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Abstract: We propose two classes of nonparametric point estimators of
θ = P (X < Y ) in the case where (X,Y ) are paired, possibly dependent,
absolutely continuous random variables. The proposed estimators are based
on nonparametric estimators of the joint density of (X,Y ) and the distri-
bution function of Z = Y − X. We explore the use of several density and
distribution function estimators and characterise the convergence of the re-
sulting estimators of θ. We consider the use of bootstrap methods to obtain
confidence intervals. The performance of these estimators is illustrated us-
ing simulated and real data. These examples show that not accounting for
pairing and dependence may lead to erroneous conclusions about the rela-
tionship between X and Y .
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1. Introduction

The study of stress–strength models have received considerable attention for
many years due to its applicability in diverse areas. The main interest in this
kind of models is the quantity θ = P (X < Y ), where X and Y are random
variables. In medicine for example, if X and Y are the outcomes of a control and
an experimental treatment respectively, the parameter θ can be interpreted as the
effectiveness of treatment Y (Ventura et al., 2011). This quantity is also related
to the Receiver Operating Characteristic (ROC) curves, where θ is interpreted as
an index of accuracy (Zhou, 2008). In engineering and reliability studies θ is also
a quantity of interest because it may represent the probability that the strength
of a component (Y ) exceeds the stress (X) coming from external factors (Kotz
et al., 2003).

Stress-strength models were introduced by Birnbaum (1956) who proposed a
nonparametric estimator of θ based on the Mann-Whitney statistic for the case
where X and Y are independent. There is a large amount of literature related
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to the study of point and interval estimation of θ using different approaches (see
Kotz et al., 2003 for a good survey on this). For instance, in the case where X

and Y are independent, Sun et al. (1998) proposes a Bayesian approach using
reference priors; Baklizi and Eidous (2006) propose an estimator based on kernel
estimators of the densities ofX and Y (which can be straightforwardly generalised
to the use of other nonparametric density estimators); Zhou (2008) proposes the
use of bootstrap and asymptotic intervals; Jing et al. (2009) estimate θ using
the empirical likelihood; Montoya (2008) and Dı́az-Francśs and Montoya (2013)
propose the use of the profile likelihood for conducting inference about θ; and
Ventura et al. (2011) propose the use of Bayesian inference with Jeffreys and
matching priors as well as modified profile likelihoods for the cases where X and
Y are normal or exponential random variables.

It is important to mention that the parameter θ may not be available in
a closed form in many cases (see Azzalini and Chiogna, 2004 and Gupta and
Brown, 2001 for an example of this). This makes difficult (if at all feasible) to
find a reparameterisation involving θ, which complicates the use of the classical
approach. In particular, the use of the profile likelihood might be difficult if this
reparameterisation is not available (Dı́az-Francś and Montoya, 2013). Alterna-
tive inferential approaches that overcome this difficulty are Bayesian inference,
nonparametric estimation, and the use of bootstrap methods, which allow for
obtaining confidence and credible intervals for the parameter of interest (Baklizi
and Eidous, 2006; Zhou, 2008; Rubio and Steel, 2013).

New interest has been focused on the estimation of θ in the case where X

and Y are dependent random variables. For example Barbiero (2011) assumes
that (X,Y ) are jointly normally distributed; Rubio and Steel (2013) suppose
that X and Y are marginally distributed as skewed scale mixture of normals
and construct the corresponding joint distribution using a Gaussian Copula;
Domma and Giordano (2012a) construct the joint distribution of (X,Y ) using
a Farlie-Gumbel-Morgenstern copula with marginal distributions belonging to
the Burr system; Domma and Giordano (2012b) consider Dagum distributed
marginals and construct their joint distribution using a Frank copula; among
others (Nadarajah, 2005; Gupta et al., 2012). In these papers, the importance
of taking the assumption of dependence between X and Y into consideration is
illustrated using simulated and real data sets.

We propose two classes of nonparametric estimators of θ for the case where
(X,Y ) are paired, possibly dependent, continuous random variables. This sce-
nario is of interest since paired observations are produced in many experimental
designs (see e.g. Sprott, 2000 and Cox and Reid, 2000 for examples of this). The
estimators proposed here are based on nonparametric estimators of the density of
(X,Y ) and the distribution function of Z = Y −X. This approach avoids making
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distributional assumptions over (X,Y ) and allows for interval estimation of θ via
nonparametric bootstrap. In addition, this method can be easily implemented
in R using already existing packages. In Section 2 we introduce these estimators
and prove some asymptotic properties for the choice of several nonparametric
estimators. We also detail how to combine kernel density estimation (KDE) with
the methods proposed here. In Section 3 we present two examples, using simu-
lated and real data, which illustrate the importance of accounting for pairing and
dependence of the observations when conducting inference about θ.

2. Nonparametric estimators of θ

Let (X,Y ) be a pair of absolutely continuous random variables with joint
density fX,Y : R2 → R+. By definition, we have that

θ = P(X < Y ) =

∫ ∞

−∞

∫ y

−∞
fX,Y (x, y)dxdy. (1)

Alternatively, by defining the variable Z = Y −X we obtain

θ = P(Z > 0) =

∫ ∞

0

fZ(z)dz = 1− FZ(0) = SZ(0), (2)

where fZ , FZ and SZ are the density function, the cumulative distribution func-
tion, and the survival function of Z, respectively. These equivalent expressions
suggest the following nonparametric methods for estimating the parameter θ.

2.1 Estimator I

Let (x,y) be a sample from (X,Y ) of size n and suppose that these observa-
tions are collected in couples (xi, yi), i = 1, . . . , n. The first proposed estimator,
based on expression (1), consists of substituting the density fX,Y by a nonpara-
metric density estimator as follows.

Algorithm 1

1:Using the sample (x,y) construct a nonparametric estimator f̂X,Y of the density

fX,Y .

2:Define the estimator θ̃ =
∫

∞

−∞

∫ y

−∞
f̂X,Y (x, y)dxdy.

Note that Algorithm 1 involves both a two-dimensional density estimation and
the calculation of a double integral. Several nonparametric density estimators can
be employed for this purpose such as kernel density estimators (Parzen, 1962),
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shape-restricted estimators (Cule et al., 2010), among others (Scott, 1992). This
choice has, of course, implications on the performance of the estimators. In
Section 2.4 we present some asymptotic properties of θ̃ for different choices of
f̂X,Y . The integration step can be conducted using quadrature or Monte Carlo
methods.

2.2 Estimator II

Again, let (x,y) be a sample from (X,Y ) of size n and suppose that these
observations are collected in couples (xi, yi), i = 1, . . . , n. Define the vector of
differences z = y − x. The second proposed estimator, based on expression (2),
is constructed as follows.

Algorithm 2

1:Calculate the differences z = y − x.

2:Using the sample z construct a nonparametric estimator F̂Z of the distribution func-

tion of Z .

3:Define the estimator θ̂ = 1− F̂Z(0).

For the nonparametric distribution estimator F̂Z in step 2 we can employ
the empirical cumulative distribution function (ECDF) or the induced distribu-
tion estimators obtained by integrating a nonparametric density estimator f̂Z ,
which lead to θ̂ =

∫∞
0

f̂Z(z)dz. In this line, several univariate nonparametric

estimators of f̂Z can be considered such as kernel density estimators (Parzen,
1962), shape-restricted density estimators (Cule et al., 2010) and smooth shape-
restricted estimators (DLumbeng and Rufibach, 2009; Cule et al., 2010; DLum-
beng and Rufibach, 2011).

Note that the use of both, Estimator I and Estimator II, avoids making as-
sumptions on the distribution of (X,Y ) and the sort of dependence between the
variables X and Y . The relationship between these variables, which can be either
dependent or independent, is implicitly included in the nonparametric estimators
of the density (distribution). In addition, the use of nonparametric bootstrap
coupled with either Algorithm 1 or Algorithm 2 allows for obtaining a variety of
bootstrap confidence intervals for these estimators (DiCiccio and Efron, 1996).

2.3 Use of Estimator I and Estimator II with kernel density estimators

In this section we discuss the use of KDE in Algorithms I and II. Recall
that the use of KDE involve the choice of two elements: a kernel function and a
bandwidth parameter (or bandwidth matrix in a multivariate framework). Here,
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we present a brief discussion on appropriate choices for these elements in our
context.

2.3.1 Estimator I

Let H be a symmetric, positive definite, 2× 2 bandwidth matrix and k2 be a
two-dimensional kernel function (Parzen, 1962). Define also kH(t) = (detH)−

1

2k2

(H− 1

2 t), t ∈ R
2. If we consider the use of a KDE in step 1 of Algorithm 1, then

the estimator θ̃ can be written as

θ̃ =
1

n

n
∑

j=1

∫ ∞

−∞

∫ y

−∞
kH(x− xj , y − yj)dxdy, (3)

which can be calculated using quadrature or Monte Carlo methods. The imple-
mentation of this estimator requires the specification of the kernel function k2
and the bandwidth matrix H. A natural first choice is the use of a bivariate
Gaussian kernel φ2 = k2. The choice of the bandwidth matrix H can be cru-
cial for the performance of KDE, which has fostered an extensive study of several
bandwidth matrix estimators (see Duong and Hazelton, 2005 for a good survey on
this). However, appropriate bandwidth matrices for estimating the distribution
involved in (3) seem to have been little studied to our knowledge. Nevertheless,
as a first approach one can consider bandwidth matrix estimators employed in
KDE such as the plug-in and cross-validation bandwidth estimators, which are
implemented in the R package ‘ks’ (Duong, 2011).

2.3.2 Estimator II

Let k1 be a one–dimensional kernel and h > 0 be the corresponding bandwidth
(also termed smoothing parameter). If we consider the use of a univariate KDE
in step 2 of Algorithm 2, then the estimator θ̂ can be written as

θ̂ =
1

nh

n
∑

j=1

∫ ∞

0

k1

(

z − zj

h

)

dz = 1− 1

n

n
∑

j=1

K1

(zj

h

)

, (4)

where K1

( z

h

)

=
1

h

∫∞
0

k1

( z

h

)

dz. Again, a natural first choice is the Gaussian

kernel Φ = K1. The choice of the bandwidth h in the context of density estimation
has been extensively studied, we refer the reader to Jones et al. (1996) for a
good survey on this. However, the choice of this parameter in the context of
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kernel distribution function estimation has received less attention. Quintela-del-
Ŕıo and Estévez-Pérez (2012) present a compendium of appropriate bandwidth
parameters in the context of kernel distribution estimator. They also implement
these in the R package ‘kerdiest’.

2.4 Results on the convergence of the proposed estimators

The convergence of Estimator I coupled with KDE is difficult to assess given
the limited literature about the choice of appropriate bandwidth matrices for
estimating a bivariate distribution. Despite this limitation, one can expect a
good performance of this estimator for moderate or large samples and the use of
any reasonable bandwidth matrix since kernel estimators converge in terms of the
mean square and mean absolute errors to the true density. The following result
shows that, even using a diagonal bandwidth matrix, the resulting estimator of θ
is weakly consistent under rather mild conditions. The use of more appropriate
bandwidth matrices is therefore expected to produce better estimators.

Theorem 1 Suppose that k2 is bounded on R
2 with

L(u) = sup
||t||≥u

k2(t),

for u ≥ 0. Let {hn}∞n=1 be a sequence of positive numbers such that limn→∞ hn =
0 and limn→∞ nh2n = ∞. Define the sequence of bandwidth matrices Hn =
diag(hn). Suppose also that one of the following conditions holds

(i) ||t||2k2(t) → 0 as ||t|| → ∞ and fX,Y is almost surely continuous.

(ii) fX,Y is bounded.

(iii)
∫∞
0

uL(u)du < ∞.

Then, θ̃ is a weakly consistent estimator of θ, this is, θ̃
P→ θ, as n → ∞.

proof . First, note that

|θ̂ − θ| =

∣

∣

∣

∣

∫ ∞

−∞

∫ y

−∞
[f̂X,Y (s, t)− fX,Y (s, t)]dsdt

∣

∣

∣

∣

≤
∫ ∞

−∞

∫ y

−∞

∣

∣

∣
f̂X,Y (s, t)− fX,Y (s, t)

∣

∣

∣
dsdt

≤
∫ ∞

−∞

∫ ∞

−∞

∣

∣

∣
f̂X,Y (s, t)− fX,Y (s, t)

∣

∣

∣
dsdt

≤ MAE(f̂X,Y , fX,Y ),
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where MAE denotes the mean absolute error which is also the L1 distance. Under
the stated assumptions we have that limn→∞MAE(f̂X,Y , fX,Y ) = 0, in probabil-
ity, by the Theorem in Devroye and Wagner (1979).

Although the use of the shape-restricted density estimator in Cule et al.
(2010) does not involve a tuning parameter, a study of the asymptotic prop-
erties of the induced distribution estimator seems not to have been done yet.
However, since this density estimator has smaller mean integrated squared error
than those obtained with KDE methods (Cule et al., 2010), the use of this method
in Algorithm 1 is also expected to produce good estimators of θ for moderate or
large samples.

On the other hand, given the immediate relationship between the Estimator
II and the estimation of the distribution FZ , it follows that the asymptotic prop-
erties of θ̂ are inherited from those of the estimator F̂Z evaluated at 0. Some
specific asymptotic results are presented below for different estimators of F̂Z(0).

The following result shows that the use of the empirical distribution for esti-
mating F̂Z(0) produces consistent and asymptotically normal estimators of θ.

Theorem 2 Let F̂Z be the empirical distribution function, then

(i) θ̂ is strongly consistent, this is, θ̂
a.s.→ θ, as n → ∞.

(ii) The estimator θ̂ is asymptotically normal, this is

√
n
(

θ̂ − θ
)

d→ N (0, FZ(0)(1− FZ(0))) ,

as n → ∞.

proof . The results follow by the law of large numbers and the central limit
theorem (van der Vaart, 1998).

The use of kernel distribution estimators can also produce consistent and
asymptotically normal estimators of θ under certain conditions as indicated in
the following theorem.

Theorem 3 Assume that FZ is uniformly Lipschitz on R and let F̂Z be a
regular kernel estimator. This is, there exists a positive sequence {hn}∞n=1 such

that hn = o
(

n− 1

2

)

and

∫

|t|>hn

1

hn
k1

(

t

hn

)

dt = o
(

n− 1

2

)

.

Then, it follows that

1.1.1.1.1.1. θ̂ is a strongly consistent estimator of θ.
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2. θ̂ is asymptotically normal,
√
n
(

θ̂ − θ
)

d→ N (0, FZ(0)(1− FZ(0))).

proof . (i) Using the triangle inequality it follows that |F̂Z(0)−FZ(0)| ≤ |F̂Z(0)−
Fn(0)|+|F̂n(0)−FZ(0)|, where Fn is the empirical distribution function. Then, the
result follows by Theorem 2.3 from Fernholz (1991) and the law of large numbers.
(ii) The asymptotic normallity of θ̂ follows by Corollary 2.4 from Fernholz (1991).

By relaxing the assumptions of the previous theorem it is possible to prove
that the use of kernel distribution estimators also produces weakly consistent
estimators of θ.

Theorem 4 Suppose that k1 is bounded in R with

L(u) = sup
|t|≥u

k1(t),

for u ≥ 0. Let {hn}∞n=1 be a sequence of positive bandwidths such that limn→∞ hn =
0 and limn→∞ nhn = ∞. Suppose also that one of the following conditions holds

(i)|t|k1(t) → 0 as |t| → ∞ and fZ is almost surely continuous.

(ii)fZ is bounded.

(iii)
∫∞
0

L(u)du < ∞.

Then, θ̂ is a weakly consistent estimator of θ.

proof . First, note that

|θ̂ − θ| =
∣

∣

∣
F̂Z(0)− FZ(0)

∣

∣

∣
=

∣

∣

∣

∣

∫

0

−∞
[f̂Z(t)− fZ(t)]dt

∣

∣

∣

∣

≤
∫

0

−∞

∣

∣

∣
f̂Z(t)− fZ(t)

∣

∣

∣
dt

≤
∫ ∞

−∞

∣

∣

∣
f̂Z(t)− fZ(t)

∣

∣

∣
dt

≤ MAE(f̂Z , fZ),

where MAE denotes the mean absolute error. Under the stated assumptions we
have that limn→∞MAE(f̂Z , fZ) = 0, in probability, by the Theorem in Devroye
and Wagner (1979).

Note that Theorems 1 and 4 simply require a well-behaved kernel function
and the boundedness of the target density. The assumptions on the bandwidth
parameters are also rather mild since most of the popular choices satisfy these
conditions.
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The use of shape-restricted estimators, by their nature itself, require addi-
tional assumptions on the target density. The following result presents such
conditions that produce consistent estimators of θ.

Theorem 5 Let F̂Z be the shape-restricted nonparametric estimator of FZ

proposed in Dümbeng and Rufibach (2009) and suppose that the log-density
log(fZ) is Lipschitz continuous and log(fZ)

′ is Hölder continuous of order β ∈
[1, 2] on a compact interval I ⊂ R. Then, θ̂ is a weakly consistent estimator of θ.

proof . The result is a consequence of Corollary 4.2 from Dümbeng and Rufibach
(2009).

The results presented in this section show that both estimators have good
asymptotic performance under mild conditions. An important difference between
Estimator I and Estimator II is that the former involves a two-dimensional den-
sity (distribution) estimation while the latter involves a one-dimensional density
(distribution) estimation. This represents an advantage of Estimator II over Es-
timator I since the convergence rate of the resulting estimators as well as the ease
of implementation are tied to the dimensionality of the problem. However, an
interesting feature of Estimator I is that it can be implemented in the context
of censored and missing observations since the use of KDE in these contexts has
been studied, for example, in Titterington and Mill (1983) and Wells and Yeo
(1996).

3 Examples

In this section, we present two examples that illustrate the implementation
of the estimators proposed in Section 2. In the first example we use a sample
simulated from a bivariate sinh-arcsinh distribution (Jones and Pewsey, 2009).
As detailed in Jones and Pewsey (2009), this distribution contains parameters
that control skewness, kurtosis and correlation of the marginals. This example
illustrates the influence of the assumptions of pairing and dependence on the
bootstrap distributions of the corresponding estimators in terms of their location
and spread. In the second example we use a real data set and show that not
including the assumptions of pairing and dependence may lead to opposite con-
clusions about the relationship between X and Y . In both examples, we consider
the following 9 types of estimators of θ:

(i) Kernel 2D. Based on Algorithm 1, this estimator employs a two-dimensional
Gaussian kernel density estimator with the bandwidth matrix Hscv imple-
mented in the R package ‘ks’ (Duong, 2011). The required integration step
is conducted using quadrature methods.

(ii) MLE 2D. This estimator is based on Algorithm 1. The corresponding
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two-dimensional density estimation is conducted using the shape-restricted
estimator from Cule et al. (2010). This estimator is also implemented using
the command dlcd from the R package ‘LogconcDEAD’ (Cule et al., 2009).
The integration of this density is conducted using a Monte Carlo method.

(iii) SMLE 2D. This estimator is based on Algorithm 1. The corresponding
two-dimensional density estimation is conducted using the smooth shape-
restricted estimator (Cule et al., 2010) implemented in the command dslcd
from the R package ‘LogconcDEAD’ (Cule et al., 2009). The integration of
this density is conducted using a Monte Carlo method.

(iv) MLE 1D. Estimates F̂Z in Algorithm 2 by integrating the shape-restricted
density estimator proposed in Cule et al. (2010). The density estimation is
implemented using the command dlcd from the R package ‘LogconcDEAD’
(Cule et al., 2009).

(v) Kernel 1D. Based on Algorithm 2, this estimator employs a Gaussian
kernel distribution estimator with the bandwidth ALbw implemented in
the R package ‘kerdiest’ (Quinteladel- Ŕıo and Estévez-Perez, 2012).

(vi) SMLE 1D. Estimates F̂Z in Algorithm 2 by integrating a smoothed shape-
restricted density estimator (Cule et al., 2010) implemented in the command
dslcd from the R package ‘LogconcDEAD’ (Cule et al., 2009).

(vii) ECDF. This estimator employs the empirical distribution function for es-
timating F̂Z in Algorithm 2.
In order to assess the impact of the assumptions of pairing and dependence
in the estimation of θ, we also consider the following estimators:

(viii) Independent. (Baklizi and Eidous, 2006) This estimator assumes that X
and Y are independent variables and that the corresponding samples are
unpaired. The estimator is defined as

θ⋆ =

∫ ∞

−∞

∫ y

−∞
f̂X(x)f̂Y (y)dxdy, (5)

where f̂X and f̂Y are Gaussian kernel density estimators obtained with
samples of X and Y respectively. For both KDE we employ the bandwidth

h =

(

4σ̂5

3n

)

1

5

, where σ̂ is the sample standard deviation and n is the sample

size. This bandwidth is known as the Silverman’s rule of thumb.
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(ix) Paired. (Baklizi and Eidous, 2006). This estimator is the same as (5)
but assuming that the samples of X and Y are paired. This additional
assumption is taken into consideration in the bootstrap methods used to
calculate confidence intervals for θ⋆.

Bootstrap samples and bootstrap confidence intervals (Normal, Basic, Per-
centile and BCa) are obtained using the R packages ‘boot’ (Canty and Ripley,
2012) and ‘simpleboot’ (Peng, 2008). R source code for these examples is avail-
able upon request.

3.1 Simulated data

In this example we use a simulated sample of size n = 100 from a bivariate
sinh-arcsinh distribution (Jones and Pewsey, 2009) with parameters (σ1, σ2, ρ, ǫ1, ǫ2
, δ1, δ2) = (1, 1, 0.75, 0, 1, 1, 2). Figure 1a shows a contour plot of the correspond-
ing density. This is a complex scenario where the entries present departure from
normality and dependence. The population correlation coefficient of this sample
is 0.737 and the theoretical correlation is 0.743. The parameter θ in this family
of distributions is not generally tractable. The theoretical value of θ, obtained
by numerical integration, is 0.78. Figure 1b shows the bootstrap distribution of
the estimators of θ previously described. We can observe a considerable influence
of the assumptions of pairing and dependence in the location and spread of the
bootstrap distributions of the estimators of θ. We can also notice the influence
of these assumptions in the point estimators and bootstrap confidence intervals
shown in Table 1. In this case, not including these assumptions leads to under-
estimating θ. Finally, we can observe that the estimator ECDF is slightly larger
than the others, which seems to be a result of its discrete nature.

Table 1: Simulated data: Estimators and 95% bootstrap confidence intervals.

Estimator θ̂ Normal Basic Percentile BCa
Independent 0.65 (0.560, 0.724) (0.559, 0.723) (0.568, 0.732) (0.562, 0.727)

Paired 0.65 (0.606, 0.695) (0.606, 0.696) (0.607, 0.697) (0.604, 0.694)
ECDF 0.81 (0.734, 0.886) (0.740, 0.890) (0.730, 0.880) (0.720, 0.870)

Kernel 1D 0.77 (0.695, 0.838) (0.697, 0.840) (0.701, 0.843) (0.688, 0.833)
Kernel 2D 0.75 (0.674, 0.807) (0.674, 0.807) (0.683, 0.816) (0.668, 0.804)
MLE 1D 0.78 (0.707, 0.853) (0.709, 0.854) (0.705, 0.850) (0.701, 0.847)
MLE 2D 0.77 (0.695, 0.845) (0.697, 0.846) (0.703, 0.853) (0.685, 0.840)
SMLE 1D 0.77 (0.704, 0.844) (0.707, 0.847) (0.694, 0.835) (0.694, 0.835)
SMLE 2D 0.78 (0.690, 0.830) (0.692, 0.832) (0.690, 0.830) (0.682, 0.824)
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Figure 1: (a) Contour plot: sinh-arcsinh distribution; (b) Simulated data: bootstrap
distributions of the estimators. Independent (solid line), Paired (solid bold line), ECDF
(long-dashed line), Kernel 1D (dashed line), Kernel 2D (dashed bold line), MLE 1D
(dotted line), MLE 2D (dotted bold line), SMLE 1D (dotted-dashed line), SMLE 2D
(dotted-dashed bold line).

3.2 Real data

In this section we study the data set presented in Venkatraman and Begg
(1996), which contains 72 lesion scores obtained using both a clinical scheme
without a dermoscope (X Test), and a dermoscopic scoring scheme (Y Test).
Their main interest is to assess the information provided by the use of the der-
moscope. Here, we analyse the subset of 51 non-diseased patients (diagnosed
using a biopsy) and compare the nonparametric inferences for θ obtained using
the estimators described in the introduction of this section. It is important to
note that the population correlation coefficient of this sample is 0.794, which
suggests that the entries are correlated. Table 2 shows point estimators and four
types of bootstrap confidence intervals of θ. Figure 2 shows the bootstrap distri-
butions of the estimators of θ. We can note a discrepancy of the point estimators
under the assumptions of dependence and independence of the tests. Interval
inference is also different; in the cases where pairing and dependence are not
considered we can observe that the value θ = 0.5 is included in some of the boot-
strap confidence intervals, leading to different conclusions about the relationship
of the tests. This is in line with the conclusions in Rubio and Steel (2013) and
emphasises the importance of the dependence and pairing assumptions.



Nonparametric inference for P (X < Y ) with paired variables 371

Table 2: Melanoma data: Estimators and 95% bootstrap confidence intervals.

Estimator θ̂ Normal Basic Percentile BCa
Independent 0.55 (0.469, 0.678) (0.467, 0.672) (0.450, 0.656) (0.474, 0.691)

Paired 0.55 (0.498, 0.597) (0.497, 0.596) (0.501, 0.601) (0.499, 0.598)
ECDF 0.69 (0.559, 0.813) (0.569, 0.823) (0.549, 0.804) (0.529, 0.784)

Kernel 1D 0.64 (0.525, 0.737) (0.525, 0.738) (0.528, 0.741) (0.519, 0.732)
Kernel 2D 0.62 (0.514, 0.720) (0.511, 0.719) (0.526, 0.733) (0.512, 0.718)
MLE 1D 0.65 (0.543, 0.776) (0.544, 0.776) (0.532, 0.765) (0.537, 0.768)
MLE 2D 0.65 (0.523, 0.769) (0.524, 0.772) (0.524, 0.772) (0.513, 0.762)
SMLE 1D 0.64 (0.538, 0.756) (0.539, 0.757) (0.527, 0.744) (0.533, 0.749)
SMLE 2D 0.63 (0.519, 0.746) (0.523, 0.748) (0.511, 0.736) (0.512, 0.737)
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Figure 2: Melanoma data: bootstrap distributions of the estimators. Independent (solid
line), Paired (solid bold line), ECDF (long-dashed line), Kernel 1D (dashed line), Kernel
2D (dashed bold line), MLE 1D (dotted line), MLE 2D (dotted bold line), SMLE 1D
(dotted-dashed line), SMLE 2D (dotted-dashed bold line).

4 Discussion

We introduced two classes of nonparametric estimators of θ = P (X < Y ) for
the case of paired, possibly dependent, observations. The proposed estimators
avoid making assumptions on the distribution and the dependence structure of
(X,Y ) which are implicitly considered by nonparametrically estimating either the
joint distribution of (X,Y ) or the distribution of the difference Z = Y −X. We
proved that the combination of the proposed approach with several nonparamet-
ric distribution estimators produces estimators of θ with appealing asymptotic
properties. In addition, we have shown that confidence intervals for θ, based
on these estimators, can be obtained using bootstrap methods that are easy to
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implement using already existing R packages. The nonparametric distribution
estimators explored in the context of Estimator I perform similarly. They are
also comparable in terms of their ease of implementation and the required CPU
usage. In the context of Estimator II, we empirically found that the estimators of
θ based on smooth distribution estimators exhibit a slightly better performance
than those based on discrete distribution estimators such as the empirical dis-
tribution. The example presented in Section 3.2 show that not accounting for
dependence between X and Y may lead to opposite conclusions about θ = 0.5,
and consequently about the relationship between these variables.
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