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As the availability and importance of relational data—such as the friendships summa-
rized on a social networking website—increases, it becomes increasingly important to
have good models for such data. The kinds of latent structure that have been considered
for use in predicting links in such networks have been relatively limited. In particular,
the machine learning community has focused on latent class models, adapting Bayesian
nonparametric methods to jointly infer how many latent classes there are while learning
which entities belong to each class. We pursue a similar approach with a richer kind of
latent variable—latent features—using a Bayesian nonparametric approach to simulta-
neously infer the number of features at the same time we learn which entities have each
feature. Our model combines these inferred features with known covariates in order to
perform link prediction. We demonstrate that the greater expressiveness of this approach
allows us to improve performance on three datasets.

Introduction

Assume we observe a partial set of relationships or links between pairs of entities in a
network. Link prediction is the task of predicting whether or not unobserved relation-
ships hold.

In all figures on this poster, relations are stored in an N ×N matrix, where each row and
column corresponds to an entity. Each entry in the matrix is:

•White means the relationship holds from the the row entity to the column entity.
• Black means the relationship does not hold.
•Gray means the relationship is unobserved.

In link prediction, we wish to go from observations to predictions:

Observations Predictions

⇒

In generative models, a common approach is to assume that there is some underlying
latent variable Zi for each entity i and parameters W such that for yij = Y (i, j) ∈ {0, 1}
representing whether or not there is a link from i to j,

Pr(Y |Z,W ) =
∏
i,j

Pr(yi,j|Zi, Zj, W ).

An expressive, generative model for latent feature based link prediction.

Our goal

Link Prediction

In recent years, several Bayesian models have been developed for link prediction in rela-
tional data. Models such as the Infinite Relational Model (IRM) (Kemp et al., 2006) and
the Mixed-Membership Stochastic Blockmodel (MMSB) (Airoldi et al., 2006) assume that
there exists a set of latent classes that each entity we observe belongs to and that each
entity either belongs to a single class or has a distribution over the classes. Conditioned
on the latent class membership of each node, all relations are assumed to be generated
independently.

Why should class based approaches work? If we assign each entity to an appropriate
class and permute the rows and columns accordingly, it might reveal significant structure
in the problem:

Observations Permuted Observations Predicted Probabilities

⇒ ⇒

Can latent class models capture all link behavior?

Technically yes, since we can place each entity in its own class. Practically, it can some-
times make more sense to look at other representations.

For example, in a high school social network, we might learn classes such as “high school
student,” “male,” “athlete,” and “musician.” Restricting people to belong to one of these
classes or to have a mixed membership ignores the shared information in these classes.
By allowing ourselves to have a more featural description, we have greater flexibility.

Latent Class Overview

We wish to move beyond latent class models to latent feature models, but before we do
that, we review two of the main relevant latent class models. In all these approaches, we
assume there are K latent classes (where K need not be fixed a priori).

The Infinite Relational Model (IRM)
• Each entity i is assigned a class zi. Draw these class assignments from the Chinese

Restaurant Process.
•Generate a matrix W where for each pair of represented classes c1 and c2, draw

W (c1, c2) ∈ [0, 1] where W (c1, c2) is the probability of an entity in class c1 having a
link to an entity in class c2.

• To generate whether or not there is a link from entity i to entity j, Y (i, j) ∈ {0, 1}, draw

Y (i, j) ∼ Bernoulli(W (zi, zj)).
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The Mixed-Membership Stochastic Blockmodel (MMSB)
• Each entity i has a mixed membership πi, where πi is a multinomial distribution over

the classes drawn from a Dirichlet distribution.
•Generate a matrix W where for each pair of represented classes c1 and c2, draw

W (c1, c2) ∈ [0, 1] where W (c1, c2) is the probability of an entity in class c1 having a link
to an entity in class c2. Remember, though, that entities now have mixed membership.

• To generate whether or not there is a link from entity i to entity j, Y (i, j) ∈ {0, 1}, draw

Y (i, j) ∼ Bernoulli(π>i Wπj).

To do this, each entity draws a class to use in relation Y (i, j), and then Y (i, j) is drawn
from the corresponding part of W .
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Latent Class Approaches

Before describing our latent feature model, we explain the Bayesian nonparametric prior
we will use to model the latent features.

The Indian Buffet process (IBP) is a generative process that defines a prior on sparse binary
matrices (Griffiths and Ghahramani, 2006). It is the limit of a beta-Bernoulli model on
N ×K matrices as K → ∞ where N is the number of objects in our model and K is the
fixed, finite number of features. To generate a matrix Z in the finite context, we sample

πk ∼ Beta(α/K, 1) k ∈ {1, . . . , K}
zik ∼ Bernoulli(πk) i ∈ {1, . . . , N}, k ∈ {1, . . . , K}

where α is a parameter. Conditioned on πk all entries of the kth column are independent
Bernoulli samples.

The IBP is a culinary metaphor that describes how to generate matrices from this distri-
bution when K → ∞. Each row corresponds to a diner and each column corresponds
to a dish at a buffet. An entry of one at (i, j) means the ith diner tried the jth dish. This
matrix is filled in as follows:

• The first customer

...

Sample a Poisson(α) number of dishes.

• The ith customer

→ ...

Sample a Poisson(α/i) number of new dishes.
Sample previously tried dishes in proportion to the
number of people who have previously tried them.

The IBP is an infinitely exchangeable process, which means that the probability of Z is the
same when you permute all the rows (up to a particular notion of equivalence classes).
By De Finetti’s Theorem, there must be some underlying stochastic process that when
conditioned upon makes all observations independent. It was shown in (Thibaux and
Jordan, 2007) that this underlying stochastic process is the Beta Process.

The Indian Buffet Process/Beta Process

Why do we restrict ourselves to latent classes? Our model lets the latent variables be a
binary vector indicating which of a set of features each entity has. This allows us to cap-
ture the factorial nature of many networks. We refer to this model as the Nonparametric
Latent Feature Relational Model (NLFRM).

Basic Model
In the very basic version of the NLFRM, links are generated as follows:
• Every entity i is assigned a binary vector Zi. Draw the latent feature matrix Z from the

Indian Buffet Process.
•Generate a matrix W . Instead of restricting the entries to being in [0, 1], we let W be

real-valued.
• The probability of there being a link from i to j in Y is then

Pr(yij = 1|Zi, Zj, W ) = σ
(
Z>i WZj

)
where σ(·) is either the logistic or probit function in order to map real numbers to [0, 1]
numbers.

If we wish to predict non-binary quantities, we can change σ(·) accordingly.
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Concretely, the basic generative model is therefore
•Z ∼ IBP(α).
•Wij ∼ N (0, σ2

w) for all i, j.

• Y ∼ σ
(
Z>WZ

)
.

Full Model

Bayesian Nonparametrics
Statistical analysis of networks

Our model!

yij ∼ σ(β!Xij + β!p Xp,i + β!c Xc,j + γij)

In our full model, we combine the power of Bayesian nonparametrics with logit models
used for the statistical analysis of networks. Specifically, we are often given X , a set of
known covariates. Assume we are given:

•Xij - Covariates that influence yij.
•Xp,i - Covariates of entity i when it is the parent of a link.
•Xc,i - Covariates of entity i when it is the child of a link.

Then by introducing additional normally distributed parameters a, b, c, β, βp, βc, our full
model is:

Pr(yij = 1|Zi, Zj, W,X, β, a, b, c) = σ
(
ZiWZ>

j + β>Xij + (β>p Xp,i + ai) + (β>c Xc,j + bj) + c
)
.

Furthermore, we might also observe multiple relations Y 1, Y 2, . . . , Y m that we wish to
simultaneously predict. In this case, we use a single set of features Z, but different weight
vectors W i for each relation.

Variations
The above model works for general graphs or relations. Sometimes, we wish to work
with undirected graphs or symmetric relations. Here there are two possibilities:

• In the most general case, let W be symmetric.
• If we assume relationships only depend on shared features, let W be diagonal.

The Nonparametric Latent Feature Relational Model

The NLFRM is amenable to approximate posterior inference via Markov Chain Monte
Carlo (MCMC). We focus on inference for the nonparametric component since inference
for the parametric component has been addressed in the literature.

Sampling the non-zero columns of Z is straightforward. However, since we have a non-
parametric model, we must sample from features and their weights that have not been
observed yet. Since we have a non-conjugate model, we must deal with new weights
intelligently.

zik

We sample zik from

p(zik|Z,X, W ) ∝ p(zik|Z)
∏

r

p(Xr|Z, zik,W )

How to deal with W for new columns since it
is non-conjugate? We only need to sample sums.

Z

Metropolis-Hastings for wij for the logit model.
Auxiliary variable Gibbs sampler for the probit model.

W

Inference

We establish expectations of what the NLFRM can and cannot do with synthetic data
before comparing it with latent class approached on three real datasets.

Synthetic data
We generated very simple observations from two known sets of features to see how well
we could explain the data and how well we could recover the features.

True Features True Link
Probabilities Observed Links Inferred Features Inferred Link

Probabilities
True Features True Link

Probabilities Observed Links Inferred Features Inferred Link
Probabilities

Simple latent class features Slightly more complex features

As can be seen, in both cases, we explain the data well, but except in the simplest cases,
we cannot expect features to necessarily be interpretable or agree with known features.

Real data - Country Relations and Tribal Kinship Relations
We also tested our model on the Alywarra tribal kinship data and the country relations
data used in (Kemp et al., 2006). The countries data set consisted of 56 different relations,
five of which are shown below with relations such as “energy consumed,” “illiterates,”
and “freedom of opposition.”

The kinship data set consists of 26 familial relations amongst an Australian tribe. An
example of one of these relations is seen on the far left.

On both of these datasets, we train on 80% of the data and test on the held-out 20%,
measuring performance based on the Area Under the ROC Curve (AUC). We compare
against the IRM and the MMSB, two latent class models.

Countries single Countries global Alyawarra single Alyawarra global
NLFRM w/ IRM 0.8521 ± 0.0035 0.8772 ± 0.0075 0.9346 ± 0.0013 0.9183 ± 0.0108

NLFRM rand 0.8529 ± 0.0037 0.7067 ± 0.0534 0.9443 ± 0.0018 0.7127 ± 0.030
IRM 0.8423 ± 0.0034 0.8500 ± 0.0033 0.9310 ± 0.0023 0.8943 ± 0.0300

MMSB 0.8212 ± 0.0032 0.8643 ± 0.0077 0.9005 ± 0.0022 0.9143 ± 0.0097

AUC on the countries and kinship datasets. Bold identifies the best performance.

Since there are many local optima when using the IBP, initialization was very important.
We report results using a principled initialization taking advantage of the fact that the
IRM is a special case of the NLFRM and a completely random initialization. In addition,
we compare results when we train and test on each relation independently and when we
learn a global latent representation for all relations.

Real data - NIPS Coauthorship

To highlight the expressiveness of the NLFRM, we used the coauthorship data from NIPS
1-17 compiled in (Globerson et al., 2007). We took the 234 authors who had published
most, and trained on 80% of the data and tested on the held-out 20%.

NLFRM w/ IRM NLFRM rand IRM MMSB
0.9509 0.9466 0.8906 0.8705

AUC on the NIPS coauthorship data. All were within ±0.013

In addition to quantitatively being better, we are also qualitatively better since we have
a much more expressive model.
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(a) True relations (b) NLFRM predictions (c) IRM predictions (d) MMSB predictions

Predictions for all algorithms on the NIPS coauthorship dataset. In (a), a white entry
means two people wrote a paper together. In (b-d), the lighter an entry, the more likely
that algorithm predicted the corresponding people would interact.

Results
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