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Abstract

We propose a nonparametric link prediction
algorithm for a sequence of graph snapshots
over time. The model predicts links based
on the features of its endpoints, as well as
those of the local neighborhood around the
endpoints. This allows for different types of
neighborhoods in a graph, each with its own
dynamics (e.g, growing or shrinking commu-
nities). We prove the consistency of our esti-
mator, and give a fast implementation based
on locality-sensitive hashing. Experiments
with simulated as well as five real-world dy-
namic graphs show that we outperform the
state of the art, especially when sharp fluc-
tuations or nonlinearities are present.

1. Introduction

The problem of predicting links in a graph occurs in
many settings—recommending friends in social net-
works, predicting movies or songs to users, market
analysis, and so on. However, state-of-the-art meth-
ods suffer from two weaknesses. First, most methods
rely on heuristics such as counting common neighbors,
etc. while these often work well in practice, their the-
oretical properties have not been thoroughly analyzed.
(Sarkar et al. (2010) is one step in this direction). Sec-
ond, most of the heuristics are meant for predicting
links from one static snapshot of the graph. However,
graph datasets often carry additional temporal infor-
mation such as the creation and deletion times of nodes
and edges, so the data is better viewed as a sequence
of snapshots of an evolving graph or as a continuous
time process (Vu et al., 2011). In this paper, we focus
on link prediction in the sequential snapshot setting,
and propose a nonparametric method that (a) makes
weak model assumptions about the graph generation
process, (b) leads to formal guarantees of consistency,
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and (c) offers a fast and scalable implementation via
locality sensitive hashing (LSH).

Our approach falls under the framework of nonpara-
metric time series prediction, which models the evolu-
tion of a sequence z; over time (Masry & Tjgstheim,
1995). Each z; is modeled as a function of a mov-
ing window (z4—1,...,%1—p), and so x; is assumed to
be independent of the rest of the time series given this
window; the function itself is learned via kernel regres-
sion. In our case, however, there is a graph snapshot in
each timestep. The obvious extension of modeling each
graph as a multi-dimensional x; quickly runs into prob-
lems of high dimensionality, and is not scalable. In-
stead, we appeal to the following intuition: the graphs
can be thought of as providing a “spatial” dimension
that is orthogonal to the time axis. In the spirit of the
time series model discussed above, our model makes
the additional assumption that the linkage behavior of
any node 7 is independent of the rest of the graph given
its “local” neighborhood or cluster N(i); in effect, lo-
cal neighborhoods are to the spatial dimension what
moving windows are to the time dimension. Thus, the
out-edges of i at time ¢ are modeled as a function of
the local neighborhood of i over a moving window, re-
sulting in a much more tractable problem. This model
also allows for different types of neighborhoods to ex-
ist in the same graph, e.g., regions of slow versus fast
change in links, assortative versus disassortative re-
gions (where high-degree nodes are more/less likely to
connect to other high-degree nodes), densifying versus
sparsifying regions, and so on. An additional advan-
tage of our nonparametric model is that it can easily
incorporate node and link features which are not based
on the graph topology (e.g., labels in labeled graphs).

Our contributions are as follows:

(1) Nonparametric problem formulation: We offer, to
our knowledge, the first nonparametric model for link
prediction in dynamic graphs. The model is power-
ful enough to accommodate regions with very different
evolution profiles, which would be impossible for any
single link prediction rule or heuristic. It also enables
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learning based on both topological as well as other ex-
ternally available features (such as labels).

(2) Consistency of the estimator: Using arguments
from the literature on Markov chains and strong mix-
ing, we prove consistency of our estimator.

(3) Fast implementation wvia LSH: Nonparametric
methods such as kernel regression can be very slow
when the kernel must be computed between a query
and all points in the training set. We adapt the local-
ity sensitive hashing algorithm of Indyk & Motwani
(1998) for our particular kernel function, which allows
the link prediction algorithm to scale to large graphs
and long sequences.

(4) Empirical improvements over previous methods:
We show that on graphs with nonlinearities, such as
seasonally fluctuating linkage patterns, we outperform
all of the state-of-the-art heuristic measures for static
and dynamic graphs. This result is confirmed on a
real-world sensor network graph as well as via simula-
tions. On other real-world datasets whose evolution is
far smoother and simpler, we perform as well as the
best competitor. Finally, on simulated datasets, our
LSH-based kernel regression is shown to be much faster
than the exact version while yielding almost identical
accuracy. For larger real-world datasets, the exact ker-
nel regression did not even finish in a day.

The rest of the paper is organized as follows. We
present the model and prove consistency in Sections 2
and 3. We discuss our LSH implementation in Sec-
tion 4. We give empirical results in Section 5, followed
by related work and conclusions in Sections 6 and 7.

2. Proposed Method

Consider the link prediction problem in static graphs.
Simple heuristics like picking node pairs that were
linked most recently (i.e., had small time to last-link),
or that have the most common neighbors, have been
shown empirically to be good indicators of future links
between node pairs (Liben-Nowell & Kleinberg, 2003).
An obvious extension to dynamic graphs is to com-
pute the fraction of pairs that had lastlink = k at time
t and formed an edge at time ¢ + 1, aggregated over
all timesteps ¢, and use the value of k with the high-
est fraction as the best predictor. This can easily be
extended to multiple features. Thus, modulo fraction
estimation errors, the dynamic link prediction prob-
lem reduces to the computation and analysis of multi-
dimensional histograms, or datacubes.

However, this simple solution suffers from two critical
problems. First, it does not allow for local variations
in the link-formation fractions. This can be addressed

by computing a separate datacube for each local neigh-
borhood (made more precise later). The second, more
subtle, problem is that the above method implicitly as-
sumes stationarity, i.e., a node’s link-formation prob-
abilities are time-invariant functions of the datacube
features. This is clearly inaccurate: it does not allow
for seasonal changes in linkage patterns, or for a tran-
sition from slow to fast evolution, etc. The solution
is to use the datacubes not to directly predict future
links, but as a signature of the recent evolution of the
neighborhood. We can then find historical neighbor-
hoods from some previous time t that had the same
signature, and use their evolution from ¢ to t+1 to pre-
dict link formation in the next timestep for the current
neighborhood. Thus, seasonalities and other arbitrary
patterns can be learned. Also, this combats sparsity
by aggregating data across similarly-evolving commu-
nities even if they are separated by graph distance and
time. Finally, note that the signature encodes the re-
cent evolution of a neighborhood, and not just the dis-
tribution of features in it. Thus, it is evolution that
drives the estimation of linkage probabilities.

We now formalize these ideas. Let the observed se-
quence of directed graphs be G = {G1,Gs,...,G¢}.
Let Y:(i,5) = 1 if the edge ¢ — j exists at time
t, and let Y;(i,5) = 0 otherwise. Let N;(i) be the
local neighborhood of node i in G¢; in our experi-
ments, we define it to be the set of nodes within 2
hops of i, and all edges between them. Note that
the neighborhoods of nearby nodes can overlap. Let
]\71571,(2') = {Ny(7),...,Ny—p+1(i)}. Then, our model is:

Yi11(i,7)|G ~ Bernoulli(g(v(i, §)))
¢t(iaj) = {St (Zv]) , dy (Z)}v

where 0 < ¢(.) < 1 is a function of two sets of fea-
tures: those specific to the pair of nodes (i,j) under
consideration (s; (i,7)), and those for the local neigh-
borhood of the endpoint i (d; (7)). We require that both
of these be functions of Ny ,(i). Thus, Y41 (4, 7) is as-
sumed to be independent of G given Ntﬁp(i), limiting
the dimensionality of the problem. Also, two pairs of
nodes (i,7) and (i, j') that are close to each other in
terms of graph distance are likely to have overlapping
neighborhoods, and hence higher chances of sharing
neighborhood-specific features. Thus, link prediction
probabilities for pairs of nodes from the same graph
region are likely to be dependent, as expected.

Assume that the pair-specific features s; (4,j) come
from a finite set S; if not, they are discretized into
such a set. For example, one may use s; (i,j) =
{eny(i,7),00:(4,7)} (i-e., number of common neighbors
and the last time a link appeared between nodes ¢ and
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§). Let dy (i) = {ni (s),n}; (s) Vs € S}, where 1 (s)
are the number of node pairs in N;_1(z) with feature
vector s, and n;; (s) the number of such pairs which
were also linked by an edge in the next timestep ¢t. In
a nutshell, d; (i) tells us the chances of an edge being
created in ¢ given its features in ¢t — 1, averaged over
the whole neighborhood N;_1(i) — in other words, it
captures the evolution of the neighborhood around 4
over one timestep.

One can think of d; () as a multi-dimensional his-
togram, or a “datacube”, which is indexed by the fea-
tures s. Hence, now onwards we will often refer to
d; (i) as a “datacube”, and a feature vector s as the
“cell” s in the datacube with contents (n; (s),n;} (s)).
Finiteness of S is necessary to ensure that datacubes
are finite-dimensional, which allows us to index them
and quickly find nearest-neighbor datacubes.

ESTIMATOR. Our estimator of the function g(.) is:
> Sim(ee(i, 5), e (i, 5")) - Yerpa (¢, 57)
Z‘,,j/,tl
Z Slm(wf(,l’7.])7 ,l/)t’ (i/yj/))

AT
i',g7 5t

9(e(i, 3)) =

To reduce dimensionality, we factor
Sim (¢ (i, 7), % (7', 7")) into  neighborhood-specific
and pair-specific parts: K(d; (¢),dy (i')) - I{s¢ (¢,7) =
se (',7)}. In other words, the similarity measure
Sim(.) computes the similarity between the two
neighborhood evolutions (i.e., the datacubes), but
only for pairs (i',5’) at time ¢’ that had exactly the
same features as the query pair (i,j) at t (i.e., pairs
belonging to the cell s = s;(4,5)). This yields a
different interpretation of the estimator:

32 K (de (i) dv (i) - 32 (I{se (4,5) = sw (7', 57)} - Yerga (¢, 57)]

it 5’

> K (@), dv () - 3151 (6,5) = s (7,5}
> K (de (i), dvr (i) - iy (363, 5)

it

TS K (de () de () - et (¢ (s )

it

Intuitively, given the query pair (i,j) at time ¢, we
look only inside cells for the query feature s = s; (4, J)
in all neighborhood datacubes, compute the average
i (s) and m;ry (s) in these cells after accounting for
the similarities of the datacubes to the query neighbor-
hood datacube, and use their quotient as the estimate
of linkage probability. Thus, the probabilities are com-
puted from historical instances where (a) the feature
vector of the historical node pair matches the query,
and (b) the local neighborhood was similar as well.

Now, we need a measure of the closeness between
neighborhoods. Two neighborhoods are close if they
have similar probabilities p(s) of generating links be-
tween node pairs with feature vector s, for any s € S.
We could simply compare point estimates p(s) =

nt (s) /n.(s), but this does not account for the vari-
ance in these estimates. Instead, we consider the full
posterior of p(s) (a Beta distribution), and use the
total variation distance between these Betas as a mea-
sure of the closeness:

bD(dt(i),dt/(i’))

K(de (i),dy (i') = 0<b<1) (1)

D(ds (i), dp (i')) = D TV(X,Y)
ses
X~ B(nih (s),mie (s) = mit (9))
Y ~ B (n;t’ (S) s Nirt! (8) - 77;;' (3)) )

where TV(.,.) denotes the total variation distance be-
tween the distributions of its two argument random
variables, and b € (0,1) is a bandwidth parameter.

DEALING WITH SPARSITY. For sparse graphs, or short
time series, two practical problems can arise. First, a
node 7 could have zero degree and hence an empty
neighborhood. In order to get around this, we de-
fine the neighborhood of node ¢ as the union of 2-hop
neighborhoods over the last p timesteps.

Second, the 1. (s) and ™ (s) values obtained from ker-
nel regression could be too small, and so the estimated
linkage probability n* (s) /5. (s) is too unreliable for
prediction and ranking. We offer a threefold solution.
(a) We combine 7. (s) and 7t (s) with a weighted av-
erage of the corresponding values for any s’ that are
“close” to s, the weights encoding the similarity be-
tween s’ and s. This is in essence the same as replacing
the indicator in Eq. (1) with a kernel that measures
similarity between features. (b) Instead of ranking
node pairs using n* (s) /7. (s), we use the lower end of
the 95% Wilson score interval (Wilson, 1927), which is
a widely used binomial proportion confidence interval.
The node pairs that are ranked highest according to
this “Wilson score” are those that have high estimated
linkage probability n* (s) /n. (s) and 1. (s) is high (im-
plying a reliable estimate). (c) Last but not the least,
we maintain a “prior” datacube, which is average of all
historical datacubes. The Wilson score of each node
pair is smoothed with the corresponding score derived
from the prior datacube, with the degree of smooth-
ing depending on 7. (s). This can be thought of as a
simple hierarchical model, where the lower level (set of
individual datacubes) smooths its estimates using the
higher level (the prior datacube).

3. Consistency of Kernel Estimator

Now, we prove that the estimator g defined in Eq. (1)
is consistent. Recall that our model is as follows:

Yt+1(i7j)|g NBer(g(¢i(i7j)))> (2)

where (i, 7) equals {s; (4,7) ,d¢ (i)}. Assume that all
graphs have n nodes (n is finite). Let () represent the
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query datacube dr(gq). We want to obtain predictions
for timestep T'+ 1. From Eq. (1), the kernel estimator
of g for query pair (q,¢’) at time T + 1 can be written
as:

(s —E(S’Q) where s = sr !

9(s,Q) 7.0 (where (a,4")

N 1 T—1 n )

h(s, Q) Zm ; ;Kb(dt (4) 7Q)77it+1 (s)
N 1 T—1 n )

f(s,Q) =T —p) ; ;Kb(dt (1), @)nit+1 (s) -

The estimator § is defined only when f> 0. The ker-
nel was defined earlier as Kj(d; (i),Q) = bP(4(1).Q)
where the bandwidth b tends to 0 as T' — oo, and
D(.) is the distance function defined in Eq. (1). This
is similar to other discrete kernels (Aitchison & Aitken,
1976), and has the following property

. . 1 ifd (1) = Q
%g% Kb(dt (Z) s Q) = {

3)

0 otherwise.

Theorem 3.1 (Consistency). g is a consistent esti-
mator of g, i.e., § £, g as T — co.

Proof. The proof is in two parts. Lemma 3.3 will
show that var(h) and var(f) tend to 0 with T' — co.
Lemma 3.4 shows that their expectations converge to

9(s, Q)R and R respectively, for some constant R > 0.
Hence, (ﬁ, f) N (9(s,Q)R,R). By the continuous
mapping theorem, g = ﬁ/fL g. O

The next lemma upper bounds the growth of variance
terms. We first recall the concept of strong mixing.
For a Markov chain S}, define the strong mixing coeffi-
cients a(k) = supj,_y >, {|P(ANB)-P(A)P(B)| : A €
F<i,B € Fsp}, where F<; and F>p are the sigma
algebras generated by events in |J,., S} and U,~, S;
respectively. Intuitively, small values of a(k) imply
that states that are k apart in the Markov chain are
almost independent. For bounded A and B, this also
limits their covariance: |cov(A, B)| < ca(k) for some
constant ¢ (Durrett, 1995).

Lemma 3.2. Let gi be a bounded func-
tion of Miy1(s)mibyq (s) and dy (3). Then,

(1/T?)var [Zthl Yo Qit} —0asT — oo.

Proof Sketch. Our graph evolution model is Marko-
vian; assuming each “state” to represent the past p+1
graphs, the next graph (and hence the next state) is a
function only of the current state. The state space is
also finite, since each graph has bounded size. Thus,

the state space may be partitioned as S = TR|J C;,
where T'R is a set of transient states, each C; is an ir-
reducible closed communication class, and there exists
at least one C; (Grimmett & Stirzaker, 2001).

The Markov chain must eventually enter some C;.
First assume that this class is aperiodic.  Irre-
ducibility and aperiodicity implies geometric ergod-
icity (Fill, 1991), which implies strong mixing with
exponential decay (Pham, 1986): a(k) ~ e Pk
for some B8 > 0. Thus, Zt,t’ cov(qit, gjrr) =
2 Eﬁfﬂzo cov(gie, gjrr) < 3y Dpegcalk) =
Y Y ce Pk = O(T). Thus, var(}, >, qi)/T? =
O(1/T), which goes to zero as T — oco. The proof for a
cyclic communication class, while similar in principle,
is more involved and is deferred to the appendix. [

~ ~

Lemma 3.3. var(h) and var(f) tend to 0 as T — oo.

Proof. The result follows by applying Lemma 3.2
with ¢(.) equal to Ky(ds(i),Q)n}, (s) and
Ky (de (i) , @)mit+1 (s) respectively. 0

Lemma 3.4. AsT — oo, for some R > 0,

o~

E[h(s,Q)] = g(s,Q)R, E[f(s,Q)] = R.

Proof. Let € denote the minimum distance be-
tween two datacubes that are not identical;
since the set of all possible datacubes is fi-
nite, ¢ > 0. E[h(s,Q)] is an average of terms
E[Ky(d; (i), Q)nfq (s)], over i € {1,...,n} and
t € {p,...,T —1}. Now, E[Ky(d (i),Q)n;\ 1 ()] =
E [pPEOQE [pr | (s)|ds (i)]], and the inner expec-
tation is F [nit41 () - g(s,d: (4))], as can be seen by
summing Eq. (2) over all pairs (4, j) in a neighborhood
with identical s; (4, j), and then taking expectations.
Writing the expectation in terms of a sum over all
possible datacubes, and noting that everything is
bounded, gives the following:

B (b0 (3) - (s, de ()
= Eity1 (s) [de (1) = Q] - g(s, Q) P(dy (i) = Q) + O(b°).

~

Recalling that E[h(s, Q)] was an average of the above
terms, Elh(s, Q)] equals the following.

9(s,Q) tZ EMitt1 (s) |de (1) = Q] - P(d: (1) = Q)
n(T - p)

Using the argument of Lemma 3.2, we will eventually
hit a closed communication class. Also, the query dat-
acube at T is a function of the state S, which belongs
to a closed irreducible set C' with probability 1. Hence,
using standard properties of finite state space Markov
chains (in particular positive recurrence of states in

+O(b9).
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(), we can show that the above average converges to
a positive constant R times g(s, Q). An identical argu-

ment yields E[f(s, Q)] converges to R. The full proof
can be found in the appendix. O

4. Fast search using LSH

A naive implementation of the nonparametric estima-
tor in Eq. (1) searches over all n datacubes for each of
the T' timesteps for each prediction, which can be very
slow for large graphs. In most practical situations, the
top-r closest neighborhoods should suffice (in our case
r = 20). Thus, we need a fast sublinear-time method
to quickly find the top-r closest neighborhoods.

We achieve this via locality sensitive hashing
(LSH) (Indyk & Motwani, 1998). The standard LSH
operates on bit sequences, and maps sequences with
small Hamming distance to the same hash bucket.
However, we must hash datacubes, and use the to-
tal variation distance metric. Our solution is based
on the fact that total variation distance between dis-
crete distributions is half the L; distance between the
corresponding probability mass functions. If we could
approximate the probability distributions in each cell
with bit sequences, then the L, distance would just be
the Hamming distance between these sequences, and
standard LSH could be used for our datacubes.

CONVERSION TO BIT SEQUENCE. The key idea is to
approximate the linkage probability distribution by its
histogram. We first discretize the range [0,1] (since
we deal with probabilities) into B; buckets. For each
bucket we compute the probability mass p falling in-
side it. This p is encoded using By bits by setting the
first |pBa] bits to 1, and the others to 0. Thus, the en-
tire distribution (i.e., one cell) is represented by By Bs
bits. The entire datacube can be stored in |S|B;Bs
bits. However, in all our experiments, datacubes were
very sparse with only M < |S| cells ever being non-
empty (usually, 10-50); thus, we use only M B; By bits
in practice. The Hamming distance between two pairs
of M B1Bs bit vectors yields the total variation dis-
tance between datacubes (modulo a constant factor).

DisTaANCES viA LSH. We create a hash function by
just picking a uniformly random sample of k£ bits out
of M B1B5. For each hash function, we create a hash
table that stores all datacubes whose hashes are iden-
tical in these k bits. We use £ such hash functions.
Given a query datacube, we hash it using each of these
¢ functions, and then create a candidate set of up to
O(max(¢,1)) of distinct datacubes that share any of
these ¢ hashes. The total variation distance of these
candidates to the query datacube is computed explic-
itly, yielding the closest matching historical datacubes.

PickiNG k. The number of bits k is crucial in bal-
ancing accuracy versus query time: a large k sends
all datacubes to their own hash bucket, so any query
can find only a few matches, while a small £ bunches
many datacubes into the same bucket, forcing costly
and unnecessary computations of the exact total vari-
ation distance. We do a binary search to find the &
for which the average hash-bucket size over a query
workload is just enough to provide the desired top-20
matches. Its accuracy is shown in Section 5.

Finally, we underscore a few points. First, the entire
bit representation of M BiBs bits never needs to be
created explicitly; only the hashes need to be com-
puted, and this takes O(k¢) time. Second, the main
cost in the algorithm is in creating the hash table,
which needs to be done once as a preprocessing step.
Query processing is extremely fast and sublinear, since
the candidate set is much smaller than the size of the
training set. Finally, we have found the loss due to
approximation to be minimal in all our experiments.

5. Experiments

We first introduce several baseline algorithms, and the
evaluation metric. We then show via simulations that
our algorithm outperforms prior work in a variety of
situations modeling nonlinearities in linkage patterns,
such as seasonality in link formation. These findings
are confirmed on several evolving real-world graphs: a
sensor network, two co-authorship graphs, and a stock
return correlation graph. Finally, we demonstrate the
improvement in timing achieved via LSH over exact
search, and the effect of LSH bit-size k on accuracy.

BASELINES AND METRICS. We compare our nonpara-
metric link prediction algorithm (NonParam) to the fol-
lowing baselines which, though seemingly simple, are
extremely hard to beat in practice (Liben-Nowell &
Kleinberg, 2003; Tylenda et al., 2009):

LL: ranks pairs using ascending order of last time of
linkage (Tylenda et al., 2009).

CN (last timestep): ranks pairs using descending order
of the number of common neighbors (Liben-Nowell &
Kleinberg, 2003).

AA (last timestep): ranks pairs using descending order
of the Adamic-Adar score (Adamic & Adar, 2003), a
weighted variant of common neighbors which it has been
shown to outperform (Liben-Nowell & Kleinberg, 2003).
Katz (last timestep): extends CN to paths with length
greater than two, but with longer paths getting expo-
nentially smaller weights (Katz, 1953).

CN-all, AA-all, Katz-all: CN, AA, and Katz computed on
the union of all graphs until the last timestep.
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Recall that, for NonParam, we only predict on pairs
which are in the neighborhood (generated by the union
of 2-hop neighborhoods of last p timesteps) of each
other. We deliberately used a simple feature set for
NonParam, setting s; (i,7) = {cns(i,5), 00:(i,5)} (ie.,
common neighbors and last-link) and not using any
external “meta-data” (e.g., stock sectors, university
affiliations, etc.). All feature values are binned log-
arithmically in order to combat sparsity in the tails
of the feature distributions. Mathematically, our fea-
ture £;(i, ) should be capped at p. However, since the
common heuristic LL uses no such capping, for fair-
ness, we used the uncapped ‘last time a link appeared’
as (i, 7), for the pairs we predict on. The bandwidth
b is picked by cross-validation.

For any graph sequence (Gy, ..., Gr), we test link pre-
diction accuracy on G for a subset S of nodes with
non-zero degree in Gp. Each algorithm is provided
training data until timestep 7" — 1, and must output,
for each node i € Ssq, a ranked list of nodes in de-
scending order of probability of linking with ¢ in Gp.
For purposes of efficiency, we only require a ranking
on the nodes that have ever been within two hops of
i (call these the candidate pairs); all algorithms under
consideration predict the absence of a link for nodes
outside this subset. We compute the AUC score for
predicted scores for all candidate pairs against their
actual edges formed in Gr.

5.1. Prediction Accuracy

We compare accuracy on (a) simulations, (b) a
real-world sensor network with periodicities, and (c)
broadly stationary real-world graphs.

SIMULATIONS. One unique aspect of NonParam is its
ability to predict even in the presence of sharp fluctu-
ations. As an example, we focus on seasonal patterns,
simulating a model of Hoff (personal communication)
that posits an independently drawn “feature vector”
for each node. Time moves over a repeating sequence
of seasons, with a different set of features being “ac-
tive” in each. Nodes with these features are more likely
to be linked in that season, though noisy links also ex-
ist. The user features also change smoothly over time,
to reflect changing user preferences.

We generated 100-node graphs over 20 timesteps using
3 seasons, and plotted AUC averaged over 10 random
runs for several noise-to-signal ratios (Fig. 1). Non-
Param consistently outperforms all other baselines by
a large margin. Clearly, seasonal graphs have non-
linear linkage patterns: the best predictor of links at
time T are the links at times T — 3, T — 6, etc., and
NonParam is able to automatically learn this pattern.
However, CN, AA, Katz are biased towards predicting

AUC scores over increasing noise ——Non-Param
0.95 . . . : : : —
CN
©- CN-All
0.9f Non-Param
0.85- @ AA-all
—+-Katz
0.8+ *- Katz-all
-
g 0.75+ - q
o] CN-All, Katz-All :
w 0.7 g, D Ty - 4
Q R
=] AA-All IR, S
< 0.65F o, B G B
0.6f S % ]
0.55- q
CN, Katz, AA
0.5} %‘ """""""""""""""""""" g
0.45 . . , . . .

| |
02 04 06 08 1 1.2 1.4 1.6 1.8
Noise to Signal Ratio

Figure 1. Simulated graphs: Effect of noise

links between pairs which were linked (or had short
paths connecting them) at the previous timestep 7' —1;
this implicit smoothness assumption makes them suf-
fer heavily. This is why they behave as bad as a ran-
dom predictor (AUC 0.5).

Baselines LL, CN-all, AA-all and Katz-all use informa-
tion from the union of all graphs until time 7' — 1.
Since the off-seasonal noise edges are not sufficiently
large to form communities, most of the new edges come
from communities of nodes created in season. This is
why CN-all, AA-all and Katz-all outperform their ‘last-
timestep’ counterparts. As for LL, since links are more
likely to come from the last seasons, it performs well,
although poorly compared to NonParam. Also note
that the changing user features forces the community
structures to change slowly over time; in our experi-
ments, CN-all performs worse that it would when there
was no change in the user features, since the commu-
nities stayed the same.

Table 1 compares average AUC scores for graphs with
and without seasonality, using the lowest noise setting
from Fig. 1. As already mentioned, CN, AA, Katz per-
form very poorly on the seasonal graphs, because of
their implicit assumption of smoothness. Their vari-
ants CN-all, AA-all and Katz-all on the other hand take
into account all the community structures seen in the
data until the last timestep, and hence are better. On
the other hand, for Stationary, links formed in the last
few timesteps of the training data are good predictors
of future links, and so LL, CN, AA and Katz all per-
form extremely well. Interestingly, CN-all, AA-all and
Katz-all are worse than their ‘last time-step’ variants
owing to the slow movement of the user features. We
note, however, that NonParam performs very well in
all cases, the margin of improvement being most for
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Seasonal (T=20) | Stationary (T=20)

NonParam 91+.01 0.99 £ .005
LL 77 +£.03 0.97 £ .006
CN .51 +.02 0.97 + .01
AA .51 £.02 0.95 £ .02
Katz .50 = .02 0.97 + .01
CN-all 71+.03 0.86 £ .03
AA-all .65 £ .04 0.71 £.04
Katz-all 71 £.03 0.87£.03

Table 1. Avg. AUC with and without seasonality.
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Figure 2. AUC scores for a periodic sensor network

the seasonal networks.

REAL-WORLD GRAPHS. We first present results on a
24 node sensor network where each edge represents the
successful transmission of a message !. We look at up
to 82 consecutive measurements. These networks ex-
hibit clear periodicity; in particular, a different set of
sensors turn on and communicate during different pe-
riods (as our earlier “seasons”). Fig. 5.1 shows our
results for these four seasons averaged over several cy-
cles. The maximum standard deviation, averaged over
these seasons is .07. We do not show CN, AA and
Katz which perform like a random predictor. Non-
Param again significantly outperforms the baselines,
confirming the simulation results.

Additional experiments were performed on three
evolving co-authorship graphs: the Physics “HepTh”
community (n = 14,737 nodes, e = 31, 189 total edges,
and T' = 8 timesteps), NIPS (n = 2,865, e = 5,247,
T =9), and authors of papers on Citeseer (n = 20,912,
e =45,672, T = 11) with “machine learning” in their
abstracts. Each timestep looks at 1 — 2 years of pa-
pers (so that the median degree at any timestep is
at least 1). We also considered an evolving stock-
correlation network: the nodes are a subset of stocks
in the S&P500, and two stocks are linked if the corre-
lation of their daily returns over a two month window
exceeds 0.8 (n =424, e = 41,699, T = 49).

"http://www.select.cs.cmu.edu/data

NIPS | HepTh | Citeseer | S&P500
NonParam .87 .89 .89 73
LL .84 .87 .90 .70
CN .74 .76 .69 72
AA .84 .87 .90 .70
Katz .75 .83 .83 .76
CN-all .56 .62 .70 .79
AA-all 77 .83 .83 .76
Katz-all .67 71 .81 .79

Table 2. Avg. AUC in real world Stationary graphs

Table 2 shows the average AUC for all the algorithms.
In the co-authorship graphs most authors keep work-
ing with a similar set of co-authors, which hides sea-
sonal variations, if any. On these graphs we perform
as well or better than LL, which has been shown to be
the best heuristic by Tylenda et al. (2009). On the
other hand, S&P500 is a correlation graph, so it is not
surprising that all the common-neighbor or Katz mea-
sures perform very well on them. In particular CN-all
and AA-all have the best AUC scores. This is primar-
ily because they count paths through edges that exist
in different timesteps, which we do not.

Thus, for graphs lacking a clear seasonal trend, LL
is the best baseline on co-authorship graphs but not
on the correlation graphs, whereas Katz-all works bet-
ter on correlation graphs, but poorly on co-authorship
graphs. NonParam, however, is the best by a large
margin in seasonal graphs, and is better or close to
the winner in others.

5.2. Usefulness of LSH

The query time per datacube using LSH is extremely
small: 0.3s for Citeseer, 0.4s for NIPS, 0.6s for HepTh,
and 2s for S&P500. Since exact search is intractable
in our large-scale real world data, we demonstrate
the speedup of LSH over exact search using simulated
data. We also show that the hash bitsize k picked
adaptively is the largest value that still gives excellent
AUC scores. Since larger k translates to fewer entries
per hash bucket and hence faster searches, our k yields
the fastest runtime performance as well.

EXACT SEARCH vs. LSH. In Fig. 3(a) we plot the
time taken to do top-20 nearest neighbor search for a
query datacube. We fix the number of nodes at 100,
and increase the number of timesteps. As expected,
the exact search time increases linearly with the total
number of datacubes, whereas LSH searches in nearly
constant time. Also, the AUC score of NonParam with
LSH is within 0.4% of that of the exact algorithm on
average, implying minimal loss of accuracy from LSH.

NUMBER OF BiITs IN HasHING. Fig. 3(b) shows the
effectiveness of our adaptive scheme to select the num-
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Figure 3. Time and accuracy using LSH

ber of hash bits (Section 4). For these experiments, we
turned off the smoothing based on the prior datacube.
As k increases, the accuracy goes down to 50%, as
a result of the fact that NonParam fails to find any
matches of the query datacube. Our adaptive scheme
finds k ~ 170, which yields the highest accuracy.

6. Related Work

Existing work on link prediction in dynamic networks
can be broadly divided into two categories: generative
model based and graph structure based.

GENERATIVE MODELS. These include extensions of
Exponential Family Random Graph models (Hanneke
& Xing, 2006) by using evolution statistics like edge
stability, reciprocity, transitivity; extension of latent
space models for static networks by allowing smooth
transitions in latent space (Sarkar & Moore, 2005),
and extensions of the mixed membership block model
to allow a linear Gaussian trend in the model param-
eters (Fu et al., 2010). In other work, the structure
of evolving networks is learned from node attributes
changing over time (Kolar et al., 2010). Although
these models are intuitive and rich, they generally a)
make strong model assumptions, b) require computa-
tionally intractable posterior inference, and c¢) explic-
itly model linear trends in the network dynamics.

MODELS BASED ON STRUCTURE. Huang & Lin (2009)
proposed a linear autoregressive model for individual
links, and also built hybrids using static graph sim-
ilarity features. In Tylenda et al. (2009) the authors
examined simple temporal extensions of existing static
measures for link prediction in dynamic networks. In
both of these works it was shown empirically that LL
and its variants are often better or among the best
heuristic measures for link prediction. Our nonpara-
metric method has the advantage of presenting a for-
mal model, with consistency guarantees, that also per-
forms as well as LL.

7. Conclusions

We proposed a nonparametric model for link predic-
tion in dynamic graphs, and showed that it performs as
well as the state of the art for several real-world graphs,
and exhibits important advantages over them in the
presence of nonlinearities such as seasonality patterns.
NonParam also allows us to incorporate features ex-
ternal to graph topology into the link prediction al-
gorithm, and its asymptotic convergence to the true
link probability is guaranteed under our fairly general
model assumptions. Together, these make NonParam
a useful tool for link prediction in dynamic graphs.
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