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Abstract

Background This study investigates the usefulness of the

nonparametric monotone homogeneity model for evaluat-

ing and constructing Health-Related Quality-of-Life Scales

consisting of polytomous items, and compares it to the

often-used parametric graded response model.

Methods The nonparametric monotone homogeneity

model is a general model of which all known parametric

models for polytomous items are special cases. Merits,

drawbacks, and possibilities of nonparametric and para-

metric models and available software are discussed.

Particular attention is given to the monotone homogeneity

model (also known as the Mokken model), and the often-

used parametric graded response model.

Results Data from the WHOQOL-Bref were analyzed

using both the monotone homogeneity model and the

graded response model. The monotone homogeneity model

analysis yielded unidimensional scales for each content

domain. Scalability coefficients further showed that some

items have limited scalability with respect to the other

items in the same scale. The parametric IRT analyses lead

to the rejection of some of the items.

Conclusions The nonparametric monotone homogeneity

model is highly suited for data analysis in a health-related

quality-of-life context, and the parametric graded response

model may add interesting features to measurement pro-

vided the model fits the data well.

Keywords Health-related quality-of-life measurement �
Item response theory � Nonparametric monotone

homogeneity model � Parametric graded response model

Acronyms

GRM Graded response model

HRQoL Health-related quality-of-life

IRF Item response function

IRT Item response theory

ISF Item score function

ISRF Item-step response function

LI Local independence

M Monotonicity

MHM Monotone homogeneity model

UD Unidimensionality

WHOQOL-

Bref

World Health Organization Quality-of-

Life Scale

Introduction

Questionnaires for health-related quality-of-life (HRQoL)

measurement are important for several reasons. First, they

may be used to compare the mean level of different patient

groups with respect to physical, mental and social health. A

researcher may want to find out whether these patient

groups have different needs with respect to, for example,

therapy or medication or whether different adaptations

of their environment are in order so as to improve their
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conditions of living. Second, HRQoL questionnaires are

also important for the measurement of mean change––

either progress or deterioration––of such groups due to, for

example, therapy. The researcher’s interest then lies in the

effectiveness of therapy with respect to HRQoL. Third, the

total score a patient obtains on an HRQoL questionnaire

may be used to diagnose this patient’s general level of

physical health and psychological well-being, for example,

so as to be able to estimate the budget needed for his/her

treatment during a particular period.

To effectively measure HRQoL, we argue that an

instrument must meet two requirements. The first require-

ment is that it is clear what the instrument measures: one

overall dimension of HRQoL or several dimensions

reflecting different aspects of HRQoL. If the instrument

measures one dimension, one can use the total score on all

items to obtain an impression of the overall level of

HRQoL. If the instrument measures multiple dimensions, it

may be recommendable to determine total scores on sub-

sets of items (e.g., domain scores), each reflecting a

particular aspect of HRQoL (e.g., HRQoL with respect to

physical, psychological, and social limitations) and then

assess individuals or compare groups on a profile of scores.

These two cases may be characterized as unidimensional

and multidimensional measurement.

The second requirement is that the psychometric prop-

erties of the items are known and found sufficient. One

important psychometric item property is the item’s location

on the scale that quantifies the HRQoL aspect of interest.

For example, patients are likely to experience fewer

problems when engaging in activities like bathing and

dressing than in more demanding activities such as shop-

ping and travelling. The items concerning bathing and

dressing require a lower level of physical functioning than

the other two items. Thus, bathing and dressing are located

further to the left (at a lower level of the scale) than

shopping and travelling. A good diagnostic HRQoL

instrument contains items of which the locations are widely

spread along the scale. Such a scale allows for measure-

ment at varying levels of physical functioning and may be

used, for example, for assessing mean differences between

groups, mean change due to therapy, and individual

patients’ levels of physical functioning.

Another important psychometric item property is the

item’s discrimination power. This is the degree to which

the item distinguishes patients with relatively low psy-

chological well-being levels from patients with relatively

high psychological well-being levels. The higher the dis-

crimination power the higher the item’s contribution to

reliable measurement ([1], pp. 101–124). A good diag-

nostic instrument has items with high discrimination power

that each contributes effectively to reliable measurement of

patients at different locations along the scale. Such an

instrument picks up differences between groups, effects of

therapy, and individual levels of activity limitation.

Item response theory (IRT) models [1] are becoming

more popular as statistical tools for scale construction in

the HRQoL context. IRT can be used effectively to

investigate the dimensionality of an instrument and the

psychometric properties of its constituent items. The goal

of this study is to discuss one particular class of IRT

models known as nonparametric IRT models [2–5], and to

argue that this class in particular provides a general and

flexible data analysis framework for studying the dimen-

sionality of a set of polytomously scored items (with

dichotomously scored items as special cases) and ascer-

taining ordinal scales for the measurement of HRQoL

aspects which contain items that have varying locations

and sufficient discrimination power. Over the past few

years, nonparametric IRT models already have been used

occasionally for constructing HRQoL scales; see [6–9].

Our point of view is that, given that the researcher has

formulated desirable measurement properties, (s)he should

construct his/her scale by means of an IRT model that is as

general as possible while satisfying the desired measure-

ment properties. Examples of such properties are that the

items measure the same dimension, that the measurement

level is at least ordinal, and that measurement values are

reliable. An HRQoL researcher who has constructed and

pre-tested a questionnaire consisting of, say, 40 items is not

served well when his/her data are analyzed by means of an

IRT model that is unnecessarily restrictive, the result of

which is that, say, half of the items are discarded. We will

argue that the most general IRT model that serves one’s

purposes well, often (but not always) is a nonparametric

IRT model.

Many questionnaires are used for assessing differences

in HRQoL between groups, change due to therapy, and

individual patients’ scale levels, and a general nonpara-

metric IRT model then is the perfect choice for analyzing

one’s data. Nonparametric IRT models have several

advantages over more-restrictive parametric IRT models

[1]: Nonparametric IRT models (1) are based on less-

restrictive assumptions, thus they allow more items into the

scale while maintaining desirable measurement properties;

(2) offer diverse tools for HRQoL analysis that give ample

information about the dimensionality of the data and the

properties of the items; and (3) provide patient measure-

ment values and item location and discrimination values,

which have an interpretation that is close to intuition and

therefore easy to interpret for users of HRQoL scales. For

computerized adaptive HRQoL testing, more-restrictive

parametric IRT models such as the Rasch [10] model

(dichotomous items) and the generalized partial credit

model [11] and the rating scale model [12] (polytomous

items) are more appropriate than nonparametric models.
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Parametric IRT models have been used more than

nonparametric IRT models, especially in psychological and

educational measurement, and also in HRQoL research

(e.g., [13–15]). A reason for this may be that nonparametric

IRT models were developed later than parametric IRT

models. See [16–18] for reviews of nonparametric IRT.

This paper is organized as follows. First, we explain

assumptions of IRT and compare parametric IRT and

nonparametric IRT. Second, we discuss methods and

software from nonparametric IRT that can be used for

analyzing the polytomous item scores obtained from

HRQoL questionnaires. Third, we use this software to

analyze data from the World Health Organization Quality-

of-Life Scale (WHOQOL-Bref) [19]. The results are

compared to those obtained by means of a parametric IRT

model. Finally, we provide recommendations for HRQoL

researchers on how to use nonparametric IRT methods for

analyzing their data.

Definitions and assumptions

IRT models are suited for the analysis of multi-item

questionnaire data that typically result from HRQoL

questionnaires. The data are discrete scores representing

the responses of N respondents to J items (items are

indexed j; j = 1, ..., J). Many HRQoL questionnaires use

items that have three or more ordered answer categories

represented by three or more ordered scores, also called

polytomous item scores. For simplicity, we assume that all

items have the same number of ordered answer categories;

this number is denoted by M + 1. Let Xj be the random

variable representing the discrete score on item j, and let

the items be scored Xj = 0,...,M. For example, for an item

asking whether one is satisfied with one’s sleep, score 0

may represent ‘very much dissatisfied’ and score M may

represent ‘very much satisfied’, and the intermediate scores

represent intermediate levels of satisfaction. With dichot-

omous item scoring, Xj = 0,1, and possible intermediate

satisfaction levels are not quantified separately but col-

lapsed into the score categories 0 and 1. Usually,

researchers summarize the J item scores for each patient by

the total score (sometimes referred to as the sum score),

which is formally defined as Xþ ¼
PJ

j¼1 Xj. Total score X+

is an estimate of a patient’s true score T; this is the

expectation of X+ across independent replications of the

measurement procedure ([20], pp. 29–30).

IRT models distinguish observable or manifest variables

such as item score Xj and total score X+ from latent vari-

ables. These latent variables play the role of summaries of

the behavior that is described by the responses to the items.

Sometimes, latent variables are interpreted as if they were

causal agents driving responses to items and individual

differences between patients. We will also use the dis-

tinction between latent and manifest variables in our

examples. Thus, we assume that patients are characterized

by either one latent HRQoL attribute (meaning that mea-

surement is unidimensional) or different HRQoL attributes

(meaning that measurement is multidimensional) which

together represent the patient’s latent physical, mental or

social health. For example, assume that measurement is

unidimensional and that the latent variable is mental health

or psychological well-being. Psychological well-being then

is an unobservable state in each patient, and inferences

about it are made on the basis of the manifest responses

reported by patients in reaction to the items in an HRQoL

questionnaire. Latent variables are denoted by notation h. If

measurement is unidimensional, the IRT model contains

one latent variable h, and if it is multidimensional multiple

latent variables are needed. We only consider unidimen-

sional IRT models here; see [21] for a discussion of

multidimensional IRT models.

Several families of IRT models for polytomous item

scores have been proposed (e.g., [22]). The family of

graded response models (GRMs; [23]) is suitable for ana-

lyzing ordered item scores collected by means of

polytomous response scales [22, 24, 25]. Suppose the item

‘How much do you enjoy life?’ has four ordered answer

categories running from ‘Not at all’ (score 0) to ‘Very

much’ (score 3); thus Xj = 0,...,3 and M = 3. For this item,

GRMs conceptualize the response process by means of four

conditional response probabilities, called item-step

response functions (ISRFs) and denoted by P(Xj C

m|h)=Pjm(h) (m = 0,...,M). It may be noted that for m = 0

we have that Pj0(h) = 1 by definition, irrespective of the

latent variable level; thus, this response probability is

uninformative about the response process and may be

ignored. The ISRF describes the relationship between

expressing at least a particular minimum level of enjoying

life (i.e., having at least a score of m on the example item)

and the latent variable of psychological well-being (h).

Figure 1a shows an example of the ISRFs of two items

having four answer categories each (i.e., M = 3). The solid

lines denote the ISRFs for one item and the dashed lines

denote the ISRFs for the other item. Two things are note-

worthy. First, the ISRFs of different items may intersect

but based on the cumulative character of the definition of

the ISRFs, the ISRFs of the same item cannot intersect.

Second, the ISRFs have been drawn as monotone curves

with rather irregular shapes. Such shapes are typical of a

nonparametric GRM [24] and found not to prevent a set of

items from having favourable measurement properties, as

we will see shortly. Figure 2b also shows monotone ISRFs

but now having smooth S-shapes, typical of a parametric

GRM. This parametric GRM nearly has the same mea-

surement properties as the nonparametric GRM, but
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because it assumes smooth ISRFs (Fig. 1b) instead of

irregular ISRFs (Fig. 1a), it is more restrictive and often

leads to the rejection of more items (and thus shorter

scales) than its nonparametric counterpart.

GRMs have the next three assumptions as a point of

departure. The first assumption is unidimensionality (UD);

that is, each model assumes that one latent variable h
summarizes the variation in the J item scores in the ques-

tionnaire. Assumption UD implies that respondents can be

ordered meaningfully by means of a single number. The

second assumption is local independence (LI); that is, if we

condition on h, the J item scores are statistically indepen-

dent. An implication of LI is that in a subgroup of patients

who have the same h value, all covariances between item

scores are 0. The third assumption is monotonicity (M);

that is, the ISRFs are each assumed to be monotone

increasing functions in h (see Figs. 1a and b). Applied to

the latent variable of psychological well-being (h) and the

items from the WHOQOL-Bref, assuming UD, LI and M

means that we hypothesize that (1) only psychological

well-being drives responses to items and has a systematic

effect on individual differences in item scores and total

scores (UD); (2) given a fixed level of psychological well-

being, relationships between concrete aspects of psycho-

logical well-being such as represented by the items ‘How

much do you enjoy life?’ and ‘Are you able to concen-

trate?’ are explained completely (i.e., the covariance

between these items, conditional on h, equals 0) (LI); and

(3) the higher the level of psychological well-being, the

higher the probability that one enjoys life and is able to

concentrate.

Parametric and nonparametric graded response models

Parametric Graded Response Model. The ISRFs of the

parametric GRM [26] are defined by logistic functions that

have the following parameters:

• djm: the location parameter of the mth ISRF of item j

(i.e., Pjm(h)) on the scale of h;

• aj: the slope parameter or ‘discrimination power’ of

item j.

The meaning of these parameters is explained after the

ISRF of the parametric GRM is introduced. This ISRF is

defined as
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Fig. 1 Examples of item step response functions of (a) a nonpara-

metric item response model and (b) a parametric item response model
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Fig. 2 Examples of (a) flat ISRFs and (b) non-monotone ISRFs
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PjmðhÞ ¼
exp½ajðh� djmÞ�

1þ exp½ajðh� djmÞ�
; j ¼ 1 ; :::; J;

m ¼ 1; :::;M:

Figure 1b shows the logistic ISRFs of two items

(M = 3). The two items are denoted by j (solid ISRFs) and

k (dashed ISRFs). For each item, the three location

parameters are also shown. For item j, by definition we

have that dj1 \ dj2 \ dj3, and for item k by definition

dk1 \ dk2 \ dk3. An ISRF’s location parameter is the

value of h for which the probability of having an item score

of at least m equals .5: that is, Pjm(h) = Pkm(h) = .5,

m = 1,..., M.

Figure 1b also shows that the slopes of the ISRFs of the

same item are equal (mathematically, they must be equal or

the ISRFs would intersect; this is impossible given the

cumulative definition of the ISRFs), but also that the ISRFs

of item j are steeper than the ISRFs of item k. Steepness of

slopes is evaluated as follows. For ISRF m of item j,

consider the point with coordinates (djm, .5). This is the

point in which the slope of a logistic ISRF is steepest, and

this steepest slope is taken to be typical for the whole ISRF.

Parameter aj expresses this maximum steepness (but is not

exactly equal to it). In the example in Fig. 1b, we have that

aj[ ak.

Nonparametric Graded Response Model. Instead of

choosing a parametric function, nonparametric IRT models

typically define order restrictions on the ISRFs. The non-

parametric GRM, better known as the monotone

homogeneity model (MHM) for polytomous items [27, 4],

assumes UD, LI, and M: that is, for any pair of hs, say, ha

and hb, the MHM assumes that

PjmðhaÞ�PjmðhbÞ; whenever ha\hb:

Thus, the ISRF is monotone non-decreasing in h; see

Fig. 1a for examples of ISRFs that are monotone but not

logistic. This assumption says that a higher level of psy-

chological well-being induces a higher probability of

obtaining at least an item score of m (i.e., a higher item

score). The ISRFs of different items can have any mono-

tone form and be very different. Requiring monotone

ISRFs only is less restrictive than requiring monotone

logistic ISRFs; thus, the MHM is a more general model for

describing the data than the GRM (henceforth, we call the

nonparametric GRM by its better known name (in fact,

acronym) MHM, and the parametric GRM simply the

GRM).

Unlike the GRM, the MHM does not provide numerical

estimates of the latent variable h . Instead, the MHM

allows that total score X+ orders patients stochastically on

latent variable h in almost all practical measurement

situations [28]. This means that, for two total scores X+

denoted v and w,

EðhjXþ ¼ vÞ�EðhjXþ ¼ wÞ; for 0� v\w� J;

[4]. This inequality says that as the total score increases

the mean h also increases (or stays the same). Thus, groups

of patients that have higher total scores, on average also

have higher latent variable values. This result may not

seem spectacular at first sight, but it (1) ascertains an

ordinal scale for patient measurement (2) using only

observable total scores (without requiring the actual esti-

mation of h). For the psychological well-being example, if

the MHM fits the data, ordering patients by means of the

total score by implication orders them on the latent vari-

able h.

Also, the MHM does not provide numerical estimates of

the item parameters d and a. Instead, a distinction can be

made between drawing information about item functioning

from estimates of the complete ISRFs and item parameters

typical of the MHM. Estimates of the complete ISRFs

provide much information about the exact relationship

between the item scores and the latent variable [16, 29].

ISRFs that are relatively flat or fail to be monotone can

be studied in much detail so as to reveal why they

dysfunction.

Figure 2a shows three relatively flat ISRFs of a hypo-

thetical item (M = 3). This item does not distinguish low h
and high h patients well. It may be noted that the ISRFs do

not all need to be flat simultaneously, but given that they

cannot intersect if one ISRF is flat others are likely to be

relatively flat as well and the item as a whole contributes

little to the reliable ordering of patients on h.

Figure 2b shows three non-monotone ISRFs of another

hypothetical item. Each shows relative good distinction

between low h values and between above-average h values

but bad distinction just below the middle of the scale.

Again, non-intersection of the ISRFs of the same item

implies that often several ISRFs simultaneously show such

disturbing non-monotonicities. For the example item one

may conclude that when the questionnaire contains few

items, which are effective in the high h area, this item may

be retained to cover this area even though this would be at

the expense of measurement quality just below the middle

of the scale.

For each item, the MHM framework provides M loca-

tion parameters and a scalability coefficient, which

provides information about item discrimination. The loca-

tion parameters are the proportions of the population of

interest, which have at least a score m on item j, and which

are denoted by pjm, m = 1, ..., M. For the same item, due to

non-intersection of ISRFs we have that pj1 C ... C pjM,

whereas in the GRM item location parameters are ordered

oppositely, dj1 B ... B djM. The item scalability coefficient

Hj (e.g., [2], pp. 148–153; [18], chap. 4) summarizes

the discrimination power of an item across its M ISRFs.

Qual Life Res (2008) 17:275–290 279

123



The numerical Hj value is determined by the interplay of the

slope and the location of the ISRFs of all J items and the

distribution of the latent variable h [30], and it expresses how

well item j separates patients given the ISRFs of item j

relative to the other items’ ISRFs and the distribution of h.

Mathematically, holding constant this distribution and the

location of all items’ ISRFs, coefficient Hj is higher when the

slopes of ISRFs of item j are steeper [18].

Nonparametric versus parametric graded response

models

Relationships Among Models. The MHM shares assump-

tions UD, LI and M with the GRM, but the MHM is less

restrictive with respect to the shape of the ISRFs. Thus, the

MHM is more general than the GRM or, equivalently, the

GRM is a special case of the MHM. This hierarchy implies

that, if the GRM fits the data, by implication the more

general MHM also fits but if the MHM fits the data, this

does not imply that the GRM also fits. Fit of the GRM then

needs to be investigated separately. Because of the hier-

archical relationship, for any data set the MHM fits as least

as many items as the GRM (Table 1).

Patient and Item Parameters. The MHM and the GRM

provide the following patient and item parameters (also,

see Table 1):

• For patient measurement, the MHM uses total score X+

to order patients on latent variable h. Because total

score X+ has an easy interpretation and, moreover, in

many IRT models X+ and h tend to correlate extremely

high suggesting a strong linear relationship [31], total

score X+ may be preferred in practice. Total score X+ is

the sum of the rating scale scores on the J items,

whereas estimates of h are expressed on a logit scale,

which does not have a straightforward interpretation for

users of HRQoL scales. In general, the ordinal

relationship of h with total score X+ (which can be

approximated well by a linear relation) enables users to

switch between scales, and use the one that suits their

goals best.

• Because item location djm is expressed on the same

scale as latent variable h, it also has an interpretation in

logits. For many users, proportion pjm, the proportion of

patients who have at least an item score of m, has an

easier interpretation.

• Item discrimination aj gives the maximum slope of the

logistic ISRF irrespective of the locations of the other

ISRFs of item j and the other items in the questionnaire,

and irrespective of the distribution of h. Thus, infor-

mation on ISRF slopes is absolute in the sense that a

particular aj value does not provide information on the

item’s suitability for measurement in a particular group

(characterized by a particular distribution of h) by

means of a set of J items (characterized by particular

location and slope parameters). On the other hand, item

scalability coefficient Hj depends explicitly on the

interplay of the distribution of h, the spread of locations

of the ISRFs, and the slopes of the ISRFs. In particular,

keeping two of these factors fixed, Hj tends to increase

in the third. This dependence on the distribution of h
and the item properties informs the researcher precisely

how well item j separates patients with low and high h
values in the particular group of patients under

consideration using the particular set of items. The

difference between absolute slope information (aj) and

relative slope information (Hj) is illustrated as follows.

Two data sets of size N = 5,000 and five items (J = 5)

(M = 3 for each item) were generated using the item

parameters in Table 2. The first data set came from a

Table 1 Comparison of monotone homogeneity model (MHM) and graded response model (GRM)

Nonparametric IRT (MHM) Parametric IRT (GRM)

Restrictiveness of models Low; many items admitted to the scale High; fewer items admitted to the scale

Interpretation of parameters Intuitively appealing More-complicated

Parameters (typical range)

Person level T, X+ h (-3 B h B 3)

ISRF location pjm djm (-3 B djm B 3)

ISRF discrimination Hj aj (0.5 B aj B 2.5)

Data analysis Exploratory, data as point of departure Confirmatory, model as null hypothesis

Applications Comparing groups

Measuring change

Diagnosing patients

Comparing groups

Measuring change

Diagnosing patients

Constructing item banks

Adaptive testing
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hypothetical clinical population with h * N(-2,1) (i.e.,

low psychological well-being level), and the second data

set came from a hypothetical healthy population with

h * N(1,1) (i.e., high psychological well-being level). It

may be noted that for each of the five items, aj = 1.4 by

definition, irrespective of ISRF location parameters and the

h distribution. The Hj values in the clinical group were

computed and found to range from .36 to .39. In the healthy

group, the Hj values were found to be smaller for items 1,

4, and 5 (H1 = .26, H4 = H5 = .25). In the clinical group, the

ISRFs of these three items were located more closely to the

middle of the h distribution (Fig. 3 shows this for Item 4)

such that higher Hj values resulted, but in the healthy group

the ISRFs were located further in the lower tail of the h
distribution (Fig. 3) resulting in lower Hj values (.3 is

considered minimally acceptable; [2], chap. 5). Thus, the

items 1, 4, and 5 are well suited for measurement in the

clinical group but not in the healthy population, despite

their overall discrimination power expressed by aj = 1.4,

for J = 1, ..., 5. For item 3, H3 was a little higher in the

healthy group because the second and third ISRFs dis-

criminate particularly well at higher ranges of h. For item

2, the location parameters of the ISRFs were widely spread

across the h distribution, resulting in good discrimination

both at lower and higher levels of h in both distributions.

We conclude that item scalability coefficient Hj has

the advantage that it takes the item (and not the

individual ISRF) as a unit and depends simulta-

neously on the h distribution, the slopes of the ISRFs,

and the spread of the locations of the ISRFs. Thus, Hj

informs the researcher whether item j discriminates

well in the group under consideration using the par-

ticular set of items, whereas item discrimination aj

provides information about the discrimination power

irrespective of the patient group under consideration

and the item properties of item j and the other items

in the scale.

Confirmatory and exploratory data analysis. In gen-

eral, before IRT models are accepted as reasonable

descriptions of the data their goodness-of-fit to these data

must be investigated and assessed. In general, goodness-

of-fit research is different for parametric and nonpara-

metric IRT (with the GRM and the MHM as special

cases, respectively). In a parametric IRT analysis the

model often serves as null-hypothesis and it is tested

whether this null-hypothesis must be rejected or may be

supported by the data. Nonparametric IRT analysis in

general takes the data as point of departure and (1)

instead of positing a unidimensional or multidimensional

latent variable structure analyzes the data to find its true

dimensionality, and (2) instead of positing a logistic or

other functional shape estimates the ISRFs from the data

so as to diagnose the items’ functioning [16, 18]. This

research strategy renders nonparametric IRT a more

flexible data-analysis tool than parametric IRT. One

could also characterize this distinction as confirmatory

(parametric IRT) versus exploratory (nonparametric IRT)

(Table 1).

Application of parametric and nonparametric IRT. If a

nonparametric IRT model such as the MHM fits the data,

the result is a scale on which patients can be ordered by

means of the total score X+. This total score has a strong

linear correlation with latent variable h. Such a scale suf-

fices in many applications. Examples are the comparison of

groups, the measurement of change due to therapy, and the

establishment of the patient’s psychological well-being

level as low, medium, or high (Table 1). The practical

Table 2 Example of item

parameters of the graded

response model (GRM), and

Item H Values in two different

populations with normally

distributed latent traits

Note: Hj values are based on

simulated data for sample size

N = 5,000

Item j Item parameters GRM Hj

a j dj1 dj2 dj3 h*N(–2,1) h*N(1,1)

1 1.4 –2.4 –2.2 –1.0 0.36 0.26

2 1.4 –4.0 –2.0 1.0 0.37 0.39

3 1.4 –1.0 2.0 2.5 0.39 0.42

4 1.4 –3.0 –2.0 –1.0 0.36 0.25

5 1.4 –2.5 –2.0 –1.5 0.36 0.25
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Fig. 3 Three ISRFs of the same item (Item 4) relative to two

different distributions of the latent variable
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advantage of nonparametric IRT models over parametric

IRT models is that the scales they produce contain more

items thus reducing the risk of wasting items that have non-

logistic but monotone ISRFs that discriminate well in (part

of) the group under consideration (e.g., Fig. 2b). Such

items contribute well to reliable measurement. In addition,

rejection of such items may also harm the coverage of the

latent attribute.

If a fitting parametric IRT model is obtained for a set

or a subset of the items, one has a parsimonious

description of the item characteristics, and one can use

the estimated item parameters to scale the items, and the

estimated hs as interval level measures to locate patients

on this scale. If a large set of items, also known as an

item bank [32], is available, and if a parametric IRT

model fits the item bank, parametric IRT models have the

advantage that the patient’s h can be assessed using dif-

ferent sets of items from the item bank. This may be

useful for the measurement of change when change is so

large that the set of items that was used initially no longer

captures the higher or lower h levels needed for the

second measurement, thus necessitating the use of other

items. Another application of parametric IRT is com-

puterized adaptive testing (CAT), which selects items

that match the patient’s h level well from a huge item

bank so as to optimize accuracy of h measurement. In

principle, CAT requires different item sets for different h
values (Table 1).

Nonparametric IRT analysis in practice

Software for nonparametric IRT analysis. Several

programs are available for data analysis using nonpara-

metric IRT but not each can handle polytomous item

scores. We briefly discuss the programs MSP ([33]; also

see [4]) and TestGraf98 [34]. Both programs are used

regularly and, together, they provide the researcher

with a clear and informative picture of (1) the dimen-

sionality of the data, (2) the (lack of) monotonicity of

the ISRFs, and (3) estimates of item locations and item

discrimination.

Program MSP uses the MHM as the main analysis

model but another nonparametric model not discussed here

is also included in the program. Basically the program

consists of two parts. The first part of MSP is an algorithm

for exploring the dimensionality of the data ([2], chap. 5;

[4], chap. 5). The algorithm uses item scalability coeffi-

cient Hj to select items. Items that are related to the same

latent variable h are selected one by one on the basis of

their Hj value. Suppose that one latent variable drives the

responses to one subset of the items, another latent variable

drives the responses to another subset of items, and so on.

Then, the algorithm selects mutually exclusive clusters

of items each of which is driven by a different latent

variable.

The second part of MSP provides several statistical tools

for exploring the shape of the ISRFs [29]. This is most

useful after the dimensionality of the data has been ascer-

tained. For example, due to their strong positive tendency

the non-monotone ISRFs in Fig. 2b may have an Hj value

that is high enough for the items to be selected in a uni-

dimensional cluster, but the non-monotonicity also may

distort parts of the ordinal scale defined by the items in the

cluster. MSP estimates ISRFs by means of a number of

discrete points that are connected to form a jagged ‘curve’.

Figure 4a shows four discrete ISRFs of the same item (i.e.,

M = 4) each estimated by means of eleven points. The

researcher can manipulate the number of estimated points.

If more points are estimated from the same data more

details of the ISRF become visible (i.e., bias is reduced) but

because for each point fewer data are available, accuracy

decreases. In statistics, this is known as the bias-accuracy

trade-off, and it is advisable to try several options to reach
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Fig. 4 (a) Discrete estimates of four ISRFs (solid curves; from MSP)

of Item 16 (‘Satisfied doing daily activities?’, from Physical Health

and Well Being domain), and the corresponding discrete item-score

function (dashed curve), (b) also estimated as a continuous curve

(from Testgraf98)
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a good decision. MSP tests observable deviations from

monotonicity for significance. Figure 4a also shows a

‘mean’ ISRF (dashed curve), which we may call the item

score function (ISF) and which is not standard output of

MSP. This function must be monotone nondecreasing.

Program TestGraf98 [34] can be used for studying the

shape of the ISF. Unlike MSP, TestGraf98 produces con-

tinuous estimates of response functions ([35]; here, only

the ISFs); and like MSP, TestGraf98 shows graphical dis-

plays of these estimates that can be manipulated with

respect to bias and accuracy, and also here it is advisable to

try several options. The quality of the decision can be

improved by using the confidence envelopes for the esti-

mated ISFs for statistical testing. Figure 4b shows an

example of an estimated ISF (solid curve) and its confi-

dence envelopes (dashed curves), which were estimated by

means of TestGraf98.

Research strategies for nonparametric IRT analysis.

MSP provides a method for investigating the dimension-

ality of the data, and MSP and TestGraf98 both can be used

to investigate assumption M. The investigation of dimen-

sionality and monotonicity serves to identify the items that

together constitute an ordinal patient scale for the same

latent variable.

For investigating dimensionality, MSP offers the

researcher the possibility to set a positive lower bound c on

Hj. Under the MHM, the lowest admissible value is c = .0;

MSP’s default is c = .3 ([2], chap. 5; [4, 33]). This default

value ascertains a lower bound on the overall discrimina-

tion power of the items (but researchers are free to choose a

higher value) and, as a result, item clusters consist only of

sufficiently discriminating items that measure the same

latent variable. Thus, MSP aims to produce unidimensional

scales that allow accurate patient measurement.

TestGraf98 estimates the ISFs (e.g., Fig. 4b) by means

of the nonparametric regression method known as kernel

smoothing (e.g., [36], chap. 2; [35]). The availability of

confidence envelopes for the continuous ISF estimates

provides detailed information of (lack of) monotonicity for

each item. TestGraf98 provides these estimates irrespective

of the dimensionality of the data. Thus, a good research

strategy is to first investigate item-set dimensionality by

means of MSP and then use MSP and TestGraf98 to study

the ISRFs and the ISFs in dimensionally distinct clusters.

See [37] for another method for assessing the shape of

these curves.

A real-data example: The World Health Organization

Quality-of-Life Scale

The WHOQOL-Bref was developed for assessing indi-

viduals’ perception and feelings of their daily life. The

questionnaire starts with two items, which ask for global

estimates of one’s quality of life, and then continues with

24 items covering four domains: (a) physical health and

well-being (seven items); (b) psychological health and

well-being (six items); (c) social relations (three items);

and (d) environment (eight items). The two general items

were left out of the analysis. In agreement with their

numbering in the WHOQOL-Bref, the other 24 items were

numbered from 3 to 26. Examples of items are:

• Do you have enough energy for daily life? (physical

domain)

• How much do you enjoy life? (psychological domain)

• How satisfied are you with your personal relationships?

(social domain)

• How safe do you feel in your daily life? (environmental

domain)

Each item uses a five-point rating scale (i.e., Xj = 0, ...,

4 ); the higher the item score, the better one’s quality of life

on the specific domain covered by the item.

The data were collected by undergraduate psychology

students of Tilburg University as part of a course Research

Practical in the academic year 2005–2006. Students were

instructed to strive for a sample of participants equally

distributed across both sexes and the following age cate-

gories: 30–39, 40–49, 50–59, and more than 60 years. The

final sample consisted of N = 589 respondents from the

Dutch population. Of these respondents, 55% were women,

mean age was 55.2 years (SD = 14.6), 32% had completed

community college or university, 36% had completed

vocational school, 20% had high school at most, and 12%

had only elementary school or less.

N = 55 cases had missing item scores. Missing values

were estimated using two-way imputation. Comparable to

an analysis-of-variance layout, this method uses both a

person effect and an item effect for estimating a missing

score (for details, see [38]). MSP and TestGraf98 were

used to analyze these data and construct one or more

scales, thus illustrating the possibilities of the MHM. For

the sake of comparison, we ran a principal component

analysis and a GRM scale analysis on the data.

Results

Sample statistics of item and scale scores

Table 3 shows that the mean item scores ranged from 2.58

(Item 20: ‘Satisfied with sex life?’) to 3.46 (Item 25:

‘Moving around well?’). The mean X+ scores were 21.04

(physical domain), 17.01 (psychological domain), 8.52

(social domain), and 24.27 (environmental domain).

Correlations between the domain scores ranged from .37
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(between physical and social domains) to .51 (between

physical and environmental domains).

Dimensionality analysis

Principal components analysis. Dimensionality was explored

by means of a principal components analysis using polych-

oric correlations. The ratio of the first to the second

eigenvalue of the polychoric correlation matrix was 8.428/

1.986 = 4.24. A ratio of 4:1 is taken as evidence of

considerable strength of the first dimension (e.g., [39]). The

first factor explained 32.4% of the variance. A confirmatory

factor analysis of the four a priori domain scales of the

WHOQOL-bref improved fit over the one-factor model (P

B 0.001). However, the factors correlated from .50 (physical

and social domain) to .79 (psychological and social domain).

The explorative factor analysis in conjunction with the con-

firmative factor analysis justifies the assumption of a general

HRQoL dimension underlying each scale.

Monotone homogeneity model analysis. Next, MSP was

used treating all 24 items as a fixed scale. The MHM does

Table 3 Results from MSP item selection procedure (Item clusters, item Hj values, and total H), and Item Hj values and total H for each content

domain

MSP item selection procedure Hj per content

domain
c = .3 c = .4

j Mean 1 2 1 2 3 4 5

Physical health and well-being

3 Distraction due to paina 3.04 .59 .59 .40

10 Experiencing energya 2.98 .43 .53 .46

15 Satisfied with sleep 2.66 .22 – – – – – – .28

25 Moving around well 3.46 .36 .43 .41

16 Satisfied doing daily activities 2.84 .41 .56 .52

4 Need medical treatment for daily functioninga 3.17 .59 .59 .43

17 Satisfied work capacity 2.89 .40 .57 .52

Scale value 21.04 .43

Psychological health and well-being

5 Enjoying life 2.66 .34 .42 .37

7 Being able to concentrate 2.80 .32 – – – – – .29

18 Satisfied with yourself 2.95 .41 .48 .45

11 Acceptance physical appearance 3.23 .33 – – – – – .35

26 Experiencing negative feelingsa 2.72 .30 – – – – – .34

6 Life meaningful 2.66 .30 – – – – – .37

Scale value 17.01 .36

Social relations

19 Satisfied relationship with other people 3.06 .34 .50 .50

20 Satisfied with sex life 2.58 .30 .42 .42

21 Satisfied support from others 2.88 .28 – .40 .40

Scale value 8.52 .44

Environment

8 Feeling safe in daily life 3.08 .30 – – – – – .33

22 Satisfied living conditions 3.13 .43 – – – – – .43

12 Enough financial resources 3.08 .33 .53 .42

23 Satisfied getting adequate health care 2.87 .29 – .52 .36

13 Availability information needed in daily life 3.06 .34 .53 .40

14 Opportunities leisure 2.90 .34 .49 .39

9 Healthy environment 2.88 .29 – – – – – – .31

24 Satisfied with transport in daily life 3.28 .34 .52 .40

Scale value 24.27 .38

a Reversely scored items
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not allow negatively correlating items in one scale. Item 4

(‘Need medical treatment for daily functioning?’) and Item

20 (‘Satisfied with sex life?’) correlated negatively but not

significantly (P [ .05); thus all 24 items were used for

analysis. The item Hj values (not tabulated) ranged from

.21 (Item 15: ‘Satisfied with sleep?’) to .40 (Item 22:

‘Satisfied with living conditions?’ and Item 10: ‘Enough

energy for everyday life?’). The total-scale H coefficient

was equal to .30. The results suggest that the items tend to

cover one latent HRQoL aspect, which, however, induces

only weak general association between the items. Thus, in

addition to this common aspect it seems reasonable to also

look for more-specific HRQoL aspects that are covered by

subsets of items.

Dimensionality was investigated by means of the MSP

search algorithm using several c values, starting with .3

(default) and then increasing c with steps of .05 in each

next analysis round. We only report results for c = .3 and

c = .4 (other values did not reveal interesting results).

For c = .3, one scale consisting of 18 items (H = .35) and

one scale consisting of 2 items (H = .59) were found

(Table 3). The four remaining items were not selected

because their Hj values were under .3 (i.e., .22 and .28,

.29, and .29). The 18-item scale had a rather heteroge-

neous content. The 2-item scale asked about distraction

due to pain (Item 3) and the need for medical treatment

for daily functioning? (Item 4). Thus, their high

scalability may be explained by the use of palliative

medicines.

For c = .4, five scales were found consisting of 6, 2, 3, 2,

and 3 items, respectively (Table 3). The first scale con-

sisted of items from the physical domain and the

psychological domain. The other scales consisted of items

from one domain. Scale 2 again covered Item 3 and Item 4.

Scales 3 and 4 covered environmental-domain aspects.

Scale 5 contained all social-domain items.

Thus, for default c = .3, 18 of the 24 items were

selected in one scale. The pattern of item selection for

higher c values such as c = .4 showed that the item set

progressively crumbled into many smaller scales while

other items remained unselected. Sijtsma and Molenaar

([4], pp. 80–86; see also [7] [40]) argued that this typical

pattern of results gives evidence that the 18-item set con-

stitutes a unidimensional scale. The total-scale H equaled

.35, giving evidence of weak scalability ([2], p. 185). Most

of the item Hj values were between .3 and .4, also sug-

gesting a weak relationship with the latent variable ([2],

p. 185).

Finally, it was investigated whether the four a priori

identified item domains could be considered as separate

scales. Table 3 (last column) shows that the total-scale

H values ranged from .36 (environmental domain) to .44

(social domain). Thus, based on Mokken’s classification of

scales [2] the four a priori item domains constituted weak

to medium scales. Two items had H values just smaller

than c = .3 (i.e., Item 15 (H15 = .28): ‘Satisfied with

sleep?’ and Item 18 (H18 = .29): ‘Satisfied with your-

self?’). The content domains may be considered as

unidimensional clusters of items measuring distinct aspects

of HRQoL, each of which are related to a more general

underlying HRQoL construct. Because of their conceptual

clarity, the remaining analyses were done on the a priori

defined item domains.

Monotonicity assessment in each item domain

For each item domain, MSP was used to assess the ISRFs’

shapes. First, ISRFs were estimated accurately (i.e., many

cases were used to estimate separate points of the ISRFs)

but at the expense of possible bias (i.e., only few points

were estimated). Second, ISRFs were estimated with little

bias (i.e., many points were estimated) but at the expense

of accuracy (i.e., few cases were used to estimate each

point).

For the physical domain, the first analysis (high accu-

racy, more risk of bias) revealed four items of which one or

more ISRFs showed minor violations of monotonicity, but

none of these violations were significant (5% level, one-

tailed test, because only sample decreases are tested as

violations; increases support monotonicity). The second

analysis (more inaccuracy, less bias) revealed that for all

seven items one or more ISRFs showed one or more local

decreases, but none them were significant. Figure 5a shows

the local, nonsignificant decreases in the ISRFs for Item 3

(‘Distraction due to pain?’).

For the psychological domain, for both analyses (i.e.,

high accuracy versus little bias) two items were found

which had ISRFs showing significant local decreases. For

example, Fig. 6a shows for Item 7 (‘Being able to con-

centrate?’) that the estimate of ISRF P72(h) = P(X7 C 2|h)

(the second curve from the top) has several local decreases,

the largest of which was significant (5% significance level,

P = 0.019). The estimate of ISRF P73(h) = P(X7 C 3|h)

shows two small decreases; they were not significant. For

the social domain and the environmental domain, no sig-

nificant violations of the monotonicity assumption were

found. It can be concluded that assumption M holds for

each of the four scales.

Next, TestGraf98 was used to investigate assumption M

for the ISFs. Several sample sizes were used for estimating

curve fragments of the ISFs and balancing the bias-accu-

racy trade-off. Figure 5b shows the estimated ISF of Item 3

(‘Distraction due to pain?’). The confidence envelopes

show that the local decrease of the estimated ISF can be

ignored safely. For the estimated ISF of Item 7 (‘Being
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able to concentrate?’), Fig. 6b suggests a violation of

assumption M for high latent variable levels (i.e., h [ 2).

With MSP the user specifies the minimum number of

observations used for estimating each point of an ISRF, but

Testgraf98 controls the bias-accuracy trade-off by means

of a bandwidth parameter, also to be specified by the user

but without being able to control the number of observa-

tions for estimating separate curve fragments. The effect

may be that, in particular at the lower end and higher end of

the scale, the ISF is estimated very inaccurately. Combin-

ing the results from MSP (no significant decreases of the

ISRFs at the higher end of the h scale) and Testgraf98 (a

smooth monotone increasing ISF in the middle of the h
scale), we may conclude that assumption M holds for item

scores. Thus, the expected item score monotonically

increases in the latent variable.

Comparison of the MHM with the GRM

The GRM was fitted using Multilog7.0 [41]. Estimation

problems occurred for item scoring 0–4 because some
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Fig. 5 Four ISRFs of Item 3 (‘Distraction due to pain?’, from

Physical Health and Well Being domain) showing nonsignificant

violations of assumption M and rejected by the GRM: (a) Results

from MSP (including the ISF); (b) results from Testgraf98 (ISF and

confidence envelopes); (c) and results from Multilog7.0 (GRM)
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significant violations of assumption M and rejected by the GRM: (a)

Results from MSP (including the ISF); (b) results from Testgraf98

(ISF and confidence envelopes); and (c) results from Multilog7.0
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score categories were (almost) empty. This was resolved by

combining scores 0 and 1 into score 0, and re-scoring the

items 0–3. Table 4 provides the estimated slope parameters

(aj) and the three location parameters (djm, j = 1, 2, 3), and

also the estimated item Hj coefficients (also in Table 3, last

column) and the nonparametric location parameters (pjm,

j = 1, 2, 3). The location parameters indicate that the items

are relatively popular (highly endorsed).

Several methods are available for assessing the fit of the

GRM, but many are problematic and no generally accepted

standard goodness-of-fit method for the GRM is presently

available ([42] pp. 85–89). We investigated goodness-of-fit

of the GRM by means of posterior predictive assessment

[43], which can provide graphical and numerical evidence

about model fit. Model fit was investigated at the level of

items. The most interesting results were found for items

from the physical and psychological domains. Results are

only discussed for these domains. For the physical domain,

Item 3 (‘Distraction due to pain?’) and Item 7 (‘Being able

to concentrate’) showed significant misfit (P \ .01). In

Fig. 5c, the curve made up by dots connected by straight

line pieces represents the estimated nonparametric ISF of

Item 3, the solid curve represents the expected ISF of Item

3 under the GRM, and the dotted curves represent the 95%

confidence envelopes. The GRM rejects this item. Thus,

modeling the jagged pattern of the estimated ISF by means

Table 4 Results of monotone homogeneity model (MHM) scale analysis and estimated item parameters from the graded response model (GRM)

MHM GRM b

j Hj pj1 pj2 pj3 pj4 aj dj1 dj2 dj3

Physical health and well-being

3 Distraction due to painb .40 .99 .93 .72 .40 1.14 -2.71 -0.99 0.49

10 Experiencing energya .46 .98 .95 .79 .45 1.97 -2.24 -0.63 0.56

15 Satisfied with sleep .28 .99 .95 .70 .34 0.85 -2.09 -0.79 1.78

25 Moving around well .41 .99 .96 .91 .61 1.23 -3.08 -2.24 -0.41

16 Satisfied doing daily activities .52 .98 .93 .72 .21 3.96 -1.59 -0.58 0.87

4 Need medical treatment for daily functioninga .43 .98 .92 .75 .23 1.23 -2.82 -1.29 0.24

17 Satisfied work capacity .52 .99 .98 .77 .20 3.58 -1.56 -0.69 0.81

Scale value .43

Psychological health and well-being

5 Enjoying life .37 1.00 .98 .61 .07 1.93 -2.79 -0.38 1.97

7 Being able to concentrate .29 .99 .98 .77 .20 0.82 -4.27 0.68 1.69

18 Satisfied with yourself .45 1.00 .93 .64 .15 1.99 -2.85 -0.97 1.12

11 Acceptance physical appearance .35 .99 .98 .80 .45 1.08 -3.93 -1.56 0.22

26 Experiencing negative feelingsa .34 1.00 .97 .61 .08 1.11 -2.84 -0.60 1.90

6 Life meaningful .37 1.00 .96 .62 .23 1.90 -2.71 -0.35 1.94

Scale value .36

Social relations

19 Satisfied relationship with other people .50 .99 .96 .82 .29 2.52 -2.21 -1.10 0.97

20 Satisfied with sex life .40 .97 .88 .58 .15 1.32 -3.19 -0.90 1.38

21 Satisfied support from others .42 .99 .97 .72 .20 1.38 -1.88 -0.34 1.62

Scale value .44

Environment

8 Feeling safe in daily life .33 1.00 .98 .78 .32 1.12 -4.12 -1.37 0.84

22 Satisfied living conditions .43 .98 .90 .68 .34 1.96 -2.71 -1.27 0.63

12 Enough financial resources .42 .99 .95 .70 .44 1.84 -2.22 -0.73 0.21

23 Satisfied getting adequate health care .36 .99 .97 .68 .23 1.32 -2.84 -0.93 1.33

13 Availability information needed in daily life .40 .99 .95 .72 .21 1.64 -3.21 -0.98 0.60

14 Opportunities leisure .39 .99 .98 .75 .34 1.61 -1.94 -0.69 0.60

9 Healthy environment .31 .99 .98 .83 .32 1.02 -3.95 -0.89 1.43

24 Satisfied with transport in daily life .40 .99 .97 .86 .45 1.66 -2.77 -1.55 0.17

Scale value .38

a Reversely scored items; b For the GRM analysis, items were recoded by collapsing item scores 0 and 1 into item score 1
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of logistic ISRFs having the same slopes would do injustice

to the data. However, it is noteworthy that Item 3 has good

measurement properties (Table 4: e.g., H3 = .40) under the

more general MHM, and from this model’s perspective it

might be retained in the scale.

Item 7 (‘Being able to concentrate?’) was a popular item

(Table 4; pj1 = .99, pj2 = .98; also, see Fig. 6a, upper two

ISRFs). As a result, the GRM could not be estimated

accurately; item parameters were estimated very inaccu-

rately (standard errors [.25). Figure 6c shows evidence of

misfit at h[ 2, for which the observed ISF fell outside the

95% confidence interval. This means that the GRM gives

biased results for h[ 2. The nonparametric estimates of

the ISRFs were monotone. This provides evidence that the

MHM adequately fitted Item 7. However, H7 = .29, which

is rather low. A reason to keep this item in the scale is that

it may help measuring differences at the lower and middle

ranges of the h scale, which are the most relevant ranges

for measuring HRQoL.

Summary of the scale properties

The WHOQOL-Bref is most often used in scientific

research (e.g., epidemiological studies and clinical trails)

and by health professionals (e.g., to assess treatment

efficacy) [19]. The nonparametric MHM analyses

revealed that the scales have adequate properties for

comparing groups on the underlying HRQoL aspects.

Each of the four domains of the WHOQOL-Bref consti-

tutes a unidimensional scale, each scale measuring a

different aspect of HRQoL in addition to a weak common

HRQoL attribute. This justifies reporting both separate

domain scores and possibly an overall HRQoL score. The

scalability results showed that the domain scales are weak

to moderate, with scalability coefficients H ranging from

.36 to .44. The test-score reliabilities of the four domain

scores were .82, .76, .66, and .81, respectively. The rank

correlations between sum score X+ and the estimated h
from the GRM varied from .91 (‘physical health’) to .96

(‘environment’) (Pearson correlations ranged from .94

(‘physical health’) to .99 (‘environment’)). Thus, X+ and

estimated h carry nearly the same rank order (and

numerical) information. This interesting result further

justifies the use of the nonparametric MHM for scale

analysis, and the use of X+ for (at least) ordinal mea-

surement of persons.

Because the item-score distributions were severely

skewed to the left, the lower response categories 0 and 1

were ineffective for HRQoL measurement in the general

population. The locations of the ISRFs for the higher

response categories 2, 3, and 4 were well spread along the h
scale. The ISRFs’ discrimination power as reflected by the

Hj values often was in the weak to medium range. Thus, the

higher response categories are modestly informative across

a wide range on the h scale.

The relatively short WHOQOL-Bref may also be con-

sidered for use as a tool for assessing HRQoL at the

individual level in clinical and medical settings. For

example, the WHOQOL-Bref may be used to evaluate

whether a patient’s HRQoL has improved after taking

medication. An interesting feature of a fitting IRT model is

that psychometric properties can be evaluated conditionally

on the latent variable. For example, the measurement error

of X+ can be evaluated at different values of the latent

variable. TestGraf98 provides graphical information about

the standard error of measurement based on the MHM

model. For example, for the physical-health domain

Testgraf98 estimated a standard error of measurement

ranging from 2.8 for X+ B 20 to 1.8 for X+ C 28. Thus, to

be significant at the 5% significance level differences

between two observed X+ scores have to be larger than

2:8� 1:96�
ffiffiffi
2
p
� 8 for X+ B 20, and larger than 1:8�

1:96�
ffiffiffi
2
p
� 5 for X+ C 28 (e.g., see [44], p. 209). This is

a substantial standard error of measurement relative to the

length of scale. This relatively large measurement error

appears to be consistent with the observed Hj values, which

indicate weak to moderate scalability. For the other three

content domains, the standard error of measurement was

also substantial. Thus, caution has to be exercised when

drawing conclusions about differences and changes in

individual levels of HRQoL based on observed X+ scores

from the WHOQOL-Bref and any other HRQOL mea-

sure—see [45].

Discussion

This study explained how the nonparametric monotone

homogeneity model contributes to the construction of

scales for the measurement of HRQoL. The MHM is more

general than parametric IRT models [24], such as the

much-used parametric graded response model [26] but also

the partial credit model [13–15] and the generalized partial

credit model [11]. Hemker et al. [46] showed that all

known parametric IRT models for polytomous items are

special cases of the nonparametric MHM. This means that

any item set satisfying the requirements of a parametric

IRT model for polytomous items also satisfies the

requirements of the nonparametric MHM. Given the

greater generality and flexibility of the nonparametric

MHM, which results in longer scales, and because X+ and

estimated h carry the same rank order information (based

on the approximate stochastic ordering property of h given

X+), the nonparametric MHM is highly suited for person

measurement.
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In an HRQoL context, often little is known about the

psychometric properties of new questionnaires. A typical

nonparametric MHM analysis explores the dimensionality

of the data by capitalizing on model assumptions such as

monotonicity (MSP), and studies the shapes of the ISRFs

and the ISFs in order to learn more about the (mal-)func-

tioning of individual items (MSP and TestGraf98). This

results in scales on which groups can be compared and

changes monitored without making unduly restrictive

assumptions about the data.

The properties of any IRT model only hold for the

application at hand when the model fits the data. In case of

misfit, the structure of the model does not match the

structure of the data. One cause of misfit is that the data are

multidimensional while the model assumes unidimension-

ality. Another cause of misfit is that the real ISRFs may not

be monotone or that they are monotone but fail to have the

logistic shape assumed by many parametric models. Other

causes of misfit, such as a multiple-group structure as in

differential item functioning (e.g., [47]) or person misfit

[48] were not considered here.

When the MHM fits the data, the researcher may decide

to also investigate goodness of fit of the GRM or other

parametric IRT models for polytomous items. The choice

of a parametric model may be based on the flexibility of the

model. For example, the partial credit model only has item

location parameters but assumes the slopes of the response

functions to be the same within and between items,

whereas the generalized partial credit model also allows for

varying slope parameters between items, just as the GRM.

If one pursues a parametric IRT analysis, misfit may be a

good reason to resort to a nonparametric IRT model and

still have an ordinal patient scale. If CAT is pursued, one of

the parametric models is a better option provided the model

fits the data well. In an HRQoL context, CAT indeed could

prove to be successful because patients have a definitive

interest in providing truthful answers (in the educational

context, in which CAT originated, CAT requires that items

be kept secret. This requires item banks often containing

hundreds of calibrated items). As a result, in HRQoL

measurement CAT presently meets with a growing interest

(e.g., [49–54]).

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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