ∗m
k 	= λ∗n

k for any m 	= n. Then

5Anderson (1954) and Gibson (1955) analyzed nonparametric identification of finite mixture
models similar to (9) but without covariates and derived a sufficient condition for nonparametric
identifiability under the assumption T ≥ 2M − 1. Madansky (1960) extended their analysis to
obtain a sufficient condition under the assumption 2(T−1)/2 ≥ M . When T is small, the number of
identifiable types by their method is quite limited.
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{πm� {λ∗m
ξ �λm

ξ }ξ∈X}Mm=1 is uniquely determined from {P̃({at�xt}3
t=1) : {at�xt}3

t=1 ∈
(A×X)3}.

COROLLARY 1: Suppose that Assumption 1 holds, and assume T ≥ 3. Sup-
pose further that there exist some {ξ1� � � � � ξM−1} and k ∈ X such that P is
of full rank and that all the eigenvalues of P−1Pk take distinct values. Then
{πm� {λ∗m

ξ �λm
ξ }ξ∈X}Mm=1 is uniquely determined from {P̃({at�xt}3

t=1) : {at�xt}3
t=1 ∈

(A×X)3}.
REMARK 2:

(i) The condition of Proposition 1 implies that all columns in L must be lin-
early independent. Since each column of L represents the conditional choice
probability of different types for a given value of x, the changes in x must in-
duce sufficiently heterogeneous variations in the conditional choice probabili-
ties across types. In other words, the covariate must be relevant, and different
types must respond to its changes differently.

(ii) When λ∗m
k = 0 for some m, its identification fails, because we never

observe (x1� a1) for such type. The condition that λ∗m
k 	= λ∗n

k for some k ∈ X is
satisfied if the initial distributions are different across different types. If either
of these conditions is violated, then the initial distribution cannot be used as a
source of identification and, as a result, the requirement on T becomes T ≥ 4
instead of T ≥ 3.

(iii) One needs to find only one set of M − 1 points to construct a nonsingu-
lar L. The identification of choice probabilities at all other points in X follows
without any further requirement.

(iv) When X has |X|<∞ support points, the number of identifiable types is
at most |X|+1. When x is continuously distributed, we may potentially identify
as many types as we wish.

(v) By partitioning X into M − 1 disjoint subsets (Ξ1�Ξ2� � � � �ΞM−1), we
may characterize a sufficient condition in terms of the conditional choice prob-
abilities given a subset Ξj of X rather than an element ξj of X .

(vi) We may check the conditions of Corollary 1 empirically by computing
the sample counterpart of P and Pk for various {ξ1� � � � � ξM−1}’s and/or for var-
ious partitions Ξj ’s. The latter procedure is especially useful when x is contin-
uously distributed.

The foundation for our identification method lies in the following relation-
ship between the observables, P and Pk, and the parameters L, Dk, and V ,
which we call the factorization equations:

P =L′V L� Pk = L′DkV L�(18)

Note that the (1�1)th element of P = L′V L is 1 = ∑M

m=1 π
m. These two equa-

tions determine L�Dk, and V uniquely. The first equation of (18) alone does
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not give a unique decomposition of P in terms of L and V , because this equa-
tion provides M(M + 1)/2 restrictions due to the symmetry of P , while there
are M2 −M +M = M2 unknowns in L and V . Indeed, when M = 2, there are
three restrictions and four unknowns, and L and V are just not identified.

To shed further light on our identification method, we provide a sketch
of how we constructively identify L, Dk, and V from P and Pk. Suppose
P is invertible or, equivalently, L is invertible. As is apparent from equa-
tion (18), Pk is similar to P except that Pk contains an extra diagonal ma-
trix Dk. Since P−1Pk =L−1DkL, the eigenvalues of P−1Pk identify the elements
of Dk. Furthermore, multiplying both sides of P−1Pk = L−1DkL by L−1, we
have (P−1Pk)L

−1 = L−1Dk, suggesting that the columns of L−1 are identified
with the eigenvectors of P−1Pk. Finally, once L is identified, V is identified
since V = (L′)−1PL−1.

By applying the above algorithm to a sample analogue of P and Pk, we may
construct an estimator for {πm� {λ∗m

ξ �λm
ξ }ξ∈X}Mm=1, which will have the same rate

of convergence as the estimates of P and Pk. Alternatively, once identification
is established, we may use various nonparametric estimation procedures, such
as a series-based mixture likelihood estimator.

Magnac and Thesmar (2002, Proposition 6) studied a finite mixture dynamic
discrete choice model similar to our baseline model and showed that their
model is not nonparametrically identified. They assumed that the transition
probability is common across types and that the initial distribution is indepen-
dent of the types. Hence, we may express their model in terms of our notation
as

P({at�xt}Tt=1)=
M∑

m=1

πmf(x1)P
m(a1|x1)

T∏
t=2

f (xt |xt−1� at−1)P
m(at |xt)�(19)

Setting p∗m(x1� a1)= f (x1)P
m(a1|x1) gives our baseline model (3).

Our results differ from those of Magnac and Thesmar in two ways: the length
of the periods considered and the variation of xt . First, Magnac and Thesmar
considered a two-period model, whereas our identifiability result requires at
least three periods.6 Second, Magnac and Thesmar restricted the variation of
xt by assuming that there are only two states, one of which is absorbing. In
terms of our notation, this restriction is the same as assuming xt ∈ {0�1}, and
xt = 1 with probability 1 if xt−1 = 1. This reduces the possible variation of the
sequences of xt substantially, making identification difficult because only T +1
different sequences of xt are observable. For example, when T = 3, the only
possible sequences of (x1�x2�x3) are (1�1�1), (0�1�1), (0�0�1), and (0�0�0).

6The possibility of identifying many types using the variation of |X| under T = 2 is currently
under investigation. A related study on nonidentifiability of multivariate mixtures by Kasahara
and Shimotsu (2008b) suggests, however, that T ≥ 3 is necessary for identification even when
|X| ≥ 2.
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If we assume T ≥ 3 and that there are more than two nonabsorbing states, then
we can apply Proposition 1 and Corollary 1 to (19). Alternately, identifying the
single nonabsorbing state model is still possible if T ≥ 2M − 1 by applying Re-
mark 3 below with x̄= 0, although Remark 3 uses the stationarity of Pm(a|x).

For the sake of brevity, in the subsequent analysis we provide sufficient con-
ditions only in terms of the rank of the matrix of the type-specific component
distributions (e.g., L). In each of the following propositions, sufficient condi-
tions in terms of the distribution function of the observed data can easily be
deduced from the conditions in terms of the type-specific component distribu-
tions.

The identification method of Proposition 1 uses a set of restrictions implied
by the joint distribution of only (a1�x1� a2�x2� a3�x3). When the variation of
(x1�x2� � � � � xT ) for T ≥ 5 is available, we may adopt the approach of Madansky
(1960) to use the information contained in all xt ’s. Define u = (T − 1)/2, and
write the functions corresponding to (14) and (15) as

F∗
x1···xT = P̃({1�xt}Tt=1)=

M∑
m=1

πmλ∗m
x1
λm
x2

· · ·λm
xT

(20)

=
M∑

m=1

πmλ∗m
x1

(
λm
x2

· · ·λm
xu+1

)(
λm
xu+2

· · ·λm
xT

)
and

Fx2···xT = P̃({1�xt}Tt=2)=
M∑

m=1

πm
(
λm
x2

· · ·λm
xu+1

)(
λm
xu+2

· · ·λm
xT

)
�(21)

Equations (20) and (21) have the same form as (14) and (15) if we view
λm
x2

· · ·λm
xu+1

and λm
xu+2

· · ·λm
xT

as marginal distributions with |X|u support points.
Consequently, we can construct factorization equations similar to (18), in
which the elements of a matrix corresponding to the matrix L are based on
λm
x2

· · ·λm
xu+1

and λm
xu+2

· · ·λm
xT

and their subsets. This extends the maximum num-
ber of identifiable types from on the order of |X| to on the order of |X|(T−1)/2.
Despite being more complex than Proposition 1, the following proposition is
useful when T is large, making it possible to identify a large number of types
even if |X| is small. For notational simplicity, we assume |X| is finite and
X = {1�2� � � � � |X|}.

PROPOSITION 2: Suppose that Assumption 1 holds. Assume T ≥ 5 is odd and
define u= (T − 1)/2. Suppose X = {1�2� � � � � |X|} and define

Λ0 =
⎡
⎣1
���
1

⎤
⎦ � Λ1 =

⎡
⎢⎣

λ1
1 · · · λ1

|X|
���

���

λM
1 · · · λM

|X|

⎤
⎥⎦ �
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For l = 2� � � � � u, define Λl to be a matrix, each column of which is formed by
choosing l columns (unordered, with replacement) from the columns of Λ1 and
taking their Hadamard product. There are

(|X|+l−1
l

)
ways to choose such columns;

thus the dimension of Λl is M × (|X|+l−1
l

)
. For example, Λ2 and Λ3 take the form

Λ2 =
⎡
⎢⎣

λ1
1λ

1
1 · · · λ1

1λ
1
|X| λ1

2λ
1
2 · · · λ1

2λ
1
|X| · · · λ1

|X|λ
1
|X|

���
���

���
���

���

λM
1 λM

1 · · · λM
1 λM

|X| λM
2 λM

2 · · · λM
2 λM

|X| · · · λM
|X|λ

M
|X|

⎤
⎥⎦ �

Λ3 =
⎡
⎢⎣

λ1
1λ

1
1λ

1
1 · · · λ1

1λ
1
1λ

1
|X|

���
���

λM
1 λM

1 λM
1 · · · λM

1 λM
1 λM

|X|

λ1
2λ

1
1λ

1
2 · · · λ1

2λ
1
1λ

1
|X| · · · λ1

|X|λ
1
|X|λ

1
|X|

���
���

���

λM
2 λM

1 λM
2 · · · λM

2 λM
1 λM

|X| · · · λM
|X|λ

M
|X|λ

M
|X|

⎤
⎥⎦ �

Define an M × (
∑u

l=0

(|X|+l−1
l

)
) matrix Λ as

Λ= [Λ0�Λ1�Λ2� � � � �Λu]�
Suppose (a)

∑u

l=0

(|X|+l−1
l

) ≥M , (b) we can construct a nonsingular M×M matrix
L
 by setting its first column as Λ0 and choosing other M − 1 columns from the
columns of Λ other than Λ0, and (c) there exists k ∈ X such that λ∗m

k > 0 for all m
and λ∗m

k 	= λ∗n
k for any m 	= n. Then {πm� {λ∗m

j �λm
j }|X|

j=1}Mm=1 is uniquely determined
from {P̃({at�xt}Tt=1) : {at�xt}Tt=1 ∈ (A×X)T }.

REMARK 3: In a special case where there are no covariates and |X| = 1, the
matrix Λ becomes

Λ=
⎡
⎢⎣

1 λ1
1 (λ1

1)
2 · · · (λ1

1)
u

���
���

���
���

1 λM
1 (λM

1 )2 · · · (λM
1 )u

⎤
⎥⎦ �

and the sufficient condition of Proposition 2 reduces to (a) T ≥ 2M − 1,
(b) λm

1 	= λn
1 for any m 	= n, and (c) λ∗m

1 > 0 and λ∗m
1 	= λ∗n

1 for any m 	= n.
Not surprisingly, the condition T ≥ 2M − 1 coincides with the sufficient condi-
tion of nonparametric identification of finite mixtures of binomial distributions
(Blischke (1964)). This set of sufficient condition also applies to the case where
the covariates have no time variation (x1 = · · · = xT ), such as race and/or sex.
In this case, because of the stationarity, the time-series variation of at substi-
tutes for the variation of xt .
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Houde and Imai (2006) studied nonparametric identification of finite mix-
ture dynamic discrete choice models by fixing the value of the covariate x (to x̄,
for instance) and derived a sufficient condition for T . They also considered a
model with terminating state.

If the conditional choice probabilities of different types are heterogeneous
and the column vectors (λ1

x� � � � � λ
M
x )

′ for x = 1� � � � � |X| are linearly indepen-
dent, the rank condition of this proposition is likely to be satisfied, since the
Hadamard products of these column vectors are unlikely to be linearly depen-
dent, unless by chance.

Since the construction of the matrices in Proposition 2 is rather complex, we
provide a simple example with T = 5 to illustrate its connection to the L matrix
in Proposition 1.

EXAMPLE 3—An Example for Proposition 2: Suppose that T = 5 and X =
{1�2}. In this case, we can identify M = ∑2

l=0

(1+l

l

) = 6 types. Consider a matrix

L
 =Λ =
⎡
⎢⎣

1 λ1
1 λ1

2 λ1
1λ

1
1 λ1

1λ
1
2 λ1

2λ
1
2

���
���

���
���

���
���

1 λM
1 λM

2 λM
1 λM

1 λM
1 λM

2 λM
2 λM

2

⎤
⎥⎦ �

Then the factorization equations that correspond to (18) are given by

P
 = (L
)′V L
� P

k = (L
)′DkV L
�(22)

where V = diag(π1� � � � �πM) and Dk = diag(λ∗1
k � � � � � λ

∗M
k ), as defined in (13).

We can verify that the elements of P
 and P

k can be constructed from the

distribution function of the observed data. For instance,

P
 =

⎡
⎢⎢⎢⎢⎢⎣

1 F1 F2 F11 F12 F22

F1 F11 F12 F111 F112 F122

F2 F21 F22 F211 F212 F222

F11 F111 F112 F1111 F1112 F1122

F12 F121 F122 F1211 F1212 F1222

F22 F221 F222 F2211 F2212 F2222

⎤
⎥⎥⎥⎥⎥⎦ �

where Fi = ∑M

m=1 π
mλm

i , Fij = ∑M

m=1 π
mλm

i λ
m
j , Fijk = ∑M

m=1 π
mλm

i λ
m
j λ

m
k , and

Fijkl = ∑M

m=1 π
mλm

i λ
m
j λ

m
k λ

m
l for i� j�k� l ∈ {1�2} are identifiable from the pop-

ulation. Once the factorization equations (22) are constructed, we may apply
the argument following Corollary 1 to determine L
, V , and Dk uniquely from
P
 and P


k .
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2.2. Identification of the Number of Types

So far, we have assumed that the number of mixture components M is
known. How to choose M is an important practical issue because economic
theory usually does not provide much guidance. We now show that it is pos-
sible to nonparametrically identify the number of types from panel data with
two periods.7

Assume T ≥ 2 and X = {1� � � � � |X|}. Define a (|X| + 1) × (|X| + 1) matrix
which is analogous to P in (17) but uses the first two periods and all the support
points of X:

P∗ =

⎡
⎢⎢⎣

1 F1 · · · F|X|
F∗

1 F∗
11 · · · F∗

1�|X|
���

���
� � �

���

F∗
|X| F∗

|X|�1 · · · F∗
|X|�|X|

⎤
⎥⎥⎦ �

where, as defined in (16), F∗
i = P̃({(a1�x1) = (1� i)}) = ∑M

m=1 π
mλ∗m

i , Fi =
P̃({(a2�x2) = (1� i)}) = ∑M

m=1 π
mλm

i , and F∗
i�j = P̃({(a1�x1� a2�x2) = (1� i�1�

j)}) = ∑M

m=1 π
mλ∗m

i λm
j . The matrix P∗ contains information on how different

types react differently to the changes in covariates for all possible x’s. The fol-
lowing proposition shows that we may nonparametrically identify the number
of types from P∗ under Assumption 1.

PROPOSITION 3: Suppose that Assumption 1 holds. Assume T ≥ 2 and X =
{1� � � � � |X|}. Then M ≥ rank(P∗). Furthermore, in addition to Assumption 1,
suppose that the two matrices L∗

1 and L∗
2 defined below both have rank M :

L∗
1

(M×(|X|+1))
=

⎡
⎢⎣

1 λ∗1
1 · · · λ∗1

|X|
���

���
� � �

���

1 λ∗M
1 · · · λ∗M

|X|

⎤
⎥⎦ �

L∗
2

(M×(|X|+1))
=

⎡
⎢⎣

1 λ1
1 · · · λ1

|X|
���

���
� � �

���

1 λM
1 · · · λM

|X|

⎤
⎥⎦ �

Then M = rank(P∗).

REMARK 4:
(i) The rank condition of L∗

1 and L∗
2 is not empirically testable from the

observed data. The rank of P∗, which is observable, gives the lower bound of
the number of types.

7We thank the co-editor and a referee for suggesting that we investigate this problem.
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(ii) Surprisingly, two periods of panel data, rather than three periods, may
suffice for identifying the number of types.

(iii) The rank condition on L∗
1 implies that no row of L∗

1 can be expressed
as a linear combination of the other rows of L∗

1. The same applies to the rank
condition on L∗

2. Since the mth row of L∗
1 or L∗

2 completely summarizes type
m’s conditional choice probability within each period, this condition requires
that the changes in x provide sufficient variation in the choice probabilities
across types and that no type is “redundant” in one-dimensional submodels.

(iv) The rank condition on L∗
2 is equivalent to the rank condition on L in

Proposition 1 when X = {1� � � � � |X|}. In other words, rank(L∗
2)=M if and only

if rank(L) =M .
(v) We may partition X into disjoint subsets and compute P∗ with respect

to subsets of X rather than elements of X .
(vi) When T ≥ 4, we may use an approach similar to Proposition 2 to con-

struct a (
∑u

l=0

(|X|+l−1
l

) × ∑u

l=0

(|X|+l−1
l

)
) matrix P∗ (similar to P
 in Example 3

but using (x1�x2) and (x3�x4)) and increase the number of identifiable M to
the order of |X|(T−1)/2.

3. EXTENSIONS OF THE BASELINE MODEL

In this section, we relax Assumption 1 of the baseline model in various ways
to accommodate real-world applications. In the following subsections, we re-
lax Assumption 1(a) and (e) (stationarity), Assumption 1(b) and (d) (type-
invariant transition), and Assumption 1(c) (unrestricted transition) in turn and
analyze nonparametric identifiability of resulting models. In all cases, identifi-
cation is achieved by constructing a version of the factorization equation sim-
ilar to (18), specific to the model under consideration, and then applying an
argument that follows the one presented in (18). The differences arise solely
from the ways in which the factorization equations are constructed across the
various models.

3.1. Time-Dependent Conditional Choice Probabilities

The baseline model (8) assumes that conditional choice probabilities and the
transition function do not change over periods. However, the agent’s decision
rules may change over periods in some models, such as a model with time-
specific aggregate shocks or a model of finitely lived individuals. In this sub-
section, we keep the assumption of the common transition function, but relax
Assumption 1(a) and (e) to extend our analysis to models with time-dependent
choice probabilities.

When Assumption 1(a) and (e) (stationarity) are relaxed but Assump-
tion 1(b) and (d) (conditional independence and type-invariant transition) are
maintained, the choice probabilities and the transition function are written as
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Pm
t (at |xt�xt−1� at−1) = Pm

t (at |xt) and fm
t (xt |{xτ�aτ}t−1

τ=1) = ft(xt |{xτ�aτ}t−1
τ=1), re-

spectively, where at−1 is not an element of xt . Equation (9) then becomes

P̃({at�xt}Tt=1) = P({at�xt}Tt=1)
T∏
t=2

ft(xt |{xτ�aτ}t−1
τ=1)

(23)

=
M∑

m=1

πmp∗m(x1� a1)

T∏
t=2

Pm
t (at |xt)�

The next proposition states a sufficient condition for nonparametric iden-
tification of the mixture model (23). In the baseline model (8), the sufficient
condition is summarized to the invertibility of a matrix consisting of the con-
ditional choice probabilities. In the time-dependent case, this matrix of condi-
tional choice probabilities becomes time-dependent, and hence its invertibility
needs to hold for each period. We consider the case of A = {0�1}. Define, for
ξ ∈ X ,

λ∗m
ξ = p∗m((a1�x1)= (1� ξ)) and

λm
t�ξ = Pm

t (at = 1|xt = ξ)� t = 2� � � � �T�

PROPOSITION 4: Suppose that Assumptions 1(b)–(d) hold and assume T ≥ 3.
For t = 2� � � � � T − 1, let ξt

j , j = 1� � � � �M − 1, be elements of X and define

Lt
(M×M)

=

⎡
⎢⎢⎣

1 λ1
t�ξt1

· · · λ1
t�ξtM−1

���
���

� � �
���

1 λM
t�ξt1

· · · λM
t�ξtM−1

⎤
⎥⎥⎦ �

Suppose there exist {ξt
1� � � � � ξ

t
M−1} such that Lt is nonsingular for t = 2� � � � �T and

there exists k ∈X such that λ∗m
k > 0 for all m and λ∗m

k 	= λ∗n
k for any m 	= n. Then

{πm� {λ∗m
ξ � {λm

t�ξ}Tt=2}ξ∈X}Mm=1 is uniquely determined from {P̃({at�xt}Tt=1) : {at�

xt}Tt=1 ∈ (A×X)T }.

When the choice probabilities are time-dependent, the factorization equa-
tions (that correspond to (18)) are also time-dependent:

Pt =L′
tV Lt+1 and Pt�k =L′

tDkV Lt+1 for t = 2� � � � � T − 1�

where V and Dk are defined as before. The elements of Pt and Pt�k are the
“marginals” of P̃({at�xt}Tt=1) in equation (23) with at = 1 for all t. Specifically,
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Pt and Pt�k are defined as

Pt =

⎡
⎢⎢⎢⎢⎢⎣

1 Ft+1
ξt+1

1
· · · Ft+1

ξt+1
M−1

Ft
ξt1

Ft�t+1
ξt1�ξ

t+1
1

· · · Ft�t+1
ξt1�ξ

t+1
M−1

���
���

� � �
���

Ft
ξtM−1

Ft�t+1
ξtM−1�ξ

t+1
1

· · · Ft�t+1
ξtM−1�ξ

t+1
M−1

⎤
⎥⎥⎥⎥⎥⎦ �

Pt�k =

⎡
⎢⎢⎢⎢⎢⎣

F∗
k F∗t+1

k�ξt+1
1

· · · F∗t+1
k�ξt+1

M−1

F∗t
k�ξt1

F∗t�t+1
k�ξt1�ξ

t+1
1

· · · F∗t�t+1
k�ξt1�ξ

t+1
M−1

���
���

� � �
���

F∗t
k�ξtM−1

F∗t�t+1
k�ξtM−1�ξ

t+1
1

· · · F∗t�t+1
k�ξtM−1�ξ

t+1
M−1

⎤
⎥⎥⎥⎥⎥⎦ �

where, similar to (15), Ft
ξt = P̃({(at� xt) = (1� ξt)}) = ∑M

m=1 π
mλm

t�ξt , F
t�t+1
ξt �ξt+1 =

P̃({(at� xt� at+1�xt+1) = (1� ξt�1� ξt+1)}) = ∑M

m=1 π
mλm

t�ξt λ
m
t+1�ξt+1 , F∗

k = P̃({(a1�

x1) = (1�k)}) = ∑M

m=1 π
mλ∗m

k , F∗t
k�ξt = P̃({(a1�x1� at� xt) = (1�k�1� ξt)}) =∑M

m=1 π
mλ∗m

k λm
t�ξt , and F∗t�t+1

k�ξt �ξt+1 = P̃({(a1�x1� at� xt� at+1�xt+1) = (1�k�1� ξt�1�

ξt+1)}) = ∑M

m=1 π
mλ∗m

k λm
t�ξt λ

m
t+1�ξt+1 . Since Pt and Pt�k are identifiable from the

data, we may construct V , Dk, Lt , and Lt+1 from Pt and Pt�k for t = 2� � � � �T −1
by applying an argument that follows the one presented in (18) to each period.

The following proposition corresponds to Proposition 2 and relaxes the iden-
tification condition of Proposition 4 when T ≥ 5 by utilizing all the marginals
of P̃({at�xt}Tt=1). The proof is omitted because it is similar to that of Propo-
sition 2. The difference from Proposition 2 is (i) the conditions are stated in
terms of λm

t�ξ instead of λm
ξ because of time-dependence and (ii) the number

of restrictions implied by the submodels, analogously defined to (10) and (11)
but with time subscripts, is larger because the order of the choices becomes
relevant. As a result, the condition on |X| of Proposition 5 is weaker than that
of Proposition 2.

PROPOSITION 5: Suppose Assumption 1(b)–(d) hold. Assume T ≥ 5 is odd
and define u= (T − 1)/2. Suppose X = {1� � � � � |X|} and further define

Λ̄0 =
⎡
⎣1
���
1

⎤
⎦ � Λ̄1�1 =

⎡
⎢⎣
λ1

2�1 · · · λ1
2�|X|

���
���

λM
2�1 · · · λM

2�|X|

⎤
⎥⎦ �

For l = 2� � � � � u, define Λ̄1�l to be a matrix whose elements consist of the l-variate
product of the form λm

2�j2
λm

3�j3
· · ·λm

l�jl+1
, covering all possible l ordered combinations
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(with replacement) of (j2� j3� � � � � jl+1) from (1� � � � � |X|). For example,

Λ̄1�2 =
⎡
⎢⎣
λ1

2�1λ
1
3�1 · · · λ1

2�1λ
1
3�|X|

���
���

λM
2�1λ

M
3�1 · · · λM

2�1λ
M
3�|X|

λ1
2�2λ

1
3�1 · · · λ1

2�2λ
1
3�|X| λ1

2�|X|λ
1
3�1 · · · λ1

2�|X|λ
1
3�|X|

���
���

���
���

λM
2�2λ

M
3�1 · · · λM

2�2λ
M
3�|X| λM

2�|X|λ
M
3�1 · · · λM

2�|X|λ
M
3�|X|

⎤
⎥⎦ �

Similarly, for l = 1� � � � � u, define Λ̄2�l to be a matrix whose elements consist of
the l-variate product of the form λm

u+1�j2
λm
u+2�j3

· · ·λm
u+l�jl+1

, covering all possible l

ordered combinations (with replacement) of (j2� j3� � � � � jl+1) from (1� � � � � |X|).
Let

Λ̄1 = [Λ̄0� Λ̄1�1� Λ̄1�2� � � � � Λ̄1�u] and Λ̄2 = [Λ̄0� Λ̄2�1� Λ̄2�2� � � � � Λ̄2�u]�
Define L̄


1 to be an M×M matrix whose first column is Λ̄0 and whose other M−1
columns are from the columns of Λ̄1 other than Λ̄0. Define L̄


2 to be an M × M

matrix whose first column is Λ̄0 and whose other columns are from Λ̄2.
Suppose (a)

∑u

l=0 |X|l ≥ M , (b) L̄

1 and L̄


2 are nonsingular, and (c) there
exists k ∈ X such that λ∗m

k > 0 for all m and λ∗m
k 	= λ∗n

k for any m 	= n.
Then {πm� {λ∗m

j � {λm
t�j}Tt=2}|X|

j=1}Mm=1 is uniquely determined from {P̃({at�xt}Tt=1) : {at�

xt}Tt=1 ∈ (A×X)T }.

3.2. Lagged Dependent Variable and Type-Specific Transition Functions

In empirical applications, including the lagged choice in explanatory vari-
ables for the current choice is a popular way to specify dynamic discrete choice
models. Furthermore, we may encounter a case where the transition pattern
of state variables is heterogeneous across individuals, even after controlling
for other observables. In such cases, the transition function of both at and xt

becomes type-dependent.
In this subsection, we relax Assumption 1(b) and (d) of the baseline

model (8) to accommodate type-specific transition functions as well as the de-
pendence of current choice on lagged variables. In place of Assumption 1(b)
and (d), we impose stationarity and a first-order Markov property on the tran-
sition process of xt . Assumption 2(a) and (c) are identical to Assumption 1(a)
and (c).

ASSUMPTION 2: (a) The choice probability of at does not depend on time.
(b) xt follows a stationary first-order Markov process; fm

t (xt |{xτ�aτ}t−1
τ=1) =

fm(xt |xt−1� at−1) for all t and m. (c) fm(x′|x�a) > 0 for all (x′�x�a) ∈ X ×
X ×A and for all m.
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Under Assumption 2, the model is

P({at�xt}Tt=1)(24)

=
M∑

m=1

πmp∗m(x1� a1)

T∏
t=2

fm(xt |xt−1� at−1)P
m(at |xt�xt−1� at−1)

and the transition process of (at� xt) becomes a stationary first-order Markov
process. Define st = (at� xt), q∗m(s1) = p∗m(x1� a1), and Qm(st |st−1) = fm(xt |
xt−1� at−1)P

m(at |xt�xt−1� at−1), and rewrite the model (24) as

P({st}Tt=1)=
M∑

m=1

πmq∗m(s1)

T∏
t=2

Qm(st |st−1)�(25)

Unlike the transformed baseline model (9), st appears both in Qm(st |s t−1) and
Qm(st+1|s t), and creates the dependence between these terms. Consequently,
the variation of st affects P({st}Tt=1) via both Qm(st |s t−1) and Qm(st+1|s t). This
dependence makes it difficult to construct factorization equations that corre-
spond to (18), which is the key to obtaining identification.

We solve this dependence problem by using the Markov property of st . The
idea is that if st follows a first-order Markov process, looking at every other
period breaks the dependence of st across periods. Specifically, consider the
sequence (st−1� st� st+1) for various values of st , while fixing the values of st−1

and st+1. Once st−1 and st+1 are fixed, the variation of st does not affect the state
variables in other periods because of the Markovian structure of Qm(st |st−1).
As a result, we can use this variation to distinguish different types.

Let s̄ ∈ S = A×X be a fixed value of s and define

πm
s̄ = πmq∗m(s̄)� λm

s̄ (s) =Qm(s̄|s)Qm(s|s̄)� λ∗m
s̄ (sT )= Qm(sT |s̄)�(26)

Assume T is even and consider P({st}Tt=1) with st = s̄ for odd t:

P({st}Tt=1|st = s̄ for t odd)=
M∑

m=1

πm
s̄

(
T−2∏

t=2�4����

λm
s̄ (st)

)
λ∗m
s̄ (sT )�(27)

This conditional mixture model shares the property of independent marginals
with (9). Consequently, we can construct factorization equations similar to (18)
and, hence, can identify the components of the mixture model (27) for each
s̄ ∈ S.

Assume T = 6. Let ξj , j = 1� � � � �M − 1, be elements of S and let k ∈ S.
Define

Ls̄
(M×M)

=
⎡
⎢⎣

1 λ1
s̄ (ξ1) · · · λ1

s̄ (ξM−1)
���

���
� � �

���

1 λM
s̄ (ξ1) · · · λM

s̄ (ξM−1)

⎤
⎥⎦ �
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Vs̄ = diag(π1
s̄ � � � � �π

M
s̄ )� Dk|s̄ = diag(λ∗1

s̄ (k)� � � � � λ
∗M
s̄ (k))�

Then, from (27), the factorization equations that correspond to (18) are

Ps̄ = L′
s̄Vs̄Ls̄� Ps̄�k =L′

s̄Dk|s̄Vs̄Ls̄�(28)

where the elements of Ps̄ and Ps̄�k are various marginals of the left-hand side
of (27) and are identifiable from the data. Then we can construct Vs̄, Dk|s̄, and
Ls̄ uniquely from Ps̄ and Ps̄�k by applying the argument following Corollary 1.

The following proposition establishes a sufficient condition for nonparamet-
ric identification of model (27). Because of the temporal dependence in st , the
requirement on T becomes T ≥ 6 instead of T ≥ 3.

PROPOSITION 6: Suppose Assumption 2 holds and assume T ≥ 6. Suppose
that q∗m(s̄) > 0 for all m, there exist some {ξ1� � � � � ξM−1} such that Ls̄ is nonsin-
gular, and there exists k ∈ S such that λ∗m

s̄ (k) > 0 for all m and λ∗m
s̄ (k) 	= λ∗n

s̄ (k)
for any m 	= n. Then {πm

s̄ � {λm
s̄ (s)�λ

∗m
s̄ (s)}s∈S}Mm=1 is uniquely determined from

{P({st}Tt=1) : {st}Tt=1 ∈ ST }.
REMARK 5:

(i) The assumption of stationarity and a first-order Markov property is cru-
cial. When st follows a second-order Markov process (e.g., Pm(at |{xτ�aτ}t−1

τ=1)=
Pm(at |xt−1� at−1�xt−2� at−2)), the requirement on T becomes T ≥ 9 instead of
T ≥ 6 because we need to look at every two other periods so as to obtain the
“independent” variation of st across periods.

(ii) The transition functions and conditional choice probabilities are iden-
tified from λ∗m

s̄ (s) as follows. Recall Qm(s|s̄) = λ∗m
s̄ (s) by definition (see (26))

and Qm(s|s̄) = fm(x|x̄� ā)Pm(a|x� x̄� ā) with (ā� x̄) = s̄. Summing Qm(s|s̄) over
a ∈ A gives fm(x|x̄� ā), and we then identify the conditional choice probabili-
ties by Pm(a|x� x̄� ā)=Qm(s|s̄)/fm(x|x̄� ā).

(iii) If |S| � M and the transition pattern of s is sufficiently heterogeneous
across different types, the sufficient conditions in Proposition 6 are likely to
hold for all s̄ ∈ S, and we may therefore identify the primitive parameters πm,
p∗m(a�x), fm(x′|x�a), and Pm(a′|x′�x�a). Specifically, repeating Proposition 6
for all s̄ ∈ S, we obtain πmq∗m(s) = πmp∗m(a�x) for all (a�x) ∈ A × X . Then
πm is determined by πm = ∑

(a�x)∈A×X πmp∗m(a�x) and we identify p∗m(a�x) =
(πmp∗m(a�x))/πm.

EXAMPLE 4 —An Example for Proposition 6: Consider a case in which
T = 6, A = {0�1}, and X = {0�1}. Then M = |S| + 1 = 5 types can be iden-
tified. Fix s1 = s3 = s5 = s̄ ∈A×X . Then Ls̄ is given by

Ls̄
(M×M)

=
⎡
⎢⎣

1 λ1
s̄ (0�0) λ1

s̄ (0�1) λ1
s̄ (1�0) λ1

s̄ (1�1)
���

���
���

���
���

1 λM
s̄ (0�0) λM

s̄ (0�1) λM
s̄ (1�0) λM

s̄ (1�1)

⎤
⎥⎦ �
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For example, the (5�5)th elements of Ps̄ and Ps̄�k in (28) are given by P({s1 =
s3 = s5 = s̄� s2 = s4 = (1�1)}) = ∑5

m=1 π
m
s̄ (λ

m
s̄ (1�1))2 and P({s1 = s3 = s5 =

s̄� s2 = s4 = (1�1)� s6 = k})= ∑5
m=1 π

m
s̄ (λ

m
s̄ (1�1))2λ∗m

s̄ (k), respectively.

When T ≥ 8, we can relax the condition |S| ≥ M − 1 of Proposition 6 by
applying the approach of Proposition 2. Define λ∗m

s̄ (s) = Qm(s|s̄), λm
s̄�1(s1) =

Qm(s̄|s1)Q
m(s1|s̄), and λm

s̄�2(s1� s2) = Qm(s̄|s1)Q
m(s1|s2)Q

m(s2|s̄), and similarly
define λm

s̄�l(s1� � � � � sl) for l ≥ 3 as an (l + 1)-variate product of Qm(s′|s)’s of
the form Qm(s̄|s1) · · ·Qm(sl−1|sl)Qm(sl|s̄) for {st}lt=1 ∈ Sl.

PROPOSITION 7: Suppose Assumption 2 holds. Assume T ≥ 8 and is even, and
define u= (T − 4)/2. Suppose that S = {1�2� � � � � |S|} and further define

Λ̃0 =
⎡
⎣1
���
1

⎤
⎦ � Λ̃1 =

⎡
⎢⎣
λ1
s̄�1(1) · · · λ1

s̄�1(|S|)
���

� � �
���

λM
s̄�1(1) · · · λM

s̄�1(|S|)

⎤
⎥⎦ �

For l = 2� � � � � u, define Λ̃l to be a matrix whose elements consists of λm
s̄�l(s1� � � � �

sl), covering all possible unordered combinations (with replacement) of (s1� � � � � sl)
from Sl. For example,

Λ̃2
(M×(|S|+1

2 ))
=

⎡
⎢⎣
λ1
s̄�2(1�1) · · · λ1

s̄�2(1� |S|)
���

���

λM
s̄�2(1�1) · · · λM

s̄�2(1� |S|)
λ1
s̄�2(2�2) · · · λ1

s̄�2(2� |S|) · · · λ1
s̄�2(|S|� |S|)

���
���

���

λM
s̄�2(2�2) · · · λM

s̄�2(2� |S|) · · · λM
s̄�2(|S|� |S|)

⎤
⎥⎦ �

Define an M × ∑u

l=0

(|S|+l−1
l

)
matrix Λ̃ as Λ̃ = [Λ̃0� Λ̃1� Λ̃2� � � � � Λ̃u] and define L


s̄

to be a M ×M matrix consisting of M columns from Λ̃ but with the first column
unchanged.

Suppose (a)
∑u

l=0

(|S|+l−1
l

) ≥M , (b) q∗m(s̄) > 0 for all m, (c) L

s̄ is nonsingular,

and (d) there exists k ∈ S such that λ∗m
s̄ (k) > 0 for all m and λ∗m

s̄ (k) 	= λ∗n
s̄ (k)

for any m 	= n. Then {πm
s̄ � {λm

s̄�l(s1� � � � � sl) : (s1� � � � � sl) ∈ Sl}ul=1� {λ∗m
s̄ (s)}|S|

s=1}Mm=1 is
uniquely determined from {P({st}Tt=1) : {st}Tt=1 ∈ (A×X)T }.

The identification of the primitive parameters πm, p∗m(a�x), fm(x′|x�a),
Pm(a|x) follows from Remark 5(ii) and (iii).

EXAMPLE 5—An Example for Proposition 7: Browning and Carro (2007,
Section 4) considered a stationary first-order Markov chain model of ait ∈
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{0�1} without covariates and showed that their model is not nonparametri-
cally identified when T = 3 and M = 9. In our notation, Browning and Carro’s
model is written as

P(a1� � � � � aT )=
M∑

m=1

πmp∗m(a1)

T∏
t=2

Pm(at |at−1)�

Note that s = a because there are no covariates. If T = 8, we can identify M =∑u

l=0

(2+l−1
l

) = 6 types, provided that, for s̄ = {0�1}, p∗m(s̄) > 0 for all m, L

s̄ is

nonsingular, and Pm(1|s̄) 	= Pn(1|s̄) for any m 	= n. Here, L

s̄ is given by

L

s̄ =

⎡
⎢⎣

1 λ1
s̄�1(0) λ1

s̄�1(1) λ1
s̄�2(0�0) λ1

s̄�2(0�1) λ1
s̄�2(1�1)

���
���

���
���

���
���

1 λM
s̄�1(0) λM

s̄�1(1) λM
s̄�2(0�0) λM

s̄�2(0�1) λM
s̄�2(1�1)

⎤
⎥⎦

and the elements of L

0 are given by, for example,

λm
0�1(0)= Pm(0|0)Pm(0|0)� λm

0�2(1�1)= Pm(0|1)Pm(1|1)Pm(1|0)�
The factorization equations that correspond to (18) are P


s̄ = (L

s̄ )

′Vs̄L


s̄ and

P

s̄�k = (L


s̄ )
′Dk|s̄Vs̄L



s̄ , where Ṽs̄ and Dk|s̄ are defined as before. P


s̄ and P

s̄�k are

identifiable from the data, and we can construct Ṽs̄, Dk|s̄, and L

s̄ from these

factorization equations. Similarly, if T = 10�12�14, then the maximum number
of identifiable types by Proposition 7 is 10�15�21, respectively.

The following example demonstrates that nonparametric identification of
component distributions may help us understand the identification of para-
metric finite mixture models of dynamic discrete choices.

EXAMPLE 6 —Identification of Models With Heterogeneous Coefficients:
Consider the model of Example 1. For an individual who belongs to type m,
Pm(at = 1|xt� at−1) = Φ(x′

tβ
m + ρmat−1) and the initial observation, (a1�x1), is

randomly drawn from p∗m(a1�x1) while the transition function of xt is given by
fm(xt |xt−1� at−1).

If the conditions in Proposition 6 including T ≥ 6, |S| ≥ M − 1, and the rank
of Ls̄ are satisfied, then p∗m(a1�x1), fm(xt |xt−1� at−1), and Pm(at = 1|xt� at−1)
are identified for all m. Once Pm(at = 1|xt� at−1) is identified, taking an inverse
mapping gives x′

tβ
m + ρmat−1 =Φ−1(Pm(at = 1|xt� at−1)). Evaluating this at all

the points in A×X gives a system of |A||X| linear equations with dim(βm)+1
unknown parameters (βm�ρm), and solving this system for (βm�ρm) identifies
(βm�ρm).

For instance, consider a model Pm(at = 1|xt� at−1)=Φ(βm
0 +βm

1 xt +ρmat−1)
with A =X = {0�1}. If Pm(at = 1|x�a) is identified for all (a�x) ∈ A×X , then
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the type-specific coefficient (βm
0 �β

m
1 �ρ

m) is identified as the unique solution to
the linear system⎡

⎢⎣
1 0 0
1 1 0
1 0 1
1 1 1

⎤
⎥⎦

⎡
⎣βm

0

βm
1

ρm

⎤
⎦ =

⎡
⎢⎣
Φ−1(Pm(at = 1|0�0))
Φ−1(Pm(at = 1|0�1))
Φ−1(Pm(at = 1|1�0))
Φ−1(Pm(at = 1|1�1))

⎤
⎥⎦ �

The next example shows that the degree of underidentification in structural
dynamic models with unobserved heterogeneity can be reduced to that in mod-
els without unobserved heterogeneity. Furthermore, a researcher can now ap-
ply various two-step estimators for structural models developed by Hotz and
Miller (1993) (and others listed in the Introduction) to models with unobserved
heterogeneity since, with our identification results, one can obtain an initial
nonparametric consistent estimate of type-specific component distributions.
Kasahara and Shimotsu (2008a) provided an example of such an application.8

EXAMPLE 7 —Dynamic Discrete Games (Aguirregabiria and Mira (2007,
Section 3.5)): Consider the model of dynamic discrete games with unob-
served market characteristics studied by Aguirregabiria and Mira (2007,
Section 3.5). There are N ex ante identical “global” firms competing in
H local markets. There are M market types and each market’s type is
common knowledge to all firms, but unknown to a researcher. In market
h ∈ {1�2� � � � �H}, firm i maximizes the expected discounted sum of profits
E[∑∞

s=t β
s−t{Πi(xhs� ahs� ah�s−1;θh) + εhis(ahis)}|xht� aht� ah�t−1;θh], where xht is

a state variable that is common knowledge for all firms, θh ∈ {1�2� � � � �M} is
the type attribute of market h, ahs = (ah1s� � � � � ahNs) is the vector of firms’ de-
cisions, and εhit(ahit) is a state variable that is private information to firm i.
The profit function may depend on, for example, the past entry/exit decision
of firms. The researcher observes xht and aht , but neither θh nor εhit . There is
no interaction across different markets.

Let a−1 denote the vector of firms’ decision in the preceding period. As-
sume that the εi’s are independent from x and independent and identically
distributed (i.i.d.) across firms. Let σ∗(θh) = {σ∗

i (x�a
−1� εi;θh) : i = 1� � � � �N}

denote a set of strategy functions in a stationary Markov perfect equilib-
rium (MPE). Then, the equilibrium conditional choice probabilities are given
by Pσ∗

i (ai|x�a−1;θh) = ∫
1{ai = σ∗

i (x�a
−1� εi;θh)}g(εi)dεi, where g(εi) is the

density function for ε = {ε(a) :a ∈ A}. A MPE induces a transition function
of x, which we denote by f σ∗

(xt |xt−1� a
−1;θh).

8Kasahara and Shimotsu (2008a) showed that in structural discrete Markov decision models
with unobserved heterogeneity, it is possible to obtain an estimator that is higher-order equivalent
to the maximum likelihood estimator (MLE) by iterating the nested pseudo-likelihood (NPL)
algorithm of Aguirregabiria and Mira (2002) sufficiently many, but finite times.
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Suppose that panel data {{aht� xht}Tt=1}Hh=1 are available. As in Aguirregabiria
and Mira (2007), consider the case where H → ∞ with N and T fixed. The ini-
tial distribution of (a�x) differs across market types and is given by p∗m(a�x).
Let Pm(aht |xht� ah�t−1) = ∏N

i=1 P
σ∗
i (ahit |xht� ah�t−1;m) and fm(xht |xh�t−1�

ah�t−1) = f σ∗
(xht |xh�t−1� ah�t−1;m). Then the likelihood function for market h

becomes a mixture across different unobserved market types,

P({aht� xht}Tt=1)

=
M∑

m=1

πmp∗m(ah1�xh1)

T∏
t=2

Pm(aht |xht� ah�t−1)f
m(xht |xh�t−1� ah�t−1)�

for which Propositions 6 and 7 are applicable.

EXAMPLE 8—An Empirical Example of Aguirregabiria and Mira (2007, Sec-
tion 5): Aguirregabiria and Mira (2007, Section 5) considered an empirical
model of entry and exit in local retail markets based on the model of Example
7. Each market is indexed by h. The firms’ profits depend on the logarithm
of the market size, xht , and their current and past entry/exit decisions, aht and
ah�t−1. The profit of a nonactive firm is zero. When active, firm i’s profit is
Πo

i (xht� aht� ah�t−1) + ωh + εhit(ahit), where the function Πo
i is common across

all the markets and εhit is i.i.d. across markets. The parameter ωh captures
the unobserved market characteristics and has a discrete distribution with 21
points of support. The logarithm of market size follows an exogenous first-
order Markov process.

Their panel covers 6 years at annual frequency (i.e., T = 6). This satisfies
the requirement for T in Proposition 6. Given the nonlinear nature of the dy-
namic games models, the rank condition on the Ls̄ matrix in Proposition 6 is
likely to be satisfied. In their specification however, the transition function for
xht , fh(xht |xh�t−1), is market-specific, so that the number of types is equal to the
number of markets. Consequently, Proposition 6 does not apply to this case,
and the type-specific conditional choice probabilities may not be nonparamet-
rically identified.9

If we limit the number of types for transition functions, then we may ap-
ply Proposition 6 to identify the type-specific conditional choice probabilities
and the type-specific transition probabilities. For the mth type market, the
joint conditional choice probabilities across all firms are Pm(aht |xht� ah�t−1) =

9Aguirregabiria and Mira estimated the market-specific transition function using 14 years of
data on market size from other data sources. Given the relatively long time length, the identifi-
cation of market-specific transition functions may come from the time variation of each market.
When the transition function is market-specific, however, the conditional choice probabilities also
become market-specific, leading to the incidental parameter problem. Even if the market-specific
transition function is known, nonparametrically identifying the market-specific conditional choice
probabilities is not possible given a short panel.
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∏N

i=1 Pi(ahit |xht� ah�t−1;θm), where aht = (ah1t � � � � � ahNt)
′. The market size is dis-

cretized with 10 support points (i.e., |X| = 10) and A = {0�1}N . Consequently,
the size of the state space of sht = (aht� xht) for this model is |A||X| = 2N × 10,
and we may identify up to M = 2N × 10 + 1 types. For instance, their Table VI
reports that 63.5 percent of markets have no less than five potential firms (i.e.,
N ≥ 5) in the restaurant industry. Hence, M = 25 × 10 + 1 = 321 market types
can be identified for these markets.10

The following proposition extends Proposition 3 for identification of M un-
der Assumption 2. Because of the state dependence, the required panel length
becomes T = 5. We omit the proof because it is essentially the same as that of
Proposition 3.

PROPOSITION 8: Suppose that Assumption 2 holds. Assume T ≥ 5 and S =
{1� � � � � |S|}. Fix s1 = s3 = s5 = s̄ ∈ S. Define, for s� s′ ∈ S,

Ps̄(s) = P(s2 = s� s1 = s3 = s̄)�

Ps̄(s� s
′)= P

(
(s2� s4)= (s� s′)� s1 = s3 = s5 = s̄

)
�

and define a (|S| + 1)× (|S| + 1) matrix

P∗
s̄ =

⎡
⎢⎢⎣

1 Ps̄(1) · · · Ps̄(|S|)
Ps̄(1) Ps̄(1�1) · · · Ps̄(1� |S|)
���

���
� � �

���

Ps̄(|S|) P̃s̄(|S|�1) · · · Ps̄(|S|� |S|)

⎤
⎥⎥⎦ �

Suppose q∗m(s̄) > 0 for all m. Then M ≥ rank(P∗
s̄ ). Furthermore, if the matrix L∗

s̄

defined below has rank M , then M = rank(P∗
s̄ ):

L∗
s̄

(M×(|S|+1))
=

⎡
⎢⎣

1 λ1
s̄ (1) · · · λ1

s̄ (|S|)
���

���
� � �

���

1 λM
s̄ (1) · · · λM

s̄ (|S|)

⎤
⎥⎦ �

In some applications, the model has two types of covariates, zt and xt , where
the transition function of xt depends on types, while the transition function
of zt is common across types. In such a case, we may use the variation of zt as a
main source of identification and relax the requirement on T in Proposition 6.

We impose an assumption analogous to Assumption 2, as well as the condi-
tional independence assumption on the transition function of (x′� z′):

10Even if the type-specific conditional choice probabilities are nonparametrically identified, it
is generally not possible to nonparametrically identify the primitive objects such as the discount
factor β, profit functions Πi , and the distribution of shocks, εiht , in structural dynamic models
(Rust (1994), Magnac and Thesmar (2002)).
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ASSUMPTION 3: (a) The choice probability of at does not depend on time
and is independent of zt−1. (b) The transition function of (xt� zt) conditional
on {xτ� zτ� aτ}t−1

τ=1 takes the form g(zt |xt−1� zt−1� at−1)f
m(xt |xt−1� at−1) for all t.

(c) fm(x′|x�a) > 0 for all (x′�x�a) ∈ X × X × A and g(z′|x�z�a) > 0 for all
(z′�x� z�a) ∈Z ×X ×Z ×A and for m = 1� � � � �M .

Under Assumption 3, consider a model

P({at�xt� zt}Tt=1)

=
M∑

m=1

πmp∗m(x1� z1� a1)

T∏
t=2

g(zt |xt−1� zt−1� at−1)f
m(xt |xt−1� at−1)

× Pm(at |xt�xt−1� at−1� zt)�

Assuming g(zt |xt−1� zt−1� at−1) is known and defining st = (at� xt), q̃∗m(s1�

z1) = p∗m(x1� z1� a1), and Q̃m(st |st−1� zt) = fm(xt |xt−1� at−1)P
m(at |xt�xt−1� at−1�

zt), we can write this equation as

P̃({st� zt}Tt=1) = P({at�xt� zt}Tt=1)
T∏
t=2

g(zt |xt−1� zt−1� at−1)

(29)

=
M∑

m=1

πmq̃∗m(s1� z1)

T∏
t=2

Q̃m(st |st−1� zt)�

We fix the value of {st}Tt=1 and use the “independent” variation of zt to iden-
tify unobserved types. The next proposition provides a sufficient condition for
nonparametric identification of the model (29). Define, for s̄ ∈ S and h�ξ ∈ Z,

π̃m
s̄�h = πmq̃∗m(s̄�h)� λ̃m

s̄ (ξ)= Q̃m(s̄|s̄� ξ)�
PROPOSITION 9: Suppose that Assumption 3 holds and assume T ≥ 4. Define

L̄s̄
(M×M)

=
⎡
⎢⎣

1 λ̃1
s̄ (ξ1) · · · λ̃1

s̄ (ξM−1)
���

���
� � �

���

1 λ̃M
s̄ (ξ1) · · · λ̃M

s̄ (ξM−1)

⎤
⎥⎦ �

Suppose that q̃∗m(s̄�h) > 0 for all m, there exist some {ξ1� � � � � ξM−1} such that
L̄s̄ is nonsingular, and there exist (r�k) ∈ S × Z such that Q̃m(r|s̄� k) > 0
for all m and Q̃m(r|s̄� k) 	= Q̃n(r|s̄� k) for any m 	= n. Then {π̃m

s̄�h� {λm
s̄ (ξ)}ξ∈Z ,

{Q̃m(s|s̄� ξ)}(s�ξ)∈S×Z}Mm=1 is uniquely determined from {P̃({st� zt}Tt=1) : {st� zt}Tt=1 ∈
(S ×Z)T }.
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We may identify the primitive parameters πm, p∗m(a�x), fm(x′|x�a),
Pm(a|x) using an argument analogous to those of Remark 5(ii) and (iii). The
requirement of T = 4 in Proposition 9 is weaker than that of T = 6 in Proposi-
tion 6 because the variation of zt , rather than (xt� at), is used as a main source
of identification. When T > 4, we may apply the argument of Proposition 2 to
relax the sufficient condition for identification in Proposition 9, but we do not
pursue it here; Proposition 2 provides a similar result.

3.3. Limited Transition Pattern

This section analyzes the identification condition of the baseline model when
Assumption 1(c) is relaxed. In some applications, the transition pattern of x
is limited, as not all x′ ∈ X are reachable with a positive probability. In such
instances, the set of sequences {at�xt}Tt=1 that can be realized with a positive
probability also becomes limited and the number of restrictions from a set of
the submodels falls, making identification more difficult.

EXAMPLE 9—Bus Engine Replacement Model (Rust (1987)): Suppose a ∈
{0�1} is the replacement decision for a bus engine, where a = 1 corresponds
to replacing a bus engine. Let x denote the mileage of a bus engine with X =
{1�2� � � �}. The transition function of xt is

f (xt+1|xt� at;θ) =

⎧⎪⎪⎨
⎪⎪⎩
θf�1� for xt+1 = (1 − at)xt + at ,
θf�2� for xt+1 = (1 − at)xt + at + 1,
1 − θf�1 − θf�2� for xt+1 = (1 − at)xt + at + 2,
0� otherwise,

and not all x′ ∈X can be realized from (x�a).

Henceforth, we assume the transition function of x is stationary and takes
the form f (x′|x�a) to simplify the exposition. If f (x′|x�a) = 0 for some
(x′�x�a) and not all x′ ∈ X can be reached from (a�x), then some values of
{at�xt} are never realized. For such values, P̃({at�xt}Tt=1) in (9) and its lower-
dimensional submodels in (10) and (11) are not well defined. Hence, their re-
strictions cannot be used for identification. Thus, we fix the values of (a1�x1)
and (aτ�xτ), and focus on the values of (at� xt) that are realizable between
(a1�x1) and (aτ�xτ). The difference in response patterns between (a1�x1) and
(aτ�xτ) provides a source of identification.

To fix the idea, assume T = 4, and fix at = 0 for all t, x1 = h, and xτ = k. Of
course, it is possible to choose different sequences of {at}Tt=1. Let Bh and Ch be
subsets of X , of which elements are realizable between (a1�x1) and (aτ�xτ).
We use the variations of x within Bh and Ch as a source of identification. De-
fine, for h�ξ ∈X ,

π̃m
h = πmp∗m(a1 = 0�x1 = h) and λ̃m

ξ = Pm(a= 0|x = ξ)�(30)
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and Ṽh = diag(π̃1
h� � � � � π̃

M
h ) and D̃k = diag(λ̃1

k� � � � � λ̃
M
k ). We identify Ṽh, D̃k,

and λ̃m
ξ ’s from the factorization equations corresponding to (18):

Ph = L̃′
bṼhL̃c and Ph

k = L̃′
bD̃kṼhL̃c�(31)

where L̃b and L̃c are defined analogously to L in (13), but using λ̃m
ξ , and with

ξ ∈ Bh and ξ ∈ Ch, respectively. As we discuss below, we choose Bh, Ch, and k
so that Ph and Ph

k are identifiable from the data.
Each equation of these factorization equations (31) represents a submodel

in (9) and (10) for a sequence of at ’s and xt ’s that belongs to one of the sets

A1 = {x1 = h� (x2�x3) ∈ Bh ×Ch�x4 = k;at = 0 for all t}�(32)

A2 = {x1 = h�x2 ∈ Bh�x3 = k;at = 0 for all t}�
A3 = {x1 = h�x2 ∈ Ch�x3 = k;at = 0 for all t}�
A4 = {x1 = h�x2 = k;at = 0 for all t}�

For instance, a submodel for a sequence q1 ∈ A1 in (32) is

P̃(q1) = P(q1)

f (k|x3�0)f (x3|x2�0)f (x2|h�0)

=
M∑

m=1

πmp∗m(h�0)Pm(0|x2)P
m(0|x3)P

m(0|k)

for (x2�x3) ∈ Bh ×Ch�

which represents one of the equations of Ph
k = L̃′

bD̃kṼhL̃c in (31).
For all the submodels implied by (31) to provide identifying restrictions, all

the sequences of xt ’s in A1–A4 in (32) must have positive probability; other-
wise, some elements of Ph and Ph

k in (31) cannot be constructed from the data,
and our identification strategy fails. This requires that all the points in Bh must
be reachable from h, while all the points in Ch must be reachable from h and
all the points in Bh. Finally, k must be reachable from h and all the points in
Bh and Ch.

EXAMPLE 9 —Continued: In Example 9, assume the initial distribution
p∗m(x�a) is defined as the type-specific stationary distribution. Set at = 0 for
t = 1� � � � �4 and x1 = h. Choose Bh = {h�h + 1} and Ch = {h + 1�h + 2}, and
k= h+2. For this choice of Bh, Ch, and k, the corresponding transition proba-
bilities are nonzero, and we may construct all the elements of Ph and Ph

k in (31)
from the observables. For each h ∈ X , these submodels provide 4 + 3 + 1 = 8
restrictions for identification.
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We now state the restrictions on Bh and Ch formally. First we develop use-
ful notation. For a singleton {x} ⊂ X , let Γ (a� {x}) = {x′ ∈ X : f (x′|x�a) > 0}
denote a set of x′ ∈ X that can be reached from (a�x) in the next period with
a positive probability. For a subset W ⊆ X , define Γ (a�W ) as the intersection
of Γ (a� {x})’s across all x’s in W :Γ (a�W )= ⋂

x∈W Γ (a� {x}).
We summarize the assumptions of this subsection including the restrictions

on Bh and Ch:

ASSUMPTION 4: (a) The choice probability of at does not depend on time.
(b) The choice probability of at is independent of the lagged variable (xt−1� at−1)
conditional on xt . (c) Pm(a|x) > 0 for all (a�x) ∈ A × X and m = 1� � � � �M .
(d) fm

t (xt |{xτ�aτ}t−1
τ=1) = f (xt |xt−1� at−1) for all m. (e) h�k ∈ X , Bh and Ch sat-

isfy p∗m(a1 = 0�x1 = h) > 0 for all m, and

Bh ⊆ Γ (0� {h})� Ch ⊆ Γ (0�Bh)∩ Γ (0� {h})�
{k} ⊆ Γ (0�Ch)∩ Γ (0�Bh)∩ Γ (0� {h})�

Assumption 4(a) and (b) are identical to Assumption 1(a) and (b). Assump-
tion 4(c) is necessary for the submodels to be well defined. Assumption 4(d)
strengthens Assumption 1(d) by imposing stationarity and a first-order Markov
property. It may be relaxed, but doing so would add substantial notational com-
plexity. Assumption 4(e) guarantees that all the sequences we consider in the
subsets in (32) have nonzero probability. Note that the choice of Ch is affected
by how Bh is chosen. If Assumption 1(c) holds, it is possible to set Bh = Ch =X .

The next proposition provides a sufficient condition for identification under
Assumption 4.

PROPOSITION 10: Suppose that Assumption 4 holds T = 4, and |Bh|, |Ch| ≥
M − 1. Let {ξb

1� � � � � ξ
b
M−1} and {ξc

1� � � � � ξ
c
M−1} be elements of Bh and Ch, respec-

tively. Define π̃m
h and λ̃m

ξ as in (30), and define

L̃b
(M×M)

=

⎡
⎢⎢⎣

1 λ̃1
ξb1

λ̃1
ξb2

· · · λ̃1
ξbM−1

���
���

���
� � �

���

1 λ̃M

ξb1
λ̃M

ξb2
· · · λ̃M

ξbM−1

⎤
⎥⎥⎦ �

L̃c
(M×M)

=
⎡
⎢⎣

1 λ̃1
ξc1

λ̃1
ξc2

· · · λ̃1
ξcM−1

���
���

���
� � �

���

1 λ̃M
ξc1

λ̃M
ξc2

· · · λ̃M
ξcM−1

⎤
⎥⎦ �

Suppose that L̃b and L̃c are nonsingular for some {ξb
1� � � � � ξ

b
M−1} and {ξc

1� � � � �

ξc
M−1}, and that λ̃m

k > 0 for all m and λ̃m
k 	= λ̃n

k for any m 	= n. Then {π̃m
h � λ̃

m
ξ :ξ ∈

Bh ∪Ch}Mm=1 is uniquely determined from {P̃({at�xt}Tt=1) : {at�xt}Tt=1 ∈ (A×X)T }.
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Assuming that all the values of x can be realized in the initial period, we may
repeat the above argument for all possible values of x1 to identify λ̃m

ξ for any
ξ ∈ ⋃

h∈X Bh. Furthermore, we can repeat the argument for different sequences
of {at}4

t=1 to increase the identifiable elements of Pm(a|x). For instance, by
choosing Bh = Γ (a� {h}), λ̃m

l is identified for all l ∈ X if the union of Γ (a� {h})
across different (a�h) ∈ A × X includes all the elements of X so that X =⋃

(a�h)∈A×X Γ (a� {h}). This is a weak condition and is satisfied if X is an ergodic
set. However, setting Bh = Γ (a� {h}) may lead to a small number of identifiable
types.

EXAMPLE 9—Continued: Setting at = 0 for t = 1� � � � �4, we have Γ (0�
{h}) = {h�h + 1�h + 2} for any h ∈ X . To satisfy Assumption 4(e), choose
Bh = {h�h+ 1}, Ch = {h+ 1�h+ 2}, and k= h+ 2. If the other assumptions of
Proposition 10 are satisfied, we can identify M = 3 types. From the factoriza-
tion equations (31), we can uniquely determine Ṽh, D̃k, L̃b, and L̃c , and iden-
tify {πmp∗m(0�x)�Pm(0|x) :x= h�h+ 1�h+ 2}m=1�2�3. Repeating for all h ∈ X ,
we identify Pm(a|x) for all (a�x) ∈ A × X . We then identify p∗m(x�a) using
Pm(a|x), f (x′|x�a), and the fixed point constraint, while πm is determined as
πmp∗m(0�x)/p∗m(0�x).

The sufficient condition of Proposition 10 does not allow one to identify
many types when the size of Bh or Ch is small. It is possible to identify more
types when we can find a subset D of X that is reachable from itself, namely
D ⊆ Γ (0�D). For example, if the transition pattern is such that Γ (0� {x}) =
{x − 2�x − 1�x�x + 1�x + 2} for some x ∈ X , then the set {x − 1�x�x + 1}
serves as D. In such cases, we can apply the logic of Proposition 2 to identify
many types if T ≥ 5.

ASSUMPTION 5: (a) Assumptions 4(a)–(d) hold. (b) A subset D of X satisfies
D ⊆ Γ (0�D).

Set D = {d1� � � � � d|D|}, and define λ∗m
d = p∗m((a�x) = (1� d)) and λm

d =
Pm(a = 1|x = d) for d ∈ D. Under Assumption 5, replacing X with D and
simply repeating the proof of Proposition 2 gives the following proposition:

PROPOSITION 11: Suppose Assumption 5 holds. Assume T ≥ 5 is odd and de-
fine u = (T − 1)/2. Define Λr , r = 0� � � � � u, analogously to Proposition 2 except
(X�λ∗m

ξj
�λm

ξj
) is replaced with (D�λ∗m

dj
�λm

dj
). Define an M×(

∑u

l=0

(|D|+l−1
l

)
) matrix

Λ as Λ = [Λ0�Λ1�Λ2� � � � �Λu].
Suppose (a)

∑u

l=0

(|D|+l−1
l

) ≥ M , (b) we can construct a nonsingular M × M
matrix L
 by setting its first column as Λ0 and choosing the other M − 1 columns
from the columns of Λ but Λ0, and (c) there exists dk ∈ D such that λ∗m

dk
> 0

for all m and λ∗m
dk

	= λ∗n
dk

for any m 	= n. Then {πm� {λ∗m
dj
�λm

dj
}|D|
j=1}Mm=1 is uniquely

determined from {P̃({at�xt}Tt=1) : {at�xt}Tt=1 ∈ (A×X)T }.
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For example, if |D| = 3 and T = 5, the number of identifiable types becomes(2
0

) + (3
1

) + (4
2

) = 10. Identifying more types is also possible when the model has
an additional covariate zt whose transition pattern is not limited and there is a
state x̄ such that P(x1 = · · · = xT = x̄) > 0 for some sequence of at . Then, for
x = x̄, we can use the variation of zt and apply Proposition 9. This increases
the number of identifiable types to |Z| + 1.

4. CONCLUDING REMARK

This paper studies dynamic discrete choice models with unobserved hetero-
geneity that is represented in the form of finite mixtures. It provides sufficient
conditions under which such models are identified without parametric distrib-
utional assumptions.

While we emphasize that the variation in the covariate and in time provides
important identifying information, our identification approach does require
assumptions on the Markov property, stationarity, and type-invariance in tran-
sition processes. To clarify our identification results, consider a general nonsta-
tionary finite mixture model of dynamic discrete choices:

P({at�xt}Tt=1)(33)

=
M∑

m=1

πmp∗m(x1� a1)

T∏
t=2

fm
t (xt |{xτ�aτ}t−1

τ=1)P
m
t (at |xt� {xτ�aτ}t−1

τ=1)�

Such a general mixture model (33) cannot be nonparametrically identified
without imposing further restrictions.11 One possible nonparametric restric-
tion is a first-order Markovian assumption on (xt� at), that yields a less general
nonstationary model:

P({at�xt}Tt=1)(34)

=
M∑

m=1

πmp∗m(x1� a1)

T∏
t=2

fm
t (xt |xt−1� at−1)P

m
t (at |xt�xt−1� at−1)�

We do not know whether this model is nonparametrically identified without
additional assumptions. Section 3.1 shows that the identification of the nonsta-

11The model (33) is equivalent to a mixture model P({at�xt}Tt=1) = ∑M
m=1 π

mPm({at�xt}Tt=1),
because it is always to possible to decompose

Pm({at�xt}Tt=1)= p∗m(x1� a1)

T∏
t=2

fm
t (xt |{xτ�aτ}t−1

τ=1)P
m
t (at |xt� {xτ�aτ}t−1

τ=1)�

The number of restrictions implied by P({at�xt}Tt=1) is (|A||X|)T − 1, while the number of un-
knowns in

∑M
m=1 π

mPm({at�xt}Tt=1) is M − 1 +M((|A||X|)T − 1).
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tionary model (34) is possible under the assumptions of type-invariant tran-
sition processes and conditional independence of discrete choices. In Sec-
tion 3.2, we provide identification results under the stationarity assumption on
the transition function and choice probabilities in (34). Relaxing these identi-
fying assumptions as well as investigating identifiability, or perhaps nonidenti-
fiability, of finite mixture model (34) is an important future research area.

Estimation and inference on the number of components (types), M , is an
important topic because of the lack of guidance from economic theory. It is
known that the likelihood ratio statistic has a nonstandard limiting distribution
when applied to testing the number of components of a mixture model (see,
for example, Liu and Shao (2003)). Leroux (1992) considered a maximum-
penalized-likelihood estimator for the number of components, which includes
the Akaike information criterion and Bayesian information criterion as a spe-
cial case. McLachlan and Peel (2000, Chapter 6) surveyed the methods for
determining the number of components in parametric mixture models. To our
best knowledge, all of these existing methods assume that the component dis-
tributions belong to a parametric family. Developing a method for testing and
selecting the number of components without imposing any parametric assump-
tion warrants further research.

A statistical test of the number of components may be possible by testing
the rank of matrix P∗ in Proposition 3. When the covariate has a large num-
ber of support points, we may test the number of components by testing a
version of matrix P in (17) across different partitions of X . In Kasahara and
Shimotsu (2008b), we pursued this idea, and proposed a selection procedure
for the number of components by sequentially testing the rank of matrices.

APPENDIX: PROOFS

PROOF OF PROPOSITION 1 AND COROLLARY 1: Define V = diag(π1� � � � �
πM) and Dk = diag(λ∗1

k � � � � � λ
∗M
k ) as in (13). Define P and Pk as in (17). Then

P and Pk are expressed as (see (14)–(16))

P =L′V L� Pk = L′V DkL�

We now uniquely determine L, V , and Dk from P and Pk constructively.
Since L is nonsingular, we can construct a matrix Ak = P−1Pk = L−1DkL. Be-
cause AkL

−1 =L−1Dk, the eigenvalues of Ak determine the diagonal elements
of Dk while the right eigenvectors of Ak determine the columns of L−1 up to
multiplicative constants; denote the right eigenvectors of Ak by L−1K, where
K is some diagonal matrix. Now we can determine V K from the first row of
PL−1K because PL−1K = L′V K and the first row of L′ is a vector of ones.
Then L′ is determined uniquely by L′ = (PL−1K)(V K)−1 = (L′V K)(V K)−1.
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Having obtained L′, we may determine V from the first column of (L′)−1P be-
cause (L′)−1P = V L and the first column of L is a vector of ones. Therefore,
we identify {πm� {λm

ξj
}M−1
j=1 }Mm=1 as the elements of V and L.

Once V and L are determined, we can uniquely determine Dζ = diag(λ∗1
ζ �

� � � � λ∗M
ζ ) for any ζ ∈ X by constructing Pζ in the same way as Pk and using the

relationship Dζ = (L′V )−1PζL
−1. Furthermore, for arbitrary ζ�ξj ∈ X , evalu-

ate Fx2�x3 , Fx2 , and Fx3 defined in (15) and (16) at (x2�x3)= (ζ�ξj), and define

Lζ

(M×2)
=

⎡
⎢⎣

1 λ1
ζ

���
���

1 λM
ζ

⎤
⎥⎦ � Pζ

(2×M)
=

[
1 Fξ1 � � � FξM−1

Fζ Fζ�ξ1 � � � Fζ�ξM−1

]
�(35)

Since Pζ = (Lζ)′V L, we can uniquely determine (Lζ)′ = Pζ(V L)−1. Therefore,
{λ∗m

ζ }Mm=1 and {λm
ζ }Mm=1 are identified for any ζ ∈ X . This completes the proof of

Proposition 1, and Corollary 1 follows immediately. Q.E.D.

PROOF OF PROPOSITION 2: The proof is similar to the proof of Proposi-
tion 1. Let T = (τ2� � � � � τp), 2 ≤ p ≤ T , be a subset of {2� � � � � T }. Let X (T )
be a subset of {xt}Tt=2 with t ∈ T . For example, if T = {2�4�6}, then X (T ) =
{x2�x4�x6}. Starting from P̃({at�xt}Tt=1), integrating out (at� xt) if t /∈ T , and
evaluating it at (a1�x1) = (1�k) and at = 1 for t ∈ T gives a “marginal”
F∗
k�X (T ) = P̃({a1�x1} = {1�k}� {1�xt}τ∈T ) = ∑M

m=1 π
mλ∗m

k

∏
t∈T λm

xt
. For example,

if T = {2�4�6}, then F∗
k�X (T ) = ∑M

m=1 π
mλ∗m

k λm
x2
λm
x4
λm
x6

. Integrating out (a1�x1)

additionally and proceeding in a similar way gives FX (T ) = P̃({1�xt}τ∈T ) =∑M

m=1 π
m

∏
t∈T λm

xt
.

Define V = diag(π1� � � � �πM) and Dk = diag(λ∗1
k � � � � � λ

∗M
k ) as in (13). Define

P
 = (L
)′V L
 and P

k = (L
)′V DkL


. Then the elements of P
 take the form∑M

m=1 π
m

∏
t∈T λm

xt
and can be expressed as FX (T ) for some T and {xt}t∈T ∈X |T |.

Similarly, the elements of P

k can be expressed as F∗

k�X (T ). For instance, if u= 3,
T = 7, and both Λ and L
 are M ×M , then P
 is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 F1 · · · F|X| F11 · · · F|X||X| F111 · · · F|X||X||X|
F1
���

F|X| F|X|11 F|X||X||X||X|
F11
���

� � �
���

F|X||X|
F111 F111|X||X||X|
���

F|X||X||X| F|X||X||X|11 · · · F|X||X||X||X||X||X|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
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where the (i� j)th element of P
 is Fσ , where σ consists of the combined sub-
scripts of the (i�1)th and (1� j)th element of P
. For example, the (|X|+1�2)th
element of P
 is F|X|1 (= F1|X|). P


k is given by replacing Fσ in P
 with F∗
k�σ and

setting the (1�1)th element to F∗
k .

Consequently, P
 and P

k can be computed from the distribution function of

the observed data. By repeating the argument of the proof of Proposition 1,
we determine L
, V , and Dk uniquely from P
 and P


k first, and then Dζ =
diag(λ∗1

ζ � � � � � λ
∗M
ζ ) and Lζ for any ζ ∈ X from P
, P


ζ , L
, and Pζ , where Lζ

and Pζ are defined in (35). Q.E.D.

PROOF OF PROPOSITION 3: Let V = diag(π1� � � � �πM). Then P∗ = (L∗
1)

′ ×
V L∗

2. It follows that rank(P∗) ≤ min{rank(L∗
1)� rank(L∗

2)� rank(V )}. Since
rank(V ) = M , it follows that M ≥ rank(P∗), where the inequality becomes
strict when rank(L∗

1) or rank(L∗
2) is smaller than M .

When rank(L∗
1) = rank(L∗

2) = M , multiplying both sides of P∗ = (L∗
1)

′V L∗
2

from the right by (L∗
2)

′(L∗
2(L

∗
2)

′)−1 gives P∗(L∗
2)

′(L∗
2(L

∗
2)

′)−1 = (L∗
1)

′V . There
are M linearly independent columns in (L∗

1)
′V , because (L∗

1)
′ has M linearly in-

dependent columns while V is a diagonal matrix with strictly positive elements.
Therefore, rank(P∗(L∗

2)
′(L∗

2(L
∗
2)

′)−1) = M . It follows that rank(P∗) = M be-
cause M ≤ min{rank(P∗)� rank(L∗

2)� rank(L∗
2(L

∗
2)

′)−1}, and rank(L∗
2) = M im-

ply rank(P∗)≥ M . Q.E.D.

PROOF OF PROPOSITION 4: The proof is similar to the proof of Proposi-
tion 1. Define Pt and Pt�k analogously to P and Pk but with λx2 and λx3 replaced
with λt�xt and λt+1�xt+1 in the definition of F· and F∗

· . Define V and Dk as be-
fore. Then Pt and Pt�k are expressed as Pt = L′

tV Lt+1 and Pt�k = L′
tV DkLt+1.

Since Lt and Lt+1 are nonsingular, we have Ak = P−1
t Pt�k = L−1

t+1DkLt+1. Be-
cause AkL

−1
t+1 = L−1

t+1Dk, the eigenvalues of Ak determine the diagonal ele-
ments of Dk while the right eigenvectors of Ak determine the columns of L−1

t+1

up to multiplicative constants; denote the right eigenvectors of Ak by L−1
t+1K,

where K is some diagonal matrix. Now we can determine V K from the first row
of PtL

−1
t+1K because PtL

−1
t+1K =L′

tV K and the first row of L′
t is a vector of ones.

Then L′
t is determined uniquely by L′

t = (L′
tV K)(V K)−1. Having obtained L′

t ,
we may determine V and Lt+1 from V Lt+1 = (L′

t)
−1P because the first column

of V Lt+1 equals the diagonal of V and Lt+1 = V −1(V Lt+1). Therefore, we de-
termine {πm� {λm

t�ξtj
� λm

t+1�ξt+1
j

}M−1
j=1 }Mm=1 as elements of V , Lt , and Lt+1. Once V , Lt

and Lt+1 are determined, we can uniquely determine Dζ = diag(λ∗1
ζ � � � � � λ

∗M
ζ )

for any ζ ∈ X by constructing Pt�ζ in the same way as Pt�k and using the rela-
tionship Dζ = (L′

tV )−1Pt�ζ(Lt+1)
−1. Furthermore, for arbitrary ζ ∈ X , define

Lζ
t

(M×2)
=

⎡
⎢⎣

1 λ1
t�ζ

���
���

1 λM
t�ζ

⎤
⎥⎦ �
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Then Pζ
t = (Lζ

t )
′V Lt+1 is a function of the distribution function of the ob-

servable data, and we can uniquely determine (Lζ
t )

′ for 2 ≤ t ≤ T − 1 as
Pζ
t (V Lt+1)

−1. For t = T , we can use the fact that (LT−1)
′V Lζ

T is also a func-
tion of the distribution function of the observable data and proceed in the
same manner. Therefore, we can determine {λ∗m

ζ �λm
t�ζ}M−1

j=1 for any ζ ∈ X and
2 ≤ t ≤ T . Q.E.D.

PROOF OF PROPOSITION 6: Without loss of generality, set T = 6. Integrat-
ing out st ’s backward from P({st}6

t=1) and fixing s1 = s3 = s5 = s̄ gives the “mar-
ginals”

F̃∗
s2�s4�s6

=
M∑

m=1

πm
s̄ λ

m
s̄ (s2)λ

m
s̄ (s4)λ

∗m
s̄ (s6)� F̃∗

s2�s6
=

M∑
m=1

πm
s̄ λ

m
s̄ (s2)λ

∗m
s̄ (s6)�

F̃∗
s6

=
M∑

m=1

πm
s̄ λ

∗m
s̄ (s6)� F̃s2�s4 =

M∑
m=1

πm
s̄ λ

m
s̄ (s2)λ

m
s̄ (s4)�

F̃s2 =
M∑

m=1

πm
s̄ λ

m
s̄ (s2)� F̃ =

M∑
m=1

πm
s̄ �

As in the proof of Proposition 1, evaluate these F̃·’s at s2 = ξ1� � � � � ξM−1,
s4 = ξ1� � � � � ξM−1, and s6 = r, and arrange them into two M ×M matrices:

Ps̄ =

⎡
⎢⎢⎢⎣

F̃ F̃ξ1 · · · F̃ξM−1

F̃ξ1 F̃ξ1�ξ1 · · · F̃ξ1�ξM−1

���
���

� � �
���

F̃ξM−1 F̃ξM−1�ξ1 · · · F̃ξM−1�ξM−1

⎤
⎥⎥⎥⎦ �

Ps̄�k =

⎡
⎢⎢⎢⎢⎣

F̃∗
k F̃∗

ξ1�k
· · · F̃∗

ξM−1�k

F̃∗
ξ1�k

F̃∗
ξ1�ξ1�k

· · · F̃∗
ξ1�ξM−1�k

���
���

� � �
���

F̃∗
ξM−1�k

F̃∗
ξM−1�ξ1�k

· · · F̃∗
ξM−1�ξM−1�k

⎤
⎥⎥⎥⎥⎦ �

Define Vs̄ = diag(π1
s̄ � � � � �π

M
s̄ ) and Dk|s̄ = diag(λ∗1

s̄ (k)� � � � � λ
∗M
s̄ (k)). Then Ps̄

and Ps̄�k are expressed as Ps̄ = L′
s̄Vs̄Ls̄ and Ps̄�k = L′

s̄Vs̄Dk|s̄Ls̄. Repeating the
argument of the proof of Proposition 1 shows that Ls̄, Ls̄, Vs̄, and Dk|s̄ are
uniquely determined from Ps̄ and Ps̄�k, and that Ds|s̄ and λm

s̄ (s) can be uniquely
determined for any s ∈ S and m = 1� � � � �M . Q.E.D.

PROOF OF PROPOSITION 7: Define Vs̄ = diag(π1
s̄ � � � � �π

M
s̄ ) and Dk|s̄ =

diag(λ∗1
s̄ (k)� � � � � λ

∗M
s̄ (k)). Applying the argument of the proof of Proposition 6
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with Ls̄ replaced by L

s̄ , we can identify L


s̄ , Vs̄, and Dk|s̄, and then Ds|s̄ and
λm
s̄ (s) for any s ∈ S and m = 1� � � � �M . The stated result immediately follows.

Q.E.D.

PROOF OF PROPOSITION 9: The proof uses the logic of the proof of Propo-
sition 6. Consider a sequence {st� zt}4

t=1 with (s1� s2� s3� s4) = (s̄� s̄� s̄� r) and
(z1� z4) = (h�k). Summarize the value of s4 and z4 into ζ = (r�k). For
(z2� z3) ∈ Z2, define F̃h∗

z2�z3�ζ
= ∑M

m=1 π̃
m
s̄�hλ̃

m
s̄ (z2)λ̃

m
s̄ (z3)Q̃

m(r|s̄� k) and F̃h
z2�z3

=∑M

m=1 π̃
m
s̄�hλ̃

m
s̄ (z2)λ̃

m
s̄ (z3). Define F̃h∗

z2�ζ
= ∑M

m=1 π̃
m
s̄�hλ̃

m
s̄ (z2)Q̃

m(r|s̄� k), and define
F̃h∗
ζ , F̃h

z2
, and F̃h analogously to the proof of Proposition 6.

As in the proof of Proposition 6, arrange these marginals into two matrices
P̄h and P̄h

ζ . P̄h and P̄h
ζ are the same as Ps̄ and Ps̄�k, but F̃· and F̃∗

·�k replaced
with F̃h

· and F̃h∗
·�ζ and subscripts are elements of Z instead of S. Define Ṽ h

s̄ =
diag(π̃1

s̄�h� � � � � π̃
M
s̄�h) and D̃ζ|s̄ = diag(Q̃1(r|s̄� k)� � � � � Q̃M(r|s̄� k)). It then follows

that P̄h = L̄′
s̄ Ṽ

h
s̄ L̄s̄ and P̄h

ζ = L̄′
s̄ Ṽ

h
s̄ D̃ζ|s̄L̄s̄ . By repeating the argument of the

proof of Proposition 1, we can uniquely determine L̄s̄ , Ṽ h
s̄ , and D̃ζ|s̄ from P̄h

and P̄h
ζ , and, having determined L̄s̄, determine D̃(s�z)|s̄ for any (s� z) ∈ S × Z.

Q.E.D.

PROOF OF PROPOSITION 10: For (x2�x3) ∈ Bh × Ch and xc ∈ Bh ∪ Ch, de-
fine Fh∗

x2�x3�k
= ∑M

m=1 π̃
m
h λ̃

m
x2
λ̃m
x3
λ̃m
k , Fh∗

xc�k
= ∑M

m=1 π̃
m
h λ̃

m
xc
λ̃m
k , Fh∗

k = ∑M

m=1 π̃
m
h λ̃

m
k ,

Fh
x2�x3

= ∑M

m=1 π̃
m
h λ̃

m
x2
λ̃m
x3

, Fh
xc

= ∑M

m=1 π̃
m
h λ̃

m
xc

, and Fh = ∑M

m=1 π̃
m
h . They can be

constructed from sequentially integrating out P({at�xt}4
t=1) backward and then

dividing them by a product of f (xt |xt−1�0). Note that Assumption 4(b) guar-
antees f (xt |xt−1�0) > 0 for all xt and xt−1 in the subsets of X considered.

As in the proof of Proposition 1, arrange these marginals into two matrices
Ph and Ph

k . Ph and Ph
k are the same as P and Pk but F· and F∗

k�· are replaced
with Fh

· and Fh∗
·�k. Define Ṽh = diag(π̃1

h� � � � � π̃
M
h ) and D̃k = diag(λ̃1

k� � � � � λ̃
M
k ). By

applying the argument in the proof of Proposition 4, we may show that L̃b, L̃c ,
Ṽh, and D̃k are uniquely determined from P̃({at�xt}4

t=1) and its marginals, and
then show that {λ̃m

ξ }Mm=1 is determined for ξ ∈ Bh ∪Ch. Q.E.D.

REFERENCES

AGUIRREGABIRIA, V. (2006): “Another Look at the Identification of Dynamic Discrete Decision
Processes,” Unpublished Manuscript, University of Toronto. [139]

AGUIRREGABIRIA, V., AND P. MIRA (2002): “Swapping the Nested Fixed Point Algorithm:
A Class of Estimators for Discrete Markov Decision Models,” Econometrica, 70, 1519–1543.
[138,160]

(2007): “Sequential Estimation of Dynamic Discrete Games,” Econometrica, 75, 1–54.
[138,139,160,161]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/AguMir2002&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/AguMir2007&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/AguMir2002&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/AguMir2007&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N


174 H. KASAHARA AND K. SHIMOTSU

ANDERSON, T. W. (1954): “On Estimation of Parameters in Latent Structure Analysis,” Psychome-
trika, 19, 1–10. [145]

BAJARI, P., AND H. HONG (2006): “Semiparametric Estimation of a Dynamic Game of Incom-
plete Information,” Technical Working Paper 320, NBER. [138]

BAJARI, P., C. L. BENKARD, AND J. LEVIN (2007): “Estimating Dynamic Models of Imperfect
Competition,” Econometrica, 75, 1331–1370. [138]

BLISCHKE, W. R. (1964): “Estimating the Parameters of Mixtures of Binomial Distributions,”
Journal of the American Statistical Association, 59, 510–528. [149]

BROWNING, M., AND J. CARRO (2007): “Heterogeneity and Microeconometrics Modelling,” in
Advances in Economics and Econometrics, Theory and Applications: Ninth World Congress of the
Econometric Society, Vol. 3, ed. by R. Blundell, W. Newey, and T. Persson. Cambridge, U.K.:
Cambridge University Press, 47–74. [141,158]

CAMERON, S. V., AND J. J. HECKMAN (1998): “Life Cycle Schooling and Dynamic Selection Bias:
Models and Evidence for Five Cohorts of American Males,” Journal of Political Economy, 106,
262–333. [136]

CHANDRA, S. (1977): “On the Mixtures of Probability Distributions,” Scandinavian Journal of
Statistics, 4, 105–112. [144]

CRAWFORD, G. S., AND M. SHUM (2005): “Uncertainty and Learning in Pharmaceutical De-
mand,” Econometrica, 73, 1137–1173. [135]

ELBERS, C., AND G. RIDDER (1982): “True and Spurious Duration Dependence: The Identifia-
bility of the Proportional Hazard Model,” Review of Economic Studies, 49, 403–409. [139]

GEWEKE, J., AND M. KEANE (2001): “Computationally Intensive Methods for Integration in
Econometrics,” in Handbook of Econometrics, Vol. 5, ed. by J. Heckman and E. Leamer. Ams-
terdam: North-Holland. [139]

GIBSON, W. A. (1955): “An Extension of Anderson’s Solution for the Latent Structure Equa-
tions,” Psychometrika, 20, 69–73. [145]

GOWRISANKARAN, G., M. F. MITCHELL, AND A. MORO (2005): “Why Do Incumbent Senators
Win? Evidence From a Dynamic Selection Model,” Unpublished Manuscript, Washington Uni-
versity in St. Louis. [135]

HALL, P., AND X.-H. ZHOU (2003): “Nonparametric Estimation of Component Distributions in
a Multivariate Mixture,” Annals of Statistics, 31, 201–224. [136,142]

HALL, P., A. NEEMAN, R. PAKYARI, AND R. ELMORE (2005): “Nonparametric Inference in Mul-
tivariate Mixtures,” Biometrika, 92, 667–678. [137]

HECKMAN, J. J. (1981): “The Incidental Parameters Problem and the Problem of Initial Condi-
tions in Estimating a Discrete Time-Discrete Data Stochastic Process,” in Structural Analysis
of Discrete Panel Data With Econometric Applications, ed. by C. F. Manski and D. McFadden.
Cambridge, MA: MIT Press, 179–195. [141]

HECKMAN, J. J., AND B. SINGER (1984): “A Method of Minimizing the Impact of Distributional
Assumptions in Econometric Models for Duration Data,” Econometrica, 52, 271–320. [136,139]

HONORÉ, B. E., AND E. TAMER (2006): “Bounds on Parameters in Panel Dynamic Discrete
Choice Models,” Econometrica, 73, 611–629. [139]

HOTZ, J., AND R. A. MILLER (1993): “Conditional Choice Probabilities and the Estimation of
Dynamic Models,” Review of Economic Studies, 60, 497–529. [138,160]

HOUDE, J.-F., AND S. IMAI (2006): “Identification and 2-Step Estimation of DDC Models With
Unobserved Heterogeneity,” Unpublished Manuscript, Queen’s University. [149,150]

KASAHARA, H., AND K. SHIMOTSU (2008a): “Pseudo-Likelihood Estimation and Bootstrap Infer-
ence for Structural Discrete Markov Decision Models,” Journal of Econometrics, 146, 92–106.
[138,160]

(2008b): “Nonparametric Identification and Estimation of Multivariate Mixtures,” Un-
published Manuscript, Queen’s University. [147,169]

KEANE, M. P., AND K. I. WOLPIN (1997): “The Career Decisions of Young Men,” Journal of
Political Economy, 105, 473–522. [136]

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/And1954&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/Bajetal2007&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/Bli1964&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/CamHec1998&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/Cha1977&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/CraShu2005&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/ElbRid1982&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/Gib1955&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/HalZho2003&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/Haletal2005&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/Hec1981&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/HecSin1984&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/HonTam2006&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/HotMil1993&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/KasShi2008a&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/KeaWol1997&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/And1954&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/Bajetal2007&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/Bli1964&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/CamHec1998&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/CamHec1998&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/Cha1977&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/CraShu2005&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/ElbRid1982&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/Gib1955&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/HalZho2003&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/Haletal2005&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/Hec1981&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/Hec1981&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/Hec1981&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/HecSin1984&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/HonTam2006&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/HotMil1993&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/KasShi2008a&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/KeaWol1997&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N


MODELS OF DYNAMIC DISCRETE CHOICES 175

KITAMURA, Y. (2004): “Nonparametric Identifiability of Finite Mixtures,” Unpublished Manu-
script, Yale University. [139]

LEROUX, B. G. (1992): “Consistent Estimation of a Mixing Distribution,” Annals of Statistics, 20,
1350–1360. [169]

LIU, X., AND Y. SHAO (2003): “Asymptotics for Likelihood Ratio Tests Under Loss of Identifia-
bility,” Annals of Statistics, 31, 807–832. [169]

MADANSKY, A. (1960): “Determinantal Methods in Latent Class Analysis,” Psychometrika, 25,
183–198. [145,148]

MAGNAC, T., AND D. THESMAR (2002): “Identifying Dynamic Discrete Decision Processes,”
Econometrica, 70, 801–816. [139,147,162]

MCLACHLAN, G. J., AND D. PEEL (2000): Finite Mixture Models. New York: Wiley. [169]
PAKES, A., M. OSTROVSKY, AND S. BERRY (2007): “Simple Estimators for the Parameters of Dis-

crete Dynamic Games (With Entry/Exit Examples),” RAND Journal of Economics, 38, 373–399.
[138]

PESENDORFER, M., AND P. SCHMIDT-DENGLER (2008): “Asymptotic Least Squares Estimators
for Dynamic Games,” Review of Economic Studies, 75, 901–928. [138]

RAO, P. (1992): Identifiability in Stochastic Models. San Diego: Academic Press. [136]
RIDDER, G. (1990): “The Non-Parametric Identification of Generalized Accelerated Failure-

Time Models,” Review of Economic Studies, 57, 167–181. [139]
RUST, J. (1987): “Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold

Zurcher,” Econometrica, 55, 999–1033. [142,164]
(1994): “Estimation of Dynamic Structural Models, Problems and Prospects: Discrete

Decision Processes,” in Advances in Econometrics: Sixth World Congress of the Econometric So-
ciety, ed. by C. Sims. Cambridge, U.K.: Cambridge University Press, 119–170. [139,162]

TITTERINGTON, D. M., A. F. M. SMITH, AND U. E. MAKOV (1985): Statistical Analysis of Finite
Mixture Distributions. New York: Wiley. [136]

VAN DEN BERG, G. J. (2001): “Duration Models: Specification, Identification and Multiple Du-
rations,” in Handbook of Econometrics, Vol. 5, ed. by J. Heckman and E. Leamer. Amsterdam:
North-Holland. [139]

Dept. of Economics, University of Western Ontario, London, Ontario, N6A 5C2
Canada; hkasahar@uwo.ca

and
Dept. of Economics, Queen’s University, 94 University Avenue, Kingston, On-

tario, K7L 3N6 Canada; shimotsu@econ.queensu.ca.

Manuscript received October, 2006; final revision received April, 2008.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/Ler1992&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:28/LiuSha2003&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/Mad1960&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/MagThe2002&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/McLPee2000&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/Paketal2007&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/PesSch2006&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:34/Rao1992&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:35/Rid1990&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/Rus1987&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/Rus1994&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/Titetal1985&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
mailto:hkasahar@uwo.ca
mailto:shimotsu@econ.queensu.ca
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/Ler1992&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:28/LiuSha2003&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/Mad1960&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/MagThe2002&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/Paketal2007&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/PesSch2006&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:35/Rid1990&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/Rus1987&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/Rus1994&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/Rus1994&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/Rus1994&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/Titetal1985&rfe_id=urn:sici%2F0012-9682%28200901%2977%3A1%3C135%3ANIOFMM%3E2.0.CO%3B2-N

	Introduction
	Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices
	Our Approach and Identification of the Baseline Model
	Identification of the Number of Types

	Extensions of the Baseline Model
	Time-Dependent Conditional Choice Probabilities
	Lagged Dependent Variable and Type-Specific Transition Functions
	Limited Transition Pattern

	Concluding Remark
	Appendix: Proofs
	References
	Author's Addresses

