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ABSTRACT
In this paper, we present a novel information theoretic approach
to image segmentation. We cast the segmentation problem as the
maximization of the mutual information between the region labels
and the image pixel intensities, subject to a constraint on the to-
tal length of the region boundaries. We assume that the probability
densities associated with the image pixel intensities within each re-
gion are completely unknown a priori, and we formulate the prob-
lem based on nonparametric density estimates. Due to the nonpara-
metric structure, our method does not require the image regions to
have a particular type of probability distribution, and does not re-
quire the extraction and use of a particular statistic. We solve the
information-theoretic optimization problem by deriving the asso-
ciated gradient flows and applying curve evolution techniques. We
use fast level set methods to implement the resulting evolution. The
evolution equations are based on nonparametric statistics, and have
an intuitive appeal. The experimental results based on both syn-
thetic and real images demonstrate that the proposed technique can
solve a variety of challenging image segmentation problems.

1. INTRODUCTION

Image segmentation has been an important problem in image anal-
ysis with applications to pattern recognition, object detection, and
medical image analysis. Thus, there has been a considerable amount
of work on image segmentation including those using curve evolu-
tion techniques [2, 3, 4, 7, 8, 10, 11, 14, 15]. For example, Paragios
et al. [8] developed a parametric model for analysis and segmenta-
tion of textured images. Yezzi et al. [15] developed a segmentation
technique using a particular discriminative statistical feature such
as the mean or the variance of image regions. These and many other
recent works (such as [11]) have been inspired by the region com-
petition model of Zhu and Yuille [16].

In all the work mentioned above, the typical statistical model
for the underlying image was in a parametric form. However, this
parametric approach is not robust in the sense that its performance
is severely affected when the parametric model is not correct.

In response to the need for robustness in statistical analysis,
nonparametric methods [9] have been widely used in machine learn-
ing problems. Nonparametric methods estimate the underlying dis-
tributions from the data without any assumptions about the struc-
tures of the distributions. On the other hand, mutual information
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has been used as a tool to solve a variety of problems such as MR-
CT image registration [13], 3-D pose alignment [12], and measur-
ing global and local spatial correspondence [1].

In this paper, we propose a novel approach to image segmen-
tation. Here we focus on images with two regions, but the method
can be generalized to multi-region images. We segment a given im-
age into the foreground and the background by evolving a closed
curve with curve length penalty so that we maximize the nonpara-
metric estimate of the mutual information between the binary (fore-
ground region inside the curve/ background region outside the curve)
label determined by the curve and the image pixel intensity. The
resulting curve evolution formula involves a nonparametric likeli-
hood ratio and other terms explaining the change of density esti-
mates due to the evolution of the curve. To compute the density
estimates, we use the fast calculation methods proposed in [6].

The remainder of this paper is organized as follows. Section 2
presents the novel information theoretic objective functional for im-
age segmentation. Section 3 then derives our curve evolution-based
approach to minimizing this objective functional. We then present
experimental results in Section 4, using both synthetic and real im-
ages. Finally, we conclude in Section 5 with a summary.

2. INFORMATION THEORETIC APPROACH TO IMAGE
SEGMENTATION

In this section, we state the problem, the assumptions, and present
our information theoretic segmentation criterion.

2.1. Image Model

The image model we are dealing with has two unknown regions
�� and �� with the associated unknown distributions �� and ��.
The image intensity at pixel � denoted by ���� is drawn from ��
if � � �� and from �� if � � ��. The left-hand side of Figure 1
illustrates the image model.

The goal of curve evolution is to move the curve �� such that
it matches the boundary between �� and ��, i.e. the region inside
the curve � and the region outside the curve �� converge to ��

and �� respectively.

2.2. Mutual Information between Image Intensity and the La-
bel

We present an information theoretic energy functional based on mu-
tual information between a binary region label and the intensity val-
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Fig. 1. Left: Illustration of the foreground region (��), the back-
ground region (��), and the associated distributions (�� and ��).
Right: Illustration of the curve (��), the region inside the curve (�),
and the region outside the curve (��).

ues of an image. We define the binary label determined by the curve
�� as a mapping from the image domain � to ��� 	� denoted by

 � � � ��� 	� as follows:


��� �

�
� if � � �
	 if � � ��

(1)

Let� be a random variable which is uniformly distributed over
the image domain �, then
��� becomes a binary random variable
taking value � or 	 with probability ���

��� and ����
��� respectively,

where � � �, the cardinality of a set, is given by the area of the set.
Note that
��� conveys information about the image intensity ����
at a random location via � . The mutual information between the
image intensity at � and the label at � is given formally as fol-
lows:
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where the differential entropy [5] of a continuous random variable
� with a support � is defined by

���� � �

�
�

����� ��	 ������� (3)

2.3. Utility of Mutual Information as a Segmentation Statistic

Since I(X), X, L(X) form a Markov chain, by the data processing
inequality,

�������
���� � ���������� (4)

where equality holds if and only if I(X), L(X), X form a Markov
chain, i.e., I(X) and X are conditionally independent given L(X).
If 
��� is not the correct segmentation, then knowing 
��� is not
enough to determine whether the distribution of ���� is �� or ��,
and thus ���� is not independent of� . Therefore, �������
����
is maximized if and only if 
��� gives the correct segmentation.

2.4. The Energy Functional

Since �������
���� is a functional of the unknown densities ��
and ��, we need to estimate the mutual information:


�������
����

� 
�������� ��
��� � � �
�������
��� � � �

� ��
��� � 	�
�������
��� � 	� (5)

We combine the mutual information estimate with the typical reg-
ularization penalizing the length of curve. This regularization pre-
vents the formation of fractal segmenting curves. The resulting en-
ergy functional to minimize is then given by
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��� (6)

where
�
��
�� is the length of the curve and � is a scalar parameter.

3. NONPARAMETRIC DENSITY ESTIMATION AND
GRADIENT FLOWS

This section derives the curve evolution formula for minimizing
the energy functional (6) using nonparametric Parzen density es-
timates.

3.1. Estimation of the Differential Entropy

The expression (5) involves differential entropy estimates and we
use nonparametric Parzen density estimates in order to estimate the
differential entropies.

Since 
������� is independent of the curve or the label, we just
consider 
�������
��� � � � and 
�������
��� � 	�, which
are given as follows:
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where (7) is an approximation of the entropy using weak law of
large numbers, and (8) uses a continuous version of the Parzen den-

sity estimate [9] of ��
���
� ������	���	
 . In (8), the kernel is

���� � ��
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��� , where � is a scalar parameter. Similarly,
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3.2. Gradient Flows for General Nested Region Integrals

Note that (8) and (9) have nested region integrals. For a general
nested region integral of the form

�
�

������ ��� �� where ���� �� �

�
�
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���
�� (10)

we have derived the gradient flow (the negative of the gradient),
which is given by
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where �� is the outward unit normal vector.



3.3. The Gradient Flows for the Information Theoretic Energy
Functional

Now based on (11), (8) and (9), the gradient flow for ����� of (6)
is obtained as follows:
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where � is the curvature of the curve and ��� �� is the gradient
flow for the curve length penalty, whose derivation can be found
in [14].

The first term of this gradient flow is a likelihood ratio test which
compares the hypotheses that the observed image intensity ����� at
a given point on the active contour �� belongs to the foreground re-
gion � or the background region �� based upon the current esti-
mates of the distributions �

�
and �

��
. The second and third terms

respond to the changes incurred on the distributions �� and �
��

by
moving a given point on the active contour.

These last two terms distinguish this active contour model from
those obtained using coordinate descent, in which alternating iter-
ations of estimating the distribution parameters inside and outside
the curve are followed by likelihood ratio tests to evolve the curve
as in the “Region Competition” algorithm of Zhu and Yuille [16].
In such algorithms, changes in the distributions are not directly cou-
pled with likelihood ratio tests. In contrast, the mathematical struc-
ture of our nonparametric estimators are built directly into the curve
evolution equation through the last two terms.

Since the evaluation of the density estimate at each pixel takes
 �# of pixels� time, calculation of the gradient flow takes
 �(# of pixels)�� time. We reduced the computational complexity
to  �# of pixels� time using the fast Gauss transform [6] in calcu-
lating the density estimates.

4. EXPERIMENTAL RESULTS

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 2. Evolution of the curve on a synthetic image: the different
mean case.

We present experimental results on synthetic images and a real im-
age of a leopard. Three synthetic images are generated by three sets
of distributions: two Gaussian distributions with different means,
two Gaussian distributions with different variances, and two distri-
butions with the same mean and the same variance.

Figure 2 shows the result for the first case, where the two distri-
butions for the foreground and the background have different means
and the same variance.

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 3. Evolution of the curve on a synthetic image: the different
variance case.
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(a) image (b) with boundary (c) �� (d) ��

Fig. 4. Example image with two regions (boundaries marked in
(b)), where the foreground has a bimodal density ��, and the back-
ground has a unimodal density ��. The two densities �� and ��
have the same mean and the same variance.

Figure 3 shows the result for the second case, where the two
distributions for the foreground and the background have different
variances and the same mean.

For these two cases, the method of Yezzi et al. [15] would re-
quire the selection of the appropriate statistic a priori, whereas our
method does not.

Now we consider a more challenging image shown in Figure 4(a).
The two underlying distributions are illustrated in Figure 4(c) and
Figure 4(d). Since the two distributions have the same mean and
same variance, it is hard even for a human observer to separate the
foreground from the background. In order to let readers see the
foreground, we show the actual boundaries by a curve in Figure 4(b).
For this kind of image, the methods based on means and variances
such as that proposed by Yezzi et al. [15] would no longer work.

Figure 5 shows our segmentation results. As shown in Figure 5(a),
we have used an automatic initialization with multiple seeds. For
this kind of image, using a simple initialization as in the examples
of Figure 2 and Figure 3 leads to a large number of iterations, and
in some cases the curve may get stuck in a local optimum. The
power of the multiple-seed initialization is that it observes entire
regions and the evolution of the curve occurs globally. Figure 5(b)
and Figure 5(c) show the intermediate stages of the evolution, where
the seeds in the background region gradually shrink at each itera-
tion whereas those in the foreground region grow. Figure 5(d) gives
the segmentation result.

We now report the result for a leopard image, which is similar
to the case of bimodal versus unimodal density example of Figure 5.
Figure 6(d) shows the segmentation result. The final curve cap-
tures the main body of the leopard and some parts of its tail and
legs. The parts of the tail and the legs that are missing look similar
to the background, which makes a perfect segmentation difficult.
Paragios et al. [8] performed a similar experiment on a leopard im-
age. Their supervised texture segmentation algorithm requires an
image patch taken from the leopard and an image patch taken from
the background in advance as an input to the algorithm. It is no-
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Fig. 5. Evolution of the curve on a synthetic image: bimodal versus
unimodal densities.

(a) original (b) initial

(c) intermediate (d) final

Fig. 6. Evolution of the curve on a leopard image.

ticeable that our method, which is unsupervised, can segment this
complex image as accurately as their supervised algorithm.

5. CONCLUSION

We have developed a new information theoretic image segmenta-
tion method based on nonparametric statistics and curve evolution.
We have formulated the segmentation problem as one of maximiz-
ing the mutual information between the region labels and the pixel
intensities, subject to curve length constraints. We have derived the
curve evolution equations for the optimization problem posed in
our framework. Due to the nonparametric aspect of our formula-
tion, the proposed technique can automatically deal with a variety
of segmentation problems, in which many currently available curve
evolution-based techniques would either completely fail or at least
require the a priori extraction of representative statistics for each re-
gion. We use fast techniques for the implementation of curve evo-
lution and nonparametic estimation, which keep the computational
complexity at a reasonable level. Our preliminary experimental re-

sults have shown the strength of the proposed technique in accu-
rately segmenting real and synthetic images.

We have recently extended our method to problems involving
more than two regions. Our current work involves use of spatially
dependent probability density functions for accurate texture mod-
eling and segmentation.

6. REFERENCES

[1] F. Bello and A. Colchester. Measuring global and local spa-
tial correspondence using information theory. In Proceedings
of the First International Conference on Medical Computing
and Computer-Assited Intervention, 1998.

[2] V. Caselles, F. Catte, T. Col, and F. Dibos. A geometric model
for active contours in image processing. Numerische Mathe-
matik, 66:1–31, 1993.

[3] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic snakes. Int.
J. Computer Vision, 1998.

[4] T. Chan and L. Vese. Active contours without edges. IEEE
Trans. on Image Processing, 10(2):266–277, February 2001.

[5] T. M. Cover and J. A. Thomas. Elements of Information The-
ory. Wiley-Interscience, 1991.

[6] L. Greengard and J. Strain. The fast Gauss transform. SIAM
J. Sci. Stat. Comput., 12(1):79–94, 1991.

[7] R. Malladi, J. Sethian, and B. Vemuri. Shape modeling with
front propagation: a level set approach. IEEE Trans. Pattern
Anal. Machine Intell., 17:158–175, 1995.

[8] N. Paragios and R. Deriche. Geodesic active regions and level
set methods for supervised texture segmentation. Int. J. Com-
puter Vision, 2002.

[9] E. Parzen. On estimation of a probability density function and
mode. Annals of Mathematical Statistics, 33(3):1065–1076,
1962.

[10] R. Ronfard. Region-based strategies for active contour mod-
els. Int. J. Computer Vision, 13:229–251, 1994.

[11] C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia. A
level set method for image classification. In Int. Conf. Scale-
Space Theories in Computer Vision, pages 306–317, 1999.

[12] P. Viola and W. M. Wells. Alignment by maximization of mu-
tual information. International Journal of Computer Vision,
24(2):137–154, 1997.

[13] W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kiki-
nis. Multi-modal volume registration by maximization of
mutual information. Medical Image Analysis, 1(1):35–51,
1996.

[14] A. Yezzi, Jr., S. Kichenassamy, A. Kumar, P. Olver, and
A. Tannenbaum. A geometric snake model for segmenta-
tion of medical imagery. IEEE Trans. on Medical Imaging,
16(2):199–209, April 1997.

[15] A. Yezzi, Jr., A. Tsai, and A. Willsky. A statistical approach
to snakes for bimodal and trimodal imagery. In Int. Conf. on
Computer Vision, pages 898–903, 1999.

[16] S. C. Zhu and A. Yuille. Region competition: Unifying
snakes, region growing, and Bayes/MDL for multiband im-
age segmentation. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 18(9):884–900, September 1996.


