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Nonparametric Inference for
Max-Stable Dependence
Johan Segers

The choice for parametric techniques in the discus-
sion article is motivated by the claim that for multi-
variate extreme-value distributions, “owing to the curse
of dimensionality, nonparametric estimation has essen-
tially been confined to the bivariate case” (Section 2.3).
Thanks to recent developments, this is no longer true if
data take the form of multivariate maxima, as is the
case in the article. A wide range of nonparametric,
rank-based estimators and tests are nowadays available
for extreme-value copulas. Since max-stable processes
have extreme-value copulas, these methods are appli-
cable for inference on max-stable processes too. The
aim of this note is to make the link between extreme-
value copulas and max-stable processes explicit and to
review the existing nonparametric inference methods.

1. EXTREME-VALUE COPULAS

Let the random variables Y1, . . . , YD represent the
maxima in a given year of a spatial process (e.g.,
rainfall) that is observed at a finite number of sites,
x1, . . . , xD , in a region X in space R

p (typically,
p = 2). Let F1, . . . ,FD be the marginal cumulative dis-
tribution functions, assumed to be continuous. In the
article, these are assumed to be univariate generalized
extreme-value distributions, an assumption that will
not be needed here.

The random variables Ud = Fd(Yd) are uniformly
distributed on the interval (0,1) and the joint cumu-
lative distribution function C of the vector U1, . . . ,UD

is the copula of the random vector Y1, . . . , YD :

C(u1, . . . , uD) = Pr(U1 ≤ u1, . . . ,UD ≤ uD)(1)

for 0 ≤ ud ≤ 1. The requirement that the random vector
Y1, . . . , YD is max-stable entails

Cm(u
1/m
1 , . . . , u

1/m
D ) = C(u1, . . . , uD)(2)
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for all m > 0. In [18], it was shown that (2) holds if,
and only if,

C(u1, . . . , uD) = exp{−rA(v1, . . . , vD)},(3)

where r = −∑D
d=1 logud and vd = −r−1 logud . The

domain of the Pickands dependence function A is the
unit simplex, SD = {v ∈ [0,1]D :

∑
d vd = 1}. A neces-

sary and sufficient condition for a function A on SD to
be a Pickands dependence function is that

A(v1, . . . , vD)
(4)

=
∫

SD

max(v1s1, . . . , vDsD)dM(s1, . . . , sD)

for a Borel measure M on SD verifying the constraints∫
SD

sd dM(s1, . . . , sD) = 1 for all d ∈ {1, . . . ,D}. In
particular, A is convex and max(v1, . . . , vD) ≤ A(v1,

. . . , vD) ≤ v1 + · · · + vD . In dimension D = 2, these
two properties completely characterize Pickands de-
pendence functions (but not if D ≥ 3).

2. MAX-STABLE MODELS

The representation in (3)–(4) is valid for general
max-stable copulas and therefore also holds for the
finite-dimensional distributions of the max-stable pro-
cesses considered in Section 6 in the article. The pur-
pose of this section is to make this relation explicit.

Consider the simple max-stable process

Z(x) = max
j≥1

[Sj max{0,Wj (x)}], x ∈ R
p,(5)

where {Sj }∞j=1 are the points of a Poisson process

on R+ with rate s−2 ds and where W1,W2, . . . are
iid replicates of a stationary stochastic process W on
R

p , independent of the previous Poisson process, and
such that E[W+(x)] = 1, where we write W+(x) =
max{0,W(x)}. Particular cases of this model include
the so-called Smith model [24], the Schlather model
[22] and the Brown–Resnick model [12].

The stationary, marginal distribution of Z(x) in (5)
is unit-Fréchet and the joint distribution function of the
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vector Z(x1), . . . ,Z(xd) is given by

Pr[Z(x1) ≤ z1, . . . ,Z(xD) ≤ zD]
= exp

[
−μ

({
(s,w) : max

d

(
w+(xd)/zd

)
> 1/s

})]

for zd > 0, where μ is the intensity measure of the
Poisson point process {(Sj ,Wj )}∞j=1. A simple calcu-
lation shows that

Pr[Z(x1) ≤ z1, . . . ,Z(xD) ≤ zD]
= exp

(
−E

[
max

d
{W+(xd)/zd}

])
.

As a consequence, the copula of Z(x1), . . . ,Z(xD) is
given by the extreme-value copula with Pickands de-
pendence function

A(v1, . . . , vD) = E
[
max

d
{vdW+(xd)}

]
(6)

for (v1, . . . , vD) ∈ SD . As illustrated by the computa-
tions in [5], the integral arising in (6) can rarely be cal-
culated analytically, unless D = 2.

To recover the spectral measure M in (4) from
the distribution of the stochastic process W , let R =∑

d W+(xd). On the event R > 0, consider the random
vector (W+(x1), . . . ,W

+(xD))/R. Then

dM(s1, . . . , sD)

= Pr(R > 0)E[R | ∀d :W+(xd)/R = sd;R > 0]
· Pr[∀d :W+(xd)/R ∈ dsd | R > 0].

3. ESTIMATION

Nonparametric estimators of the Pickands depen-
dence function are surprisingly easy to construct and
calculate. The starting point is the simple fact that for
u ∈ [0,1] and for (v1, . . . , vD) ∈ SD , the extreme-value
copula C with Pickands dependence function A satis-
fies

C(uv1, . . . , uvD) = uA(v1,...,vD),(7)

as can be verified from (3). Using (7), the function A

can be recovered from the copula C in various ways,
for instance, through integrals of the form

∫ 1

0
f (C(uv1, . . . , uvD))g(u)du

=
∫ 1

0
f (uα)g(u)du,(8)

α = A(v1, . . . , vD)

for well-chosen functions f and g. Plugging estimators
for C and solving for α then yields estimators for A.

A natural estimator for C is the empirical copula.
Let (Yi1, . . . , YiD), for i ∈ {1, . . . , n}, be an indepen-
dent random sample from a distribution with contin-
uous margins and copula C. The empirical copula is
defined as

Cn(u1, . . . , uD)
(9)

= 1

n

n∑
i=1

I {Fn1(Yi1) ≤ u1, . . . ,FnD(YiD) ≤ uD},

where Fnd is the (marginal) empirical distribution
function of Y1d, . . . , Ynd . Being based on multivariate
ranks, the empirical copula is invariant under mono-
tone transformations of the data. The empirical copula
goes back to the seminal paper by Rüschendorf [21]
and has been studied and applied intensively, such as
recently in [23, 25, 26].

Inserting the empirical copula into (8) and solving
for A(v1, . . . , vD) produces simple and (almost) ex-
plicit estimators. Particular instances are the Pickands
estimator [6, 8, 11, 19] and the Capéraà–Fougères–
Genest estimator [4, 8, 11]. The bivariate versions of
these estimators are special cases of the weighted es-
timator in [17]. Minimum-distance estimators are an-
other instance of this technique [3]. Standard errors
can be obtained via resampling [2, 20] or via empiri-
cal likelihood [17].

A drawback of the nonparametric estimators of A is
that they typically do not produce valid Pickands de-
pendence functions—remember the representation in
(4) that such functions must satisfy. A way to over-
come this issue is by projecting a possibly invalid pilot
estimator An onto the family of Pickands dependence
functions, yielding

Aproj
n = arg min

A∈AD

∫
SD

(An − A)2,(10)

where AD denotes the family of all Pickands depen-
dence functions in dimension D and where the integral
is with respect to some measure on SD . In general, the
infinite-dimensional least-squares problem in (10) does
not admit an explicit solution. Approximate solutions
can be obtained by performing the minimization over
the (finite-dimensional) class of Pickands dependence
functions with discrete spectral measures supported on
a given, finite grid [7, 11].

Finally, note that a nonparametric estimator An can
be transformed into a parametric one via minimum-
distance or projection techniques: in (10), replace AD

by the parametric model of interest. If the model hap-
pens to be specified via the point process representation
(5), then this technique requires the calculation of the
Pickands dependence function A via (6).
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4. TESTING

Nonparametric methods are particularly suitable for
hypothesis testing. Of special interest are the hypothe-
sis of max-stability in general and the goodness of fit of
a parametric model in particular. In most cases, critical
values are computed via resampling methods.

Even if the data at hand are vectors of component-
wise maxima, it is a good idea to test whether it is
safe to assume that the underlying distribution is max-
stable, in particular, when the end-goal is to perform
prediction and/or extrapolation. For bivariate extreme-
value copulas, the first two moments of the random
variable W = C(U1,U2) = F(Y1, Y2) happen to sat-
isfy a particular linear relation. The sample moments
of the random variables Wn1, . . . ,Wnn defined by

Wni = 1

n

n∑
t=1

I (Yt1 ≤ Yi1, Yt2 ≤ Yi2)

can therefore be converted to a test statistic for the null
hypothesis of max-stability [1, 10].

Another approach for testing max-stability is by
comparing the empirical copula Cn in (9) with the
extreme-value copula that has a given estimator An

as its Pickands dependence function. For the bivariate
case, Cramér–von Mises tests based on the Pickands
and Capéraà–Fougères–Genest estimators are describ-
ed in [3, 14].

Finally, the adequacy of the hypothesis of max-
stability can be tested by directly exploiting the cop-
ula max-stability relation (2) through a comparison of
Cn(u1, . . . , uD) with Cm

n (u
1/m
1 , . . . , u

1/m
D ) for various

values of m > 0. Cramér–von Mises type test statistics
turn out to be particularly effective [16].

The goodness of fit of a parametric model can be
tested by comparing the fitted parametric estimator for
A with a nonparametric one [9]. For max-stable models
arising through the point process representation in (5),
the function A has to be computed through the relation
(6). Shape constraints such as exchangeability can be
tested similarly [15].

5. CONCLUSION

Nonparametric methods yield an attractive alterna-
tive inference method for max-stable dependence. Es-
timators and test statistics of the Pickands dependence
function are (almost) explicit, even in the general, mul-
tivariate case. Moreover, as the procedures are based
upon the ranks of the data only, the step of modeling
the margins can be skipped (which is not to be con-
fused with the false statement that the uncertainty on

the margins has been eliminated altogether). Many of
the methods described in this contribution are imple-
mented in the R package copula [13].
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