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Abstract
This paper develops a nonparametric method of obtaining the minimum of the

long run average cost curve of a firm to define its capacity output. This provides
a benchmark for measuring of capacity utilization at the observed output level
of the firm. In the case of long run constant returns to scale, the minimum of
the short run average cost curve is determined to measure short run capacity uti-
lization. An empirical application measures yearly rates of capacity utilization in
U.S. manufacturing over the period 1968-1998. Nonparametric determination of
the short run average cost curve under variable returns to scale using an iterative
search procedure is described in an appendix to this paper.
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NONPARAMETRIC MEASURES OF CAPACITY UTILIZATION: A DUAL APPROACH

Subhash C Ray
Department of Economics
University of Connecticut

Storrs CT 06269-1063

The capacity output of a firm can be defined in alternative ways. As a physical upper limit, it

measures the maximum quantity of output that a firm can produce from a given bundle of quasi-fixed

inputs even when other (variable) inputs are available without any restriction. This definition, due to

Johansen (1968), is intuitively quite appealing. After all, even when labor, material, and energy are

available in unlimited quantities, a firm can produce only a finite quantity of output from its plant and

equipment of any given size. The actual output produced must be less than or equal to this capacity output.

The rate of capacity utilization, then, is merely the ratio of its actual output and the capacity output level.

Less than 100% capacity utilization may be due either to insufficient demand faced by the firm inducing it

to restrict production to a level below capacity or due to shortage of some critical input (e.g., energy)

holding back production even when there is sufficient demand for the product. A different, and

economically more meaningful, definition of the capacity output due to Cassels (1937) is the level of

production where the firm’s long run average cost curve reaches a minimum. Because we consider the long

run average cost, no input is held fixed. For a firm with the typical U-shaped average cost curve, at this

capacity level of output, economies of scale have been exhausted but diseconomies have not yet set in. The

physical limit defines the capacity of one or more quasi-fixed input. On the other hand, the economic

measure pertains to capacity utilization of all inputs1.

In production economics, considerable interest centers on the output level where the U-shaped

average cost curve of a firm reaches a minimum. In deed, it is the only output level of the firm that is

consistent with long run equilibrium in a constant cost competitive industry. Also, the market demand is

supplied at the lowest cost when produced by the requisite number of identical firms each producing this

specific level of output. In this sense, it is a socially efficient output scale for a typical firm in the industry.

If its actual scale of production is smaller than this efficient scale, a firm can exploit economies of scale and

lower its average cost by increasing its output. Conversely, when actual output exceeds the optimal, the

firm is experiencing diseconomies of scale and reducing output would lower its average cost. Thus,

identifying the optimal economic scale is clearly useful for policy2.

Klein (1960) argued that the long run average cost curve may not have a minimum and proposed

the output level where the short run average cost curve is tangent to the long run average cost curve as an

alternative measure of the capacity output. This is also the approach adopted by Berndt and Morrison

(1981).

In the short run, the economic measure of capacity output would correspond to the level where the

short run average cost curve of the firm reaches a minimum. Of course, when the technology exhibits
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constant returns to scale, the long run average cost curve is horizontal and the capacity level of output is not

defined. In this case, however, at the minimum point the short run average cost curve is tangent to the long

run average cost curve. This helps to determine the economic capacity output level in the short run and

yields a measure of the rate of capacity utilization of the fixed input.

 In the nonparametric literature, Färe, Grosskopf, and Kokkelenberg (1989) provide a

nonparametric model for measuring the physical capacity output and the associated rate of capacity

utilization in the presence of fixed inputs3. By contrast, there is no comparable parametric model. An

apparent reason for this lack of a parametric measure of (physical) capacity utilization is that except for

Leontief-type production functions, the marginal product of any variable input always remains strictly

positive. Therefore, even when some inputs remain fixed, the output continues to increase when the

variable inputs are increased4. For the economic measure of the capacity output level and the rate of

capacity utilization, however, the story is just the opposite. In the case of a parametrically specified cost

function, one typically examines the appropriate first order condition for minimizing the average cost in

order to determine the relevant level of output. For example, Nelson (1989) estimated a Translog variable

cost function to measure capacity utilization in a sample of privately owned electrical utilities in the U.S.

This is not possible in nonparametric analysis. In the existing Data Envelopment Analysis (DEA) literature

considerable attention is devoted to measuring scale efficiency (e.g., Färe, Grosskopf, and Lovell (1994)

Chapter 3). One can solve appropriate DEA models to determine whether the actual output level of a firm

minimizes average cost and, if not, how far its average cost could be lowered by an appropriate change in

the level of output. The literature does not explain, however, how to determine the output level that

minimizes the average cost of a firm facing a given vector of input prices.

The present paper extends the DEA literature by formulating a procedure for determining this

efficient output level in the single output case5. We consider both the long run and the short run average

cost curves. For a determinate minimum of the average cost curve in the long run we assume variable

returns to scale. Both constant and variable returns to scale are considered for the short run when some

inputs are held fixed.  In the empirical application using annual aggregate data from the Bureau of Labor

Statistics for input quantities and prices as well as output quantities for U.S. manufacturing for the years

1968-98. For this empirical application, a production technology characterized by long run constant returns

to scale and non-regressive technical change is conceptualized. We measure both the physical and the

economic capacity output levels and the corresponding rates of capacity utilization in the short run.

 The paper unfolds as follows. Section 2 provides a brief theoretical background from production

economics. Section 3 presents the relevant DEA models for finding the minimum point on the long run

average cost curve under variable returns to scale, the minimum of the short run average cost curve under

long run constant returns to scale, and also the model for finding the physical capacity output level for

given level of the quasi-fixed inputs.. Section 4 contains an empirical application using the BLS data for

U.S. manufacturing. Section 5 concludes. A search procedure for finding the minimum of the short run

average cost function under variable returns to scale is proposed in an appendix.



4

2. The Theoretical Background

Consider a firm in some industry producing the output vector y +∈ mR using the input vector x .+∈ nR Let the

 technology  faced by the industry be described by the production possibility set

T = {(x, y): x can produce y}. (1)

If we assume that both inputs and outputs are freely disposable and the production possibility set is convex,

then

(a) if (x0, y0)∈T and x1≥ x0, then (x1, y0) ∈T;

(b) if (x0, y0)∈T and y1≤ y0, then (x0, y1)∈T; and,

(c) if (x0, y0)∈T and (x1, y1)∈T, then (λx0+(1-λ)x1, λy0+(1-λ)y1)∈T  for  0≤ λ≤ 1.

If we additionally assume globally constant returns to scale, then

(d)  if (x, y) ∈T, then (kx, ky)∈T for k≥  0.

For any specific output bundle y0, the input set is

V(y0) = {x: (x, y0) ∈T}.   (2)

Thus, V(y0) consists of all input bundles x from which it is possible to produce the output bundle y0. Given

an input price vector w0, the minimum cost of producing the output y0 is

C(y0, w0) = min w0/x

                        subject to x∈V(y0). (3)

Suppose that x* is the cost minimizing input bundle and

C* = w0/x* = C(y0, w0). (4)

For a scalar output, the average cost at the output level y0  for input price w0 is

AC( y0, w0) = 
0

0
0 ),(
y

wyC
. (5)

The optimal output level, then, is one that minimizes AC(y, w) for a given w.6

From a parametric specification of the cost function, one can derive the output in the single output

case and the optimal scale in the multiple output case from the first order condition for minimizing the (ray)

average cost, when an interior solution exists for a minimum. By contrast, a nonparametric procedure like

DEA yields a measure of the minimum cost only at a specific level (or scale) of output. Hence, analytical

derivation of the optimal level or scale of output is not possible. One can solve the problem indirectly,

however, by utilizing a number of useful results from production economics.

Consider, first, the most productive scale size (MPSS) of a given input-output mix (x, y). Frisch

(1965) defined the technically optimal production scale of an input bundle in the single output scale  as one

where the ray average productivity reaches a maximum. Banker (1984) generalized Frisch’s concept of the

technical optimal production scale of a given input mix to the multiple-output case. A feasible input-output

combination (x0, y0) is an MPSS for the specific input- and output-mix if for every feasible input-output

combination (x, y) satisfying x = βx0 and y = αy0, .1≤β
α Further, locally constant return
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s to scale holds at (x0, y0) if it is an MPSS (See proposition 1 in Banker (1984)).

Next, note that if the input bundle x* minimizes the average cost at the output level y*, then

(x*, y*) is an MPSS.. Suppose this is not true. Then, by the definition of an MPSS there exist non-negative

scalars (α, β) such that (βx*, αy0) is a feasible input-output combination satisfying .1>β
α Define x**= βx*

and C**= w0/x**. Then, at input price w0, the minimum cost of producing the output bundle (αy0) cannot be

any greater than C**. This implies that

AC (αy0, w0) = ).,(.'),( 0
0

0

*0

0

**

0

0
0 wyAC

y
xw

y
C

y
wyC

α
β

α
β

αα
α

==≤

But, by assumption .1<α
β

Thus,

     AC (αy0 , w0) < AC (y0 , w0).

Hence, y0 cannot be the output level where average cost reaches a minimum. This shows that the average

cost minimizing input-output combination must be an MPSS and, therefore, exhibit locally constant returns

to scale.

When the technology exhibits globally constant returns to scale, the cost function is homogeneous

of degree 1 in output. Thus,

C(ty , w0) = t. C(y , w0), for all t>0.

Setting  t = ,1
y yields C(y, w0) = y. C(1, w0) so that

AC (y, w0) = ),1(),( 0
0

wC
y
wyC = for all y.

Therefore, the minimum average cost attained at the efficient output level for a variable returns to scale

technology is the same as what would be the average cost at every output level (scale) if the technology

exhibited constant returns everywhere.

Finally, a cost indirect representation of the technology is in terms of the indirect output set:

IP (w, C) = {y: (x, y)∈T, w/x≤C}. (6a)

It is the set of all output quantities that can be produced from input bundles that cost no more than C at

price w. The indirect output isoquant may be defined as the set

}.1),,(),,(:{),( >∉∈= φφ CwIPyCwIPyyCwPI (6b)

Neoclassical duality in production ensures that

),( wyCC =  if and only if ).,( CwPIy∈
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In the single output case, C(y, w) is the minimum cost of producing output y at price w of the inputs and at

the same time y is the maximum output that can be produced from any bundle that a firm can buy if it

incurs an expenditure C.

3. The DEA Methodology

Suppose that we observe the input-output bundles of N firms. Let (xj, yj) be the observed input-

output bundle for firm j. Clearly, every actually observed bundle is feasible. Hence, under the assumption

of free disposability of inputs and outputs and convexity, the production possibility set under the VRS

assumption is

∑ ∑ ∑
= = =

=≥=≤≥=
N

j

N

j

N

j
jj

j
j

j
j

V NjyyxxyxT
1 1 1

)},...,2,1(,0;1;;:),{( λλλλ (7a)

and if CRS is assumed to hold everywhere

∑ ∑ ∑
= = =

=≥≤≥=
N

j

N

j

N

j
j

j
j

j
j

C NjyyxxyxT
1 1 1

)},...,2,1(,0;;:),{( λλλ (7b)

3.1 Long run Cost Minimization

For any scalar output y0 and input price w0 the minimum cost under the CRS assumption is

=),( 00** wyC min xw /0

s.t.  ∑
=

≤
N

j

j
j xx

1
;λ

       ∑
=

≥
N

j
jj yy

1
0 ;λ (8)

                       ).,...,2,1(;0 Njj =≥λ

Define

    
0

0
0

**
* ),(

y
wyC

=α . (9)

Now consider variable returns to scale. Suppose that the y* is the output level where the average cost

reaches a minimum under VRS and x* is the corresponding input bundle that minimizes the total cost for y*.

Then, as argued above, locally constant returns to scale hold at (x*, y*). Hence the total or the average cost

of producing y* at input price w0 is the same whether VRS or CRS is assumed. Now, because under the
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assumption of CRS the average cost is the same at all levels of the output, *α  is also the average cost at

output y**. Therefore the total cost of producing output y* at price w0 (both under CRS and VRS) is

..),( **0* CywyC ≡=α (10)

Now we can determine y* as the largest y in ),( 0 CwPI by solving the following LP problem:

y* = max   y

     s.t. .  ∑
=

≤
N

j

j
j xx

1
;λ

∑
=

≥
N

j
jj yy

1
;λ (11)

∑
=

=
N

j
j

1
;1λ

;*/0 yxw α≤

).,...,2,1(;0 Njj =≥λ

The method outlined above can be explained for the 1-output, 2-input case diagrammatically as follows.

In Figure 1, the quadrant to the left of the origin shows the isoquant map of the firm with input x1 measured

along the horizontal axis and input x2 up the vertical axis. Tangency of the firm’s expenditure line(s) with

slope equal to the ratio of the input prices with the various isoquants determines the cost-minimizing input

bundle for the relevant output level. Suppose that the scale of input x2 has been normalized so that its price

equals unity. In that case, the vertical intercept of the tangent line also measures the minimum cost of

producing that output level. Thus, the vertical axis is utilized to measure both the quantity of input x2 and

the cost, C. In the quadrant to the right of the origin in the same diagram, we measure the quantity of output

y. A point on the curve labeled TC in this quadrant shows the combinations of the output level y (that

corresponds to any particular isoquant) and the vertical intercept of the (cost-minimizing) line tangent to

that isoquant. Thus, it is the usual total cost curve. It may be noted that just as for any isoquant the (tangent)

expenditure line shows the minimum cost of producing the corresponding output level, the isoquant tangent

to the line defines the maximum output level that can be produced from any input bundle that costs no more

than the specified amount of expenditure. Consider, for example, the pair (y1, C1) on the TC curve.

Measured vertically, C1 is the minimum cost of producing output y1 at the given input prices. At the same

time, measured horizontally, y1 is the maximum output producing from an expenditure of C1 at these prices.

As one moves along the TC curve, the average cost first declines and then increases with the output level.

At output y2 in this diagram the average cost reaches a minimum and locally constant returns to scale holds

at this point. If, instead, the technology exhibited constant returns to scale everywhere, the average cost

would have remained constant at all levels of output (including y*) so that the total cost would have been
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the dotted line TC* which is a ray through the origin. We first solve the DEA problem for cost minimization

at a set of given input prices for any arbitrary output level under the assumption of constant returns. The

resulting average cost is defined as α*. Next we search for the output level where the average cost

corresponding to the TC curve is α*. Thus, at the output level, the total cost would equal α* times y. This is

accomplished by solving the DEA-LP problem in (11).

3.2 Long run Constant Returns and Short run Capacity Utilization

When the technology exhibits long run constant returns, the long run average cost curve is

horizontal and the capacity level of output is not defined. But, in this case, finding the minimum point of

the short run average cost (SAC) curve is quite simple.

Assume that the input vector x of the firm can be partitioned in the short run as

x = (v,K)

where v is the vector of its variable inputs while K is the vector of quasi-fixed inputs. Correspondingly, wv

and wr are the price vectors of variable and fixed inputs, respectively. For a given bundle of quasi-fixed

inputs, K0, the firm’s fixed cost (wr’K0) is given and the firm’s optimization problem is to minimize the

variable cost for the given output level, y0. The firm’s minimum variable cost function is

=),,( 00 yKwVC v min  ).(),(:' 00 yVKvvwv ∈ (12)

Thus the firm’s short run total cost is

SRTC = VC(wv, K0,y0) + wr’K0            (13a)

and the short run average cost is

.
'),,(

0

000

y
KwyKwVC

SAC rv +
= (13b)

Because we assume long run CRS, as explained before, this SAC at its minimum will be equal to the

constant long run average cost (LAC). Therefore, we first solve the long run cost minimization problem (8)

and compute the LAC ).( *α .

Thus, if *
sy minimizes the SAC for K=K0, then the short run total cost is **

syα and the variable

cost is .' 0
** Kwy rs −α

  We can, therefore determine *
sy as

*
sy  = max   y

s.t. .  ∑
=

≤
N

j

j
j vv

1
;λ

∑
=

≥
N

j
jj yy

1
;λ (14)

∑
=

≤
N

j
j KK

1
0 ;λ

;'' 0
* Kwvwy rv ≥−α ).,...,2,1(;0 Njj =≥λ
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The optimal solution of this problem yields the short run capacity output level. The economic measure of

capacity utilization rate is

.*
s

o

y
y

=ρ (15)

3.3 Physical Measure of Capacity Utilization

Finally, we recall the DEA procedure proposed by Färe, Grosskopf, and Lovell for measuring the

maximum output producible from the quasi-fixed input K0 without any restriction on the variable inputs:

max Fϕ

                         s.t. .       ∑
=

≤−
N

j

j
j vv

1
;0λ

           ∑
=

≤
N

j
jj KK

1
0 ;λ (16)

           ∑
=

≥
N

j
Fjj yy

1
0 ;ϕλ

           .,...,2,1;0 Njj =≥λ

Note that in this problem the variable input constraints are irrelevant and can be deleted. The (physical)

capacity output level is 0
* yy FF ϕ= . It represents the output level that a firm operating at full technical

efficiency can produce from the given quasi-fixed input bundle K0 when there is no restriction on the

availability of the variable inputs. As Färe, Grosskopf, and Kokkelenberg argued, the actual output y0

would be even lower than what is maximally producible from K0 and the observed bundle of its variable

inputs if it is not technically efficient.

In order to measure the technical efficiency of the firm producing output y0 from its input bundle

x0 = (v0, K0) we solve the DEA model due to Charnes, Cooper, and Rhodes (CCR):

                                      max Cϕ

                         s.t. .       ∑
=

≤
N

j

j
j vv

1

0 ;λ

           ∑
=

≤
N

j
jj KK

1
0 ;λ (17)

           ∑
=

≥
N

j
Cjj yy

1
0 ;ϕλ

           .,...,2,1;0 Njj =≥λ
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The technical efficiency of the firm is

*

1

C

TE
ϕ

= (18)

and the maximum output producible from the firm’s observed bundle of variable and fixed inputs is

0
** yy CC ϕ= . (19)

It should be emphasized that the physical measure of capacity utilization is

.*

**

F

C

F

C
F y

y
ϕ
ϕρ == (20)

In particular, the rate of physical capacity utilization is not measured by the ratio of the actual output y0 and

the capacity output yF because the ratio incorporates technical inefficiency on top of under-utilization of

capacity.

4. The Empirical Application

In this paper we examine annual data for total manufacturing in the U.S for the years 1968-98. A

production technology involving a single output and 5 inputs is considered. Output is measured by a

quantity index of gross output. The inputs are (a) labor, (b) capital, (c) energy, (d) materials, and (e)

purchased services. All inputs are measured by the appropriate quantity indexes. We treat capital as quasi-

fixed in the short run. Price indexes of the individual inputs were used as the relevant input prices in the

cost-minimization problems. It is assumed that constant returns to scale hold in the long run. Further,

technical change is assumed to be non-regressive. Therefore, all input-output combinations from previous

years along with the current input-output bundle in any year are considered feasible during that year. Thus,

in effect, we consider a sequential frontier.

A problem one faces in applying DEA to a time series data set of inputs and output is that we have

only one observed input-output combination for each period. Even when non-regressive technical change is

allowed only the current and past data can be used to construct the production possibility set for any

particular year. An implication of this is that for the earlier years in the sample there will be too few

observations to use for any meaningful approximation of the production frontier. To overcome this

shortcoming we decided to use the data for the years 1948 through 1967 as initial values and started

constructing the sequential frontier only from the year 1968.

Table 1 reports the actual output quantity indexes along with the physical and the economic

measures of the capacity output for individual years. The implied rates of capacity utilization for the

alternative measures are also reported in separate columns. Additionally, the official measure of capacity

utilization in manufacturing from the U.S. Federal Board of Governors7 is included for comparison.

For the different years, the actual output level is shown in the column Q. The columns named QA

and QB are, respectively, the economic and the physical capacity levels of output. The corresponding
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capacity utilization rates are shown as CAPUA and CAPUB, respectively. The Federal Reserve’s measures

of capacity utilization for the different years are reported in the column named CAPUFRB. Several

interesting points may be noted. Overall, the physical capacity utilization measure and the official measure

are in broad agreement with a correlation coefficient of 0.712. By contrast, the economic measure has a

much lower correlation (0.438) with the official measure. However, during the stagflation years (1974-82),

the different measures are in much closer agreement. For this sub-period, the pair-wise correlations

increase to 0.80 and 0.71, respectively. Second, the economic capacity utilization rates are, in general,

much higher than either the physical or the official utilization rate. In 12 of the 31 years the actual output in

manufacturing is where short run average cost reaches a minimum.8 Except for 6 years (1975-76, 1979-82)

the actual output was no less than 90% of the economic capacity output. On the other hand, The physical

capacity utilization rate was below 90% in all years except 1968-69 and 1973. In deed, it was below 80% in

22 out of the 31 years considered falling even below 70% during 1981-83. Another interesting point is that

the physical capacity utilization rate was below the official rate for every year during 1974-98.

The empirical evidence suggests that during most years the level of production in U.S.

manufacturing was quite close to the optimal scale for the given level of the capital input. Thus, any

potential reduction the average cost could come only from improvement in efficiency rather than from

economies of scale. At the same time, the physical capacity utilization measure shows that the available

quantity of the capital input was not a bottleneck and the manufacturing output could have meet

substantially additional demand. This is especially true for the years since 1974.

5. Conclusion

In this paper, we propose a nonparametric procedure for measuring the output level where the long run

average cost curve of a firm reaches a minimum under variable returns to scale. This is the long run

capacity output of the firm. Comparing its actual output with this capacity output we obtain a dual measure

of capacity utilization. In the case of long run CRS, we find the minimum point of its short run average cost

curve of a firm to measure its short run capacity utilization.  The empirical application to U.S.

manufacturing shows that in most years the actual output was close to its economic capacity level. By

contrast, the physical capacity measure shows considerable under utilization.



12

                                          Figure 1
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Appendix
Short run Capacity Utilization under Variable Returns to Scale

Suppose that we consider a firm in the short run when one or more inputs are treated as quasi-

fixed. For simplicity, let x be the vector of variable inputs and w the corresponding vector of  input prices.

Further, let K be a single quasi-fixed input and r the price of this input. Thus, the variable cost of the firm is

VC = w’x (A1)

and the fixed cost is

FC = rK. (A2)

Suppose that the observed input bundles are (xj, Kj) j =1,2,…,N. Then, under variable returns to scale, the

short run variable cost minimization problem of a firm using K0 units of the quasi-fixed input to produce

output y0  is:

min VC = w’x

s.t.       ∑
=

N

j

j
j x

1
;λ

           ∑
=

≤
N

j
jj KK

1
0 ;λ (A3)

           ∑
=

≥
N

j
jj yy

1
0 ;λ

           ∑
=

=
N

j
j

1
;1λ

            .,...,2,1;0 Njj =≥λ

 Let VC*=w’x* be the optimal solution and the short run cost of the firm be

           SRTC = w’x* + rK0 (A4).

The short run average cost of the firm is

SAC =
0

*'

y
rKxw o+

. (A5)

The marginal cost (MC) at the output level y0 is given by the value of the dual variable associated with the

output constraint at the optimal solution of this variable cost minimization problem. At the output level

where the short run average cost curve of the firm reaches a minimum, SAC equals the marginal cost. If the

short run average cost curve has the usual U-shape, SAC is declining at an output level where MC is lower

than the SAC and rising where MC exceeds SAC. Unlike in the case of the long run average cost function,
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in the case of the SAC function we actually need to employ an iterative search procedure consisting of the

following steps.

Step 1:  Select some output level y0, a positive step length δ , and a small positive number ε (e.g., 0.00001).

Step 2.  Solve the DEA-LP problem (A3) at y = y0  for the given w and K0.

            Compute SAC at y0  and compare it with the MC obtained from the optimal solution of (A3).

Step 3: If SAC = MC, then stop. SAC reaches a minimum at y0.

            If SAC > MC, go to Step 4.

            If SAC < MC, go to Step 5.

Step 4.  Set y = y + δ. Repeat steps 2-3. Keep increasing y by δ so long as SAC>MC.

If SAC < MC, set δ =½δ. If  δ is less than ε, then stop. Otherwise set  y = y - δ.

             Go to Step 2.

Step 5: Set y = y - δ. Repeat steps 2-3. Keep reducing y by δ so long as SAC < MC.

If SAC < MC, set δ =½δ. If  δ is less than ε, then stop. Otherwise set  y = y + δ.

             Go to Step 2.

Figure 2 illustrates this search procedure. We begin with the output level y0. Here SAC exceeds MC and we

move to output y1 (= y0 + δ ). Here again, SAC > MC and we increase output further by δ to move up to y2.

At this point MC exceeds SAC signifying that we have gone past the minimum of the SAC curve. We now

reduce output by ½δ and reach y3.  where  again MC is less that SAC. This implies that the (short run)

average cost minimizing output lies between y3 and y2. We move further to the right by adding ¼δ  to y3

and reach y4.. Here again, MC exceeds SAC and we have overshot the target. The desired output level lies

between y3  and y4. We select the mid point by subtracting  8
1 δ  from y4. Because the step size has become

very small, we terminate the process here.
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Figure 2.
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Table 1. Actual and Capacity Levels of Output

YEAR Q QA QB CAPUA CAPUB CAPUFRB

1968 57.7 60.562 61.227 0.95274 0.9424 87.1
1969 59.4 63.713 64.413 0.9323 0.92218 86.6
1970 56.5 62.164 67.183 0.90888 0.84099 79.4
1971 58.1 63.923 69.261 0.9089 0.83886 77.9
1972 63.3 63.3 71.339 1 0.88732 83.4
1973 67.8 67.8 75.079 1 0.90305 87.7
1974 66.1 71.803 79.511 0.92057 0.83133 83.4
1975 62.5 75.431 83.528 0.82857 0.74825 72.9
1976 68.2 78.434 86.853 0.86952 0.78524 78.2
1977 73.9 81.939 90.732 0.9019 0.81449 82.6
1978 77.8 85.439 94.61 0.91059 0.82232 85.2
1979 78.7 89.191 98.766 0.88238 0.79683 85.3
1980 75.3 93.444 103.476 0.80583 0.72771 79.5
1981 75.6 107.796 108.324 0.70132 0.69791 78.3
1982 72.7 100.699 111.51 0.72195 0.65196 71.8
1983 75.9 75.9 112.341 1 0.67562 74.4
1984 83.7 83.7 115.388 1 0.72538 79.8
1985 86 86 119.267 1 0.72107 78.8
1986 88.5 88.5 122.453 1 0.72273 78.7
1987 91.6 91.6 124.946 1 0.73311 81.3
1988 96.1 96.1 127.163 1 0.75572 83.8
1989 96.6 97.88 129.518 0.98692 0.74585 83.6
1990 97.3 100.288 132.703 0.97021 0.73322 81.4
1991 95.4 102.486 135.613 0.93086 0.70347 77.9
1992 100 104.684 138.521 0.95525 0.72191 79.4
1993 103.3 106.987 141.569 0.96553 0.72968 80.5
1994 108.7 109.395 144.755 0.99365 0.75092 82.5
1995 113.4 113.4 149.603 1 0.75801 82.6
1996 116.9 116.9 155.006 1 0.75417 81.5
1997 123.5 123.5 161.932 1 0.76267 82.4
1998 130.7 130.7 170.104 1 0.76835 80.9
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1 See footnote 5 in Klein’s paper.
2 Klein (1960) emphasized the welfare theoretic foundation of this measure of the capacity output.
See also Chamberlin (1933), Kaldor (1935) and Paine (1936).
3 Färe, Grosskopf, and Kokkelenberg proposed their physical measure as an alternative to the cost-based
measure.
4 An example of a parametric production function with a physical upper limit of the output quantity
producible from a fixed input (K0) even with unlimited quantities of the variable input (L) is

                                .0,,;
1

0 >
+

= − βαβ

α

A
e

AK
y L

Here the output level asymptotically approaches (AK0
α) as L goes to infinity.

5 One can easily apply the same analytical format to determine the optimal scale of production for any
output vector in the multiple output case.
6  In the multiple output case, we look at the ray average cost

RAC(ty0,w0)= t
wtyC ),( 00

.
The optimal output scale (t*) is one that minimizes RAC(ty0,w0).
7 For  an assessment of the Federal Reserve’s measure of capacity utilization, see Shapiro (1989) and also
Klein and Long (1973).
8 The actual average cost need not be minimum, however, when allocative and technical inefficiencies
exist.
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